JP2001020946A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device

Info

Publication number
JP2001020946A
JP2001020946A JP11191314A JP19131499A JP2001020946A JP 2001020946 A JP2001020946 A JP 2001020946A JP 11191314 A JP11191314 A JP 11191314A JP 19131499 A JP19131499 A JP 19131499A JP 2001020946 A JP2001020946 A JP 2001020946A
Authority
JP
Japan
Prior art keywords
thrust
bearing
bearing sleeve
dynamic pressure
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11191314A
Other languages
Japanese (ja)
Other versions
JP2001020946A5 (en
Inventor
Isao Mizuma
功 水間
Takashi Shimada
隆司 嶋田
Kazuo Shiba
和男 柴
Toyoji Kanazawa
豊次 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cimeo Precision Co Ltd
Citizen Watch Co Ltd
Original Assignee
Cimeo Precision Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cimeo Precision Co Ltd, Citizen Watch Co Ltd filed Critical Cimeo Precision Co Ltd
Priority to JP11191314A priority Critical patent/JP2001020946A/en
Publication of JP2001020946A publication Critical patent/JP2001020946A/en
Publication of JP2001020946A5 publication Critical patent/JP2001020946A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a means to improve precision of a clearance of a thrust bearing part of a dynamic pressure bearing device in mass production. SOLUTION: In a dynamic pressure bearing device, it is made possible to control clearance precision in mass production by using a thrust spacer 30 free to carry out finishing work such as grinding work and polishing work, by controlling a clearance of a thrust bearing part as well as to carry out finishing work such as grinding work, polishing work of a bearing sleeve 10 relative to a thrust bearing surface by eliminating a stepped structure provided on a conventional bearing sleeve.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばハードディ
スクドライブやポリゴンミラー等の回転部の軸受に用い
られる動圧軸受装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic pressure bearing device used for a bearing of a rotating part such as a hard disk drive or a polygon mirror.

【0002】[0002]

【従来の技術】ハードディスクドライブやポリゴンミラ
ー等に用いられるスピンドルモーターの分野に於いて、
高速、高容量化の要求から、高速で高精度のスピンドル
モーターが必要とされ、これに伴い動圧軸受構造を採用
したスピンドルモーターが種々提案されている。その中
でも、軸体に1枚のスラスト板を設け、軸体と軸体に対
向する軸受スリーブの一方を固定し、一方を回転自在に
したタイプは比較的構造が簡単で小型化が容易であるた
め、種々の改良型が提案されている。このようなタイプ
では以下に述べるように、軸受スリーブが軸体とラジア
ル方向の軸受部を形成すると共に、スラスト板との対向
面を設けてスラスト方向の軸受部も構成し、更にスラス
ト板の隙間を管理する構造のタイプが多い。
2. Description of the Related Art In the field of spindle motors used for hard disk drives and polygon mirrors,
A demand for high-speed and high-capacity demands a high-speed and high-accuracy spindle motor, and accordingly, various spindle motors employing a dynamic pressure bearing structure have been proposed. Among them, the type in which one thrust plate is provided on the shaft body, and one of the shaft body and the bearing sleeve facing the shaft body is fixed, and one of the bearing sleeves is rotatable, has a relatively simple structure and is easily miniaturized. Therefore, various improved types have been proposed. In such a type, as described below, the bearing sleeve forms a radial bearing portion with the shaft body, and also forms a thrust bearing portion by providing a surface facing the thrust plate. There are many types of structures to manage.

【0003】特開平9−182367号公報では、軸受
スリーブが、軸体とラジアル方向の軸受部を形成すると
同時に、スラスト板に対向する面を有してスラスト軸受
部を形成し、更にスラスト軸受部の隙間を管理する段差
を有する構造となっている。また、軸受スリーブを基台
に固定し、軸体を回転自在な構造としている。その他
に、特開平9−298860号公報では、軸受スリーブ
がラジアル軸受、スラスト軸受部、スラスト軸受部の隙
間を管理する段差を有する構造であり、軸体を固定し軸
受スリーブを回転自在の構造としている。
In Japanese Patent Application Laid-Open No. 9-182667, a bearing sleeve forms a radial bearing portion with a shaft body, and at the same time, has a surface facing a thrust plate to form a thrust bearing portion. The structure has a step for managing the gap. In addition, the bearing sleeve is fixed to the base, and the shaft body has a rotatable structure. In addition, JP-A-9-298860 discloses a structure in which a bearing sleeve has a radial bearing, a thrust bearing portion, and a step for managing a gap between the thrust bearing portions. I have.

