JP2001032819A - Power transmission shaft and propeller shaft - Google Patents

Power transmission shaft and propeller shaft

Info

Publication number
JP2001032819A
JP2001032819A JP11178520A JP17852099A JP2001032819A JP 2001032819 A JP2001032819 A JP 2001032819A JP 11178520 A JP11178520 A JP 11178520A JP 17852099 A JP17852099 A JP 17852099A JP 2001032819 A JP2001032819 A JP 2001032819A
Authority
JP
Japan
Prior art keywords
power transmission
transmission shaft
shaft
frp
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11178520A
Other languages
Japanese (ja)
Inventor
Tatsuo Nakajima
達雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP11178520A priority Critical patent/JP2001032819A/en
Publication of JP2001032819A publication Critical patent/JP2001032819A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/026Shafts made of fibre reinforced resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/481Non-reactive adhesives, e.g. physically hardening adhesives
    • B29C65/4815Hot melt adhesives, e.g. thermoplastic adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/481Non-reactive adhesives, e.g. physically hardening adhesives
    • B29C65/482Drying adhesives, e.g. solvent based adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30321Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined making use of protusions belonging to at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5344Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially annular, i.e. of finite length, e.g. joining flanges to tube ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • B29C66/53462Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies joining substantially flat covers and substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74283Iron or alloys of iron, e.g. steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/75Shafts

Abstract

PROBLEM TO BE SOLVED: To join a power transmission shaft made of fiber reinforced plastics(FRP) to metallic joint-elements, etc., with joining strength excelling in durability to realize the light weight and low cost of the power transmission shaft by manufacturing the shaft such as an automotive propeller shaft from the fiber reinforced plastic. SOLUTION: In a cylindrical power transmission shaft formed by wrapping membrane, film, foil, and sheet into multiple layers, a central part 7 in the longitudinal direction is formed of only a FRP layer, transition parts 8 between the central part 7 and end parts 9 are formed of composite layers containing the FRP layer and metallic layer, and the end parts 9 are each formed of only the metallic layer. At the end parts 9 or at the end parts 9 and the transition parts 8, metallic parts of joint-elements, etc., are welded to the power transmission shaft, and joining by pin stopping, press fitting, friction welding, etc., is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は動力を伝達するため
の回転軸に関し、より詳しくは、自動車の動力伝達軸と
して使用されるプロペラシャフトやドライブシャフトに
代表されるような動力伝達シャフトに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary shaft for transmitting power, and more particularly, to a power transmission shaft such as a propeller shaft or a drive shaft used as a power transmission shaft of an automobile.

【0002】[0002]

【従来の技術】自動車の動力伝達軸として使用されるプ
ロペラシャフトは、変連機から減速歯車装置に動力を伝
達する推進軸であり、両端部にて等速ジョイント(継
手)を介して連結され、変速機と減速歯車装置の相対位
置の変化による長さと角度の変化に対応できる構造を有
する。
2. Description of the Related Art A propeller shaft used as a power transmission shaft of an automobile is a propulsion shaft for transmitting power from a transmission to a reduction gear device, and is connected at both ends via constant velocity joints (joints). And a structure capable of coping with changes in length and angle due to changes in the relative position of the transmission and the reduction gear device.

【0003】プロペラシャフトを構成するジョイントお
よびそのジョイント間の中間軸には、従来、鋼製のもの
を使用するのが一般的であった。また、曲げ剛性の観点
から、長軸になると三分割や四分割などの分割構造と
し、その中間部をセンターベアリングサポートで支える
構造となっている。それゆえ、重量およびコスト等の面
から改善が要求されている。
Conventionally, steel joints have been generally used as joints constituting a propeller shaft and intermediate shafts between the joints. Also, from the viewpoint of bending rigidity, the longitudinal axis is divided into three or four parts, and the intermediate part is supported by a center bearing support. Therefore, improvements are required in terms of weight and cost.

【0004】そこで、近時、図10に例示するように、
曲げ剛性の強い繊維強化プラスチック(以下、FRPと
称する)製の中空シャフトを使用することが提案されて
いる(特開平3−249429号公報参照)。これによ
り、鋼からFRPに材料を変えることで軽量化が図れる
ばかりでなく、長軸化が図れ、分割が不要になり、中間
部のサポート軸受が不用になるという点でも軽量化と低
コストが図れるようになる。
Therefore, recently, as exemplified in FIG.
It has been proposed to use a hollow shaft made of fiber reinforced plastic (hereinafter, referred to as FRP) having high flexural rigidity (see JP-A-3-249429). This not only reduces weight by changing the material from steel to FRP, but also increases the length of the shaft, eliminates the need for splitting, and eliminates the need for intermediate support bearings. I can plan.

【0005】[0005]

【発明が解決しようとする課題】ところで、FRP製の
中間シャフトを軸端部の金属部品と接合しようとする
と、接合部の強度を確保してトルク伝達を実現するため
に軸端部の断面形状を多角形にしたり、また、中空シャ
フトの軸端部が重合する部分での接合面をローレット加
工等によって粗面化したり、FRP製の中空シャフトを
かしめたり、さらに中空シャフトの軸芯部へ金属部品を
圧入したりすることで接合していた。また、FRP製中
空シャフト軸端部と金属部品の接触界面に接着剤を介在
させて接合したり、粗面化、かしめ、圧入などの加工と
接着剤を併用したりして接合部の強度保持の様々な工夫
がなされていた。
When an FRP intermediate shaft is to be joined to a metal part at the end of the shaft, the cross-sectional shape of the end of the shaft is required to secure the strength of the joint and to realize torque transmission. Into a polygon, or roughen the joint surface at the portion where the shaft end of the hollow shaft overlaps by knurling or the like, caulk an FRP hollow shaft, and further add metal to the shaft core of the hollow shaft. The parts were joined by press fitting. In addition, adhesive strength is maintained at the contact interface between the shaft end of the FRP hollow shaft and the metal component by interposing an adhesive, or the adhesive is used in combination with roughening, caulking, press-fitting, etc. to maintain the strength of the joint. Various ingenuity was made.

【0006】しかしながら、これらの方法では軸端部の
加工方法が困難になったり、接合部の強度を確保するた
めに外径を太くしないといけなかったり、また、軸方向
の抜け止め対策も信頼性確保のために別に施さないとい
けないなどの成形上の問題があった。また、FRP製の
中空シャフトをかしめたり、中空シャフトの軸芯部に金
属部品を圧入したりする方法では、FRP部のクリープ
や応力緩和によって圧入時緊縛力の低下があるために、
周方向にすべりを生じたり、軸方向に抜け出したりする
ことがあり、製品機能上で長期の信頼性に欠けるなどの
重大な短所があった。
However, these methods make it difficult to process the shaft end, increase the outer diameter in order to secure the strength of the joints, and have a reliable measure for preventing axial removal. There was a problem in molding such that it had to be performed separately to secure the property. In the method of caulking a hollow shaft made of FRP or press-fitting a metal part into the shaft core of the hollow shaft, the crimping and stress relaxation of the FRP portion lowers the binding force at the time of press-fitting.
It has slippage in the circumferential direction or slips out in the axial direction, and has serious disadvantages such as lack of long-term reliability in product functions.

【0007】接合部をみたとき、FRPと金属部品の接
触面積だけで、圧入時に生じる緊縛力を抗力にする摩擦
力や、接触界面に介在する接着剤による化学的および物
理的接着によってトルク伝達が行われている。この場
合、衝撃的に生ずる過大トルクに対応しようとすると、
圧入量を深くして接触界面の面積をなるべく大きくした
り、FRPの圧入による弾性変形量を大きくしたりする
が、製造加工時FRP部にクラックを生じたり、使用時
のクリープや応力緩和が避けられないため、接合上の問
題が生じていた。
[0007] When looking at the joint, the torque transmission is caused by the frictional force that makes the binding force generated at the time of press-fitting as a resistance or the chemical and physical adhesion by the adhesive interposed at the contact interface only by the contact area between the FRP and the metal part. Is being done. In this case, when trying to cope with the excessive torque generated by impact,
Although the area of the contact interface is increased as much as possible by increasing the amount of press-fitting, and the amount of elastic deformation due to press-fitting of FRP is increased, cracks are generated in the FRP part during manufacturing processing, and creep and stress relaxation during use are avoided. Therefore, there was a problem in joining.

【0008】一方、動力伝達軸であるプロペラシャフト
の中間シャフトに、軽量化、低燃費化、および低コスト
化、振動・騒音特性の向上を図るためにFRP製の中空
シャフトを使用した場合、自動車内でのスペース上の制
約から中空シャフトの外径を細くしなければならないと
いった問題点も解決しなければならない。
On the other hand, when a hollow shaft made of FRP is used for an intermediate shaft of a propeller shaft, which is a power transmission shaft, in order to reduce the weight, reduce fuel consumption, reduce costs, and improve vibration and noise characteristics, an automobile is used. The problem that the outer diameter of the hollow shaft must be reduced due to space restrictions in the interior must also be solved.

【0009】本発明の目的は、叙上の改善要求にこたえ
るべく、FRP中空シャフトの軸端部における金属部品
との溶接、ピン止め、圧入等の接合が可能で、正常な荷
重状態で適正なトルク伝達を実現したうえ衝撃的に生ず
る過大なトルクに対しても十分な接合強度を確保し、ま
た、長期の使用においてもその接合部の信頼性を保持す
る動力伝達シャフトを提供することにある。
An object of the present invention is to meet the above-mentioned demands for improvement by welding, pinning, press-fitting, etc., to a metal part at the shaft end of the FRP hollow shaft, and making it possible to carry out proper joining under a normal load condition. It is an object of the present invention to provide a power transmission shaft that realizes torque transmission, secures sufficient joint strength against excessive torque generated by impact, and maintains the reliability of the joint even during long-term use. .

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
の技術的手段として、本発明は、長手方向の中央部をF
RPを巻回させてパイプ状に成形したFRP積層構造体
で構成し、軸端部を金属膜(フィルム)、箔または薄板
を巻回させた金属積層構造体で構成し、中央部と軸端部
の間の移行部をFRP積層構造と金属積層構造の混在す
る複合積層構造体で構成したものである。軸端部、また
は、軸端部と移行部とで、ジョイント等との接合に必要
な強度を確保し、かつ、長期に保持し得る接合を行うこ
とができる。
As a technical means for achieving the above-mentioned object, the present invention provides a method of manufacturing a vehicle in which a central portion in a longitudinal direction is F.
It is composed of a FRP laminated structure formed by winding RP into a pipe shape, and the shaft end is composed of a metal laminated structure formed by winding a metal film (film), foil or thin plate, and has a central portion and a shaft end. The transition between the parts is constituted by a composite laminated structure in which the FRP laminated structure and the metal laminated structure are mixed. At the shaft end, or at the shaft end and the transition portion, it is possible to secure the strength necessary for joining with a joint or the like and to perform joining that can be maintained for a long period of time.

