JP2001053314A - Method for manufacturing compound semiconductor film - Google Patents

Method for manufacturing compound semiconductor film

Info

Publication number
JP2001053314A
JP2001053314A JP11230480A JP23048099A JP2001053314A JP 2001053314 A JP2001053314 A JP 2001053314A JP 11230480 A JP11230480 A JP 11230480A JP 23048099 A JP23048099 A JP 23048099A JP 2001053314 A JP2001053314 A JP 2001053314A
Authority
JP
Japan
Prior art keywords
group
fine powder
compound semiconductor
semiconductor film
metal salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11230480A
Other languages
Japanese (ja)
Inventor
Makoto Toda
誠 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP11230480A priority Critical patent/JP2001053314A/en
Publication of JP2001053314A publication Critical patent/JP2001053314A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To form a low cost light absorbing layer of a compound semiconductor solar cell using simple and easy method. SOLUTION: A dispersion solution consisting of a fine powder of group Ib element simple substance, a fine powder of group VIb element simple substance, and organic metal salt comprising group IIIb element, for instance, dispersion solution of toluene solvent containing fine powder, such as Cu and Se, and acetylacetonate of In, and added with a thickener to avoid sedimentation of the fine power is applied by a simple and easy coating method, for instance, dipping or roller coater method. Heat treatment is done in an inert gas, such as a nitrogen atmosphere, or in reducing atmosphere, and Ib-IIIb-VIb2 chalcopyrite structure, for instance, CuInSe2 film is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光電変換素子とし
て太陽電池材料に使用される化合物半導体膜、特にセレ
ン化物や硫化物を主成分とする化合物半導体膜の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a compound semiconductor film used for a solar cell material as a photoelectric conversion element, in particular, a compound semiconductor film containing selenide or sulfide as a main component.

【0002】[0002]

【従来の技術】CuInSe2に代表されるIbーII
IbーVIb2系のカルコパイライト構造を有する化合
物半導体膜を光吸収層に用いた太陽電池は光エネルギー
を直接、電気エネルギーに変換する際の高いエネルギー
変換効率を有しており、太陽光の照射によるエネルギー
変換効率の経時劣化も認められない。また、カルコパイ
ライト構造を有する化合物半導体膜はSiを主成分とす
るSi系半導体膜と比較して光吸収係数が高く、かつ耐
放射線能も大きいことが知られている。
2. Description of the Related Art Ib-II represented by CuInSe 2
A solar cell using a compound semiconductor film having an Ib-VIb 2 chalcopyrite structure as a light absorbing layer has a high energy conversion efficiency when directly converting light energy into electric energy, and is irradiated with sunlight. No deterioration of the energy conversion efficiency with time due to aging is observed. It is also known that a compound semiconductor film having a chalcopyrite structure has a higher light absorption coefficient and a higher radiation resistance than a Si-based semiconductor film containing Si as a main component.

【0003】Ib族元素、IIIb族元素およびVIb
族元素より構成される化合物半導体膜の製造方法におい
て、Ib族元素、IIIb族元素およびVIb族元素の
組成を制御することでカルコパイライト構造を得、太陽
電池の光吸収層として用いた場合にエネルギー変換効率
が高く、半導体としての特性が高性能な化合物半導体膜
を作製する手段は、精密な組成制御を行うことが膜厚方
向に対して可能な多元蒸着法に限定されているが、多元
蒸着法は精密な組成制御が可能な面積が狭く、必要な膜
厚形成に時間を要することから化合物半導体膜の大面積
化が著しく困難であり、量産化に適していない。
[0003] Group Ib, IIIb and VIb elements
In a method for manufacturing a compound semiconductor film composed of a group III element, a chalcopyrite structure is obtained by controlling the composition of a group Ib element, a group IIIb element, and a group VIb element, and the energy is reduced when used as a light absorption layer of a solar cell. Means for producing a compound semiconductor film having high conversion efficiency and high performance as a semiconductor are limited to a multi-source vapor deposition method capable of performing precise composition control in the film thickness direction. In the method, the area where precise composition control is possible is narrow, and it takes time to form a required film thickness. Therefore, it is extremely difficult to increase the area of the compound semiconductor film, and it is not suitable for mass production.

【0004】一方、化合物半導体膜の大面積化に対応可
能な手段としては、セレン化法や硫化法があるが、基板
上に既に形成されたIb族元素とIIIb族元素よりな
るアロイ膜に対して後からセレン化もしくは硫化を行わ
なければならないことから、膜中にマイクロボイドの発
生、および膜強度の低下を避けることが出来ない。
On the other hand, as means capable of coping with an increase in the area of the compound semiconductor film, there are a selenization method and a sulfidation method. However, an alloy film made of a group Ib element and a group IIIb element already formed on a substrate can be used. However, since selenization or sulfidation must be performed later, generation of microvoids in the film and reduction in film strength cannot be avoided.

【0005】また大面積化に対応する手段としてスパッ
タリング法が提案されているが、カルコパイライト化合
物の構成元素Ib族(例えばCu),IIIb族(例えば
In),VIb族(例えばSe)の3種のスパッタリン
グターゲットを用意して同時にスパッタリングを行う
と、3元素各々のスパッタリング効率が大きく異なり、
スパッタリング速度が安定しないことから3元素の精密
な組成制御が難しい。並びにスパッタリング法は高価な
スパッタリング装置およびスパッタリングターゲットを
必要とする。
A sputtering method has been proposed as a means for increasing the area. A chalcopyrite compound is composed of three elements, ie, a group Ib group (eg, Cu), a group IIIb (eg, In), and a group VIb (eg, Se). When the sputtering target is prepared and sputtering is performed at the same time, the sputtering efficiency of each of the three elements greatly differs,
Since the sputtering rate is not stable, it is difficult to precisely control the composition of the three elements. In addition, the sputtering method requires expensive sputtering equipment and sputtering targets.