【0004】図4は、従来の動圧軸受装置140を組み
込んだモーター150を示す断面図であり、図5はその
部分拡大図である。モーターハウジング120に軸受ス
リーブ103が固定され、軸受スリーブ103の下端は
スラスト受板105が固定され、軸体101の保持体を
構成している。軸体101の下端にスラスト板102が
固定されており、軸受スリーブ103及びスラスト受板
105に対して回転自在に支持される。ここでは、軸体
101の外周面107と軸受スリーブ103の内周面1
06がラジアル軸受部を構成し、軸体101の外周面1
07と軸受スリーブ103の内周面106の少なくとも
一方に動圧発生溝が形成されている。
FIG. 4 is a sectional view showing a motor 150 in which a conventional hydrodynamic bearing device 140 is incorporated, and FIG. 5 is a partially enlarged view thereof. The bearing sleeve 103 is fixed to the motor housing 120, and the lower end of the bearing sleeve 103 is fixed to the thrust receiving plate 105, thereby forming a holder for the shaft 101. A thrust plate 102 is fixed to a lower end of the shaft body 101, and is rotatably supported by a bearing sleeve 103 and a thrust receiving plate 105. Here, the outer peripheral surface 107 of the shaft body 101 and the inner peripheral surface 1 of the bearing sleeve 103
06 constitutes a radial bearing portion, and the outer peripheral surface 1 of the shaft body 101
07 and at least one of the inner peripheral surface 106 of the bearing sleeve 103 is formed with a dynamic pressure generating groove.

【0005】更に、スラスト板102の上面108に対
向する軸受スリーブ103の面110及びスラスト板1
02の下面109に対向するスラスト受板105の軸受
面114とがスラスト軸受部を構成し、スラスト板10
2の上面108と下面109には動圧発生溝が形成され
ている。また、固定部と回転部の隙間には潤滑流体が隙
間の開放口115付近まで充填されている。以上の構造
の動圧軸受装置を回転させる為に、軸体101にはハブ
125を設け、ハブ125にはローターマグネット12
6を設け、モーターハウジング120にはステーター1
21を設けている。前記構成において、軸体101とス
ラスト板102及びハブ125の固定、モーターハウジ
ング120と軸受スリーブ103、スラスト受板10
5、ステータ121との固定は、隙間嵌め、接着、スポ
ット溶接等から適宜選択または組み合わせて行われてい
る。
Further, the surface 110 of the bearing sleeve 103 facing the upper surface 108 of the thrust plate 102 and the thrust plate 1
02 and the bearing surface 114 of the thrust receiving plate 105 opposed to the lower surface 109 constitute a thrust bearing portion.
A dynamic pressure generating groove is formed on the upper surface 108 and the lower surface 109 of the second. Further, the gap between the fixed part and the rotating part is filled with the lubricating fluid up to the vicinity of the opening 115 of the gap. In order to rotate the hydrodynamic bearing device having the above-described structure, a hub 125 is provided on the shaft body 101, and the rotor 125 is provided on the hub 125.
6 and the motor housing 120 includes the stator 1
21 are provided. In the above configuration, the shaft body 101, the thrust plate 102 and the hub 125 are fixed, the motor housing 120, the bearing sleeve 103, and the thrust receiving plate 10
5. The fixation to the stator 121 is performed by appropriately selecting or combining from gap fitting, adhesion, spot welding and the like.

【0006】[0006]

【発明が解決しようとする課題】図4及び図5に示す従
来の動圧軸受装置に於いて、動圧を発生する為には、ラ
ジアル軸受部及びスラスト軸受部の隙間は一般に5μm
付近に管理する必要がある。さらに、量産的に製品のバ
ラツキを管理するためには各製品の軸受部の隙間が1μ
m〜2μm程度のバラツキ精度で管理される必要があ
る。ラジアル軸受部の隙間は、軸体101の外径と軸受
スリーブ103の内周面106の内径との差だけでな
く、実際には、軸体101の外周面107の表面粗さ、
真円度及び円筒度と、軸受スリーブ103の内周面10
6の表面粗さ、真円度及び円筒度等の精度を含めて管理
される。軸体101の外周面107及び軸受スリーブ1
03の内周面106は旋盤等の切削加工の他、研削加工
や研磨加工による仕上げ加工をすることも可能である
為、量産的にも精度を管理し易い部分である。
In the conventional hydrodynamic bearing device shown in FIGS. 4 and 5, in order to generate dynamic pressure, the gap between the radial bearing portion and the thrust bearing portion is generally 5 μm.
It needs to be managed nearby. Furthermore, in order to manage product variations in mass production, the clearance between the bearings of each product must be 1μ.
It needs to be controlled with a variation accuracy of about m to 2 μm. The gap between the radial bearings is not only the difference between the outer diameter of the shaft body 101 and the inner diameter of the inner circumferential surface 106 of the bearing sleeve 103, but also the actual surface roughness of the outer circumferential surface 107 of the shaft body 101,
Roundness and cylindricity, and inner peripheral surface 10 of bearing sleeve 103
6, including the accuracy of surface roughness, roundness and cylindricity. Outer peripheral surface 107 of shaft body 101 and bearing sleeve 1
Since the inner peripheral surface 106 of 03 can be finished by grinding or polishing in addition to cutting with a lathe or the like, the accuracy is easily controlled even in mass production.