【0011】つまり、軸端部近傍では、中央部側から軸
端に向けて順次、FRPのみの積層構造からFRPと金
属フィルムの混在した積層構造、さらに金属フィルムの
みの積層構造となっている。ここで、FRPと金属フィ
ルムの混在した移行部では、金属フィルムはFRPフィ
ルムの間にサンドイッチされて接着される構造になって
おり、さらにその層構造が多重に積層されることで接合
面積が格段に大きくなっている。したがって、当該動力
伝達シャフトに負荷される力の周方向および軸方向いず
れの成分においても、たとえ大きなせん断応力が生じて
も十分な耐久強度を持って力を伝えることができる。
That is, in the vicinity of the shaft end, the laminated structure of only the FRP, the laminated structure of the mixture of the FRP and the metal film, and the laminated structure of the metal film only are sequentially arranged from the central portion toward the shaft end. Here, in the transition portion where the FRP and the metal film coexist, the metal film is sandwiched and adhered between the FRP films, and furthermore, the bonding area is remarkably increased by laminating the layer structure in multiple layers. It is getting bigger. Therefore, in both the circumferential and axial components of the force applied to the power transmission shaft, the force can be transmitted with sufficient durability even if a large shear stress occurs.

【0012】また、軸端部において接合に関わる部位が
FRP単体でないため、金属積層部と金属部品との溶接
または摩擦圧接のような信頼性のある完全な接合法を可
能にする。たとえFRPと金属フィルムの混在した移行
部においてもFRPがプラスチック材料をマトリクスに
使用するにもかかわらず金属フィルムとの積層接着によ
り、クリープ特性や応力緩和特性が格段に改善されるた
め、圧入などの接合方法を用いても周方向のすべりや軸
方向の抜け出しの不具合は全く生じず、接合部の信頼性
を長期にわたって確保することができる。
Further, since the portion related to the joining at the shaft end is not a single FRP, a reliable and complete joining method such as welding or friction welding between the metal laminated portion and the metal component is enabled. Even in the transition area where FRP and metal film are mixed, even though FRP uses a plastic material for the matrix, the creep characteristics and stress relaxation characteristics are remarkably improved by the lamination adhesion with the metal film. Even if the joining method is used, there is no problem of slippage in the circumferential direction or slip-out in the axial direction, and the reliability of the joined portion can be secured for a long time.

【0013】さらに、積層を構成するFRPの繊維配向
角を、中空シャフトの軸方向に対して0゜、90゜およ
び±45゜のプライの組み合わせとすることにより、曲
げ剛性やねじり剛性の調整および径方向の変形(座屈)
を抑制できる。このとき、各々のプライ数についても、
当該動力伝達シャフト(たとえばプロペラシャフト)に
作用する回転数やトルクに応じ、適宜組み合わせて積層
構造体を構成することもできる。
Further, by adjusting the fiber orientation angle of the FRP constituting the laminate to a combination of plies of 0 °, 90 ° and ± 45 ° with respect to the axial direction of the hollow shaft, it is possible to adjust bending rigidity and torsional rigidity. Radial deformation (buckling)
Can be suppressed. At this time, for each ply number,
The laminated structure may be appropriately combined in accordance with the number of rotations and torque acting on the power transmission shaft (for example, a propeller shaft).

【0014】積層を構成する繊維は、当該動力伝達シャ
フト(たとえばプロペラシャフト)の危険回転数を高め
るために、密度が小さく弾性率の高い材料が望ましい。
このような繊維として、PAN系およびピッチ系炭素繊
維、炭化けい素繊維、アルミナ繊維、ボロン繊維、ガラ
ス繊維、パラ系アラミド(ケブラー)繊維、金属(スチ
ール、アルミ合金、チタン合金、銅、タングステン)繊
維等が挙げられる。
The fibers constituting the laminate are desirably made of a material having a low density and a high elastic modulus in order to increase the critical rotation speed of the power transmission shaft (for example, a propeller shaft).
Such fibers include PAN-based and pitch-based carbon fibers, silicon carbide fibers, alumina fibers, boron fibers, glass fibers, para-aramid (Kevlar) fibers, metals (steel, aluminum alloys, titanium alloys, copper, tungsten). Fiber and the like.

【0015】プロペラシャフト(の中間軸)に適用する
場合、繊維の引張り弾性率は、1000kgf/mm2
(9.8GPa)以上がよく、さらに望ましくは200
0kgf/mm2 (19.6GPa)以上である。10
00kgf/mm2 (9.8GPa)未満では、FRP
の繊維配向角をどのように構成してもプロペラシャフト
の危険回転数を高くすることができない。
When applied to (an intermediate shaft of) a propeller shaft, the tensile modulus of the fiber is 1000 kgf / mm 2
(9.8 GPa) or more, more preferably 200
0 kgf / mm 2 (19.6 GPa) or more. 10
If less than 00 kgf / mm 2 (9.8 GPa), FRP
Regardless of the fiber orientation angle, the critical rotation speed of the propeller shaft cannot be increased.

【0016】また、繊維の強度は100kgf/mm2
(980MPa)以上がよく、さらに望ましくは200
kgf/mm2 (1960MPa)以上である。100
kgf/mm2 (980MPa)未満では、FRPの繊
維配向角をどのように構成してもプロペラシャフトに作
用するトルクに対して強度的に不充分である。
The fiber strength is 100 kgf / mm 2
(980 MPa) or more, more preferably 200
kgf / mm 2 (1960 MPa) or more. 100
If it is less than kgf / mm 2 (980 MPa), the strength of the torque acting on the propeller shaft is insufficient, regardless of the fiber orientation angle of the FRP.

【0017】これらの繊維を2種以上組み合せて用いて
もよい。比強度と比弾性率の大きい繊維が軽量化の効果
が大きく、プロペラシャフトへの使用は好ましい。すな
わち、比強度ではPAN系炭素繊維が、比弾性率ではピ
ッチ系炭素繊維が好適である。コスト低減の観点から、
これらの炭素繊維どうし、若しくはこれらの炭素繊維と
ガラス繊維のハイブリットの組み合わせで用いることも
可能である。
These fibers may be used in combination of two or more kinds. Fibers having a large specific strength and a specific elastic modulus have a large weight-reducing effect, and are preferably used for a propeller shaft. That is, a PAN-based carbon fiber is suitable for specific strength, and a pitch-based carbon fiber is preferable for specific elastic modulus. From the viewpoint of cost reduction,
It is also possible to use a combination of these carbon fibers or a hybrid of these carbon fibers and glass fibers.

【0018】これらの繊維は、トウ状であってもプリプ
レグ状であってもよいが、トウ状の場合未硬化のマトリ
クス樹脂に含浸しながらフィラメントワインディング法
により薄肉太径に成形される。プリプレグ状の場合、パ
イプローリング法により薄肉太径に成形される。FRP
の繊維配向角を中空シャフトの軸方向に対して0゜、9
0゜および±45゜のプライの組み合わせで積層しよう
とすると、プリプレグを使用したパイプローリング法が
適しており、フィラメントワインディング法では0゜の
繊維配向角を有することは困難である。パイプローリン
グ法で使用されるプリプレグとは、繊維に熱硬化性樹脂
を含浸させた半硬化状態のシート状のもので、糸の配列
を一方向に一定に保つことができ、さらに安定して積層
加工ができ、また、任意の繊維配向角で巻き付けること
が可能である。ここで用いる繊維シートは、一方向以外
にあらかじめ直交して織り込んだ状態のクロスを用いて
もよい。
These fibers may be in the form of tows or prepregs. In the case of tows, the fibers are formed into a thin and large diameter by a filament winding method while impregnating the uncured matrix resin. In the case of a prepreg, it is formed into a thin and large diameter by a pipe rolling method. FRP
The fiber orientation angle of 0 °, 9 with respect to the axial direction of the hollow shaft.
When trying to laminate with a combination of plies of 0 ° and ± 45 °, a pipe rolling method using a prepreg is suitable, and it is difficult to have a fiber orientation angle of 0 ° by a filament winding method. The prepreg used in the pipe rolling method is a semi-cured sheet in which fibers are impregnated with a thermosetting resin, and the yarn arrangement can be kept constant in one direction, and can be stably laminated. It can be processed and can be wound at any fiber orientation angle. The fiber sheet used here may be a cloth that is woven orthogonally in advance in one direction other than one direction.

【0019】マトリクスとして含浸する熱硬化性樹脂
は、特に制限されるものではない。一般に、熱硬化性を
示すエポキシ樹脂、フェノール樹脂、不飽和ポリエステ
ル樹脂、ビニルエステル樹脂、ウレタン樹脂、アルキッ
ド樹脂、キシレン樹脂、メラミン樹脂、シリコン樹脂、
ポリイミド樹脂等が使用できるが、強度上からエポキシ
樹脂が好適である。マトリクスにエポキシ樹脂を用いる
場合、エポキシ硬化後の耐熱性が60℃以上のものがよ
いが、さらに望ましくは80℃以上がよい。自動車の動
力伝達軸として使用されるプロペラシャフトの雰囲気温
度は60℃程度になるため、エポキシ硬化後の耐熱性が
60℃未満では破損などの重大な問題を起こすことがあ
り、マトリクスに使用できない。
The thermosetting resin impregnated as the matrix is not particularly limited. Generally, thermosetting epoxy resin, phenolic resin, unsaturated polyester resin, vinyl ester resin, urethane resin, alkyd resin, xylene resin, melamine resin, silicone resin,
A polyimide resin or the like can be used, but an epoxy resin is preferred from the viewpoint of strength. When an epoxy resin is used for the matrix, the heat resistance after epoxy curing is preferably 60 ° C or higher, and more preferably 80 ° C or higher. Since the ambient temperature of a propeller shaft used as a power transmission shaft of an automobile is about 60 ° C., if the heat resistance after epoxy curing is lower than 60 ° C., serious problems such as breakage may occur, and the propeller shaft cannot be used for a matrix.

【0020】エポキシ樹脂中にゴム粒子を介在させ海島
構造を形成して耐衝撃性を付与した改質エポキシ樹脂
や、主鎖または側鎖を化学構造的に変成した変成エポキ
シ樹脂を用いることもできる。また、エポキシ樹脂中に
導電性のカーボンブラックのような充填材や金属粉を分
散させて導電性を付与したエポキシ樹脂を用いることも
できる。この樹脂を用いた場合、スポット溶接などの電
気溶接が可能になる。さらに、含浸する繊維表面をオゾ
ン酸化処理や紫外線の照射で表面活性化したり、シラン
カップリング剤またはチタンカップリング剤等で湿式処
理を行って親和性を向上させたり、反応性の高い官能基
サイトを繊維表面に形成し、熱硬化性マトリクス樹脂と
の硬化後化学結合を有する強固な接着を付与すること
で、マトリクスと繊維間の界面強度を向上させることも
できる。
It is also possible to use a modified epoxy resin in which rubber particles are interposed in an epoxy resin to form a sea-island structure to impart impact resistance, or a modified epoxy resin in which a main chain or a side chain is chemically modified. . Further, an epoxy resin having conductivity by dispersing a filler such as conductive carbon black or a metal powder in the epoxy resin can also be used. When this resin is used, electric welding such as spot welding can be performed. Furthermore, the surface of the fiber to be impregnated is surface activated by ozone oxidation treatment or irradiation with ultraviolet rays, wet treatment is performed with a silane coupling agent or titanium coupling agent to improve affinity, Is formed on the surface of the fiber, and by providing a strong bond having a chemical bond after curing with the thermosetting matrix resin, the interface strength between the matrix and the fiber can be improved.

