JPH0592488A - Drive force transmitting shaft made of fiber-reinforced resin, production thereof, and method for bonding pipe made of fiber-reinforced resin - Google Patents

Drive force transmitting shaft made of fiber-reinforced resin, production thereof, and method for bonding pipe made of fiber-reinforced resin

Info

Publication number
JPH0592488A
JPH0592488A JP4076818A JP7681892A JPH0592488A JP H0592488 A JPH0592488 A JP H0592488A JP 4076818 A JP4076818 A JP 4076818A JP 7681892 A JP7681892 A JP 7681892A JP H0592488 A JPH0592488 A JP H0592488A
Authority
JP
Japan
Prior art keywords
fiber
reinforced resin
frp
coupling element
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4076818A
Other languages
Japanese (ja)
Inventor
Yasuo Shinohara
泰雄 篠原
Hitoshi Murotani
均 室谷
Koji Yamatsuta
浩治 山蔦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP4076818A priority Critical patent/JPH0592488A/en
Publication of JPH0592488A publication Critical patent/JPH0592488A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Power Transmission Devices (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Moulding By Coating Moulds (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain an FRP drive force transmitting shaft having a high productivity and a bonding part as strong as it can transmit a high torsional torque. CONSTITUTION:A cylindrical outer peripheral surface of a bonding part 3 of a bonding element 2 (metal yoke) is formed into a serration shape 4 of chevron- form stripes extending in an axial direction having a triangle cross section in a radial direction. A shaft is fabiricated by press fitting the bonding part 3 of the bonding element 2 of the serration shape 4 into the inside of an FRP pipe 6, which is integrally provided with a metal foil 5 on the inner peripheral surface of the bonding part thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は繊維強化樹脂(以下、F
RPと称することがある)製駆動力伝達用シャフト、特
に自動車用、船舶用及びヘリコプタ−用に適した高トル
クの駆動力伝達用シャフトに関する。また、本発明はF
RP製パイプと接合部品の接合方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a fiber reinforced resin (hereinafter referred to as F
(Hereinafter sometimes referred to as RP) drive force transmission shaft, and more particularly to a high torque drive force transmission shaft suitable for automobiles, ships and helicopters. In addition, the present invention is F
The present invention relates to a method of joining an RP pipe and a joining part.

【0002】[0002]

【従来の技術】車両や船舶等の駆動力伝達用シャフトは
一般に金属製中実棒又は金属製中空パイプの両端に金属
製の結合要素(継手要素とも称する)を接合したものが
使用されている。近年、自動車の軽量化が注目されるよ
うになり、車体の金属をFRP化するだけでなく、構造
部材の軽量化も注目を集めている。その中で駆動力を伝
達するシャフトの軽量化はそれが回転部分であるため軽
量化のもたらす効果は大きくFRP化が特に注目されて
いる。従来の鉄鋼製からFRP製にすることにより重量
は1/4〜1/2にも軽減するので各種の自動車に搭載
されるようになってきた。
2. Description of the Related Art Generally, a driving force transmitting shaft of a vehicle, a ship, etc. is formed by joining a metallic solid rod or a metallic hollow pipe with metallic coupling elements (also referred to as coupling elements) at both ends. .. In recent years, the weight reduction of automobiles has been attracting attention, and not only the metal of the vehicle body is made of FRP, but also the weight reduction of the structural member is also attracting attention. Among them, the weight reduction of the shaft for transmitting the driving force is a rotating part, so that the weight reduction has a great effect, and the FRP type is particularly attracting attention. Since the weight is reduced to 1/4 to 1/2 by changing the conventional steel to FRP, it has come to be mounted on various automobiles.

【0003】船舶においても快適な乗り心地を追求し
て、共振周波数を実用域から外すために駆動力伝達用シ
ャフトのFRP化が注目されつつある。それはFRPが
比強度(強度/密度)と比剛性(弾性率/密度)が鋼や
アルミニウム等の金属に比べて優れていることと、繊維
の配向角度を変更することによって曲げ剛性とねじり剛
性を自由に変えることができるので、ねじりの強度を維
持したまま共振周波数を高くしたり又逆に低くしたりす
ることが可能であることによる。
In the pursuit of comfortable riding comfort in ships as well, attention has been paid to the use of a driving force transmission shaft of FRP in order to remove the resonance frequency from the practical range. FRP is superior in specific strength (strength / density) and specific rigidity (elastic modulus / density) to metals such as steel and aluminum, and by changing the orientation angle of the fiber, bending rigidity and torsional rigidity can be improved. Since it can be freely changed, the resonance frequency can be increased or decreased while maintaining the strength of the twist.

【0004】FRP製駆動力伝達用シャフトの場合、一
般にFRP製の中空パイプの両端に結合要素を設けなけ
ればならず、FRP製パイプと結合要素を別々に準備し
後で何らかの方法で両者を接合することにより製造され
ている。例えば接着剤による接合が知られているが高い
ねじりトルクを伝達するには接着力が不十分であったり
経時的に接着力が低下する等の問題がある。また、接合
部を正多角形状にする方法も知られているが、加工に手
間がかかり、生産性が低いという問題がある。
In the case of an FRP driving force transmission shaft, generally, a connecting element must be provided at both ends of an FRP hollow pipe, and the FRP pipe and the connecting element are separately prepared and later joined by some method. It is manufactured by For example, bonding with an adhesive is known, but there are problems that the adhesive strength is insufficient to transmit a high torsion torque, or the adhesive strength decreases with time. Further, a method of forming the joining portion into a regular polygonal shape is also known, but there is a problem in that it takes time and labor for processing and productivity is low.

【0005】高いねじりトルクを伝達させるため、他に
も様々な方法が提案されている。実開昭53−9378
号公報、実開昭54−97541号公報、特開昭55−
159311号公報、特開昭54−132039号公
報、特公昭62−53373号公報には結合要素とFR
P製パイプの接合部をそれぞれセレーション形状にして
結合したり、セレーション加工のされている結合要素の
接合部をFRP製パイプの内壁に切り込ませるようにし
て結合する等の方法が提案されている。
Various other methods have been proposed to transmit a high torsion torque. Actual exploitation 53-9378
JP-A-55-97541, JP-A-55-
No. 159311, Japanese Patent Laid-Open No. 54-132039, and Japanese Patent Publication No. 62-53373 disclose a coupling element and FR.
Methods have been proposed in which the joints of the P pipes are joined in serrations, and the joints of the serrated coupling elements are cut into the inner wall of the FRP pipes. ..

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前者の
手法ではFRP製パイプの内壁にセレーション形状の目
を形成することが困難である。機械加工によりセレーシ
ョン形状を形成すると強化繊維が切断されてしまうため
接合部の強度が低下してしまい高いねじりトルクを伝達
することが不可能である。又、後者の場合も接合部の強
化繊維が結合要素の接合部のセレーション形状によって
切断されるため高いねじりトルクを伝達できない等の問
題があった。接合を確実なものとするために接合部の外
側に金属製のアウターリングを被せて補強する方法も提
案されているが軽量化の効果を減殺するという問題点が
あった。
However, it is difficult to form serration-shaped eyes on the inner wall of the FRP pipe by the former method. When the serrated shape is formed by machining, the reinforcing fibers are cut, so that the strength of the joint decreases and it is impossible to transmit a high torsion torque. Also, in the latter case, there is a problem that a high torsion torque cannot be transmitted because the reinforcing fibers of the joint are cut by the serration shape of the joint of the coupling element. A method has also been proposed in which a metal outer ring is covered on the outside of the joint to reinforce the joint in order to secure the joint, but there is a problem that the effect of weight reduction is diminished.