【0007】もう一方のスラスト軸受部の隙間について
も、軸受スリーブ103の段差112とスラスト板10
5の厚み113の差だけでなく、実際には、スラスト板
102の上面108及び下面109の平面度と、スラス
ト受板105の軸受面114の平面度、及び軸受スリー
ブ103の面110、面111の平面度等の精度を含め
て管理される。その中で、スラスト板102の厚み11
3、その上面108、その下面109、及びスラスト受
板105の軸受面114は切削加工の他、必要に応じて
研削加工や研磨加工での面仕上げ加工により、部品の精
度を得ることは可能である。
[0007] Regarding the gap between the other thrust bearing portion, the step 112 of the bearing sleeve 103 and the thrust plate 10
5, the flatness of the upper surface 108 and the lower surface 109 of the thrust plate 102, the flatness of the bearing surface 114 of the thrust receiving plate 105, and the surfaces 110 and 111 of the bearing sleeve 103 Is managed, including the accuracy of the flatness and the like. Among them, the thickness 11 of the thrust plate 102
3. The upper surface 108, the lower surface 109, and the bearing surface 114 of the thrust receiving plate 105 can obtain the precision of the component by surface finishing by grinding or polishing as required in addition to cutting. is there.

【0008】しかしながら、軸受スリーブ103の面1
10は面仕上げ加工が難しい構造となっている為、旋盤
等の切削加工の精度に依存し、研削加工面や研磨加工面
の平面度には到底及ばない。よって、段差112の加工
精度も旋盤等の切削加工の精度に依存し、その量産的な
部品加工精度は5μm程度が限界である。このような精
度の軸受スリーブを用いて動圧軸受装置を組み立てた場
合、スラスト軸受部の隙間の製品ばらつきは、段差11
2の精度に面110の平面度も影響して、5μm以上に
なってしまった。よって、量産的にスラスト軸受部の隙
間を、製品ばらつきで1μm〜2μmに管理ことは非常
に困難である。
However, the surface 1 of the bearing sleeve 103
Since the surface finish 10 has a structure that makes it difficult to finish the surface, it depends on the precision of the cutting process of a lathe or the like, and is far from the flatness of the ground surface or the polished surface. Therefore, the processing accuracy of the step 112 also depends on the accuracy of the cutting process of a lathe or the like, and the processing accuracy of mass-produced parts is limited to about 5 μm. When a hydrodynamic bearing device is assembled using a bearing sleeve having such an accuracy, the product variation of the gap in the thrust bearing portion is caused by a step 11.
The flatness of the surface 110 also affected the accuracy of No. 2 and became 5 μm or more. Therefore, it is very difficult to control the gap between the thrust bearing portions to be 1 μm to 2 μm due to product variation in mass production.

【0009】本発明は前記課題を解決するためのもので
あり、その目的とするところは、量産的にスラスト軸受
部の隙間の精度が得られる構造の動圧軸受装置を提供す
ることにある。
An object of the present invention is to solve the above-mentioned problem, and an object of the present invention is to provide a hydrodynamic bearing device having a structure in which the accuracy of a gap between thrust bearing portions can be obtained in mass production.

【0010】[0010]

【課題を解決するための手段】本発明の動圧軸受装置で
は上記目的を達成するために、従来の軸受スリーブに設
けた段差構造を無くし、スラストスペーサを使用するこ
とにより軸受スリーブのスラスト軸受面の研削加工や研
磨加工等の仕上げ加工を可能にし、量産的にもスラスト
軸受部の隙間精度の管理を可能にする。その構成とし
て、下記記載の構成を採用する。
SUMMARY OF THE INVENTION In order to achieve the above object, a dynamic bearing device of the present invention eliminates the step structure provided in a conventional bearing sleeve and uses a thrust spacer to provide a thrust bearing surface of the bearing sleeve. It is possible to perform finishing such as grinding and polishing, and to manage the gap accuracy of the thrust bearing part even in mass production. The following configuration is employed as the configuration.

【0011】本発明の請求項1記載の動圧軸受装置で
は、ハウジングの内周に円筒状の内周部を有する軸受ス
リーブを固定し、または、ハウジングに円筒状の外周部
を有する軸体を固定し、該軸体の外周には円筒状内周部
を有する軸受スリーブを回転自在に嵌合し、該軸受スリ
ーブの内周には円筒状外周部を有する軸体を回転自在に
嵌合し、該軸体の一部には軸体の外周部の径よりも大な
る外径のスラスト板を設けてなる動圧軸受装置に於い
て、前記スラスト板を前記軸受スリーブとスラスト受板
でスラストスペーサを介して対向に嵌合したことを特徴
とする。
In the hydrodynamic bearing device according to the first aspect of the present invention, a bearing sleeve having a cylindrical inner peripheral portion is fixed to the inner periphery of the housing, or a shaft body having a cylindrical outer peripheral portion is fixed to the housing. It is fixed, and a bearing sleeve having a cylindrical inner peripheral portion is rotatably fitted to the outer periphery of the shaft, and a shaft having a cylindrical outer peripheral portion is rotatably fitted to the inner periphery of the bearing sleeve. In a hydrodynamic bearing device in which a thrust plate having an outer diameter larger than the diameter of the outer peripheral portion of the shaft body is provided in a part of the shaft body, the thrust plate is thrusted by the bearing sleeve and a thrust receiving plate. It is characterized in that they are fitted to each other via a spacer.