【0021】パイプローリング法を用いて積層構造を形
成する場合、軸端部に使用する金属膜(フィルム)、箔
または薄板の種類は、パイプなどに巻き付けることがで
き、穴あけ加工等の機械加工または溶接加工または摩擦
圧接加工できる金属であれば特に制限されないが、好ま
しいものとしては、鉄、アルミ、銅、チタン、タングス
テンなどが挙げられる。これらのいずれの金属の合金で
もよい。また、軸端部に使用する金属膜(フィルム)、
箔または薄板の表面を、オゾン酸化処理や紫外線の照射
で表面活性化したり、シランカップリング剤またはチタ
ンカップリング剤等で湿式処理を行って親和性を向上さ
せたり、反応性の高い官能基サイトを金属表面に形成
し、熱硬化性マトリクス樹脂との硬化後化学結合を有す
る強固な接着を付与することで、マトリクスと金属表面
間の界面強度を向上させることもできる。軸端部に使用
する金属膜(フィルム)、箔または薄板の表面に、前述
の表面処理と併用して、または単独に、表面粗化処理を
行ってもよい。ここでの表面粗化処理とは、サンドラス
ト処理、シボ、プレス、圧延加工等の物理的粗化処理
や、硝酸や塩酸などの化学薬品による化学腐食法を用い
た表面粗化処理等が挙げられる。
When the laminated structure is formed by using the pipe rolling method, the type of metal film (film), foil or thin plate used for the shaft end can be wound around a pipe or the like, or machined such as drilling or the like. There is no particular limitation as long as the metal can be welded or friction welded, but preferred examples include iron, aluminum, copper, titanium, and tungsten. An alloy of any of these metals may be used. Also, metal film (film) used for the shaft end,
The surface of the foil or thin plate is surface activated by ozone oxidation treatment or irradiation with ultraviolet rays, or wet-treated with a silane coupling agent or titanium coupling agent to improve affinity, or to have highly reactive functional group sites. Is formed on the metal surface, and after the curing with the thermosetting matrix resin, a strong bond having a chemical bond is provided, whereby the interface strength between the matrix and the metal surface can be improved. The surface of a metal film (film), foil or thin plate used for the shaft end may be subjected to a surface roughening treatment in combination with the above-mentioned surface treatment or alone. Here, the surface roughening treatment includes sandblasting, graining, pressing, physical roughening such as rolling, and surface roughening using a chemical corrosion method using a chemical such as nitric acid or hydrochloric acid. Can be

【0022】パイプローリング法を用いて金属膜(フィ
ルム)、箔または薄板で軸端部に積層構造を形成する場
合、金属膜(フィルム)、箔または薄板どうしの隙間に
接着剤を用いて接着させてもよい。ここで用いる接着剤
には一般的に工業的に使用されるものはすべて使用する
ことができるが、フィルム状のホットメルトタイプ熱接
着テープが巻き付け加工性や加硬化後の膜厚管理などの
面で好適である。このタイプの熱接着テープには、エポ
キシ系、ニトリル・フェノール系もしくはナイロン系の
ものがあるが、特に制限されるものではない。また、溶
液タイプの接着剤としては、エポキシ系接着剤にアルミ
粉もしくは酸化鉄粉を含有し、スポット溶接に代表され
る抵抗溶接を可能にした構造用接着剤が好適である。こ
のときのエポキシ系接着剤の粘度は、50〜10000
ポアズ(5〜1000Pa・s)が好ましい。50ポア
ズ(5Pa・s)以下では、金属フィルムをマンドレル
に巻き付ける時に流れてしまう場合があり、10000
ポアズ(1000Pa・s)以上では金属フィルム上に
均一に塗りにくい等の加工上の不具合があった。
When a laminated structure is formed at the shaft end with a metal film (film), foil or thin plate using the pipe rolling method, the laminated structure is bonded to the gap between the metal film (film), foil or thin plate using an adhesive. You may. As the adhesive used here, any adhesive generally used in industry can be used, but a film-like hot melt type thermal adhesive tape can be used for winding workability and film thickness control after curing. Is preferred. This type of thermal adhesive tape includes epoxy type, nitrile / phenol type or nylon type, but is not particularly limited. As the solution-type adhesive, a structural adhesive containing aluminum powder or iron oxide powder in an epoxy adhesive and enabling resistance welding represented by spot welding is suitable. At this time, the viscosity of the epoxy adhesive is 50 to 10,000.
Poise (5 to 1000 Pa · s) is preferred. If it is less than 50 poise (5 Pa · s), it may flow when the metal film is wound around the mandrel.
Above poise (1000 Pa · s), there were processing problems such as difficulty in coating uniformly on a metal film.

【0023】フイルム状の熱接着テープを用いる場合、
テープ表面に穴あけ加工を施し、金属膜(フィルム)、
箔または薄板に重ねて巻き付け、テープ開孔部おいて金
属膜(フィルム)、箔または薄板どうしが、直接接触す
るようにして通電経路を確保し、スポット溶接に代表さ
れる抵抗溶接によるナゲット形成を行いながら、溶接熱
での接着硬化を利用して接合してもよい。
When using a film-like heat adhesive tape,
Perforating the tape surface, metal film (film),
Overlap and wrap around a foil or thin plate, make a metal film (film), foil or thin plate in direct contact with each other at the tape opening, secure an energizing path, and form a nugget by resistance welding represented by spot welding While performing the bonding, the bonding may be performed by utilizing the adhesive hardening by welding heat.

【0024】[0024]

【発明の実施の形態】以下、パイプローリング法を用い
て、両端部に、中央部側から軸端に向けて順次、イ)F
RPのみの積層構造領域、ロ)FRPと金属フィルムが
交互に積層された構造を含む領域、ハ)金属フィルムの
みもしくは金属フィルムが接着剤で拘束された積層構造
領域、を備えた積層構造体(FRP中空シャフト)を形
成する方法を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a) F
A laminated structure having a laminated structure region of only RP, b) a region including a structure in which FRP and a metal film are alternately laminated, c) a laminated structure region of only a metal film or a laminated structure region in which the metal film is restrained by an adhesive ( The method for forming the FRP hollow shaft will be described.

【0025】図2(A)に示すように、パイプローリン
グ法を用いて得られたFRP中空シャフトの寸法を内径
d、外径D、長さSLとし、使用するプリプレグの厚み
をt 1 およびt3 、金属フィルムの厚みをt2 およびt
4 とする。また、プリプレグの巻き付け方向の長さをP
Lとし、巻き付け後の肉厚をT=(D−d)/2とす
る。
As shown in FIG.
Size of the FRP hollow shaft obtained by using the
d, outer diameter D, length SL, thickness of prepreg used
To t 1And tThreeAnd the thickness of the metal film is tTwoAnd t
FourAnd The length of the prepreg in the winding direction is P
L, and the thickness after winding is T = (D−d) / 2.
You.

【0026】ここで、FRP中空シャフトはプロペラシ
ャフトの中間シャフトとして使用する場合、長さSLは
50mm以上11000mm以下がよいが、望ましくは
100mm以上10000mm以下がよい。長さSLが
50mmより短いとマンドレル(図2(B))上に後述
するFRPプリプレグと金属フィルムの複合プリプレグ
シートが上手く巻き付かないなどの不具合があり、11
000mmより長いと、たとえトラック自動車等に使用
する場合でも車への組み付け施工が困難になる。
Here, when the FRP hollow shaft is used as an intermediate shaft of a propeller shaft, the length SL is preferably 50 mm or more and 11000 mm or less, and more preferably 100 mm or more and 10000 mm or less. If the length SL is shorter than 50 mm, there is a problem that a composite prepreg sheet of an FRP prepreg and a metal film, which will be described later, cannot be wound well on a mandrel (FIG. 2 (B)).
If it is longer than 000 mm, it will be difficult to assemble and install the vehicle, even when it is used in a truck or the like.

【0027】FRP中空シャフトの外径Dは、10mm
以上250mm以下がよいが、望ましくは15mm以上
230mm以下、さらに望ましくは20mm以上200
mm以下がよい。外径Dが10mm小さいと乗用車に使
用するプロペラシャフトとして伝達トルクが満足でき
ず、250mmより大きいと自動車内で他の部品との干
渉などスペース上の問題が生じる。FRP中空シャフト
の巻き付け後の肉厚Tは、0.3mm以上30mm以下
がよいが、望ましくは0.5mm以上25mm以下がよ
い。この肉厚Tが0.3より小さいと乗用車用プロペラ
シャフトとして伝達トルクが満足できず、30mmより
大きいとFRPプリプレグのマトリクス熱硬化樹脂の硬
化時間が長くなり製造コストが多大になるなどの問題が
生じる。
The outer diameter D of the FRP hollow shaft is 10 mm
It is preferably not less than 250 mm and preferably not less than 15 mm and not more than 230 mm, more preferably not less than 20 mm and not more than 200 mm.
mm or less is preferable. If the outer diameter D is smaller than 10 mm, the transmission torque cannot be satisfied as a propeller shaft used for a passenger car. If the outer diameter D is larger than 250 mm, a space problem such as interference with other parts occurs in the car. The thickness T of the FRP hollow shaft after winding is preferably from 0.3 mm to 30 mm, and more preferably from 0.5 mm to 25 mm. If the thickness T is smaller than 0.3, the transmission torque cannot be satisfied as a propeller shaft for a passenger car. If the thickness T is larger than 30 mm, the curing time of the matrix thermosetting resin of the FRP prepreg becomes longer and the production cost increases. Occurs.

【0028】図5に、使用するプリプレグの基本的構造
を示す。なお、このプリプレグを用いて得られるFRP
中空シャフトは、その軸両端が、中央部側から軸端に向
けて順次、イ)FRPのみの積層構造領域、ロ)FRP
と金属フィルムが交互に積層された構造を含む領域、
ハ)金属フィルムのみ又は金属フィルムが接着剤で拘束
された積層構造領域、を備えた構造である。
FIG. 5 shows a basic structure of a prepreg to be used. The FRP obtained by using this prepreg
In the hollow shaft, both ends of the shaft are sequentially arranged from the center to the shaft end.
And an area including a structure in which metal films are alternately laminated,
C) A structure including only a metal film or a laminated structure region in which the metal film is restrained by an adhesive.