【0007】本発明は上記のセレーション形状の接合部
を有するFRP製駆動力伝達用シャフトの問題点を解決
するためになされたものであり、大きなトルクに対して
も滑りを生じなく、しかも成形上の煩雑さを解消したF
RP製駆動力伝達用シャフトを提供しようとするもので
ある。
The present invention has been made in order to solve the problems of the FRP drive force transmitting shaft having the serration-shaped joint described above. F that eliminated the complexity of
It is intended to provide an RP driving force transmission shaft.

【0008】[0008]

【課題を解決するための手段】本発明は、繊維強化樹脂
製パイプに結合要素を接合してなる繊維強化樹脂製駆動
力伝達用シャフトであって、繊維強化樹脂製パイプの接
合部と結合要素の接合部はフィルムを介してセレーショ
ン形状の噛み合いにより接合されていることを特徴とす
る繊維強化樹脂製駆動力伝達用シャフト及びその製造方
法に関する。また、本発明は接合部にセレーション形状
を有する結合部品と繊維強化樹脂製パイプを、接合部に
フィルムを介在させて嵌合することを特徴とする繊維強
化樹脂製パイプと結合部品の接合方法に関する。
SUMMARY OF THE INVENTION The present invention is a fiber reinforced resin driving force transmitting shaft comprising a fiber reinforced resin pipe and a coupling element joined to the fiber reinforced resin pipe. Relates to a fiber-reinforced resin drive force transmitting shaft and a method for manufacturing the same, wherein the joint portion is joined by a serration-shaped mesh through a film. Further, the present invention relates to a method for joining a fiber-reinforced resin pipe and a connecting part, which is characterized in that the connecting part having a serration shape at the connecting part and the fiber-reinforced resin pipe are fitted to each other with a film interposed in the connecting part. ..

【0009】本発明に用いる強化繊維材料は駆動力伝達
用シャフトの回転時の共振周波数を高める必要から弾性
率、強度の高い繊維が望ましい。又、比強度、比剛性が
大きい繊維を用いる方が軽量化の効果が顕著であるので
好ましい。そのような繊維の例として炭素繊維、ガラス
繊維、アラミド繊維、セラミック繊維等が挙げられる。
これらの繊維を2種以上組み合わせて用いることもでき
る。なかでも炭素繊維が好ましく用いられ、炭素繊維と
ガラス繊維のハイブリッド使用も強度と経済性の観点か
ら好ましい。
The reinforcing fiber material used in the present invention is preferably a fiber having a high elastic modulus and high strength because it is necessary to increase the resonance frequency of the driving force transmitting shaft during rotation. Further, it is preferable to use a fiber having a large specific strength and a large specific rigidity because the effect of weight reduction is remarkable. Examples of such fibers include carbon fibers, glass fibers, aramid fibers, ceramic fibers and the like.
It is also possible to use two or more kinds of these fibers in combination. Among them, carbon fiber is preferably used, and hybrid use of carbon fiber and glass fiber is also preferable from the viewpoint of strength and economy.

【0010】繊維の形態は特に限定されるものではな
く、ロービング状、織布状、プリプレグ状等で用いるこ
とができる。繊維の配向角度は高ねじりトルクの伝達の
ためには、シャフトの軸方向に対して±30°〜±60
°が好ましく、高共振周波数を狙うためには0°〜±3
0°の範囲が好ましいが、要求特性に応じて繊維巻角は
計算によって最適な範囲を選択することが出来る。
The form of the fiber is not particularly limited and may be roving, woven, prepreg or the like. The fiber orientation angle is ± 30 ° to ± 60 with respect to the axial direction of the shaft in order to transmit high torsion torque.
Is preferable, and 0 ° to ± 3 to aim for high resonance frequency.
Although the range of 0 ° is preferable, the optimum range of the fiber winding angle can be selected by calculation according to the required characteristics.

【0011】マトリックス樹脂は特に限定されるもので
はなく、エポキシ樹脂、不飽和ポリエステル樹脂、ビニ
ルエステル樹脂、ウレタン樹脂、フェノール樹脂、アル
キッド樹脂、イミド樹脂、ビスマレイミド樹脂、キシレ
ン樹脂、メラミン樹脂、フラン樹脂、シリコン樹脂、等
の熱硬化性樹脂、ポリエチレン樹脂、ポリプロピレン樹
脂、ポリ塩化ビニル樹脂、ポリメチルメタクリレート樹
脂、ABS樹脂、フッソ樹脂、ポリカーボネート樹脂、
ポリエステル樹脂、ポリアミド樹脂、ポリフェニレンサ
ルファイド樹脂、ポリスルフォン樹脂、ポリエーテルス
ルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリ
フェニレンオキシド樹脂等の熱可塑性樹脂を挙げること
ができる。これらのなかでエポキシ樹脂、不飽和ポリエ
ステル樹脂、ビニルエステル樹脂が取り扱い性及び物性
面から好ましい。さらに樹脂及び繊維は必要に応じてそ
れぞれ2種以上を組み合わせて用いることができる。
The matrix resin is not particularly limited, and is an epoxy resin, unsaturated polyester resin, vinyl ester resin, urethane resin, phenol resin, alkyd resin, imide resin, bismaleimide resin, xylene resin, melamine resin, furan resin. , Thermosetting resin such as silicone resin, polyethylene resin, polypropylene resin, polyvinyl chloride resin, polymethylmethacrylate resin, ABS resin, fluorine resin, polycarbonate resin,
Thermoplastic resins such as polyester resin, polyamide resin, polyphenylene sulfide resin, polysulfone resin, polyether sulfone resin, polyether ether ketone resin, and polyphenylene oxide resin can be mentioned. Of these, epoxy resins, unsaturated polyester resins, and vinyl ester resins are preferable from the viewpoint of handleability and physical properties. Further, the resin and the fiber may be used in combination of two or more kinds, if necessary.

【0012】FRP製パイプの繊維体積含有率は40%
以上75%以下、好ましくは50%以上70%以下であ
る。含有率が40%未満のときは強化効果が低く、厚肉
のパイプにしなくてはならず、重量軽減の効果が少な
い。75%を越えると繊維同士の接触の確率が高くなり
ねじり強度が低くなる。
The fiber volume content of FRP pipe is 40%
Or more and 75% or less, preferably 50% or more and 70% or less. When the content is less than 40%, the strengthening effect is low, and a thick pipe must be used, so that the weight reducing effect is small. If it exceeds 75%, the probability of contact between fibers becomes high and the torsional strength becomes low.

【0013】本発明に用いる結合要素の材質は機械的物
性が優れ加工が容易なことから金属が好ましい。特に強
度及び剛性の面から鉄、アルミニウム、チタニウム、マ
グネシウム及びこれらの金属を主成分とする合金が好ま
しい。
The material of the coupling element used in the present invention is preferably metal because of its excellent mechanical properties and easy processing. From the viewpoint of strength and rigidity, iron, aluminum, titanium, magnesium and alloys containing these metals as main components are particularly preferable.