【0012】本発明の請求項2記載の動圧軸受装置で
は、請求項1に記載の動圧軸受装置において、前記スラ
ストスペーサにセラミックスを用いたことを特徴とす
る。
According to a second aspect of the present invention, there is provided the hydrodynamic bearing device according to the first aspect, wherein ceramic is used for the thrust spacer.

【0013】[0013]

【発明の実施の形態】本発明の実施の形態を、図1、図
2及び図3を用いて説明する。図1は本発明の第1の実
施の形態の動圧軸受装置7及び、それを組み込んだモー
ター8の断面図であり、図2はその部分拡大図である。
モーターハウジング45内周46に、円筒状の内周面1
1を有する軸受スリーブ10が固定されている。軸受ス
リーブ10の内周面11には円筒状外周面2を有する軸
体1が回転自在に嵌合されており、隙間3を形成してい
る。軸受スリーブ10の内周面11もしくは軸体1の外
周面2の少なくとも一方に動圧発生溝パターンを設ける
ことにより軸受スリーブ10の内周面11と軸体の1の
外周面2の間でラジアル軸受を形成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view of a hydrodynamic bearing device 7 according to a first embodiment of the present invention and a motor 8 incorporating the hydrodynamic bearing device, and FIG. 2 is a partially enlarged view thereof.
A cylindrical inner peripheral surface 1 is formed on the inner periphery 46 of the motor housing 45.
1, a bearing sleeve 10 is fixed. A shaft body 1 having a cylindrical outer peripheral surface 2 is rotatably fitted to an inner peripheral surface 11 of the bearing sleeve 10 to form a gap 3. By providing a dynamic pressure generating groove pattern on at least one of the inner peripheral surface 11 of the bearing sleeve 10 and the outer peripheral surface 2 of the shaft body 1, a radial is formed between the inner peripheral surface 11 of the bearing sleeve 10 and the outer peripheral surface 2 of the shaft body 1. Forming a bearing.

【0014】また、軸体1の下部4には軸体1の外周面
2の径よりも大なる外径のスラスト板20を設けてい
る。スラスト板20を軸体1にスラストスペーサ30を
介して軸受スリーブ10とスラスト受板25に対向する
ように嵌合し、スラスト板20を回転自在にする為のス
ラスト軸受部の隙間を形成している。また、スラスト板
20の上面21と軸受スリーブ10の下面12の少なく
とも一方と、スラスト板20の下面22とスラスト受板
25の上面26の少なくとも一方に動圧発生溝パターン
を設けることにより、スラスト板20と軸受スリーブ1
0、スラスト受板25との間にスラスト軸受部を形成し
ている。
Further, a thrust plate 20 having an outer diameter larger than the diameter of the outer peripheral surface 2 of the shaft body 1 is provided in the lower portion 4 of the shaft body 1. The thrust plate 20 is fitted to the shaft body 1 via the thrust spacer 30 so as to face the bearing sleeve 10 and the thrust receiving plate 25, thereby forming a gap in the thrust bearing portion for allowing the thrust plate 20 to freely rotate. I have. Further, by providing a dynamic pressure generating groove pattern on at least one of the upper surface 21 of the thrust plate 20 and the lower surface 12 of the bearing sleeve 10, and at least one of the lower surface 22 of the thrust plate 20 and the upper surface 26 of the thrust receiving plate 25, the thrust plate 20 and bearing sleeve 1
0, a thrust bearing portion is formed between the thrust bearing plate 25 and the thrust bearing plate 25.

【0015】さらに、ラジアル軸受部及びスラスト軸受
部には潤滑流体が封入されている。軸受スリーブ10の
上面13には、潤滑流体の飛散を防止するためのカバー
35を設け、そのカバー35の軸体1の近傍の部分36
には、ラビリンスシール構造や磁性流体シール構造を形
成することも可能である。また、モーターの回転機構に
ついては、先に図4を用いて説明した従来技術の一般的
な構成であるので、ここでは説明を省略する。
Further, a lubricating fluid is sealed in the radial bearing portion and the thrust bearing portion. A cover 35 for preventing the lubricating fluid from scattering is provided on the upper surface 13 of the bearing sleeve 10, and a portion 36 of the cover 35 near the shaft 1 is provided.
It is also possible to form a labyrinth seal structure or a magnetic fluid seal structure. In addition, the rotation mechanism of the motor has the general configuration of the related art described above with reference to FIG.