【0029】まず、図3(A)に示すように、台形形状
(EFGH)のFRPプリプレグ(1)を台形形状(A
EHD、FBCG)の金属フィルム(2)(2’)で対
峙して狭み込むように配置したプリプレグシート(AB
CD)を準備する。ここで、シートの巻き付け方向長さ
(ADまたはBC)をPLとし、巾(ABまたはCD)
をSLとする。図3(B)に示すように、FRPプリプ
レグ(1)の厚みはt 1 、金属フィルム(2)の厚みは
2 である。
First, as shown in FIG.
(EFGH) FRP prepreg (1) is trapezoidal (A
EHD, FBCG) metal film (2) (2 ')
Prepreg sheet (AB
Prepare CD). Here, the length of the sheet in the winding direction
(AD or BC) is PL, width (AB or CD)
Is SL. As shown in FIG.
The thickness of the leg (1) is t 1And the thickness of the metal film (2)
tTwoIt is.

【0030】同様に、図4(A)に示すように、矩形形
状(OPQR)のFRPプリプレグ(3)を矩形形状
(JORM、PKLQ)の金属フィルム(4)(4’)
で対峙して狭み込むように配置したプリプレグシート
(JKLM)を準備する。ここで、シートの巻き付け方
向長さ(JMまたはKL)をPL’、巾(JKまたはL
M)をSLとする。図4(B)に示すように、FRPプ
リプレグ(3)の厚みはt 3 、金属フィルム(4)の厚
みはt4 である。
Similarly, as shown in FIG.
-Shaped (OPQR) FRP prepreg (3) with rectangular shape
(JORM, PKLQ) metal film (4) (4 ')
Prepreg sheet arranged to face each other
(JKLM) is prepared. Here, how to wind the sheet
Direction length (JM or KL) is PL ', width (JK or L
Let M) be SL. As shown in FIG.
The thickness of the repreg (3) is t Three, Thickness of metal film (4)
Miha tFourIt is.

【0031】そして、図5(A)に示すように、図3の
プリプレグシート(ABCD)の上に図4のプリプレグ
シート(JKLM)を重ねて1枚の複合プリプレグシー
トを形成する。明らかなように、プリプレグ部の厚みは
1 +t3 、金属フィルム部の厚みはt2 +t4 とな
る。この複合プリプレグシートを、図5(A)に矢印a
またはbで示す方向にマンドレル(5:図1(B))上
に巻き付ける。
Then, as shown in FIG. 5 (A), the prepreg sheet (JKLM) of FIG. 4 is overlaid on the prepreg sheet (ABCD) of FIG. 3 to form one composite prepreg sheet. As is apparent, the thickness of the prepreg portion is t 1 + t 3 and the thickness of the metal film portion is t 2 + t 4 . This composite prepreg sheet is shown in FIG.
Or, it is wound around the mandrel (5: FIG. 1B) in the direction indicated by b.

【0032】図3(A)の矩形形状(ABCD)におい
ては、AB=CD=SL、AD=BC=PL、AB=A
E+BF+EF、CD=DH+CG+GHの関係があ
る。また、AEとDHおよびBFとCGは次のような関
係に設定してある。 10mm<AE≦DH、かつ、10mm<DH<SL/
2 10mm<BF≦CG、かつ、10mm<CG<SL/
2 また、マンドレル上への複合プリプレグシートの巻数を
n、マンドレル外径(FRP中空シャフトの内径に同
じ)をdとすると、PL≒ndπの関係にある。
In the rectangular shape (ABCD) shown in FIG. 3A, AB = CD = SL, AD = BC = PL, AB = A
There is a relationship of E + BF + EF and CD = DH + CG + GH. AE and DH and BF and CG are set in the following relationship. 10 mm <AE ≦ DH and 10 mm <DH <SL /
2 10mm <BF ≦ CG and 10mm <CG <SL /
2 When the number of turns of the composite prepreg sheet on the mandrel is n and the outer diameter of the mandrel (same as the inner diameter of the FRP hollow shaft) is d, the relation of PL ≒ ndπ is established.

【0033】図4(A)の矩形形状(JKLM)におい
ては、JM=JO+KP+OP、LM=MR+LQ+Q
Rの関係がある。また、JOとMR、およびKPとLQ
は次のような関係に設定してある。 10mm<JO≒MR≦AE≪SL/2 10mm<KP≒LQ≦BF≪SL/2 このとき、PL’とPLには、PL’≦PLまたはP
L’≧PLの関係があり、JOとOPには、JO≦OP
またはJO≧OPの関係があり、MRとQRには、MR
≦QRまたはMR≧OPの関係がある。
In the rectangular shape (JKLM) shown in FIG. 4A, JM = JO + KP + OP, LM = MR + LQ + Q
There is an R relationship. Also, JO and MR, KP and LQ
Is set as follows. 10 mm <JO ≒ MR ≦ AE≪SL / 2 10 mm <KP ≒ LQ ≦ BF≪SL / 2 At this time, PL ′ and PL are PL ′ ≦ PL or P
There is a relationship of L ′ ≧ PL, and JO and OP have JO ≦ OP
Or, there is a relationship of JO ≧ OP, and MR and QR have MR
≦ QR or MR ≧ OP.

【0034】図3の矩形形状ABCDと図4の矩形形状
JKLMを重ねて得られた複合プリプレグ(図5
(A))において、台形形状AEHDと矩形形状JOR
Mの金属フィルムが重ねて巻き付けられることで、ま
た、台形形状FBCGと矩形形状PKLQの金属フィル
ムが重ねて巻き付けられることで、金属フィルムのみの
巻き付け領域(9:図1)がFRP中空シャフトの両端
部に形成されるが、この領域の長さは、10mm以上、
かつ、SL/2未満が望ましい。この領域の長さが10
mm未満では、圧入による接合や穴あけ加工等の機械加
工または溶接加工若しくは摩擦圧接加工を用いた接合方
法を採用しても長期的に信頼性のある接合法にならない
場合がある。また、SL/2以上では、FRP中空シャ
フトの1/2以上が金属部となり軽量化の効果が損なわ
れる場合がある。
A composite prepreg (FIG. 5) obtained by overlapping the rectangular shape ABCD of FIG. 3 and the rectangular shape JKLM of FIG.
In (A)), a trapezoidal shape AEHD and a rectangular shape JOR
When the metal film of M is overlapped and wound, and the trapezoidal shape FBCG and the metal film of rectangular shape PKLQ are overlapped and wound, the winding region of the metal film only (9: FIG. 1) is formed at both ends of the FRP hollow shaft. Portion, the length of this region is 10 mm or more,
In addition, it is desirable to be less than SL / 2. If the length of this area is 10
If it is less than mm, a reliable joining method may not be obtained in the long term even if a joining method using welding, friction welding, or mechanical processing such as joining by pressing or drilling is used. Further, at SL / 2 or more, 1/2 or more of the FRP hollow shaft becomes a metal part, and the effect of weight reduction may be impaired.

【0035】使用する台形形状AEHD、FBCGの金
属フィルム(2)(2’)の厚みt 2 と、矩形形状JO
RM、PKLQの金属フィルム(4)(4’)の厚みt
4 は、同じであっても異なっていてもよいが、これらの
厚みt2 またはt4 は1μm以上300μm以下がよ
く、望ましくは10μm以上250μm以下、さらには
15μm以上200μm以下に設定するのが望ましい。
金属フイルムの厚みが1μm未満ではマンドレルに巻き
付ける際にしわが生じやすく、300μmより厚いと巻
けない場合がある。
AEHD, FBCG gold used in trapezoidal shape
Thickness t of metal film (2) (2 ') TwoAnd a rectangular JO
Thickness t of RM, PKLQ metal film (4) (4 ')
FourCan be the same or different, but these
Thickness tTwoOr tFourShould be between 1 μm and 300 μm
And desirably from 10 μm to 250 μm,
It is desirable to set the thickness to 15 μm or more and 200 μm or less.
If the thickness of the metal film is less than 1 μm, wind it around a mandrel
Wrinkles are likely to occur when attaching, and if it is thicker than 300 μm
May not work.

【0036】また、使用する台形形状EFGHのFRP
のプリプレグ(1)の厚みt1 と矩形形状OPQRのF
RPプリプレグ(3)の厚みt3 は、同じであっても異
なっていてもよいが、これらの厚みt1 またはt3 は、
5μm以上300μm以下がよく、望ましくは10μm
以上280μm以下、さらに望ましくは15μm以上2
50μm以下がよい。FRPプリプレグの厚みが5μm
未満ではマンドレルに巻き付ける際にしわや破れが生じ
やすく、300μmより厚いと複合プリプレグを構成し
たとき厚くなりすぎて巻きにくい。
The trapezoidal EFGH FRP to be used
Thickness t 1 of prepreg (1) and F of rectangular shape OPQR
The thickness t 3 of the RP prepreg (3) may be the same or different, but these thicknesses t 1 or t 3 are:
5 μm or more and 300 μm or less, preferably 10 μm
280 μm or less, more preferably 15 μm or more 2
It is preferably 50 μm or less. FRP prepreg thickness is 5μm
If it is less than 300 μm, wrinkles and tears are likely to occur when it is wound around the mandrel, and if it is more than 300 μm, the composite prepreg becomes too thick when formed to be difficult to wind.

【0037】この複合プリプレグシートは、マンドレル
巻き付け時の段差を緩和するため、図5(B)に示すよ
うに図3のシートと図4のシートをずらせて重ねたり、
図3のシートと図4のシートの巻き付け方向の長さが異
なるように(PL≠PL’)形成しておき、巻き取り開
始部でずらして重ねあわせて造ってもよい。
The composite prepreg sheet is formed by shifting the sheet of FIG. 3 and the sheet of FIG. 4 as shown in FIG.
The sheet shown in FIG. 3 and the sheet shown in FIG. 4 may be formed so that the length in the winding direction is different (PL ≠ PL ′), and the sheets are overlapped by being shifted at the winding start portion.

【0038】図5に矢印aで示す方向から巻き付けた場
合、図1(A)のような断面を有するFRPプリプレグ
と金属フィルムの積層構造体が得られ、図5に矢印bで
示す方向から巻き付けた場合、図1(B)のような断面
を有するFRPプリプレグと金属フィルムの積層構造体
が得られる。
When wound in the direction indicated by arrow a in FIG. 5, a laminated structure of the FRP prepreg and the metal film having a cross section as shown in FIG. 1A is obtained, and is wound in the direction indicated by arrow b in FIG. In this case, a laminated structure of an FRP prepreg and a metal film having a cross section as shown in FIG. 1B is obtained.