【0006】また同様に大面積化に対応可能で、かつエ
ネルギー変換効率が高く、半導体として高性能なカルコ
パイライト構造を有する化合物半導体膜を安定して得る
化合半導体膜の製造方法として、Ib族元素とIIIb
族元素を含む有機金属塩溶液を導電性基板に被着して熱
分解処理をおこなって基板上にアロイ膜もしくはその部
分酸化物を形成した後、基板をVIb族元素雰囲気中で
熱処理して、カルコパイライト構造を有する化合物半導
体膜を得る製造方法が特開平10−219472号公報
および特開平11−4009号公報にて提示されている
が、前述のセレン化法や硫化法と同様にマイクロボイド
の発生および構成元素の組成制御が難しいという問題点
を有している。
[0006] Similarly, a method for producing a compound semiconductor film capable of stably obtaining a compound semiconductor film having a chalcopyrite structure, which can respond to a large area, has a high energy conversion efficiency, and has a high performance as a semiconductor, is described as an Ib group element. And IIIb
After applying an organic metal salt solution containing a group element to a conductive substrate and performing a thermal decomposition treatment to form an alloy film or a partial oxide thereof on the substrate, the substrate is heat-treated in a group VIb element atmosphere, Production methods for obtaining a compound semiconductor film having a chalcopyrite structure are disclosed in JP-A-10-219472 and JP-A-11-4009. There is a problem that generation and composition control of constituent elements are difficult.

【0007】[0007]

【発明が解決しようとする課題】カルコパイライト構造
を有する化合物半導体膜を光吸収層に使用すると高いエ
ネルギー変換効率を有する太陽電池を製造することがで
きるにかかわらず、大面積化が対応可能であって構成元
素の精密な組成制御が可能であり、太陽電池の光吸収層
としての優れた膜特性が安定して得られる安価なカルコ
パライト構造を有する化合物半導体膜の製造方法が未だ
確立されていないという問題がある。本発明は太陽電池
の光吸収層として有効なカルコパイライト構造を有する
化合物半導体膜の量産技術を確立することが可能な化合
物半導体膜の製造方法を提供することを目的とする。
When a compound semiconductor film having a chalcopyrite structure is used for a light absorbing layer, a solar cell having high energy conversion efficiency can be manufactured, but a large area can be accommodated. It is said that a method for producing a compound semiconductor film having an inexpensive chalcopyrite structure, which can precisely control the composition of constituent elements and can stably obtain excellent film characteristics as a light absorbing layer of a solar cell, has not yet been established. There's a problem. An object of the present invention is to provide a method of manufacturing a compound semiconductor film capable of establishing a mass production technique of a compound semiconductor film having a chalcopyrite structure effective as a light absorbing layer of a solar cell.

【0008】[0008]

【課題を解決するための手段】本発明者は、この問題を
解決するためにカルコパイライト構造をを有する化合物
半導体膜の製造方法を検討した結果、本発明の製造方法
によって、簡単な手法であって安価に半導体膜の大面積
化、並びに構成元素の精密な組成制御を成し得る化合物
半導体膜の量産技術を確立することが可能であることが
判った。
The present inventor studied a method for manufacturing a compound semiconductor film having a chalcopyrite structure in order to solve this problem. As a result, the manufacturing method of the present invention provides a simple method. It has been found that it is possible to establish a technique for mass production of a compound semiconductor film capable of achieving a large-area semiconductor film and controlling the composition of constituent elements precisely at low cost.

【0009】即ち、本発明はIb族元素の微粉末、VI
b族元素の微粉末、およびIIIb族元素の有機金属塩
を含む分散液を導電性の基板に被着する工程と非酸化性
雰囲気中で加熱処理する工程より化合物半導体膜を形成
することを特徴とする化合物半導体膜の製造方法であ
る。
That is, the present invention relates to a fine powder of Group Ib element, VI
A compound semiconductor film is formed by a step of applying a dispersion containing a fine powder of a group b element and an organic metal salt of a group IIIb element to a conductive substrate and a step of performing heat treatment in a non-oxidizing atmosphere. Is a method for manufacturing a compound semiconductor film.

【0010】更に、本発明はIIIb族元素の微粉末、
VIb族元素の微粉末、およびIb族元素の有機金属塩
を含む分散液を導電性の基板に被着する工程と非酸化性
雰囲気中で加熱処理する工程より化合物半導体膜を形成
することを特徴とする化合物半導体膜の製造方法であ
る。
Further, the present invention provides a fine powder of a group IIIb element,
A compound semiconductor film is formed by a step of applying a dispersion containing a fine powder of a Group VIb element and an organic metal salt of a Group Ib element to a conductive substrate and a step of performing heat treatment in a non-oxidizing atmosphere. Is a method for manufacturing a compound semiconductor film.