【0016】次に、軸受部の隙間管理について説明す
る。ラジアル軸受部の隙間管理は従来と同様であるので
省略し、ここでは、本発明の特徴であるスラスト軸受部
の隙間管理について説明する。スラスト軸受部の隙間
は、スラスト板20の厚み23とスラストスペーサ30
の厚み33との差だけでなく、実際には、スラスト板2
0の上面21と下面22との平行度及びそれぞれの平面
度、スラスト受板25の上面26の平面度、及び軸受ス
リーブ10の下面12の平面度、スラストスペーサ30
の上面31と下面32との平行度及びそれぞれの平面度
等の精度を含めて管理される。
Next, management of the clearance of the bearing portion will be described. The management of the clearance of the radial bearing portion is the same as that of the related art, and therefore is omitted. Here, the management of the clearance of the thrust bearing portion, which is a feature of the present invention, will be described. The gap between the thrust bearings is determined by the thickness 23 of the thrust plate 20 and the thrust spacer 30.
Not only the difference from the thickness 33 of the thrust plate 2
And the flatness of the upper surface 26 of the thrust receiving plate 25, the flatness of the lower surface 12 of the bearing sleeve 10, and the thrust spacer 30
And the accuracy such as the parallelism between the upper surface 31 and the lower surface 32 and the flatness of each.

【0017】従来と同様に、スラスト板20の厚み2
3、その上面21、その下面22、及びスラスト受板2
5の上面26は切削加工の他、必要に応じて研削加工や
研磨加工での面仕上げ加工により、部品の精度を得るこ
とが可能であるが、さらに、本発明では、従来の軸受ス
リーブに設けた段差構造を無くし、隙間管理の為にスラ
ストスペーサ30を設けたことにより、軸受スリーブ1
0の下面12、スラストスペーサ30の上面31と下面
32に対しても研削加工や研磨加工での面仕上げ加工が
可能である。よって、スラスト軸受部の隙間の管理に関
わるすべての部材表面に面仕上げ加工が可能な構造とな
っている。
The thickness of the thrust plate 20 is 2
3, its upper surface 21, its lower surface 22, and the thrust receiving plate 2
The upper surface 26 of the fifth member 5 can be subjected to surface finishing by grinding or polishing, if necessary, in addition to cutting, so that the precision of the component can be obtained. Elimination of the step structure and the provision of the thrust spacer 30 for gap management, the bearing sleeve 1
Surface finishing by grinding or polishing can be performed on the lower surface 12 of the “0” and the upper surface 31 and the lower surface 32 of the thrust spacer 30. Therefore, the structure is such that surface finishing can be performed on all member surfaces involved in managing the clearance of the thrust bearing portion.

【0018】動圧軸受装置7を構成する各部品には、金
属及び合金、セラミックス、ガラス、プラスチック等か
ら適宜選択して用いることが可能であるが、研削加工や
研磨加工によって寸法精度を得る部分には、加工時の弾
性変形が少なく、且つ加工中に発生する熱に対して寸法
変化の小さい材質が好ましく、その材料としてはセラミ
ックスやガラス等の脆性材料が挙げられる。その中で
も、強度が高いセラミックスを用いることはさらに好ま
しい。セラミックスの材質としては、アルミナ、ジルコ
ニア、窒化ケイ素、炭化ケイ素等を用いることが可能で
ある。しかしながら、全ての部材にセラミックスを用い
ることはコストアップにつながる為、その中でも軸受ス
リーブ10及びスラストスペーサ30にセラミックスを
用いて面仕上げ加工を施せば、従来の軸受スリーブ10
3と比較して格段に寸法精度が向上する。
Each component constituting the dynamic pressure bearing device 7 can be appropriately selected from metals and alloys, ceramics, glass, plastics and the like, and can be used for obtaining the dimensional accuracy by grinding or polishing. Preferably, the material is a material that undergoes little elastic deformation during processing and has a small dimensional change with respect to heat generated during processing. Examples of the material include brittle materials such as ceramics and glass. Among them, it is more preferable to use ceramics having high strength. As the material of the ceramic, alumina, zirconia, silicon nitride, silicon carbide, or the like can be used. However, since the use of ceramics for all members leads to an increase in cost, if the bearing sleeve 10 and the thrust spacer 30 are subjected to surface finishing using ceramics, the conventional bearing sleeve 10
The dimensional accuracy is remarkably improved as compared with 3.

【0019】さらに、その中でも特に、スラストスペー
サ30にセラミックスを用いることは最も効果が大き
く、その厚み33の加工精度は、従来の軸受スリーブ1
03の段差112の切削加工精度と比較される部分であ
ることから明らかである。具体的には、段差112の切
削加工精度は量産的に5μmが限界であるが、セラミッ
クス製のスラストスペーサ30の上面31及び下面32
に研磨加工を行った場合は、その厚み33の寸法精度は
量産的にも1μm以下に管理可能である。
Further, among them, the use of ceramics for the thrust spacer 30 is most effective, and the processing accuracy of the thickness 33 is the same as that of the conventional bearing sleeve 1.
This is apparent from the comparison with the cutting accuracy of the step 112 of No. 03. Specifically, the cutting accuracy of the step 112 is limited to 5 μm in mass production, but the upper surface 31 and the lower surface 32 of the ceramic thrust spacer 30 are limited.
When the polishing is performed, the dimensional accuracy of the thickness 33 can be controlled to 1 μm or less in mass production.