【0039】次いで、この積層構造体の外径表面に熱収
縮フィルムでテーピングしたり、または真空バックを用
いて積層構造体を負圧状態にする。これは、プリプレグ
の硬化前の巻戻し防止の仮止めや、硬化過程での積層構
造体中のガス層またはボイド(空孔)形成防止のためで
ある。硬化後の積層構造体中にガス層またはボイドを内
包すると、プロペラシャフトの中間軸に用いた場合、そ
の使用期間においてガス層またはボイドがトルク負荷時
の損傷起点になり、著しく耐久強度を低下させることが
ある。
Next, the outer diameter surface of the laminated structure is taped with a heat shrink film, or the laminated structure is brought into a negative pressure state using a vacuum bag. This is to temporarily prevent unwinding of the prepreg before curing, and to prevent formation of a gas layer or voids (voids) in the laminated structure during the curing process. When a gas layer or void is included in the cured laminated structure, when used for the intermediate shaft of a propeller shaft, the gas layer or void becomes a damage starting point when torque is applied during the use period, and significantly reduces durability. Sometimes.

【0040】このようにして形成された積層構造体をF
RPプリプレグのマトリクス熱硬化樹脂の硬化条件(た
とえば熱処理)で処理し、その後マンドレルを引き抜く
ことで、軸両端部に中央部側から軸端に向けて順次、
イ)FRPのみの積層構造領域、ロ)FRPと金属フィ
ルムが交互に積層された構造を含む領域、ハ)金属フィ
ルムのみ又は金属フィルムが接着剤で拘束された積層構
造領域、を備えた所期の積層構造体すなわちFRPシャ
フトが硬化形成される。
The laminated structure thus formed is
The RP prepreg is treated under the curing conditions (for example, heat treatment) of the matrix thermosetting resin, and then the mandrel is pulled out, so that both ends of the shaft are sequentially moved from the center toward the shaft end.
A) a laminated structure region of FRP only, b) a region including a structure in which FRP and a metal film are alternately laminated, c) a laminated structure region of only a metal film or a laminated structure in which the metal film is bound by an adhesive. , That is, the FRP shaft is formed by curing.

【0041】ここで、金属フィルムが接着剤で拘束され
た積層構造を形成するためには、例えば図4の金属フィ
ルム(4)(4’)の上面に接着剤を塗布するか、ある
いは接着フィルムを重ねて巻回すればよい。
Here, in order to form a laminated structure in which the metal film is constrained by the adhesive, for example, an adhesive is applied to the upper surface of the metal film (4) (4 ') in FIG. May be stacked and wound.

【0042】図1の移行部(8)の領域における積層構
造中では、FRPプリプレグのマトリクス熱硬化樹脂が
金属フィルムの上下にサンドイッチした構成で硬化接着
しているため、大きな接着面積を得ることができる。
In the laminated structure in the region of the transition portion (8) in FIG. 1, a large bonding area can be obtained because the matrix thermosetting resin of the FRP prepreg is cured and bonded by sandwiching the metal film on the upper and lower sides. it can.

【0043】また、イ)FRPのみの積層構造領域(中
央部(7))、ロ)FRPと金属フィルムが交互に積層
された構造を含む領域(移行部(8))、ハ)金属フィ
ルムが接着剤で拘束された積層構造領域(端部(9))
では、各々の領域で剛性が異なり、剛性の大きさ順に、
ハ)>ロ)>イ)となる。このため、例えば大きなねじ
りトルクが作用したときの応力集中部位は、中空シャフ
ト軸方向断面(図1)中の、ロ)FRPと金属フィルム
が交互に積層された構造を含む領域(移行部(8))に
なる。つまり、図1中の(DH−AE)または(CG−
BF)の、金属フィルム先端が形成する包絡面またはそ
の近傍に応力が集中する。この応力集中領域を広げて最
大応力値を緩和しようとするなら、AEとDHまたはB
FとCGの寸法差を大きくするか、巻数を増やしてFR
Pシャフトの肉厚を厚くすればよい。これらの寸法差や
肉厚寸法は、プロペラシャフトに負荷されるねじりトル
クの大きさにより設計される。
Further, a) a laminated structure region of only FRP (central portion (7)), b) a region including a structure in which FRP and a metal film are alternately laminated (transition portion (8)), c) a metal film Laminated structure area bounded by adhesive (end (9))
Then, the rigidity is different in each area, and in the order of the rigidity,
C)>b)> b). For this reason, for example, the stress concentration site when a large torsional torque is applied is defined as (b) a region including a structure in which the FRP and the metal film are alternately laminated in the hollow shaft axial cross section (FIG. 1) (the transition portion (8)). ))become. That is, (DH-AE) or (CG-AE) in FIG.
In BF), stress concentrates on the envelope surface formed by the tip of the metal film or in the vicinity thereof. If the maximum stress value is to be relaxed by expanding this stress concentration region, AE and DH or B
Increase the dimensional difference between F and CG or increase the number of turns
The thickness of the P-shaft may be increased. These dimensional differences and wall thicknesses are designed according to the magnitude of the torsional torque applied to the propeller shaft.

【0044】クリープ特性や応力緩和特性(これらは望
小特性である。)においてもハ)およびロ)の領域が優
れており、例えばプロペラシャフトの中間シャフトにこ
の積層構造体を用いた場合の軸端部の接合において、
ハ)およびロ)の領域で圧入等の接合方法を用いても長
期の信頼性を得ることができる。この点、イ)の領域に
おいては、ハ)およびロ)の領域に比べ、クリープや応
力緩和の特性で劣っており、この領域で圧入等の接合方
法を行った場合、製品の実用的な長期の信頼性を得るこ
とができず、たとえば接着剤との併用のような対策が必
要になる。特にハ)の領域において、金属フィルムのみ
の積層構造領域の場合、溶接加工や摩擦圧接加工のよう
な金属部品の接合において信頼性の点で十分に実績のあ
る接合方法を採用することができる。
The creep characteristics and stress relaxation characteristics (these are small desired characteristics) are also excellent in the regions c) and b). For example, the shaft when this laminated structure is used as an intermediate shaft of a propeller shaft In joining the ends,
Long-term reliability can be obtained even when a joining method such as press fitting is used in the regions (c) and (b). In this regard, in the area (a), the creep and stress relaxation characteristics are inferior to those in the areas (c) and (b). Cannot be obtained, and measures such as the combined use with an adhesive are required. In particular, in the region (c), in the case of a laminated structure region including only a metal film, a joining method that has a sufficient track record in terms of reliability in joining metal parts, such as welding or friction welding, can be employed.

【0045】さらに、金属フィルムが接着剤で拘束され
た積層構造領域においては、導電性のカーボンブラック
のような充填材や、アルミ粉や酸化鉄粉のような金属粉
を分散させて導電性を付与した構造用エポキシ樹脂を接
着剤に用いて、スポット溶接に代表される抵抗溶接を接
合法に採用できる。また、このとき、フィルム状の熱接
着テープを接着剤に用いる場合、テープ表面に穴あけ加
工を施して金属フィルムに重ねて巻き付け、金属フィル
ムどうしがテープ穴あけ部において直接接触するように
して通電経路を確保し、スポット溶接に代表される抵抗
溶接によるナゲット形成によって、接合してもよい。
Further, in the laminated structure region where the metal film is constrained by the adhesive, a filler such as conductive carbon black and a metal powder such as aluminum powder and iron oxide powder are dispersed to increase the conductivity. Using the applied structural epoxy resin as an adhesive, resistance welding typified by spot welding can be employed for the joining method. Also, at this time, when using a film-shaped thermal adhesive tape as an adhesive, the surface of the tape is perforated and wound around a metal film so that the metal films are in direct contact with each other at the tape-punched portion, so that an energizing path is formed. It may be secured and joined by forming a nugget by resistance welding typified by spot welding.

【0046】また、例えばNプライの積層構造を有する
FRPシャフトにおいて、中空シャフトの軸方向に対す
るFRPの繊維配向角が0゜のものをn1プライ、90
゜のものをn2プライ、±45゜のものをn3プライ巻
き付けようとした場合(N=n1+n2+n3)、図3
の符号1または図4の符号3の領域で、巻き付け対応部
位におのおのn1、n2、n3に相当する長さ(図6の
PL1 ,PL2 ,PL 3 参照)の、中空シャフトの軸方
向に対し0゜、90゜、±45゜の繊維配向角を有する
FRPプレプリグ(図6の10,11,12参照)をあ
らかじめ配置してマンドレル(5)上に巻き付ければ、
目的とする積層構造を有するFRPシャフトを得ること
ができる。
Further, for example, it has a laminated structure of N plies.
In the FRP shaft, in the axial direction of the hollow shaft
FRP having a fiber orientation angle of 0 ° is n1 ply, 90
゜ for n2 plies, ± 45 ゜ for n3 plies
FIG. 3 shows a case in which an attempt is made to attach
In the region of reference numeral 1 or reference numeral 3 in FIG.
The lengths corresponding to n1, n2, and n3 in the order (FIG. 6)
PL1, PLTwo, PL ThreeSee), the direction of the hollow shaft
Fiber orientation angles of 0 °, 90 °, ± 45 ° to the direction
FRP prepreg (see 10, 11, and 12 in FIG. 6)
If you pre-arrange it and wind it around the mandrel (5),
Obtaining an FRP shaft having the desired laminated structure
Can be.

【0047】また、コスト低減の観点から、図3の符号
1または図4の符号3の領域に配置するFRPプリプレ
グを、たとえば炭素繊維プリプレグとガラス繊維プリプ
レグというように異種のプリプレグを組み合わせること
で、より安価な異種のFRPが積層されたFRPシャフ
トを得ることができる。
Further, from the viewpoint of cost reduction, the FRP prepreg arranged in the region indicated by the reference numeral 1 in FIG. 3 or the region indicated by the reference numeral 3 in FIG. 4 is obtained by combining different types of prepregs such as a carbon fiber prepreg and a glass fiber prepreg. An inexpensive FRP shaft in which different types of FRPs are stacked can be obtained.

【0048】図7(A)は、本発明によるFRPシャフ
トを中間シャフト(13)として使用したプロペラシャ
フトの構成を例示するもので、中間シャフト(13)の
両端部に継手要素(14)を備えている。図7(B)に
示すように、中間シャフト(13)の端部の金属層(図
1の符号9の部分)と、金属製の継手要素(14)と
が、符号15で示す位置で溶接することにより恒久的に
接合されている。
FIG. 7A exemplifies a configuration of a propeller shaft using the FRP shaft according to the present invention as an intermediate shaft (13). The intermediate shaft (13) includes joint elements (14) at both ends. ing. As shown in FIG. 7B, the metal layer (portion 9 in FIG. 1) at the end of the intermediate shaft (13) and the metal joint element (14) are welded at the position indicated by reference numeral 15. By being permanently joined.