【0014】本発明で用いるフィルムとは、その材質と
して金属、樹脂又は繊維強化樹脂が例示され、金属箔、
樹脂製フィルム又は繊維強化樹脂フィルム又は層の形態
で用いることができる。なかでも金属箔はFRP製パイ
プとの接着性及び破壊トルクの向上の面から好ましく用
いられる。
The film used in the present invention is exemplified by metal, resin or fiber reinforced resin as its material. Metal foil,
It can be used in the form of a resin film or a fiber reinforced resin film or layer. Among them, the metal foil is preferably used from the viewpoint of improving the adhesiveness to the FRP pipe and the breaking torque.

【0015】金属箔としては例えば鉄、銅、黄銅、ニッ
ケル、アルミニウム、チタン、銀、錫、亜鉛及びそれら
を主成分とする合金類から得られる箔が挙げられる。こ
れらのうち機械強度が高く塑性変形能が大きく、かつF
RP及び結合要素との電食の少ないものを選択すること
が望ましい。好ましい金属箔としてニッケル及び銅を挙
げることができる。電食の恐れがある場合には電気絶縁
性のある薄い材料を介在させることもできる。
Examples of the metal foil include foils obtained from iron, copper, brass, nickel, aluminum, titanium, silver, tin, zinc and alloys containing them as a main component. Of these, mechanical strength is high, plastic deformability is high, and F
It is desirable to select one that has less electrolytic corrosion with the RP and the coupling element. Preferred metal foils include nickel and copper. If there is a risk of electrolytic corrosion, an electrically insulating thin material may be interposed.

【0016】また金属箔としては表面を粗面化処理をし
たものが好ましい。マンドレル上に粗面化処理が施され
た面をFRP側になるように配置し、その上にフィラメ
ントワインディング法またはテープワィンディング法に
よりFRP製パイプを成形すると、金属箔とFRP製パ
イプの接着が良好となり、特に好ましいものである。金
属箔の両面を粗面化処理したしたものを用いることもで
きる。この場合、結合要素と金属箔の間に接着剤を用い
ることにより良好な接合強度が得られる。
The metal foil is preferably one whose surface has been roughened. When the roughened surface is placed on the mandrel so that it faces the FRP side, and the FRP pipe is molded by the filament winding method or tape winding method on it, the adhesion between the metal foil and the FRP pipe is good. And is particularly preferable. It is also possible to use a metal foil whose both surfaces are roughened. In this case, good bonding strength is obtained by using an adhesive between the coupling element and the metal foil.

【0017】粗面化処理金属箔としては、圧延法や電解
法等で得られる金属箔の表面を電解法により粗面化した
ものを用いることができる。このようなものとして好適
にはニッケル、銅の電解箔が挙げられる。表面の粗度は
平均粗度Raとして0.01〜20μmの範囲のものが
好ましい。
As the surface-roughened metal foil, a metal foil obtained by a rolling method, an electrolytic method or the like, the surface of which is roughened by an electrolytic method can be used. Suitable examples of such a material include electrolytic foils of nickel and copper. The surface roughness is preferably in the range of 0.01 to 20 μm as the average roughness Ra.

【0018】フィルムに用いる樹脂性材料としては強
度、弾性率及び破断歪の大きなものが好ましい。このよ
うな材料としてはポリエステル樹脂、ポリアミド樹脂、
ポリイミド樹脂、ポリカーボネイト樹脂、ポリフェニレ
ンサルファイド樹脂、ポリスルフォン樹脂、ポリエーテ
ルスルフォン樹脂、ポリエーテルエーテルケトン樹脂或
いはこれらの樹脂の混合物を例示することができる。
As the resinous material used for the film, those having large strength, elastic modulus and breaking strain are preferable. Such materials include polyester resin, polyamide resin,
Examples thereof include a polyimide resin, a polycarbonate resin, a polyphenylene sulfide resin, a polysulfone resin, a polyether sulfone resin, a polyether ether ketone resin, and a mixture of these resins.

【0019】上記したフィルムの代わりに繊維強化樹脂
フィルム又は層を用いることができる。繊維強化樹脂フ
ィルムとして例えばサーフェスマットと一般に呼称され
るガラス繊維等の繊維をマトリックス樹脂層に含浸させ
薄い不織布状に形成したものを用いることができる。
Fiber-reinforced resin films or layers can be used in place of the films described above. As the fiber-reinforced resin film, for example, a material obtained by impregnating a matrix resin layer with fibers such as glass fibers generally called a surface mat to form a thin non-woven fabric can be used.

【0020】本発明にて用いるフィルムの厚みは結合要
素の寸法や要求される破壊、トルクの大きさに応じて適
宜選ばれるが、好ましくは5〜500μm、より好まし
くは10〜200μmの範囲にて選ぶことができる。金
属箔を用いる場合は10〜100μmがより好ましい。
厚みが5μmより薄い場合は結合要素を圧入嵌合する際
にフィルムが破壊し易く、目的を達成することができな
い場合がある。厚みが500μm以上の場合には成形時
にマンドレル上にフィルムを巻き込むことが困難になる
等成形しにくいといった問題が生じる。又結合要素を圧
入嵌合するときにFRP製パイプに結合要素のセレーシ
ョンの食い込みが生じずトルクの伝達性能が小さくなっ
たり、セレーションの食い込みを生じさせるために非常
に大きな荷重を要することになる。かかるフィルムは、
FRP製パイプのフィラメントワインディング法または
テープワインディング法による製作時に予めマンドレル
に巻き回しておくかFRP製パイプを成形後その内面に
貼合しておくか等してFRP製パイプと一体化されてい
ることが望ましい。
The thickness of the film used in the present invention is appropriately selected according to the dimensions of the coupling element, the required breakage and the magnitude of torque, but is preferably 5 to 500 μm, more preferably 10 to 200 μm. You can choose. When using a metal foil, 10-100 micrometers is more preferable.
If the thickness is less than 5 μm, the film may be easily broken when the coupling element is press-fitted and the purpose may not be achieved. When the thickness is 500 μm or more, there arises a problem that it is difficult to form the film, for example, it becomes difficult to wind the film on the mandrel during the forming. In addition, when the coupling element is press-fitted, the serration of the coupling element does not bite into the FRP pipe, the torque transmission performance is reduced, and a very large load is required to cause the biting of the serration. Such films are
It must be integrated with the FRP pipe by winding it around a mandrel in advance when manufacturing the FRP pipe by the filament winding method or tape winding method, or by molding the FRP pipe and pasting it on the inner surface. Is desirable.

【0021】本発明において、結合要素の接合部のセレ
ーション形状とは、結合要素の接合部に形成される軸方
向に伸びる山状の筋を総称したものをいう。本発明にお
いて、セレーション形状は必ずしも限定されないが、好
ましいセレーション形状を例示すると、図2に示すよう
な結合要素の半径方向の断面の接合部の形状が三角、四
角または台形といった山形の形状が挙げられる。これら
のセレーション形状を用いることにより強い結合力を得
ることかできる。
In the present invention, the serration shape of the joint portion of the coupling element is a general term for the mountain-shaped streaks extending in the axial direction formed in the joint portion of the coupling element. In the present invention, the serration shape is not necessarily limited, but a preferable example of the serration shape is a mountain shape such as a triangular shape, a square shape or a trapezoidal shape of the joint in the radial cross section of the coupling element as shown in FIG. .. A strong binding force can be obtained by using these serration shapes.