【0020】本発明の動圧軸受装置7を組み立て、スラ
スト軸受部の隙間の製品ばらつきを測定した。尚、スラ
スト軸受部の隙間とは、単にスラストスペーサ30の厚
み33とスラスト板20の厚み23の差ではなく、前述
の様に、スラスト軸受部の隙間を構成する部材の表面の
影響を受けるので、スラスト板が実際に上下に可動な範
囲をスラスト軸受部の隙間とした。その測定は、軸体1
に嵌合したスラスト板20をスラスト受板25の上面2
6に押しつけた場合と、軸受スリーブ10の下面12に
押しつけた場合との、軸体1の面6の高さの差を測定し
て求めた。スラスト軸受部の隙間の設計値は10.0μ
mとした。
The dynamic pressure bearing device 7 of the present invention was assembled, and the product variation in the gap of the thrust bearing was measured. Note that the gap of the thrust bearing portion is not simply the difference between the thickness 33 of the thrust spacer 30 and the thickness 23 of the thrust plate 20, but is affected by the surface of the member constituting the gap of the thrust bearing portion as described above. The range in which the thrust plate can actually move up and down is defined as the gap between the thrust bearings. The measurement is performed on the shaft 1
The thrust plate 20 fitted to the upper surface 2 of the thrust receiving plate 25
6, and the difference between the height of the surface 6 of the shaft body 1 and the case of pressing against the lower surface 12 of the bearing sleeve 10 was determined. The design value of the clearance of the thrust bearing is 10.0μ
m.

【0021】はじめに、軸受スリーブ10,スラスト受
板25、スラスト板20、スラストスペーサ30にはス
テンレスを用いて、軸受スリーブ10の下面12、スラ
スト受板25の上面26、スラスト板20の上面21と
下面22、スラストスペーサ30の上面31と下面32
に研磨加工を行い、スラストスペーサ30の厚み33を
最大最小範囲で1μm以下で使用して、本発明の動圧軸
受装置7を20台組み立てた。スラスト軸受部の隙間を
測定したところ平均値10.5μm、標準偏差0.8μ
mであった。次に、スラストスペーサ30にセラミック
スを用いて、その厚み33の最大最小範囲を0.5μm
以下に管理して、本発明の動圧軸受装置7を20台組み
立てた。スラスト軸受部の隙間を測定したところ平均値
10.1μm、標準偏差0.3μmであった。
First, stainless steel is used for the bearing sleeve 10, the thrust receiving plate 25, the thrust plate 20, and the thrust spacer 30, and the lower surface 12, the upper surface 26 of the thrust receiving plate 25, and the upper surface 21 of the thrust plate 20 are made of stainless steel. Lower surface 22, upper surface 31 and lower surface 32 of thrust spacer 30
Then, 20 thrust bearings 7 of the present invention were assembled using the thickness 33 of the thrust spacer 30 within a maximum and minimum range of 1 μm or less. When the gap between the thrust bearings was measured, the average value was 10.5 µm, and the standard deviation was 0.8 µm.
m. Next, using ceramics for the thrust spacer 30, the maximum and minimum range of the thickness 33 is set to 0.5 μm.
Twenty dynamic pressure bearing devices 7 of the present invention were assembled under the following management. When the gap between the thrust bearing portions was measured, the average value was 10.1 μm and the standard deviation was 0.3 μm.

【0022】以上、本発明の第1の実施の形態より、軸
受スリーブ20とスラストスペーサ30とを組み合わせ
て用いる方が、従来構造の軸受スリーブ103よりも、
各部品の構造が単純化される為、軸受スリーブ10の下
面12、スラストスペーサ30の上面31、下面32へ
の研削加工や研摩加工といった面仕上げの加工が可能に
なり、スラスト軸受部の隙間の各製品のばらつきを格段
に小さくすることが可能となった。また、スラストスペ
ーサにセラミックスを用いて、スラストスペーサの厚み
精度を高めると、組立後のスラスト軸受部の隙間ばらつ
きも、より小さくすることが可能である。
As described above, according to the first embodiment of the present invention, the use of the bearing sleeve 20 and the thrust spacer 30 in combination is more effective than that of the bearing sleeve 103 having the conventional structure.
Since the structure of each part is simplified, the lower surface 12 of the bearing sleeve 10 and the upper surface 31 and the lower surface 32 of the thrust spacer 30 can be subjected to surface finishing such as grinding or polishing, and the clearance of the thrust bearing portion can be reduced. It has become possible to significantly reduce variations among products. Further, when the thickness accuracy of the thrust spacer is increased by using ceramics for the thrust spacer, it is possible to further reduce the variation in the gap of the thrust bearing portion after assembly.