【0049】別の実施の形態として、図8に、中間シャ
フト(13)の両端部にクロスグルーブ型等速自在継手
(16)を取り付けた自動車用プロペラシャフトを示
す。また、図9に、中間シャフト(13)の両端部に摺
動式のダブルオフセット型等速自在継手(17)と固定
式のバーフィールド型等速自在継手(18)を取り付け
た自動車用プロペラシャフトを示す。いずれの場合も、
中間シャフト(13)の端部の金属層(図1の符号9の
部分)と、金属製の継手要素(14)すなわちここでは
スタブシャフトとが、符号15で示す位置で溶接するこ
とにより恒久的に接合されている。
As another embodiment, FIG. 8 shows a propeller shaft for an automobile in which a cross groove type constant velocity universal joint (16) is attached to both ends of an intermediate shaft (13). Further, FIG. 9 shows a propeller shaft for an automobile in which a sliding double offset type constant velocity universal joint (17) and a fixed type Barfield type constant velocity universal joint (18) are attached to both ends of an intermediate shaft (13). Is shown. In either case,
The metal layer at the end of the intermediate shaft (13) (item 9 in FIG. 1) and the metal coupling element (14), here a stub shaft, are permanently welded by welding at the position indicated by reference numeral 15. Is joined to.

【0050】[0050]

【実施例】以下、自動車の動力伝達軸であるプロペラシ
ャフトに適用して軽量化、低コスト化ならびに低熱費化
および振動・騒音特性の向上を図った実施例について説
明するが、本発明はこれらの実施例に何ら限定されるも
のではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments will be described in which the present invention is applied to a propeller shaft, which is a power transmission shaft of an automobile, to reduce the weight, reduce the cost, reduce the heat cost, and improve the vibration and noise characteristics. However, the present invention is not limited to the embodiment.

【0051】実施例1 図2(A)に示す形状のFRP中空シャフトを、図2
(B)に示す円筒状マンドレル(5)に離型剤を塗布
し、以下に説明するエポキシ樹脂マトリクスのPAN系
炭素繊維プレプレグと金属フイルムを用いた複合プリプ
レグをパイプローリング法により巻き付けて製作した。
マンドレル(5)は直径76mm、長さ1500mm
で、両端に長さ150mmのチャッキング用軸(6)を
備えている。なお、この実施例のFRP中空シャフト
は、中空シャフトの軸方向に対するFRPの繊維配向角
が0゜のものを6プライ、90゜のものを6プライ、±
45゜のものを8プライ巻き付けて構成されたものであ
る。
Example 1 An FRP hollow shaft having the shape shown in FIG.
A mold release agent was applied to the cylindrical mandrel (5) shown in (B), and a composite prepreg using an epoxy resin matrix PAN-based carbon fiber prepreg and a metal film described below was wound by a pipe rolling method.
The mandrel (5) has a diameter of 76 mm and a length of 1500 mm
And a chucking shaft (6) having a length of 150 mm at both ends. The FRP hollow shaft of this embodiment has 6 plies when the fiber orientation angle of the FRP with respect to the axial direction of the hollow shaft is 0 °, 6 plies when the fiber orientation angle is 90 °, ±
It is configured by winding 45 ゜ with eight plies.

【0052】図2(A)、図3および図4中の各寸法は
以下のようにして設定した。 中空シャフトの外径D: 80mm 中空シャフトの内径d: 76mm 中空シャフトの肉厚T: 2mm 中空シャフトの長さSL:1300mm プリプレグの長さPL: 2400mm プリプレグの長さPL’:2400mm プリプレグ台形シートEFGH(1)において、 EF=960mm、 GH=900mm。 プリプレグ台形または矩形シートOPQR(3)におい
て、 OP=1040mm、 QR=1040mm。 プリプレグ台形シートEFGH(1)およびプリプレグ
台形シートOPQR(3)に使用する炭素繊維プリプレ
グの厚みは、いずれも0.1mmである。
Each dimension in FIGS. 2A, 3 and 4 was set as follows. Outer diameter D of hollow shaft: 80 mm Inner diameter d of hollow shaft: 76 mm Thickness of hollow shaft T: 2 mm Length of hollow shaft SL: 1300 mm Length of prepreg PL: 2400 mm Length of prepreg PL ′: 2400 mm Prepreg trapezoidal sheet EFGH In (1), EF = 960 mm, GH = 900 mm. In the prepreg trapezoidal or rectangular sheet OPQR (3), OP = 1040 mm, QR = 1040 mm. The thickness of each of the carbon fiber prepregs used for the prepreg trapezoid sheet EFGH (1) and the prepreg trapezoid sheet OPQR (3) is 0.1 mm.

【0053】図3中のプリプレグ台形シートEFGH
(1)において、辺EF側より、中空シャフトの軸方向
に対する繊維配向角が0゜のプリプレグを720mm、
±45゜のプリプレグを960mm、90゜のプリプレ
グを720mm、配置した(図6)。同様に、図4のプ
リプレグ矩形シートOPQR(3)において、辺OP側
より、中空シャフトの軸方向に対する繊維配向角が0゜
のプリプレグを720mm、±45゜のプリプレグを9
60mm、90゜のプリプレグを720mm、配置し
た。
The prepreg trapezoidal sheet EFGH in FIG.
In (1), from the side EF, a prepreg having a fiber orientation angle of 0 ° with respect to the axial direction of the hollow shaft is 720 mm,
A prepreg of ± 45 ° was arranged at 960 mm, and a prepreg of 90 ° was arranged at 720 mm (FIG. 6). Similarly, in the prepreg rectangular sheet OPQR (3) in FIG. 4, from the side OP side, a prepreg having a fiber orientation angle of 0 ° with respect to the axial direction of the hollow shaft is 720 mm, and a prepreg having a ± 45 ° is 9 mm.
A prepreg of 60 mm and 90 ° was arranged at 720 mm.

【0054】使用した金属フィルムの寸法は次のとおり
である。金属フィルムシートAEHD(2)において、 AE=170mm、 HD=200mm、 AD=2400mm。 金属フィルムシートFBCG(2’)において、 FB=170mm、 CG=200mm、 BC=2400mm。 金属フィルムシートAEHD(2)および金属フィルム
シートFBCG(2’)の厚みはいずれも0.1mmで
ある。
The dimensions of the metal film used are as follows. In the metal film sheet AEHD (2), AE = 170 mm, HD = 200 mm, AD = 2400 mm. In the metal film sheet FBCG (2 ′), FB = 170 mm, CG = 200 mm, and BC = 2400 mm. Each of the metal film sheet AEHD (2) and the metal film sheet FBCG (2 ′) has a thickness of 0.1 mm.

【0055】金属フィルムシートJORM(4)におい
て、 JO=130mm、 RM=130mm、 JM=2400mm。 金属フィルムシートPKLQ(4’)において、 PK=130mm、 LQ=130mm、 KL=2400mm。 金属フィルムシートJORM(4)および金属フィルム
シートPKLQ(4’)の厚みはいずれも0.09mm
である。なお、金属フィルムには圧延した鉄フィルムを
用いた。これらの鉄フィルムシートJORM(4)、P
KLQ(4’)の表面に、エポキシ系の構造接着剤ウエ
ルドボンド(商品名、サンスター技研株式会社製)を塗
布した。
In the metal film sheet JORM (4), JO = 130 mm, RM = 130 mm, JM = 2400 mm. In the metal film sheet PKLQ (4 ′), PK = 130 mm, LQ = 130 mm, and KL = 2400 mm. Both the metal film sheet JORM (4) and the metal film sheet PKLQ (4 ') have a thickness of 0.09 mm.
It is. Note that a rolled iron film was used as the metal film. These iron film sheets JORM (4), P
On the surface of KLQ (4 ′), an epoxy-based structural adhesive, Weldbond (trade name, manufactured by Sunstar Giken Co., Ltd.) was applied.

【0056】これらのプリプレグおよび金属フィルムシ
ートを図3および図4のように配置して重ね合わせ、図
5(A)のような複合シートを構成した。この複合シー
トを図2(B)のマンドレル(5)に図5(A)の下辺
側から巻き付け、次いで熱収縮フィルムを巻き付け、1
50℃で2時間加熱硬化した。硬化後両端部の不要部分
を切断除去し、マンドレル(5)から脱型してFRP中
空シャフト(図2(A))を得た。このFRP中空シャ
フトは、FRPの繊維配向角を中空シャフトの軸方向に
対し0°を6プライ、90°を6プライ、±45°を8
プライ(6+6+8=20)巻き付けて構成されたもの
となっている。
The prepreg and the metal film sheet were arranged as shown in FIG. 3 and FIG. 4 and superposed to form a composite sheet as shown in FIG. 5 (A). This composite sheet is wrapped around the mandrel (5) of FIG. 2 (B) from the lower side of FIG.
The composition was cured by heating at 50 ° C. for 2 hours. After hardening, unnecessary portions at both ends were cut off and removed from the mandrel (5) to obtain an FRP hollow shaft (FIG. 2 (A)). In this FRP hollow shaft, the fiber orientation angle of FRP is 6 plies at 0 °, 6 plies at 90 °, and 8 plies at ± 45 ° with respect to the axial direction of the hollow shaft.
The ply (6 + 6 + 8 = 20) is wound.

【0057】中空シャフトの断面構成を図1に模式的に
示す。長手方向の中央部(7)はFRPのみの積層構造
領域であり、内径側から外径側に向かって、繊維配向角
90°、±45°、0°の順で、それぞれ、厚み0.6
mm、0.6mm、0.8mmとなっている。軸端より
13cmの位置から20cmの位置にかけての移行部
(8)はFRPと金属フィルムが交互に積層された構造
を含む領域である。軸端より13cmにわたる端部
(9)は金属フィルムが接着剤で拘束された積層構造領
域である。
FIG. 1 schematically shows a cross-sectional configuration of the hollow shaft. The central portion (7) in the longitudinal direction is a laminated structure region composed of only FRP, and has a thickness of 0.6 in the order of fiber orientation angles of 90 °, ± 45 °, and 0 ° from the inner diameter side to the outer diameter side.
mm, 0.6 mm, and 0.8 mm. The transition portion (8) from the position 13 cm to the position 20 cm from the shaft end is a region including the structure in which the FRP and the metal film are alternately laminated. The end (9) extending 13 cm from the shaft end is a laminated structure area in which the metal film is restrained by the adhesive.

【0058】このようにして得られた中空シャフトの両
端に金属製の継手要素を100mmの深さまで圧入し、
その後中空シャフトの端を溶接してプロペラシャフトを
製作した。静ねじり試験及びねじり疲労試験によりシャ
フトの強度および耐久性の評価をおこなった。このと
き、静ねじり強度では自動車用プロペラシャフトに負荷
されるトルクレベルから150kg・m以上を合格と判
断し、ねじり疲労試験では150kg・mのねじりトル
クを両振りで50万回かけ、疲労試験後の状態を観察し
た。
A metal joint element was pressed into both ends of the hollow shaft thus obtained to a depth of 100 mm,
Thereafter, the ends of the hollow shaft were welded to produce a propeller shaft. The strength and durability of the shaft were evaluated by static torsion test and torsion fatigue test. At this time, it was judged that the static torsional strength was 150 kg · m or more based on the torque level applied to the automotive propeller shaft, and in the torsional fatigue test, 150 kg · m of torsional torque was applied 500,000 times in both swings. Was observed.