【0011】更に、本発明はVIb族元素の微粉末、I
b族元素の有機金属塩およびIIIb族元素の有機金属
塩を含む分散液を導電性の基板に被着する工程と非酸化
性雰囲気中で加熱処理する工程より化合物半導体膜を形
成することを特徴とする化合物半導体膜の製造方法であ
る。
Further, the present invention relates to a fine powder of a group VIb element,
A compound semiconductor film is formed by a step of applying a dispersion containing an organic metal salt of a group b element and an organic metal salt of a group IIIb element to a conductive substrate and a step of performing heat treatment in a non-oxidizing atmosphere. Is a method for manufacturing a compound semiconductor film.

【0012】更に、本発明はIb族元素の微粉末、II
Ib族元素の微粉末、およびVIb族元素の微粉末にI
b族元素の有機金属塩あるいはIIIb族元素の有機金
属塩のうち1種以上を含む分散液を基板に被着する工程
と非酸化性雰囲気中で加熱処理する工程により化合物半
導体膜を形成することを特徴とする化合物半導体膜の製
造方法である。
Further, the present invention relates to a fine powder of a group Ib element,
Group Ib element fine powder and Group VIb element fine powder
Forming a compound semiconductor film by a step of applying a dispersion containing at least one of an organic metal salt of a group b element or an organic metal salt of a group IIIb element to a substrate and a step of performing heat treatment in a non-oxidizing atmosphere. A method for manufacturing a compound semiconductor film.

【0013】更に、本発明は請求項1から4の、いずれ
か一つに記載の化合物半導体膜の製造方法において、分
散液を基板に被着後、VIb族元素を含む非酸化性雰囲
気中で熱処理することを特徴とする化合物半導体膜の製
造方法である。
Further, according to the present invention, in the method for manufacturing a compound semiconductor film according to any one of claims 1 to 4, after the dispersion is applied to the substrate, the dispersion is applied to a non-oxidizing atmosphere containing a group VIb element. A method for producing a compound semiconductor film, characterized by performing a heat treatment.

【0014】[0014]

【発明の実施の形態】本発明の化合物半導体膜の製造方
法は、導電性の基板上にIb族元素の微粉末、VIb族
元素の微粉末、およびIIIb族元素の有機金属塩を含
む分散液を被着する工程と非酸化性雰囲気中で加熱処理
してIbーIIIbーVIb2元素構造、即ちカルコパ
イライト構造を有する化合物半導体膜を形成することを
特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION A method for producing a compound semiconductor film according to the present invention is directed to a dispersion comprising a fine powder of a Group Ib element, a fine powder of a Group VIb element, and an organic metal salt of a Group IIIb element on a conductive substrate. And a heat treatment in a non-oxidizing atmosphere to form a compound semiconductor film having an Ib-IIIb-VIb two- element structure, that is, a chalcopyrite structure.

【0015】導電性の基板上にIb族元素の微粉末とV
Ib族元素の微粉末にIIIb族元素の有機金属塩を含
む分散液を被着する工程に代わって、IIIb族元素の
微粉末、VIb族元素の微粉末、およびIb族元素の有
機金属塩を含む分散液を被着する工程、またはIb族元
素の微粉末、IIIb族元素の微粉末、およびIb族元
素、IIIb族元素のどちらか1種以上の有機金属塩を
含む分散液の被着工程であっても構わない。
On a conductive substrate, fine powder of an Ib group element and V
Instead of applying the dispersion containing the organic metal salt of the group IIIb element to the fine powder of the group Ib element, the fine powder of the group IIIb element, the fine powder of the group VIb element, and the organic metal salt of the group Ib element are replaced with For applying a dispersion containing the same, or applying a dispersion containing a fine powder of a group Ib element, a fine powder of a group IIIb element, and an organic metal salt of at least one of a group Ib element and a group IIIb element It does not matter.

【0016】本発明はカルコパイライト構造を有する化
合物半導体膜の形成において、Ib族元素を微粉末化し
液体中に分散状態にすること、およびIIIb族元素の
有機金属塩を分散液への溶解状態にすることにより、導
電性基板への被着に際し組成ムラや皮膜ムラを軽減し、
かつ熱処理において微粉末材料と再析出材料を用いるこ
と、およびカルコパイライト化合物の構成元素をすべて
含有させることでカルコパイライト構造の化合物膜の形
成がより低温でより均一に得られることを特徴としてい
る。
According to the present invention, in the formation of a compound semiconductor film having a chalcopyrite structure, a group Ib element is finely pulverized and dispersed in a liquid, and an organic metal salt of a group IIIb element is dissolved in a dispersion liquid. By doing so, when applying to the conductive substrate, reduce composition unevenness and film unevenness,
Further, it is characterized in that a compound film having a chalcopyrite structure can be more uniformly formed at a lower temperature by using a fine powder material and a reprecipitated material in the heat treatment and by including all the constituent elements of the chalcopyrite compound.

【0017】本発明に使用する微粉末および有機金属塩
は、Ib族元素の有機金属塩とIIIb族元素の微粉末
の組み合わせであっても構わない。Ib族元素の微粉末
とIb族元素の有機金属塩が混在しても、IIIb族元
素の微粉末とIIIb族元素の有機金属塩が混在しても
構わない。
The fine powder and the organic metal salt used in the present invention may be a combination of an organic metal salt of a Group Ib element and a fine powder of a Group IIIb element. The fine powder of the group Ib element and the organic metal salt of the group Ib element may be mixed, or the fine powder of the group IIIb element and the organic metal salt of the group IIIb element may be mixed.