【0023】図3は本発明の第2の実施の形態の動圧軸
受装置57及び、それを組み込んだモーター58の断面
図である。第1の実施の形態は軸が回転するタイプであ
り、第2の実施の形態は軸受スリーブが回転するタイプ
である。軸受スリーブの従来の段差構造を無くして、ス
ラストスペーサを用いた特徴は第1の実施の形態と同様
であり、スラスト軸受部の隙間のばらつき範囲は第1の
実施の形態と同様の精度が得られる為、以下は動圧軸受
装置57の構造のみを説明する。モーターハウジング9
5に、軸体50が固定されている。軸体50の外周には
隙間52を形成して、軸受スリーブ60が回転自在に嵌
合されており、軸受スリーブ60の外周にはハブ90が
固定されている。
FIG. 3 is a sectional view of a hydrodynamic bearing device 57 according to a second embodiment of the present invention and a motor 58 incorporating the same. The first embodiment is of a type in which a shaft rotates, and the second embodiment is of a type in which a bearing sleeve rotates. The feature of using the thrust spacer without the conventional step structure of the bearing sleeve is the same as that of the first embodiment, and the variation range of the gap of the thrust bearing portion has the same accuracy as that of the first embodiment. Therefore, only the structure of the dynamic pressure bearing device 57 will be described below. Motor housing 9
5, the shaft body 50 is fixed. A gap 52 is formed on the outer periphery of the shaft body 50, and a bearing sleeve 60 is rotatably fitted therein. A hub 90 is fixed to the outer periphery of the bearing sleeve 60.

【0024】さらに、軸体50にはその径よりも大なる
外径のスラスト板70を設けている。スラスト板70を
軸体50にスラストスペーサ80を介して軸受スリーブ
60とスラスト受板75に対向するように嵌合し、スラ
スト板70を回転自在にする為のスラスト軸受部の隙間
を形成している。軸受スリーブ60の内周面61もしく
は軸体50の外周面51の少なくとも一方に動圧発生溝
パターンを設けることにより軸受スリーブ60の内周面
61と軸体の50の外周面51の間でラジアル軸受部を
形成している。
Further, the shaft body 50 is provided with a thrust plate 70 having an outer diameter larger than its diameter. The thrust plate 70 is fitted to the shaft body 50 via the thrust spacer 80 so as to face the bearing sleeve 60 and the thrust receiving plate 75, and a gap is formed between the thrust bearing portions so that the thrust plate 70 can freely rotate. I have. By providing a dynamic pressure generating groove pattern on at least one of the inner peripheral surface 61 of the bearing sleeve 60 or the outer peripheral surface 51 of the shaft body 50, a radial is formed between the inner peripheral surface 61 of the bearing sleeve 60 and the outer peripheral surface 51 of the shaft body 50. A bearing portion is formed.

【0025】また、スラスト板70の下面71と軸受ス
リーブ60の上面62の少なくとも一方と、スラスト板
70の上面72とスラスト受板75の下面76の少なく
とも一方に動圧発生溝パターンを設けることにより、ス
ラスト板70と軸受スリーブ60、スラスト受板75と
の間にスラスト軸受部を形成している。また、ラジアル
軸受部及びスラスト軸受部には潤滑流体が封入されてい
る。軸受スリーブ60の下面63には、潤滑流体の飛散
を防止するためのカバー85を設けている。モーターの
回転機構については、先に図4の用いて説明した従来技
術と同様にの一般的な構成を応用することが可能であ
る。
The dynamic pressure generating groove pattern is provided on at least one of the lower surface 71 of the thrust plate 70 and the upper surface 62 of the bearing sleeve 60, and at least one of the upper surface 72 of the thrust plate 70 and the lower surface 76 of the thrust receiving plate 75. A thrust bearing is formed between the thrust plate 70, the bearing sleeve 60, and the thrust receiving plate 75. Further, a lubricating fluid is sealed in the radial bearing portion and the thrust bearing portion. A cover 85 for preventing the lubricating fluid from scattering is provided on the lower surface 63 of the bearing sleeve 60. Regarding the rotation mechanism of the motor, it is possible to apply a general configuration similar to that of the prior art described above with reference to FIG.

【0026】[0026]

【発明の効果】以上の実施の形態から明らかなように、
請求項1に記載の本発明の動圧軸受装置の構造によれ
ば、軸受スリーブとスラストスペーサの2部品を組み合
わせて用いる方が、従来構造のように段加工を必要とす
る軸受スリーブ1部品よりも、部品の構造が単純化さ
れ、研削加工や研磨加工といった面仕上げの加工が可能
になる為に部品の加工精度が向上し、スラスト軸受部の
隙間の製品のばらつきを小さく抑えることが可能となっ
た。
As is clear from the above embodiment,
According to the structure of the hydrodynamic bearing device according to the first aspect of the present invention, it is preferable to use the bearing sleeve and the thrust spacer in combination of two parts, as compared with the conventional bearing, which requires one step processing as in the conventional structure. In addition, since the structure of the parts is simplified, surface finishing such as grinding and polishing can be performed, the processing accuracy of the parts is improved, and it is possible to reduce the variation in the product of the gap in the thrust bearing part. became.