【0059】得られた結果を表1および表2に記す。な
お、表1と表2は一つの表を一点鎖線部分で分割したも
のである。静ねじり強度に関しては、400kg・ mの
トルクでシャフト中央部が破損した。ねじり疲労強度に
関しては、150kg・ mのねじりトルクを50万回か
けても接合部およびシャフト部に異常はなかった。
Tables 1 and 2 show the obtained results. Tables 1 and 2 are obtained by dividing one table by a dashed line. Regarding the static torsional strength, the shaft center was damaged by a torque of 400 kg · m. Regarding the torsional fatigue strength, there was no abnormality in the joint and the shaft even when the torsional torque of 150 kg · m was applied 500,000 times.

【0060】[0060]

【表1】 [Table 1]

【0061】[0061]

【表2】 [Table 2]

【0062】表3および4ならびに表5および6に、繊
維および金属フィルムの種類・厚み、接着剤の種類、金
属フィルムのサイズおよび複合プリプレグの巻数を変え
て製作したFRP中空シャフトに、金属製の継手要素と
の接合法も様々に変更したプロペラシャフト(実施例2
〜18)を用いて、静ねじり試験及びねじり疲労試験に
よりプロペラシャフトの強度および耐久性を評価した結
果を示す。いずれも静ねじり試験およびねじり疲労試験
は、合格していた。なお、表3と表4、表5と表6も、
それぞれ、合わせて一つの表を構成する。
Tables 3 and 4 and Tables 5 and 6 show that an FRP hollow shaft manufactured by changing the type and thickness of the fiber and the metal film, the type of the adhesive, the size of the metal film, and the number of turns of the composite prepreg was made of metal. Propeller shaft in which the joining method with the joint element is variously changed (Example 2)
18) shows the results of evaluation of the strength and durability of the propeller shaft by static torsion test and torsion fatigue test using the above-mentioned methods. In each case, the static torsion test and the torsion fatigue test passed. Tables 3 and 4 and Tables 5 and 6 also
Each of them constitutes one table.

【0063】[0063]

【表3】 [Table 3]

【0064】[0064]

【表4】 [Table 4]

【0065】[0065]

【表5】 [Table 5]

【0066】[0066]

【表6】 [Table 6]

【0067】比較のため、表7および表8に、FRP積
層構造単体の中空シャフトに金属製の継手要素を圧入法
およおび溶接法による接合を用いて製作したプロペラシ
ャフト(比較例1から4)の、静ねじり試験及びねじり
疲労試験よりプロペラシャフトの強度および耐久性を評
価した結果を示す。いずれも静ねじり試験およびねじり
疲労試験は、不合格であった。特にFRP積層構造単体
の中空シャフトと金属製の継手要素との溶接法による接
合は成立できなかったために、プロぺラシャフトは製作
できなかった(比較例2および4)。
Tables 7 and 8 show, for comparison, propeller shafts (Comparative Examples 1 to 4) in which a metal joint element was formed on a hollow shaft of a single FRP laminated structure using a press-fitting method and a welding method. 2) shows the results of evaluating the strength and durability of the propeller shaft from the static torsion test and the torsion fatigue test. In each case, the static torsion test and the torsion fatigue test were rejected. In particular, since the joining of the hollow shaft of the FRP laminated structure alone and the metal joint element by the welding method could not be established, the propeller shaft could not be manufactured (Comparative Examples 2 and 4).

【0068】[0068]

【表7】 [Table 7]

【0069】[0069]

【表8】 [Table 8]

【0070】なお、上記表中の注1)〜注9)は次のと
おりである。 注1)CFRP(PAN系):三菱レイヨン株式会社製
パイロフィルプリプレグ 注2)CFRP(ピッチ系):日本石油株式会社製グラ
ノックプリプレグ 注3)GFRP:日東紡績株式会社製ガラスファイバー
プリプレグ 注4)Feフィルム:井沢金属株式会社製Fe圧延箔 注5)Alフィルム:井沢金属株式会社製Al圧延箔 注6)エポキシ系(溶液):サンスター技研株式会社製
ウエルボンド 注7)ニトリル・フェノール系:ソニーケミカル株式会
社製熱接着テープ 注8)エポキシ系(フィルム):住友スリーエム株式会
社製スコッチ・ウエルド 注9)フィルム上に2500個/m2 の密度でφ10m
mの空孔を開けて使用した。
Note that notes 1) to 9) in the above table are as follows. Note 1) CFRP (PAN type): Pyrofil prepreg manufactured by Mitsubishi Rayon Co., Ltd. Note 2) CFRP (pitch type): Granoc prepreg manufactured by Nippon Oil Co., Ltd. Note 3) GFRP: Glass fiber prepreg manufactured by Nitto Boseki Co., Ltd. Note 4) Fe film: Fe rolled foil manufactured by Izawa Metal Co., Ltd. Note 5) Al film: Al rolled foil manufactured by Izawa Metal Co., Ltd. Note 6) Epoxy (solution): Wellbond manufactured by Sunstar Giken Co., Ltd. Note 7) Nitrile / phenol: Sony Chemical Co., Ltd. thermal adhesive tape * 8) Epoxy (film): Sumitomo 3M Co., Ltd. Scotch Weld * 9) φ10m at 2500 density / m 2 on film
m holes were used.

【0071】[0071]

【発明の効果】本発明による動力伝達シャフトは、FR
P製中空シャフトであるため軽量でありながら、FRP
層のみからなる中央部と、FRP層と金属層との複合層
で構成された移行部と、金属層のみで構成された端部と
を備えているため、軸端部において金属製継手要素との
強固な接合が可能となり、長期の使用においても信頼性
の高いものとなる。したがって、両端部にて等速ジョイ
ントを介して自動車の動力伝達系に連結されるプロペラ
シャフトの軽量化、低コスト化を図るために、プロペラ
シャフト(の中間シャフト)をFRP製とする上での諸
問題が本発明によって解消する。また、本発明は、自動
車用途のみならず、船舶や各種産業機械および航空機等
の動力伝達シャフトとしても同様の効果を伴って実施を
することができるものである。
The power transmission shaft according to the present invention has an FR
Because it is a hollow shaft made of P, it is lightweight, yet FRP
Since it has a central portion composed of only layers, a transition portion composed of a composite layer of the FRP layer and the metal layer, and an end portion composed of only the metal layer, a metal joint element is formed at the shaft end portion. Can be firmly joined, and it is highly reliable even in long-term use. Therefore, in order to reduce the weight and cost of the propeller shaft connected to the power transmission system of the vehicle via the constant velocity joints at both ends, the propeller shaft (intermediate shaft) must be made of FRP. Various problems are solved by the present invention. In addition, the present invention can be carried out not only for automobiles but also for power transmission shafts of ships, various industrial machines, aircraft, etc. with the same effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構想を示す動力伝達シャフトの半断面
図。
FIG. 1 is a half sectional view of a power transmission shaft showing a concept of the present invention.

【図2】(A)は動力伝達シャフトの斜視図、(B)は
マンドレルの斜視図。
2A is a perspective view of a power transmission shaft, and FIG. 2B is a perspective view of a mandrel.

【図3】(A)はプリプレグシートの正面図、(B)は
底面図。
3A is a front view of a prepreg sheet, and FIG. 3B is a bottom view.

【図4】(A)はプリプレグシートの正面図、(B)は
底面図。
4A is a front view of a prepreg sheet, and FIG. 4B is a bottom view.

【図5】重ね合わせたプリプレグシートの正面図。FIG. 5 is a front view of the prepreg sheets stacked.

【図6】プリプレグシートの正面図。FIG. 6 is a front view of a prepreg sheet.

【図7】(A)はプロペラシャフトの縦断面図、(B)
はB部拡大図。
7A is a longitudinal sectional view of a propeller shaft, and FIG.
FIG.

【図8】(A)はプロペラシャフトの縦断面図、(B)
は(A)のB1 部分およびB2部分の拡大図。
8A is a longitudinal sectional view of a propeller shaft, and FIG.
3 is an enlarged view of a B 1 portion and a B 2 portion of FIG.

【図9】(A)はプロペラシャフトの縦断面図、(B)
は(A)のB1 部分およびB2部分の拡大図。
9A is a longitudinal sectional view of a propeller shaft, and FIG.
3 is an enlarged view of a B 1 portion and a B 2 portion of FIG.

【図10】従来の技術を示すプロペラシャフトの縦断面
図。
FIG. 10 is a longitudinal sectional view of a propeller shaft showing a conventional technique.

【符号の説明】[Explanation of symbols]

1,3 FRPプリプレグ 2,2' ,4,4' 金属フィルム 5 マンドレル 6 チャッキング用軸 7 中央部(FRP層) 8 移行部(複合層) 9 端部(金属層) 13 中間シャフト 14 金属製継手要素 15 接合部 16 クロスグルーブ型等速自在継手 17 ダブルオフセット型等速自在継手 18 バーフィールド型等速自在継手 1,3 FRP prepreg 2,2 ', 4,4' metal film 5 mandrel 6 chucking shaft 7 central part (FRP layer) 8 transition part (composite layer) 9 end part (metal layer) 13 intermediate shaft 14 metal Joint element 15 Joint 16 Cross groove constant velocity universal joint 17 Double offset constant velocity universal joint 18 Barfield constant velocity universal joint

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J033 AA01 AB02 BA03 BA07 BA20 4F205 AA39 AD03 AD08 AD16 AD18 AD19 AG08 AG23 AH17 AP12 HA02 HA23 HA33 HA37 HA45 HB01 HC02 HC17 HK02 HK04 HK05 HK16 HK17 HL03 HL14 HT08 HT13 HT22 HT27  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference)