【0022】セレーション形状の山の高さ(図3におい
てhで表される)は、要求されるトルク、FRP製パイ
プの内径及び用いるフィルムの材質や厚みにより必ずし
も限定されないが、0.005〜10mm、好ましくは
0.05〜3.0mmの範囲で選ぶことができる。0.
005mm未満の場合はセレーションのFRP製パイプ
への噛み込みが少なくなり、ねじりの伝達力が小さくな
る。また10mmを越える場合には山の数が少なくな
り、一つの山で保持するねじりトルクが大きくなり過
ぎ、FRP製パイプの内層が破壊し易くなる。セレーシ
ョン形状の山のピッチ(図3においてpで表す)は上記
と同様の理由で必ずしも限定されないが、0.05〜1
0mm、好ましくは0.1〜5.0mmの範囲で選ぶこ
とができる。
The height of the serrated peaks (represented by h in FIG. 3) is not limited to the required torque, the inner diameter of the FRP pipe and the material and thickness of the film used, but is 0.005 to 10 mm. , Preferably in the range of 0.05 to 3.0 mm. 0.
If it is less than 005 mm, the serration is less likely to be caught in the FRP pipe, and the transmission force for twisting is reduced. If it exceeds 10 mm, the number of peaks decreases, and the torsion torque held by one peak becomes too large, and the inner layer of the FRP pipe is easily broken. The pitch of serration-shaped peaks (represented by p in FIG. 3) is not necessarily limited for the same reason as above, but is 0.05 to 1
It can be selected in the range of 0 mm, preferably 0.1 to 5.0 mm.

【0023】セレーション形状の山の頂部までの結合要
素の接合部の外径(df)は、FRP製パイプの内径
(dp、フィルム層を含めての内径)よりやや大きくす
る。このdf/dp比の最適値は、要求されるトルクの
伝達力、FRP製パイプの内径とその厚み、用いるフィ
ルムの材質や厚み及びセレーション形状やその寸法によ
って異なるので必ずしも限定されず、圧入嵌合時にフィ
ルムを切断したり、FRP製パイプに損傷を与えずに高
いトルク伝達力を達成する範囲で適宜選択することがで
きる。例えばFRP製パイプの内径が70mm程度のも
のの場合、df/dp比は1.0002〜1.020の
範囲内で選ぶことができるが、この範囲に限定されるも
のではない。
The outer diameter (df) of the joint portion of the coupling element up to the top of the serrated peak is slightly larger than the inner diameter (dp, the inner diameter including the film layer) of the FRP pipe. The optimum value of the df / dp ratio is not necessarily limited because it depends on the required torque transmission force, the inner diameter and thickness of the FRP pipe, the material and thickness of the film used, and the serration shape and its size. It can be appropriately selected within a range where a high torque transmission force can be achieved without cutting the film or damaging the FRP pipe. For example, when the inner diameter of the FRP pipe is about 70 mm, the df / dp ratio can be selected within the range of 1.0002 to 1.020, but is not limited to this range.

【0024】例えば、FRP製パイプの内径が70mm
であるとき、この比が1.028位になると圧力嵌合時
に12ton程度の圧力を要し、FRP製パイプ内面の
繊維の切断が生じ、低いトルクで接合面の破壊が生じ
る。反対にこの比が1.0002より小さく1.000
1程度であるときは、圧入は比較的容易になるがトルク
の伝達能力は低い。
For example, the inner diameter of the FRP pipe is 70 mm
When this ratio is about 1.028, a pressure of about 12 tons is required at the time of pressure fitting, the fibers on the inner surface of the FRP pipe are cut, and the joint surface is broken with low torque. On the contrary, this ratio is smaller than 1.0002 and 1.000.
When it is about 1, the press-fitting becomes relatively easy, but the torque transmission capability is low.

【0025】セレーション形状の山は結合要素の軸に平
行であるが、結合要素の軸に対して15°以下の範囲の
角度を有していてもよい。
The serration-shaped peaks are parallel to the axis of the coupling element, but may have an angle with the axis of the coupling element in the range of 15 ° or less.

【0026】結合要素の接合部の先端の外面形状は滑ら
かにFRP製パイプの接合部に挿入できるように、FR
P製パイプの接合部の対応する内面形状より小さく、結
合要素の先端部から根元向きに滑らかに広がるテーパー
状をなしているのが好ましい。例えば、結合要素の先端
部の外径はFRP製パイプの接合部の内径より0.5m
m小さく、先端部のテーパー角度は30°以下であるこ
とが好ましい。又、逆にFRP製パイプ接合部の先端部
の内面形状が挿入する結合要素の先端部の外面形状より
大きく、FRP製パイプ接合部の先端部から奥向きに滑
らかに狭まるテーパー状をなしていてもよい。接合部の
長さは要求破壊トルクによっても異なるがフィルムを用
いることにより短縮することができる。同一の静ねじり
トルクを得るために必要な接合部長はフィルムを介在さ
せることによりおよそ半減する。
The outer shape of the tip of the joint portion of the coupling element is FR so that it can be smoothly inserted into the joint portion of the FRP pipe.
It is preferable that it has a taper shape that is smaller than the corresponding inner surface shape of the joint portion of the P pipe and that spreads smoothly from the tip portion of the coupling element toward the root. For example, the outer diameter of the tip of the coupling element is 0.5 m from the inner diameter of the joint of the FRP pipe.
It is preferable that m is small and the taper angle of the tip is 30 ° or less. On the contrary, the inner shape of the tip of the FRP pipe joint is larger than the outer shape of the tip of the coupling element to be inserted, and has a taper shape that narrows inward from the tip of the FRP pipe joint. Good. The length of the joint varies depending on the required breaking torque, but can be shortened by using a film. The joint length required to obtain the same static torsion torque is approximately halved by interposing the film.

【0027】本発明の方法すなわち、圧入嵌合において
結合要素とFRP製パイプの間にフィルム特に金属箔を
介在させることにより、FRP製パイプの強化繊維を切
断することなく強固なセレーション形状の噛み込みが達
成できる。
In the method of the present invention, that is, by interposing a film, particularly a metal foil, between the coupling element and the FRP pipe in the press-fitting, a strong serration-shaped bite is formed without cutting the reinforcing fiber of the FRP pipe. Can be achieved.

【0028】FRP製パイプと結合要素の圧入嵌合時に
接着剤を併用することができる。接着剤は室温での粘度
が50〜10000ポイズのものを用いるのが好まし
い。この接着剤は結合要素をFRP製パイプに圧入嵌合
するとき潤滑剤としての効果を発揮する。接合後、必要
に応じて接着剤の硬化処理、例えば熱処理を行う。接合
部に空隙があっても接着剤がその空隙を埋めることによ
り水分の侵入を防止でき、耐久性能を向上できる。又、
スラスト方向の引き抜き耐力を向上させることができ
る。接着剤を用いる場合、両面を粗面化した金属箔をF
RP製パイプと結合要素の間に介在させ結合要素と金属
箔の中間に接着剤を用いることが好ましい。
An adhesive can be used together when the FRP pipe and the coupling element are press-fitted together. It is preferable to use an adhesive having a viscosity of 50 to 10,000 poise at room temperature. This adhesive acts as a lubricant when the coupling element is press fit into the FRP pipe. After joining, the adhesive is subjected to a curing treatment, such as a heat treatment, if necessary. Even if there is a void in the joint portion, the adhesive can fill the void to prevent the intrusion of water and improve the durability performance. or,
The pulling strength in the thrust direction can be improved. When using an adhesive, use a metal foil with roughened surfaces on both sides.
It is preferable to interpose between the RP pipe and the coupling element and use an adhesive between the coupling element and the metal foil.