【0018】本発明に使用する微粉末はIb族元素の単
体、IIIb族元素の単体、もしくはIb族元素とII
Ib族元素のアロイであっても構わない。微粉末の粒径
は0.01〜5μm、特に1μm以下が好ましい。この
金属微粉末表面に界面活性剤等で表面処理が施されたも
のを本発明に使用して問題はない。
The fine powder used in the present invention may be a simple substance of a group Ib element, a simple substance of a group IIIb element, or a simple substance of a group Ib element and a group II element.
It may be an alloy of an Ib group element. The particle size of the fine powder is preferably 0.01 to 5 μm, particularly preferably 1 μm or less. There is no problem in using the metal fine powder surface-treated with a surfactant or the like in the present invention.

【0019】本発明に使用する有機金属塩は有機酸塩、
樹脂酸塩、金属アルコキシド、および金属アセチルアセ
トン錯体から選択することが可能であり、使用する分散
液に溶解することが重要である。有機金属塩は金属微粉
末やVIb族元素単体あるいはVIb族元素の化合物と
共存することから、金属微粉末やVIb族元素単体ある
いはVIb族元素の化合物と反応して系が著しく不均一
化したりする有機金属塩は本発明に適していない。
The organic metal salt used in the present invention is an organic acid salt,
It is possible to choose from resinates, metal alkoxides, and metal acetylacetone complexes, and it is important that they dissolve in the dispersion used. Since the organic metal salt coexists with the metal fine powder, the single group VIb element, or the compound of the group VIb element, the organic metal salt reacts with the metal fine powder, the single element of the group VIb, or the compound of the group VIb element, and the system becomes extremely uneven. Organometallic salts are not suitable for the present invention.

【0020】本発明に使用するVIb族元素単体あるい
はVIb族元素の有機金属塩は、Ib族元素とIIIb
族元素が共存する状態で、Ib族元素単体、Ib族元素
の有機金属塩、IIIb族元素の単体、およびIIIb
族元素の有機金属塩と熱処理時に簡単に反応してカルコ
パイライト化合物を形成することから、その粒径は微粉
末ほどの小さな粒径は必要ない。但し分散液の一部を形
成することから製造に支障を来たさない程度の粒径であ
る100μm以下であることが好ましい。またこのVIb
族元素は単体のみならず例えば硫化セレンのカルコゲン
物でも、分散液中でコロイド状態であっても構わない。
The Group VIb element alone or the organometallic salt of the Group VIb element used in the present invention comprises a Group Ib element and a IIIb element.
A group Ib element, an organic metal salt of a group Ib element, a simple substance of a group IIIb element,
Since it easily reacts with an organic metal salt of a group element during heat treatment to form a chalcopyrite compound, its particle size does not need to be as small as a fine powder. However, it is preferable that the particle size is not more than 100 μm, which is a particle size that does not hinder the production since a part of the dispersion is formed. Also this VIb
The group element may be not only a simple substance but also a chalcogen substance of selenium sulfide, for example, or may be in a colloidal state in the dispersion.

【0021】本発明で用いる分散液、即ち金属微粉末の
分散および有機金属塩の溶解を行う液体は有機溶剤、例
えば脂肪族炭化水素系、芳香族炭化水素系、テルペン
系、アルコール系、ケトン系、あるいはエステル系溶剤
いずれでも良く、本発明で使用する金属微粉末を分散
し、および有機金属塩を溶解しうるものであればよい。
The dispersion used in the present invention, that is, the liquid for dispersing the fine metal powder and dissolving the organic metal salt, is an organic solvent such as an aliphatic hydrocarbon, an aromatic hydrocarbon, a terpene, an alcohol or a ketone. Alternatively, any solvent may be used as long as it can disperse the fine metal powder used in the present invention and dissolve the organic metal salt.

【0022】本発明において導電性の基板に被着させる
分散液に分散助剤として界面活性剤や増粘剤を加えるこ
とができる。例えばセルロース系、脂肪酸エステル重合
体、ポリエーテル、PVA系およびベントナイト系等、
即ち沈降抑制剤として働くものであれば、加熱処理後の
カルコパイライト化合物の半導体としての特性を損なわ
ない限り、本発明への使用は妨げるものではない。また
消泡剤の添加も、加熱処理後のカルコパイライト化合物
の半導体としての特性を損なわない限り、本発明で使用
する分散液に加えても構わない。
In the present invention, a surfactant or a thickener can be added as a dispersing aid to the dispersion to be adhered to the conductive substrate. For example, cellulose type, fatty acid ester polymer, polyether, PVA type and bentonite type,
That is, as long as it acts as a precipitation inhibitor, use of the chalcopyrite compound after heat treatment in the present invention is not hindered as long as the semiconductor properties are not impaired. The defoaming agent may be added to the dispersion used in the present invention as long as the properties of the chalcopyrite compound after the heat treatment as a semiconductor are not impaired.