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 膜、フィルム、箔または薄板を多層に巻
回して構成された筒状の動力伝達シャフトであって、長
手方向の中央部を繊維強化樹脂層のみで構成し、中央部
と端部の間の移行部を繊維強化樹脂層と金属層との複合
層で構成し、端部を金属層のみで構成したことを特徴と
する動力伝達シャフト。
1. A cylindrical power transmission shaft formed by winding a membrane, a film, a foil or a thin plate in multiple layers, wherein a central portion in a longitudinal direction is constituted only by a fiber-reinforced resin layer, and a central portion and an end portion are provided. A power transmission shaft, wherein a transition portion between the portions is constituted by a composite layer of a fiber reinforced resin layer and a metal layer, and an end portion is constituted only by a metal layer.
【請求項2】 繊維強化樹脂層がPAN系炭素繊維から
なるプリプレグよりパイプローリング法によって形成さ
れたことを特徴とする請求項1の動力伝達シャフト。
2. The power transmission shaft according to claim 1, wherein the fiber reinforced resin layer is formed from a prepreg made of PAN-based carbon fiber by a pipe rolling method.
【請求項3】 繊維強化樹脂層がピッチ系炭素繊維から
なるプリプレグよりパイプローリング法によって形成さ
れたことを特徴とする請求項1の動力伝達シャフト。
3. The power transmission shaft according to claim 1, wherein the fiber reinforced resin layer is formed from a prepreg made of pitch-based carbon fibers by a pipe rolling method.
【請求項4】 プリプレグの厚みが5μm以上300μ
m以下の範囲であることを特徴とする請求項2または3
の動力伝達シャフト。
4. The prepreg has a thickness of 5 μm or more and 300 μm or more.
m or less.
Power transmission shaft.
【請求項5】 プリプレグを構成する繊維の破断強度が
100kgf/mm 2 (980MPa)以上であること
を特徴とする請求項2または3の動力伝達シャフト。
5. The fiber constituting the prepreg has a breaking strength of
100kgf / mm Two(980MPa) or more
The power transmission shaft according to claim 2 or 3, wherein:
【請求項6】 金属層が鉄または鉄系合金で構成されて
いることを特徴とする請求項1の動力伝達シャフト。
6. The power transmission shaft according to claim 1, wherein the metal layer is made of iron or an iron-based alloy.
【請求項7】 金属層がアルミまたはアルミ系合金で構
成されていることを特徴とする請求項1の動力伝達シャ
フト。
7. The power transmission shaft according to claim 1, wherein the metal layer is made of aluminum or an aluminum-based alloy.
【請求項8】 各金属層の厚みが1μm以上300μm
以下の範囲であることを特徴とする請求項1の動力伝達
シャフト。
8. The thickness of each metal layer is 1 μm or more and 300 μm.
The power transmission shaft according to claim 1, wherein the power transmission shaft has the following range.
【請求項9】 金属層間に接着剤を介在させたことを特
徴とする請求項1の動力伝達シャフト。
9. The power transmission shaft according to claim 1, wherein an adhesive is interposed between the metal layers.
【請求項10】 全長が50mm以上11000mm以
下で、外径が10mm以上250mm以下である先行す
るいずれかの請求項の動力伝達シャフト。
10. The power transmission shaft according to claim 1, wherein the total length is 50 mm or more and 11000 mm or less, and the outer diameter is 10 mm or more and 250 mm or less.
【請求項11】 少なくとも一方の軸端側における端部
および隣接する移行部の長さが10mm以上で、かつ、
全長の50%未満であることを特徴とする、先行するい
ずれかの請求項の動力伝達シャフト。
11. The length of at least one end of the shaft end and the adjacent transition portion is 10 mm or more, and
Power transmission shaft according to any of the preceding claims, characterized in that it is less than 50% of the total length.
【請求項12】 請求項1乃至11のいずれかに記載の
動力伝達シャフトの少なくとも一方の軸端側に金属製継
手要素を接合して構成したことを特徴とする自動車用プ
ロペラシャフト。
12. A propeller shaft for an automobile, wherein a metal coupling element is joined to at least one of the shaft ends of the power transmission shaft according to any one of claims 1 to 11.
【請求項13】 請求項1乃至11のいずれかに記載の
動力伝達シャフトの両端に等速自在継手を取り付けて構
成したことを特徴とする自動車用プロペラシャフト。
13. A propeller shaft for an automobile, wherein a constant velocity universal joint is attached to both ends of the power transmission shaft according to any one of claims 1 to 11.
JP11178520A 1998-06-26 1999-06-24 Power transmission shaft and propeller shaft Withdrawn JP2001032819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11178520A JP2001032819A (en) 1998-06-26 1999-06-24 Power transmission shaft and propeller shaft

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP18104198 1998-06-26
JP10-181041 1998-06-26
JP13608599 1999-05-17
JP11-136085 1999-05-17
JP11178520A JP2001032819A (en) 1998-06-26 1999-06-24 Power transmission shaft and propeller shaft

Publications (1)

Publication Number Publication Date
JP2001032819A true JP2001032819A (en) 2001-02-06

Family

ID=27317204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11178520A Withdrawn JP2001032819A (en) 1998-06-26 1999-06-24 Power transmission shaft and propeller shaft

Country Status (1)

Country Link
JP (1) JP2001032819A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145626A (en) * 1997-07-28 1999-02-16 Alps Electric Co Ltd Inclination sensor
JP2008185149A (en) * 2007-01-30 2008-08-14 Showa Corp Propeller shaft
US7509918B2 (en) 2005-06-30 2009-03-31 Becker Marine Systems Gmbh & Co. Kg Rudder post for rudders for water vehicles
EP2492083A2 (en) 2011-02-25 2012-08-29 Fuji Jukogyo Kabushiki Kaisha Joint structure for fiber reinforced resin and metal, and joining method for fiber reinforced resin and metal
WO2012141717A1 (en) * 2011-04-15 2012-10-18 Gkn Driveline North America, Inc. Composite tubeshaft to metallic interface
CN103032446A (en) * 2012-12-04 2013-04-10 江苏航天动力机电有限公司 Anti-fracture structure of rib-welded shaft motor
JP2013163277A (en) * 2012-02-09 2013-08-22 Honda Motor Co Ltd Method for bonding metal material with resin material and welding apparatus employed for the same
EP2636509A2 (en) 2012-03-06 2013-09-11 Fuji Jukogyo Kabushiki Kaisha Joint structure for fiber reinforced resin and metal, and joining method for fiber reinforced resin and metal
US8777761B2 (en) 2011-04-15 2014-07-15 Gkn Driveline North America, Inc. Composite tubeshaft to metallic interface
JP2015100967A (en) * 2013-11-22 2015-06-04 株式会社ジェイテクト Method for manufacturing bar shaped component and bar shaped component
JP2015113359A (en) * 2013-12-09 2015-06-22 株式会社ジェイテクト Manufacturing method of bar-like component, and bar-like component
US9956987B2 (en) 2013-11-22 2018-05-01 Jtekt Corporation Manufacturing method of bar component and bar component
US10422371B2 (en) 2016-08-31 2019-09-24 Hyundai Motor Company Hybrid propeller shaft for vehicle
CN112638689A (en) * 2019-02-27 2021-04-09 日立安斯泰莫株式会社 Pipe body for transmission shaft and transmission shaft

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145626A (en) * 1997-07-28 1999-02-16 Alps Electric Co Ltd Inclination sensor
US7509918B2 (en) 2005-06-30 2009-03-31 Becker Marine Systems Gmbh & Co. Kg Rudder post for rudders for water vehicles
JP2008185149A (en) * 2007-01-30 2008-08-14 Showa Corp Propeller shaft
EP2492083A2 (en) 2011-02-25 2012-08-29 Fuji Jukogyo Kabushiki Kaisha Joint structure for fiber reinforced resin and metal, and joining method for fiber reinforced resin and metal
US8795804B2 (en) 2011-02-25 2014-08-05 Fuji Jukogyo Kabushiki Kaisha Joint structure for fiber reinforced resin and metal, and joining method for fiber reinforced resin and metal
JP2014510890A (en) * 2011-04-15 2014-05-01 ジーケーエヌ・ドライブライン・ノースアメリカ・インコーポレーテッド Composite tube shaft and manufacturing method thereof
US8777761B2 (en) 2011-04-15 2014-07-15 Gkn Driveline North America, Inc. Composite tubeshaft to metallic interface
WO2012141717A1 (en) * 2011-04-15 2012-10-18 Gkn Driveline North America, Inc. Composite tubeshaft to metallic interface
JP2013163277A (en) * 2012-02-09 2013-08-22 Honda Motor Co Ltd Method for bonding metal material with resin material and welding apparatus employed for the same
EP2636509A2 (en) 2012-03-06 2013-09-11 Fuji Jukogyo Kabushiki Kaisha Joint structure for fiber reinforced resin and metal, and joining method for fiber reinforced resin and metal
US8808822B2 (en) 2012-03-06 2014-08-19 Fuji Jukogyo Kabushiki Kaisha Joint structure for fiber reinforced resin and metal, and joining method for fiber reinforced resin and metal
CN103032446A (en) * 2012-12-04 2013-04-10 江苏航天动力机电有限公司 Anti-fracture structure of rib-welded shaft motor
JP2015100967A (en) * 2013-11-22 2015-06-04 株式会社ジェイテクト Method for manufacturing bar shaped component and bar shaped component
US9956987B2 (en) 2013-11-22 2018-05-01 Jtekt Corporation Manufacturing method of bar component and bar component
JP2015113359A (en) * 2013-12-09 2015-06-22 株式会社ジェイテクト Manufacturing method of bar-like component, and bar-like component
US10422371B2 (en) 2016-08-31 2019-09-24 Hyundai Motor Company Hybrid propeller shaft for vehicle
CN112638689A (en) * 2019-02-27 2021-04-09 日立安斯泰莫株式会社 Pipe body for transmission shaft and transmission shaft
CN112638689B (en) * 2019-02-27 2024-03-19 日立安斯泰莫株式会社 Tube for a drive shaft and drive shaft

Similar Documents

Publication Publication Date Title
US6464591B1 (en) Power transmission shaft
JP4846103B2 (en) Fiber reinforced resin pipe and power transmission shaft using the same
JP2001032819A (en) Power transmission shaft and propeller shaft
GB2051306A (en) Fibre-reinforced composite shaft with metal connector sleeves
US6287209B1 (en) Propeller shaft and method of producing the same
JP2001047883A (en) Power transmission shaft
EP2492083B1 (en) Joint structure for fiber reinforced resin and metal, and joining method for fiber reinforced resin and metal
EP1801427A1 (en) Metallic local reinforcement for heavy loaded joints of composite components
US6190263B1 (en) Propeller shaft including compressive load transmitting section
EP0683328B1 (en) Propeller shaft
JPH06200951A (en) Joint method for driving force transmission shaft made of frp with pipe made of frp
US8808822B2 (en) Joint structure for fiber reinforced resin and metal, and joining method for fiber reinforced resin and metal
JP6540085B2 (en) Propeller shaft
KR20080012559A (en) Manufacturing method for hybrid driveshaft of vehicle
JP2017132063A (en) Fiber reinforced resin structure
JP2007271079A (en) Torque transmission shaft
Shinde et al. Investigation on glass-epoxy composite drive shaft for light motor vehicle
KR100783905B1 (en) Hybrid driveshaft based on unidirectional and fabric composite materials
JPS5850356A (en) Composite gear
KR101744705B1 (en) Hybrid Propeller Shaft and Method for Manufacturing Thereof
JPS598568B2 (en) Vehicle drive propulsion shaft
JPH0592488A (en) Drive force transmitting shaft made of fiber-reinforced resin, production thereof, and method for bonding pipe made of fiber-reinforced resin
JP2000283140A (en) Propeller shaft and its manufacturing method
JPH0960639A (en) Spindle made of fiber reinforced composite material
JPH01126412A (en) Manufacture of fiber reinforced resin made transmission pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061013