【0029】結合要素とFRP製パイプの接合を強固に
し、かつ負荷ねじりトルクを確実に結合要素からFRP
製パイプに伝達するために、FRP製パイプの接合部の
外周に補強層を設けることが好ましい。補強層を設ける
ことにより結合要素の圧入嵌合時にセレ−ション形状の
FRP製パイプの内面への噛み込みを容易にすることが
でき、ねじりトルクに対する保持力を確実なものとする
ことができる。補強層としては特に限定されず、例えば
金属製補強管やFRP製補強層が挙げることができる。
The joint between the coupling element and the FRP pipe is strengthened, and the load torsion torque is surely secured from the coupling element to the FRP.
In order to transfer to the pipe made of FRP, it is preferable to provide a reinforcing layer on the outer periphery of the joint portion of the pipe made of FRP. By providing the reinforcing layer, it is possible to easily engage the selection-shaped FRP pipe with the inner surface when the coupling element is press-fitted, and to secure the holding force against the torsion torque. The reinforcing layer is not particularly limited, and examples thereof include a metal reinforcing tube and a FRP reinforcing layer.

【0030】強化繊維によるこの部分の補強は金属性の
補強管を取り付ける場合に比べて軽量化の点で多大な利
点がある。FRP製補強層はFRP製パイプと一体成形
することができる。補強用に用いる繊維は上記した繊維
が好ましく、炭素繊維が軽量化の面から、ガラス繊維が
経済性の面から好ましい。補強繊維の巻き付け角度は±
60〜90°が好ましい。±60°より小さい角度で巻
き付けた場合には、結合要素を圧入嵌合するときFRP
製パイプの拡管力を抑えられず、セレーション目の噛み
込みが不十分になり易く、ねじりトルクの伝達が不十分
なものとなり易い。例えば、他の条件が同一であって補
強部が±45°の巻き付け角度である場合、±85°の
巻き付け角度の場合に比して破壊トルクはほぼ半減する
場合がある。
Reinforcement of this portion with the reinforcing fibers has a great advantage in weight reduction as compared with the case where a metallic reinforcing pipe is attached. The FRP reinforcing layer can be integrally formed with the FRP pipe. The fibers used for reinforcement are preferably the above-mentioned fibers, carbon fibers are preferable in terms of weight reduction, and glass fibers are preferable in terms of economy. Winding angle of reinforcing fiber is ±
60 to 90 ° is preferable. When wrapping at an angle smaller than ± 60 °, FRP is used when press-fitting the coupling element.
The expanding force of the manufactured pipe cannot be suppressed, the serrations are likely to be bitten insufficiently, and the torsion torque is apt to be insufficiently transmitted. For example, when other conditions are the same and the reinforcing portion has a winding angle of ± 45 °, the breaking torque may be almost halved as compared with the case of a winding angle of ± 85 °.

【0031】補強層は周方向剛性(補強層の弾性率と補
強厚みの積として定義される)の値で4000kgf/
mm以上、20000kgf/mm以下となるように形
成されることが好ましい。4000kgf/mmより小
さいときは補強効果が小さく、20000kgf/mm
より大きい時は補強効果は飽和し、径の増大や重量の増
加等の不利益が大きくなる。
The reinforcing layer has a circumferential rigidity (defined as the product of the elastic modulus of the reinforcing layer and the reinforcing thickness) of 4000 kgf /
It is preferable that it is formed so as to be not less than mm and not more than 20000 kgf / mm. When it is less than 4000 kgf / mm, the reinforcing effect is small and it is 20000 kgf / mm.
When it is larger, the reinforcing effect is saturated, and the disadvantages such as an increase in diameter and an increase in weight increase.

【0032】上記したFRP製駆動力伝達用シャフトの
製造方法は、結合要素の接合部の外周面にセレーション
形状を形成しておき、接合部の内周面に金属箔等のフィ
ルムを一体化したFRP製パイプの該接合部に前記結合
要素の接合部を圧入嵌合する方法を述べたが、その応用
としての他の実施態様として結合要素の接合部の内周面
にセレーション形状を形成しておき、その中に接合部の
外周面に金属箔等のフィルムを一体化したFRP製パイ
プの接合部を圧入嵌合する第2の方法を提案することが
できる。この第2の方法を実施する場合、圧入嵌合時の
FRP製パイプの変形を防止するために、該FRP製パ
イプの接合部の内周面に補強用の環等を用いることがで
きる。
In the method for manufacturing the FRP driving force transmitting shaft described above, a serration shape is formed on the outer peripheral surface of the joint portion of the coupling element, and a film such as a metal foil is integrated on the inner peripheral surface of the joint portion. The method of press-fitting the joint portion of the coupling element into the joint portion of the FRP pipe has been described. As another application of the method, a serration shape is formed on the inner peripheral surface of the joint portion. Then, a second method can be proposed in which the joint portion of the FRP pipe in which a film such as a metal foil is integrated with the outer peripheral surface of the joint portion is press-fitted. When the second method is performed, a reinforcing ring or the like can be used on the inner peripheral surface of the joint portion of the FRP pipe in order to prevent deformation of the FRP pipe during press fitting.

【0033】なお、上記した本発明のFRP製駆動力伝
達用シャフトの製造方法は、一般的にFRP製パイプと
結合部品の接合方法に広く適用することができ、FRP
製パイプの用途の拡大に有用である。FRP製パイプと
接合すべき該結合部品の接合部の外周面または内周面に
上記したようなセレーション形状を形成して、フィルム
を介在させてFRP製パイプとの嵌合を行い強固な接合
力を容易に達成することがができる。ここで、結合部品
とはFRP製パイプと接合して用いる部品であり、特に
限定されない。例えば、FRP製パイプから製造される
FRP製ロールの端部を形成する部品や軸受け等のFR
P製パイプの端部に取付ける部品、及びFRP製パイプ
同士またはFRP製パイプと他の部品の結合のために用
いられるジョイント類などが挙げられる。該結合部品の
材質は、強固なセレーション形状が形成できるものであ
れば、とくに限定されない。例えば、鋼で代表される各
種金属類、アルミナで代表される各種セラミック類、高
剛性の各種樹脂類などを挙げることができる。セレーシ
ョン形状やその寸法は、目的や製品の寸法に応じて適宜
選択され決められる。以下に本発明の実施例として、F
RP製パイプと金属製ヨークの接合により得られる駆動
力伝達用シャフトについて詳述する。高いトルク伝達力
を示す点において、本発明は駆動力伝達用シャフトの製
造においてその特徴を発揮することができるが、本発明
の方法及びそれにより得られる製品はこれらの実施例に
限定されず、広く応用が考えられるものである。
The method of manufacturing the FRP driving force transmitting shaft of the present invention described above can be widely applied to a method of joining a FRP pipe and a connecting component.
It is useful for expanding the applications of manufactured pipes. The serration shape as described above is formed on the outer peripheral surface or the inner peripheral surface of the joint portion of the joint component to be joined to the FRP pipe, and the film is interposed to fit the FRP pipe and the strong joint force. Can be easily achieved. Here, the coupling component is a component used by being joined to the FRP pipe, and is not particularly limited. For example, FRs such as parts and bearings that form the ends of FRP rolls manufactured from FRP pipes.
Examples include parts to be attached to the ends of the P pipes, joints used for connecting the FRP pipes to each other, or the FRP pipes and other parts. The material of the joint component is not particularly limited as long as it can form a strong serration shape. For example, various metals typified by steel, various ceramics typified by alumina, and various resins having high rigidity can be mentioned. The serration shape and its size are appropriately selected and determined according to the purpose and the size of the product. Hereinafter, as an example of the present invention, F
The driving force transmitting shaft obtained by joining the RP pipe and the metal yoke will be described in detail. The present invention can exhibit its characteristics in the production of the driving force transmission shaft in that it exhibits a high torque transmission force, but the method of the present invention and the product obtained thereby are not limited to these examples. It can be widely applied.