【0023】本発明で使用する分散液の被着方法は、例
えば一般的な塗布方法、ディッピング法、ロールコート
法、バーコート法、スピンコーター法、スプレー法、イ
ンクジェット法、スクリーン印刷法等がその手段として
選択できるが、ディッピング法、ロールコートあるいは
バーコート法が本発明への使用において分散液の性質や
被着後の状態による材料の歩留まりを考慮するとより好
ましい被着方法である。被着時の分散液の分散状態の安
定性は長期にわたって安定である必要はなく、例えば、
ディッピング法においてディッピング時のみ分散した状
態が保持できればよく、例えば基板搬送時に分散液の攪
拌あるいは循環を、本発明で使用する分散液におこなっ
ても何ら差し支えない。
The method of applying the dispersion used in the present invention includes, for example, a general coating method, dipping method, roll coating method, bar coating method, spin coater method, spray method, ink jet method, screen printing method and the like. Although it can be selected as a means, dipping, roll coating or bar coating is a more preferable deposition method in consideration of the properties of the dispersion and the yield of the material depending on the state after deposition in the use of the present invention. The stability of the dispersion state of the dispersion at the time of deposition does not need to be stable for a long time, for example,
In the dipping method, it is sufficient that the dispersed state can be maintained only at the time of dipping. For example, stirring or circulation of the dispersion during the transport of the substrate may be performed on the dispersion used in the present invention.

【0024】本発明において導電性の基板に被着した後
の分散液の加熱処理は、分散液を被着した導電性基板を
最初に大気中で常温〜150℃以下で乾燥させて溶剤
が殆どなくなった後、非酸化性雰囲気中で250℃以
上、700℃以下で加熱処理を行う。
In the present invention, the heat treatment of the dispersion after it is applied to the conductive substrate is performed by first drying the conductive substrate on which the dispersion is applied at room temperature to 150 ° C. or less in the atmosphere to remove most of the solvent. After the disappearance, heat treatment is performed in a non-oxidizing atmosphere at a temperature of 250 ° C. or more and 700 ° C. or less.

【0025】本発明において、加熱処理時の非酸化性雰
囲気とは、不活性ガス雰囲気、窒素ガス雰囲気、あるい
は水素ガス雰囲気等の還元性雰囲気であり、該雰囲気中
にVIb族元素もしくはVIb族元素の化合物が存在し
ても構わない。VIb族元素もしくはVIb族元素の化
合物が存在すると、Ib族元素とIIIb族元素による
アロイ膜と速やかに化合する。
In the present invention, the non-oxidizing atmosphere at the time of the heat treatment is a reducing atmosphere such as an inert gas atmosphere, a nitrogen gas atmosphere, or a hydrogen gas atmosphere, in which a VIb group element or a VIb group element is contained. May be present. When a group VIb element or a compound of a group VIb element is present, it quickly combines with the alloy film of the group Ib element and the group IIIb element.

【0026】カルコパイライト構造を有する化合物半導
体膜の形成法は基板への被着を繰り返しおこない所定の
膜厚を得る、あるいは被着分散液のIb族元素、III
b族元素、VIb族元素の組成比を逐次変えることで、
より半導体として性能の安定したカルコパイライト構造
を有する化合物半導体膜を形成することが可能である。
組成の変化で結晶粒径や半導体としてのpn特性を制御
することも可能となる。またInにIIIb族元素もし
くはIIIb族元素の化合物としてGaを添加しエナジ
ーギャップの制御をすること、およびIIb族元素もし
くはIIb族元素の化合物をドーピング剤として分散液
中に添加することも可能である。
The method of forming a compound semiconductor film having a chalcopyrite structure is to repeatedly deposit a substrate on a substrate to obtain a predetermined film thickness, or to obtain an Ib group element, III
By sequentially changing the composition ratio of group b element and group VIb element,
It is possible to form a compound semiconductor film having a chalcopyrite structure with more stable performance as a semiconductor.
It is also possible to control the crystal grain size and the pn characteristics as a semiconductor by changing the composition. It is also possible to control the energy gap by adding Ga as a group IIIb element or a compound of a group IIIb element to In, and to add a group IIb element or a group IIb element compound as a doping agent to the dispersion. .

【0027】被着分散液中のVIb族元素の存在割合は
カルコパイライト化合物の定比付近であれば良いが、好
ましくは定比以上、即ちモル比で、VIb族元素/(I
b族元素+IIIb族元素)>1 の存在割合でカルコ
パイライト化合物が得られやすい。
The proportion of the group VIb element in the applied dispersion may be near the stoichiometric ratio of the chalcopyrite compound, but is preferably higher than the stoichiometric ratio, that is, the molar ratio of the group VIb element / (I
A chalcopyrite compound is easily obtained when the proportion of (group b element + group IIIb element)> 1 is satisfied.

【0028】本発明で分散液を付着する導電性の基板は
サブストレート型太陽電池の構成においては金属電極薄
膜(Mo、Au、Pd、Pt、Ni、Ti等からの1
種)を表面に有する基板となり、スーパーストレート型
太陽電池の構成では金属酸化物電極薄膜(ZnO、Sn
2、ITO等からの1種)を有する基板となる。また
本発明によるpタイプのカルコパイライト構造を有する
化合物半導体は従来よりも低温で形成できることから、
スーパーストレート型太陽電池においても変換効率の向
上が期待できる。
In the present invention, the conductive substrate to which the dispersion is applied is a metal electrode thin film (Mo, Au, Pd, Pt, Ni, Ti, etc.) in the structure of the substrate type solar cell.
Seed) on the surface, and a metal oxide electrode thin film (ZnO, Sn
O 2, 1 or from ITO or the like) as a substrate having. Since the compound semiconductor having a p-type chalcopyrite structure according to the present invention can be formed at a lower temperature than before,
An improvement in the conversion efficiency can also be expected in super-straight solar cells.