【0034】[0034]

【実施例】【Example】

実施例1〜11 (1)FRP製パイプの製造例 外径70.0mm、長さ1500mmのステンレス製マ
ンドレルをフィラメントワインディング装置に装着し
て、その中央部1000mmの両端それぞれ50mmの
長さに表1に示される各種の金属箔又はフィルム(図1
の5)を一層巻付けた。表面粗面化処理金属箔の場合は
粗面化処理面が外側(FRP側)になるように巻付け
た。ついで炭素繊維を液状のエポキシ樹脂に含浸しつつ
その上から巻き付けた。炭素繊維としては住化ハーキュ
レス社製のAS−4(汎用グレ−ド炭素繊維:弾性率2
4ton/mm2 、強度390kg/mm2)を、エポ
キシ樹脂としてはビスフェノールAタイプエポキシ樹脂
(商品名:スミエポキシELA−128、住友化学工業
(株)製)に芳香族アミン硬化剤(商品名:TONOX
60/40、ユニ・ロイヤル社製)系を用いた。
Examples 1 to 11 (1) Manufacturing Example of FRP Pipe A stainless steel mandrel having an outer diameter of 70.0 mm and a length of 1500 mm was mounted on a filament winding apparatus, and the center portion of the 1000 mm portion had a length of 50 mm at each end. Various metal foils or films shown in Fig.
No. 5) was further wound. In the case of the surface-roughened metal foil, it was wound so that the roughened surface was on the outside (FRP side). Then, the carbon fiber was impregnated in a liquid epoxy resin and wound from above. As the carbon fiber, AS-4 (general-purpose grade carbon fiber: elastic modulus 2 manufactured by Sumika Hercules Co., Ltd.)
4 ton / mm 2 , strength 390 kg / mm 2 ) and bisphenol A type epoxy resin (trade name: Sumiepoxy ELA-128, manufactured by Sumitomo Chemical Co., Ltd.) as an epoxy resin, and an aromatic amine curing agent (trade name: TONOX).
60/40, manufactured by Uni Royal Co.).

【0035】繊維の巻き付け角度は±16°、巻き付け
厚みは2.85mmとした。このとき繊維体積含有率は
60±2%になるように調節した。結合要素を取り付け
る部分にはガラス繊維を用いて巻角±85°、厚みが3
mmの補強層(図1の7)を形成した。ついでマンドレ
ルごと熱硬化炉に入れ、150°Cにて2時間硬化し
た。硬化後マンドレルから脱型し、両端部分の不要部分
を切断除去し、両端に補強層を有する、長さ1100m
m、内径70.1mmのFRP製パイプ(図1の6)を
得た。
The winding angle of the fibers was ± 16 °, and the winding thickness was 2.85 mm. At this time, the fiber volume content was adjusted to be 60 ± 2%. Glass fiber is used for the part where the coupling element is attached, and the winding angle is ± 85 ° and the thickness is 3
A mm reinforcement layer (7 in FIG. 1) was formed. Then, the mandrel together with the mandrel was placed in a thermosetting oven and cured at 150 ° C. for 2 hours. After curing, remove from the mandrel, cut off unnecessary parts at both ends, and have reinforcing layers at both ends, length 1100 m
An FRP pipe (6 in FIG. 1) having a diameter of m and an inner diameter of 70.1 mm was obtained.

【0036】(2)鋼製結合要素(ヨーク) 鋼製結合要素の接合部の外周面にセレーション形状とし
て、JISB0951−1962−に規定されている平
目のモジュール(m)0.3を用いてローレット目を形
成した。得られたセレーション形状(ローレット目)
は、頂角が約90°の正三角形の先端部が平坦になって
おり、図3に示すような形状を呈していた。その山の高
さ(h)は約0.15mm、ピッチ(p)は約1mmで
あった。セレーションの山の頂部までの接合部の外径は
70.5mmであった。
(2) Steel Coupling Element (Yoke) A knurled flat module (m) 0.3 specified in JIS B0951-1962 is used as a serration shape on the outer peripheral surface of the joint of the steel coupling element. Eyes formed. Obtained serration shape (knurled eye)
Had a flat tip portion of an equilateral triangle having an apex angle of about 90 ° and had a shape as shown in FIG. The height (h) of the peak was about 0.15 mm and the pitch (p) was about 1 mm. The outer diameter of the joint up to the peak of the serration was 70.5 mm.

【0037】(3)FRP製駆動力伝達用シャフトの製
作と評価 前記のとおり製作したFRP製パイプと結合要素を用い
て本発明のFRP製駆動力伝達用シャフトを製作した。
FRP製パイプの端部に鋼製の結合要素のセレーション
形状を有する接合部をあてがい、油圧を用いて圧入嵌合
した。このとき接着剤は用いなかった。結合部長は10
〜45mmの間で変化させた。得られたFRP製駆動力
伝達用シャフトの静ねじり試験を行い、接合部のトルク
伝達能力を評価した結果を表1及び表2に記した。
(3) Production and Evaluation of FRP Driving Force Transmission Shaft The FRP driving force transmission shaft of the present invention was produced using the FRP pipe and the coupling element produced as described above.
A joint having a serration shape of a steel coupling element was applied to the end of the FRP pipe, and press fitting was performed using hydraulic pressure. At this time, no adhesive was used. Coupling length is 10
Varyed between ~ 45 mm. The static torsion test of the obtained FRP drive force transmission shaft was performed, and the results of evaluating the torque transmission ability of the joint are shown in Tables 1 and 2.

【0038】なお、実施例に用いたフィルムは次に記す
ものである。 (1)銅箔:福田金属箔粉工業(株)製:片面粗面化処
理電解銅箔 CF−T8−70(商品名,厚さ70μm) CF−T8−35(同上,厚さ35μm) CF−T8−18(同上,厚さ18μm) (2)ニッケル箔:同:片面粗面化処理電解ニッケル箔 NiF−T−25(商品名,厚さ25μm) 同:両面粗面化処理電解ニッケル箔 NiF−DT−25(商品名,両面粗面化処理、厚さ2
5μm) (3)銅・ニッケル箔:同:ニッケル粗面化処理電解銅
箔 NiT−CF−35(商品名,厚さ35μm) (4)ポリエステルフィルム:東洋紡(株)製PETフ
ィルム E−5001 厚み188μm (5)ガラス不織布:日本硝子繊維(株)製 マイクロ
ガラスサーフェイスマットCFG24 30g/m2
The films used in the examples are as follows. (1) Copper foil: Fukuda Metal Foil & Powder Co., Ltd .: One-side roughened electrolytic copper foil CF-T8-70 (trade name, thickness 70 μm) CF-T8-35 (same as above, thickness 35 μm) CF -T8-18 (same as above, thickness 18 μm) (2) Nickel foil: same: electrolytic nickel foil with one surface roughening treatment NiF-T-25 (trade name, thickness 25 μm) same: electrolytic nickel foil with both surfaces roughening treatment NiF-DT-25 (trade name, roughening on both sides, thickness 2
5 μm) (3) Copper / Nickel foil: Same: Nickel surface roughening electrolytic copper foil NiT-CF-35 (trade name, thickness 35 μm) (4) Polyester film: Toyobo Co., Ltd. PET film E-5001 Thickness 188 μm (5) Glass non-woven fabric: manufactured by Nippon Glass Fiber Co., Ltd. Micro glass surface mat CFG24 30 g / m 2

【0039】比較例1〜3 フィルムを用いない他は前記の実施例と同様にして結合
部長の異なる3種類のFRP製駆動力伝達用シャフトを
製作した。実施例と同様に静ねじり試験による評価を行
い表2に記した。
Comparative Examples 1 to 3 Three types of FRP driving force transmitting shafts having different joint lengths were manufactured in the same manner as in the above-described example except that the film was not used. Evaluation was carried out by the static torsion test in the same manner as in the example, and it is shown in Table 2.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】実施例12 実施例2と同じようにしてFRP製パイプを製作した。
鋼製の結合要素の接合部の外周面にシェーバー加工によ
りセレーション形状を形成した。セレーション形状の山
の高さは約0.5mmであり、山のピッチは約4mmで
あった。接着剤は用いず、FRP製パイプに結合要素を
接合長20mmになるように圧入嵌合し、FRP製駆動
力伝達用シャフトを製作した。得られたシャフトの静ね
じり試験を行ったところ破壊トルク約2600N・mで
破壊箇所は接合面であった。
Example 12 An FRP pipe was manufactured in the same manner as in Example 2.
A serrated shape was formed on the outer peripheral surface of the joint portion of the steel coupling element by shaver processing. The height of the serrated peaks was about 0.5 mm, and the pitch of the peaks was about 4 mm. A coupling element was press-fitted into the FRP pipe so as to have a joint length of 20 mm without using an adhesive, and a FRP driving force transmission shaft was manufactured. When the static torsion test of the obtained shaft was conducted, the breaking torque was about 2600 N · m and the breaking point was the joint surface.

【0043】実施例13 フィルムとして両面粗面化処理されたニッケル電解箔
(前記のNiF−DT−25、厚み25mmのもの)を
用いる他は実施例2と同じようにしてFRP製パイプを
製作する。実施例1と同様の方法でセレーション形状を
接合部の外周に有する鋼製結合要素を製作する。接着剤
(田岡化学工業(製)、エポキシ系接着剤:商品名HT
18(20)X)をFRP製パイプの接合部内面及び結
合要素の接合部外面に塗布し圧入嵌合する。接着剤によ
る潤滑効果により圧入は比較的に容易であり、得られる
FRP製駆動力伝達用シャフトは高い伝達トルクを示
す。
Example 13 An FRP pipe is manufactured in the same manner as in Example 2 except that a nickel electrolytic foil having both surfaces roughened (NiF-DT-25, having a thickness of 25 mm) is used as the film. .. In the same manner as in Example 1, a steel coupling element having a serration shape on the outer periphery of the joint is manufactured. Adhesive (Taoka Chemical Industry (manufactured)), Epoxy adhesive: Product name HT
18 (20) X) is applied to the inner surface of the joint portion of the FRP pipe and the outer surface of the joint portion of the coupling element and press-fitted. Due to the lubrication effect of the adhesive, press fitting is relatively easy, and the resulting FRP drive force transmission shaft exhibits high transmission torque.

【0044】[0044]

【発明の効果】本発明を用いたFRP製駆動力伝達用シ
ャフトはFRP製パイプと結合要素の接合が強固であ
り、円筒形状同士の単なる摩擦結合や正多角形状同士の
接合に比して、高いトルク伝達能力がある。また正多角
形状の接合部に比較して接合部の加工は容易であり、接
合工程は極めて生産性に優れているという特徴を有す
る。また、本発明は駆動力伝達用シャフトに限らず、F
RP製パイプと各種の結合部品の一般的な接合方法を提
供するものであり、FRP製パイプの軽量性と高い強度
を活用する種々の機械・設備の製造において有用なもの
である。
The FRP driving force transmitting shaft according to the present invention has a strong connection between the FRP pipe and the connecting element, and is superior to the simple frictional connection between cylindrical shapes and the connection between regular polygonal shapes. It has a high torque transmission capability. Further, as compared with the regular polygonal joint portion, the joint portion can be easily processed, and the jointing step is extremely excellent in productivity. Further, the present invention is not limited to the drive force transmitting shaft,
The present invention provides a general joining method of an RP pipe and various connecting parts, and is useful in the production of various machines / equipment utilizing the light weight and high strength of the FRP pipe.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のFRP製駆動力伝達用シャフトの1例
の軸方向の部分断面図[A]及び半径方向の部分断面図
[B]を示す。
FIG. 1 shows an axial partial cross-sectional view [A] and a radial partial cross-sectional view [B] of an example of a FRP driving force transmission shaft of the present invention.

【図2】本発明にて用いられるセレーション形状の例を
表わす図を示す。
FIG. 2 is a diagram showing an example of a serration shape used in the present invention.

【図3】セレーション形状の山の高さ(h)及びピッチ
(p)の説明図を示す。
FIG. 3 is an explanatory diagram of a height (h) and a pitch (p) of serration-shaped peaks.

【符号の説明】[Explanation of symbols]

1.FRP製駆動力伝達用シャフト 2.結合要素(鋼製ヨーク) 3.結合要素の接合部 4.セレーション形状 5.フィルム(金属箔など) 6.FRP製パイプ 7.補強層 1. FRP drive force transmission shaft 2. Coupling element (steel yoke) 3. 3. Joints of coupling elements 4. Serration shape 5. Film (metal foil, etc.) 6. FRP pipe 7. Reinforcement layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B29L 31:08 4F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location B29L 31:08 4F