【0029】[0029]

【実施例】[実施例1]Cu金属微粉末(平均粒径0.
2μm)0.1モル、Inアセチルアセトナート 0.
1モル、Se(平均粒径40μm)0.2モルをトルエ
ン1Lに高分子系増粘剤を添加して、被着用の分散液を
調製した。このときInアセチルアセナートはトルエン
に溶解している。バーコート法でガラス基板上に分散液
を塗布し、オーブンにて 110℃、10分乾燥後、環状
炉にて窒素ガスの不活性雰囲気中で 350℃、1時間
加熱処理をおこなった。得られた膜の膜厚は 10μm
以上あったが、ひび割れの発生が認められた。この膜の
X線回折より結晶構造を分析し図ー1に示すグラフを得
た。グラフの横軸は回折角度、縦軸はX線回折強度を示
している。カルコパイライト化合物であるCuInSe
2の特徴である回折線(112)、(220)が現れ、
得られた膜中にCuInSe2が含まれていることを同
定した。 [実施例2]Cu金属微粉末(平均粒径0.2μm)
0.1モル、Inアセチルアセトナート 0.1モル、
Se(平均粒径40μm)0.4モルをトルエン1Lに
高分子系増粘剤を添加して、被着用の分散液を調整し
た。デッピング法でガラス基板上に分散液を塗布した。
分散液中に基板を浸積し分散液中から基板を30cm/
分の引き上げ速度で引き上げることを 10回繰り返し
た後、オーブンにて110℃、10分乾燥後、環状炉に
て窒素ガスの不活性雰囲気中で350℃、1時間加熱処
理をおこなった。得られた膜の膜厚は約1μmであっ
た。X線回折よりこの膜の結晶構造を分析し、図ー2に
示すグラフを得た。グラフの横軸は回折角度、縦軸はX
線回折強度を示している。カルコパイライト化合物であ
るCuInSe2以外の回折線のピークが小さくなり、
得られた膜中でのCuInSe2の含有比が実施例1の
膜より大きい結果であった。
[Example 1] Cu metal fine powder (average particle diameter of 0.1 mm).
2 μm) 0.1 mol, In acetylacetonate
1 mol of Se and 0.2 mol of Se (average particle diameter: 40 μm) were added to 1 L of toluene with a polymer-based thickener to prepare a dispersion for coating. At this time, In acetylacenate is dissolved in toluene. The dispersion was applied on a glass substrate by a bar coating method, dried at 110 ° C. for 10 minutes in an oven, and then heated at 350 ° C. for 1 hour in an inert atmosphere of nitrogen gas in an annular furnace. The thickness of the obtained film is 10 μm
As described above, cracking was observed. The crystal structure of the film was analyzed by X-ray diffraction, and the graph shown in FIG. 1 was obtained. The horizontal axis of the graph indicates the diffraction angle, and the vertical axis indicates the X-ray diffraction intensity. CuInSe, a chalcopyrite compound
Diffraction lines (112) and (220), which are features of 2 , appear,
It was identified that CuInSe 2 was contained in the obtained film. [Example 2] Cu metal fine powder (average particle size 0.2 µm)
0.1 mol, In acetylacetonate 0.1 mol,
0.4 mol of Se (average particle size: 40 μm) was added to 1 L of toluene with a polymer-based thickener to prepare a dispersion to be applied. The dispersion was applied on a glass substrate by a dipping method.
The substrate is immersed in the dispersion, and the substrate is immersed in the dispersion by 30 cm /
After 10 times of pulling up at a pulling rate of 1 minute, drying was performed in an oven at 110 ° C. for 10 minutes, and then heat treatment was performed in an annular furnace at 350 ° C. for 1 hour in an inert atmosphere of nitrogen gas. The thickness of the obtained film was about 1 μm. The crystal structure of this film was analyzed by X-ray diffraction, and the graph shown in FIG. 2 was obtained. The horizontal axis of the graph is the diffraction angle, and the vertical axis is X
The figure shows the line diffraction intensity. The peak of the diffraction line other than the chalcopyrite compound CuInSe 2 becomes smaller,
The result was that the content ratio of CuInSe 2 in the obtained film was larger than that of the film of Example 1.

【0030】[0030]

【発明の効果】本発明では、Ib族元素単体の微粉末、
VIb族元素単体の微粉末およびIIIb族元素を含む
有機金属塩よりなる分散液、またはIIIb族元素単体
の微粉末、VIb族元素単体の微粉末およびIb族元素
を含む有機金属塩よりなる分散液を導電性基板上に被着
し、非酸化性雰囲気中で加熱処理をおこなって、一度に
Ib−IIIb−VIb2系のカルコパイライト構造を
有する化合物半導体膜を得ることが可能であることか
ら、簡便な製造方法で、低コストの大面積対応可能な、
且つ製造時の熱履歴を抑制した高品質の太陽電池の光吸
収層を製造することができる。
According to the present invention, a fine powder of a simple substance of group Ib is provided,
Dispersion consisting of fine powder of group VIb element alone and organic metal salt containing group IIIb element, or dispersion liquid consisting of fine powder of group IIIb element alone, fine powder of group VIb element alone and organic metal salt containing group Ib element On a conductive substrate, and heat-treated in a non-oxidizing atmosphere to obtain a compound semiconductor film having an Ib-IIIb-VIb2-based chalcopyrite structure at a time. With a simple manufacturing method, it can support low cost and large area,
In addition, it is possible to manufacture a high-quality light absorbing layer of a solar cell in which the heat history during manufacturing is suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られた膜のX線回折測定チャー
ト。
FIG. 1 is an X-ray diffraction measurement chart of a film obtained in Example 1.