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】繊維強化樹脂製パイプに結合要素を接合し
てなる繊維強化樹脂製駆動力伝達用シャフトであって、
繊維強化樹脂製パイプの接合部と結合要素の接合部はフ
ィルムを介してセレーション形状の噛み合いにより接合
されていることを特徴とする繊維強化樹脂製駆動力伝達
用シャフト。
1. A shaft for fiber-reinforced resin driving force transmission, comprising a fiber-reinforced resin pipe and a coupling element bonded to the pipe,
A driving force transmitting shaft made of fiber reinforced resin, wherein a joint portion of a fiber reinforced resin pipe and a joint portion of a coupling element are joined by a serration-shaped mesh through a film.
【請求項2】繊維強化樹脂製パイプの接合部の内周面と
結合要素の接合部の外周面がフィルムを介してセレーシ
ョン形状の噛み合いにより接合されている請求項1記載
の繊維強化樹脂製駆動力伝達用シャフト。
2. The fiber-reinforced resin drive according to claim 1, wherein the inner peripheral surface of the joint portion of the fiber-reinforced resin pipe and the outer peripheral surface of the joint portion of the coupling element are joined by a serration-shaped mesh through a film. Force transmission shaft.
【請求項3】繊維強化樹脂製パイプの接合部の外周面と
結合要素の接合部の内周面がフィルムを介してセレーシ
ョン形状の噛み合いにより接合されている請求項1記載
の繊維強化樹脂製駆動力伝達用シャフト。
3. The fiber-reinforced resin drive according to claim 1, wherein the outer peripheral surface of the joint portion of the fiber-reinforced resin pipe and the inner peripheral surface of the joint portion of the coupling element are joined by a serration-shaped mesh through a film. Force transmission shaft.
【請求項4】繊維強化樹脂製パイプの接合部の円筒状の
内周面とセレーション形状の外周面を有する結合要素の
接合部の中間にフィルムを介在させ、繊維強化樹脂製パ
イプに結合要素を圧入嵌合することを特徴とする繊維強
化樹脂製駆動力伝達用シャフトの製造方法。
4. A fiber reinforced resin pipe is provided with a coupling element by interposing a film in the middle of the joint portion of a coupling element having a cylindrical inner peripheral surface and a serrated outer peripheral surface of the joint portion of the fiber reinforced resin pipe. A method for manufacturing a drive force transmitting shaft made of fiber reinforced resin, characterized by press fitting.
【請求項5】繊維強化樹脂製パイプの接合部の円筒状の
外周面とセレーション形状の内周面を有する結合要素の
接合部の中間にフィルムを介在させ、結合要素に繊維強
化樹脂製パイプを圧入嵌合することを特徴とする繊維強
化樹脂製駆動力伝達用シャフトの製造方法。
5. A fiber-reinforced resin pipe is inserted into the joining element by interposing a film in the middle of the joining portion of the joining element having a cylindrical outer peripheral surface and a serrated inner circumferential surface of the joining portion of the fiber-reinforced resin pipe. A method for manufacturing a drive force transmitting shaft made of fiber reinforced resin, characterized by press fitting.
【請求項6】接合部にセレーション形状を有する結合部
品と繊維強化樹脂製パイプを、接合部にフィルムを介在
させて嵌合することを特徴とする繊維強化樹脂製パイプ
と結合部品の接合方法。
6. A method for joining a fiber-reinforced resin pipe and a connecting part, wherein the connecting part having a serration shape at the connecting part and the fiber-reinforced resin pipe are fitted together with a film interposed at the connecting part.
JP4076818A 1991-04-30 1992-03-31 Drive force transmitting shaft made of fiber-reinforced resin, production thereof, and method for bonding pipe made of fiber-reinforced resin Pending JPH0592488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4076818A JPH0592488A (en) 1991-04-30 1992-03-31 Drive force transmitting shaft made of fiber-reinforced resin, production thereof, and method for bonding pipe made of fiber-reinforced resin

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-99022 1991-04-30
JP9902291 1991-04-30
JP4076818A JPH0592488A (en) 1991-04-30 1992-03-31 Drive force transmitting shaft made of fiber-reinforced resin, production thereof, and method for bonding pipe made of fiber-reinforced resin

Publications (1)

Publication Number Publication Date
JPH0592488A true JPH0592488A (en) 1993-04-16

Family

ID=26417940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4076818A Pending JPH0592488A (en) 1991-04-30 1992-03-31 Drive force transmitting shaft made of fiber-reinforced resin, production thereof, and method for bonding pipe made of fiber-reinforced resin

Country Status (1)

Country Link
JP (1) JPH0592488A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783240A (en) * 1993-09-13 1995-03-28 Toho Rayon Co Ltd Joint structure of frp(fiber reinforced plastic) shaft and joint, and joining method
KR19990018953A (en) * 1997-08-28 1999-03-15 김징완 Low vibration composite propulsion shaft and its manufacturing method
JP2015145121A (en) * 2014-02-04 2015-08-13 茨木工業株式会社 Method for manufacturing bar member, and bar member
JP2015214727A (en) * 2014-05-09 2015-12-03 藤倉ゴム工業株式会社 Plating method of cfrp cylinder and cfrp cylinder having outer-surface plated layer
WO2016088913A1 (en) * 2014-12-03 2016-06-09 원광이엔텍 주식회사 Drive shaft assembly using carbon fiber reinforced plastics
KR20180016811A (en) * 2016-08-08 2018-02-20 주식회사 티포엘 the composite shaft manufacturing system with braider for vehicle and the manufacturing method of composite shaft for vehicle and the composite shaft for vehicle thereof
KR20200022625A (en) * 2018-08-23 2020-03-04 효림산업 주식회사 Manufacturing method of carbon fiber reinforced plastic drive shaft for vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783240A (en) * 1993-09-13 1995-03-28 Toho Rayon Co Ltd Joint structure of frp(fiber reinforced plastic) shaft and joint, and joining method
KR19990018953A (en) * 1997-08-28 1999-03-15 김징완 Low vibration composite propulsion shaft and its manufacturing method
JP2015145121A (en) * 2014-02-04 2015-08-13 茨木工業株式会社 Method for manufacturing bar member, and bar member
JP2015214727A (en) * 2014-05-09 2015-12-03 藤倉ゴム工業株式会社 Plating method of cfrp cylinder and cfrp cylinder having outer-surface plated layer
WO2016088913A1 (en) * 2014-12-03 2016-06-09 원광이엔텍 주식회사 Drive shaft assembly using carbon fiber reinforced plastics
KR20180016811A (en) * 2016-08-08 2018-02-20 주식회사 티포엘 the composite shaft manufacturing system with braider for vehicle and the manufacturing method of composite shaft for vehicle and the composite shaft for vehicle thereof
KR20200022625A (en) * 2018-08-23 2020-03-04 효림산업 주식회사 Manufacturing method of carbon fiber reinforced plastic drive shaft for vehicle

Similar Documents

Publication Publication Date Title
US5309620A (en) Method of making a drive shaft made of fiber reinforced plastic with press-fit metallic end fittings
US5601493A (en) Drive shaft made of fiber reinforced plastics, and method for connecting pipe made of fire-reinforced plastics
US4664644A (en) Fiber reinforced plastic drive shaft and method of manufacturing thereof
US3970495A (en) Method of making a tubular shaft of helically wound filaments
US4362521A (en) Power transmission shaft
US4238539A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by a knurl interlock
JPH06200951A (en) Joint method for driving force transmission shaft made of frp with pipe made of frp
TW201111190A (en) FRP drive shaft
US6464591B1 (en) Power transmission shaft
JP2002039153A (en) Propeller shaft and its manufacturing method
JPH0592488A (en) Drive force transmitting shaft made of fiber-reinforced resin, production thereof, and method for bonding pipe made of fiber-reinforced resin
GB2051304A (en) Fibre-reinforced composite shaft with metallic connector sleeves
EP0440461A1 (en) Drive shaft made of fiber-reinforced plastics
JP2007271079A (en) Torque transmission shaft
JP2620607B2 (en) Drive shaft made of fiber reinforced resin and method of manufacturing the same
JP2020138592A (en) Shell used for power transmission shaft and power transmission shaft
JP2010083253A (en) Propeller shaft
JP3391298B2 (en) Propeller shaft
JPH0494921A (en) Shaft made of fiber reinforced resin for transmitting driving force and production thereof
JP3183432B2 (en) Propeller shaft and method of manufacturing the same
JPH03254926A (en) Driving force transmission shaft made of fiber-reinforced resin
CN112638689A (en) Pipe body for transmission shaft and transmission shaft
JPH0742974B2 (en) Manufacturing method of transmission shaft made of fiber reinforced plastic
JP2729631B2 (en) Fiber reinforced thermosetting resin pipe for bicycle frame
JPH0791433A (en) Propeller shaft and its manufacture