【図2】実施例2で得られた膜のX線回折測定チャー
ト。
FIG. 2 is an X-ray diffraction measurement chart of a film obtained in Example 2.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】Ib族元素の微粉末、VIb族元素の微粉
末、およびIIIb族元素の有機金属塩を含む分散液を
導電性の基板に被着する工程と非酸化性雰囲気中で加熱
処理する工程より化合物半導体膜を形成することを特徴
とする化合物半導体膜の製造方法。
1. A step of applying a dispersion containing a fine powder of a group Ib element, a fine powder of a group VIb element, and an organic metal salt of a group IIIb element to a conductive substrate, and a heat treatment in a non-oxidizing atmosphere. Forming a compound semiconductor film from the step of forming a compound semiconductor film.
【請求項2】IIIb族元素の微粉末、VIb族元素の
微粉末、およびIb族元素の有機金属塩を含む分散液を
導電性の基板に被着する工程と非酸化性雰囲気中で加熱
処理する工程より化合物半導体膜を形成することを特徴
とする化合物半導体膜の製造方法。
2. A step of applying a dispersion containing a fine powder of a group IIIb element, a fine powder of a group VIb element, and an organic metal salt of a group Ib element to a conductive substrate, and performing heat treatment in a non-oxidizing atmosphere. Forming a compound semiconductor film from the step of forming a compound semiconductor film.
【請求項3】VIb族元素の微粉末、Ib族元素の有機
金属塩、およびIIIb族元素の有機金属塩を含む分散
液を導電性の基板に被着する工程と非酸化性雰囲気中で
加熱処理する工程より化合物半導体膜を形成することを
特徴とする化合物半導体膜の製造方法。
3. A step of applying a dispersion containing fine powder of a Group VIb element, an organic metal salt of a Group Ib element, and an organic metal salt of a Group IIIb element to a conductive substrate, and heating in a non-oxidizing atmosphere. A method for producing a compound semiconductor film, comprising forming a compound semiconductor film from the step of treating.
【請求項4】Ib族元素の微粉末、IIIb族元素の微
粉末、およびVIb族元素の微粉末に加えて、Ib族元
素の有機金属塩あるいはIIIb族元素の有機金属塩の
うち1種以上を含む分散液を導電性の基板に被着する工
程と非酸化性雰囲気中で加熱処理する工程より化合物半
導体膜を形成することを特徴とする化合物半導体膜の製
造方法。
4. In addition to a fine powder of a Group Ib element, a fine powder of a Group IIIb element, and a fine powder of a Group VIb element, at least one of an organic metal salt of a Group Ib element and an organic metal salt of a Group IIIb element A method for producing a compound semiconductor film, comprising: forming a compound semiconductor film from a step of applying a dispersion containing the compound to a conductive substrate and a step of performing heat treatment in a non-oxidizing atmosphere.
【請求項5】請求項1から4の、いずれか一つに記載の
化合物半導体膜の製造方法において、分散液を導電性の
基板に被着後、VIb族元素を含む非酸化性雰囲気中で
加熱処理することを特徴とする化合物半導体膜の製造方
法。
5. The method for manufacturing a compound semiconductor film according to claim 1, wherein the dispersion liquid is applied to a conductive substrate and then the dispersion liquid is applied to a non-oxidizing atmosphere containing a group VIb element. A method for producing a compound semiconductor film, comprising performing heat treatment.
JP11230480A 1999-08-17 1999-08-17 Method for manufacturing compound semiconductor film Pending JP2001053314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11230480A JP2001053314A (en) 1999-08-17 1999-08-17 Method for manufacturing compound semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11230480A JP2001053314A (en) 1999-08-17 1999-08-17 Method for manufacturing compound semiconductor film

Publications (1)

Publication Number Publication Date
JP2001053314A true JP2001053314A (en) 2001-02-23

Family

ID=16908469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11230480A Pending JP2001053314A (en) 1999-08-17 1999-08-17 Method for manufacturing compound semiconductor film

Country Status (1)

Country Link
JP (1) JP2001053314A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100853197B1 (en) 2007-03-13 2008-08-20 한국전자통신연구원 Method of manufacturing p-type cis and n-type cis thin films
JP2008192542A (en) * 2007-02-07 2008-08-21 Nippon Oil Corp Manufacturing method of chalcopyrite nanoparticle and photoelectric conversion element
JP2008537640A (en) * 2005-03-16 2008-09-18 ナノソーラー インコーポレイテッド Formation of compound films for metal dispersants and photovoltaic device active layers
WO2011013657A1 (en) * 2009-07-30 2011-02-03 京セラ株式会社 Method for producing compound semiconductor, method for manufacturing photoelectric conversion device, and solution for forming semiconductor
JP2011056360A (en) * 2009-09-08 2011-03-24 Tokyo Ohka Kogyo Co Ltd Coating apparatus and coating method
CN102024858A (en) * 2010-04-19 2011-04-20 福建欧德生光电科技有限公司 Ink, thin film solar cell and manufacturing methods thereof
JP2011176204A (en) * 2010-02-25 2011-09-08 Kyocera Corp Method of manufacturing semiconductor layer, and method of manufacturing photoelectric conversion device
WO2012014924A1 (en) * 2010-07-29 2012-02-02 京セラ株式会社 Photoelectric conversion device
KR101185053B1 (en) 2006-12-13 2012-09-21 엘지이노텍 주식회사 Manufacturing method of CuInSe2CIS particle
WO2013038870A1 (en) * 2011-09-16 2013-03-21 京セラ株式会社 Photoelectric conversion device and method for manufacturing photoelectric conversion device
KR101299584B1 (en) * 2011-11-28 2013-08-26 금호전기주식회사 Thin-film solar cell and its manufacturing method
US9293613B2 (en) 2006-07-24 2016-03-22 Lg Chem, Ltd. Method for preparing CIS compounds and thin layer, and solar cell having CIS compound thin layer

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008537640A (en) * 2005-03-16 2008-09-18 ナノソーラー インコーポレイテッド Formation of compound films for metal dispersants and photovoltaic device active layers
US9293613B2 (en) 2006-07-24 2016-03-22 Lg Chem, Ltd. Method for preparing CIS compounds and thin layer, and solar cell having CIS compound thin layer
KR101185053B1 (en) 2006-12-13 2012-09-21 엘지이노텍 주식회사 Manufacturing method of CuInSe2CIS particle
JP2008192542A (en) * 2007-02-07 2008-08-21 Nippon Oil Corp Manufacturing method of chalcopyrite nanoparticle and photoelectric conversion element
KR100853197B1 (en) 2007-03-13 2008-08-20 한국전자통신연구원 Method of manufacturing p-type cis and n-type cis thin films
JP5340314B2 (en) * 2009-07-30 2013-11-13 京セラ株式会社 Compound semiconductor manufacturing method, photoelectric conversion device manufacturing method, and semiconductor forming solution
CN102362339A (en) * 2009-07-30 2012-02-22 京瓷株式会社 Method for producing compound semiconductor, method for manufacturing photoelectric conversion device, and solution for forming semiconductor
CN102362339B (en) * 2009-07-30 2014-03-26 京瓷株式会社 Method for producing compound semiconductor, method for manufacturing photoelectric conversion device, and solution for forming semiconductor
US9023680B2 (en) 2009-07-30 2015-05-05 Kyocera Corporation Method for producing compound semiconductor, method for manufacturing photoelectric conversion device, and solution for forming semiconductor
WO2011013657A1 (en) * 2009-07-30 2011-02-03 京セラ株式会社 Method for producing compound semiconductor, method for manufacturing photoelectric conversion device, and solution for forming semiconductor
JP2011056360A (en) * 2009-09-08 2011-03-24 Tokyo Ohka Kogyo Co Ltd Coating apparatus and coating method
JP2011176204A (en) * 2010-02-25 2011-09-08 Kyocera Corp Method of manufacturing semiconductor layer, and method of manufacturing photoelectric conversion device
CN102024858A (en) * 2010-04-19 2011-04-20 福建欧德生光电科技有限公司 Ink, thin film solar cell and manufacturing methods thereof
WO2012014924A1 (en) * 2010-07-29 2012-02-02 京セラ株式会社 Photoelectric conversion device
WO2013038870A1 (en) * 2011-09-16 2013-03-21 京セラ株式会社 Photoelectric conversion device and method for manufacturing photoelectric conversion device
JPWO2013038870A1 (en) * 2011-09-16 2015-03-26 京セラ株式会社 Photoelectric conversion device and method for manufacturing photoelectric conversion device
KR101299584B1 (en) * 2011-11-28 2013-08-26 금호전기주식회사 Thin-film solar cell and its manufacturing method

Similar Documents

Publication Publication Date Title
CN1143399C (en) Method of making compound semiconductor film and making related electronic devices
US6127202A (en) Oxide-based method of making compound semiconductor films and making related electronic devices
US9390919B2 (en) Method of forming semiconductor film and photovoltaic device including the film
Moholkar et al. Development of CZTS thin films solar cells by pulsed laser deposition: influence of pulse repetition rate
US9324890B2 (en) Photovoltaic device with solution-processed chalcogenide absorber layer
US8071875B2 (en) Manufacture of thin solar cells based on ink printing technology
Romeo et al. Growth of polycrystalline CdS and CdTe thin layers for high efficiency thin film solar cells
Ramamoorthy et al. Review on material properties of IZO thin films useful as epi-n-TCOs in opto-electronic (SIS solar cells, polymeric LEDs) devices
WO2012023519A1 (en) Ink for production of compound semiconductor thin film, compound semiconductor thin film produced using the ink, solar cell equipped with the compound semiconductor thin film, and process for production of the solar cell
JP4177480B2 (en) Compound semiconductor film and related electronic device manufacturing method
KR20160052694A (en) Inorganic Salt-Nanoparticle Ink for Thin Film Photovoltaic Devices and Related Methods
JP2001053314A (en) Method for manufacturing compound semiconductor film
TWI536588B (en) Compound semiconductor thin-film solar cell and method for producing thereof
JP2001274176A (en) Method of manufacturing compound semiconductor film
Wu et al. The effect of different Cu/Sn ratios on the properties of monoclinic Cu 2 SnS 3 thin films and solar cells fabricated by the sol–gel method
JP5782672B2 (en) COMPOUND SEMICONDUCTOR THIN FILM INK
Chander et al. Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: A review on high throughput processed methods
Kapur et al. Oxide-based method of making compound semiconductor films and making related electronic devices
Tiwari et al. Thin film CIGS solar cells with a novel low cost process-Final report
JP2010129649A (en) Manufacturing method for thin-film solar cell