【0027】また、請求項2の本発明の動圧軸受装置に
よれば、加工時の弾性変形が少なく、加工中に発生する
熱に対して寸法変化の小さいセラミックスをスラストス
ペーサに用いることにより、スラストスペーサの加工精
度を更に向上させることが可能であると共に、スラスト
軸受部の隙間の製品ばらつきをさらに小さく抑えること
が可能となった。
According to the hydrodynamic bearing device of the present invention, the elastic deformation at the time of working is small, and the ceramic having a small dimensional change with respect to the heat generated during the working is used for the thrust spacer. The processing accuracy of the thrust spacer can be further improved, and the product variation in the gap of the thrust bearing can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の動圧軸受装置を組み込んだモーターを
示す模式断面図。
FIG. 1 is a schematic sectional view showing a motor incorporating a dynamic pressure bearing device of the present invention.

【図2】本発明の動圧軸受装置を組み込んだモーターを
示す模式断面図の部分拡大図。
FIG. 2 is a partially enlarged view of a schematic sectional view showing a motor incorporating the dynamic pressure bearing device of the present invention.

【図3】本発明の動圧軸受装置を組み込んだモーターを
示す模式断面図。
FIG. 3 is a schematic sectional view showing a motor incorporating the dynamic bearing device of the present invention.

【図4】従来の動圧軸受装置を組み込んだモーターを示
す模式断面図。
FIG. 4 is a schematic cross-sectional view showing a motor incorporating a conventional hydrodynamic bearing device.

【図5】従来の動圧軸受装置を組み込んだモーターを示
す模式断面図の部分拡大図。
FIG. 5 is a partially enlarged view of a schematic sectional view showing a motor incorporating a conventional dynamic pressure bearing device.

【符号の説明】[Explanation of symbols]

1、50 軸体 2、51 外周面 3、52 隙間 4 下部 6 面 7、57 動圧軸受装置 8、58 モーター 10、60 軸受スリーブ 11、61 内周面 12、22、32、63、71、76 下面 13、21、26、31、62、72 上面 20、70 スラスト板 23、33 厚み 25、75 スラスト受板 30、80 スラストスペーサ 35、85 カバー 36 部分 45、95 モーターハウジング 46 内周 90 ハブ 1, 50 shaft body 2, 51 outer peripheral surface 3, 52 gap 4 lower 6 surface 7, 57 dynamic pressure bearing device 8, 58 motor 10, 60 bearing sleeve 11, 61 inner peripheral surface 12, 22, 32, 63, 71, 76 Lower surface 13, 21, 26, 31, 62, 72 Upper surface 20, 70 Thrust plate 23, 33 Thickness 25, 75 Thrust receiving plate 30, 80 Thrust spacer 35, 85 Cover 36 Part 45, 95 Motor housing 46 Inner circumference 90 Hub

フロントページの続き (72)発明者 柴 和男 東京都田無市本町6丁目1番12号 シチズ ン時計株式会社田無製造所内 (72)発明者 金澤 豊次 東京都田無市本町6丁目1番12号 シチズ ン時計株式会社田無製造所内 Fターム(参考) 3J011 BA04 DA01 KA04 QA01 SD01Continued on the front page (72) Inventor Kazuo Shiba 6-11-12 Honcho, Tanashi-shi, Tokyo Citizen Watch Co., Ltd. Inside Tanashi Works (72) Inventor Toyoji Kanazawa 6-1-112, Honcho, Tanashi-shi, Tokyo Citizen Watch Term Co., Ltd. Tanashi Factory F-term (reference) 3J011 BA04 DA01 KA04 QA01 SD01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ハウジングの内周に円筒状の内周部を有
する軸受スリーブを固定し、該軸受スリーブの内周には
円筒状外周部を有する軸体を回転自在に嵌合し、また
は、ハウジングに円筒状の外周部を有する軸体を固定
し、該軸体の外周には円筒状内周部を有する軸受スリー
ブを回転自在に嵌合し、該軸体の一部には軸体の外周部
の径よりも大なる外径のスラスト板を設けてなる動圧軸
受装置に於いて、前記スラスト板を前記軸受スリーブと
スラスト受板でスラストスペーサを介して対向に嵌合し
たことを特徴とする動圧軸受装置。
1. A bearing sleeve having a cylindrical inner peripheral portion is fixed to an inner periphery of a housing, and a shaft having a cylindrical outer peripheral portion is rotatably fitted to an inner periphery of the bearing sleeve. A shaft having a cylindrical outer peripheral portion is fixed to the housing, a bearing sleeve having a cylindrical inner peripheral portion is rotatably fitted to the outer periphery of the shaft, and a part of the shaft is In a hydrodynamic bearing device provided with a thrust plate having an outer diameter larger than the diameter of the outer peripheral portion, the thrust plate is fitted to the bearing sleeve and a thrust receiving plate so as to face each other via a thrust spacer. Dynamic bearing device.
【請求項2】 前記スラストスペーサにセラミックスを
用いたことを特徴とする請求項1記載の動圧軸受装置。
2. The dynamic pressure bearing device according to claim 1, wherein ceramic is used for said thrust spacer.
JP11191314A 1999-07-06 1999-07-06 Dynamic pressure bearing device Pending JP2001020946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11191314A JP2001020946A (en) 1999-07-06 1999-07-06 Dynamic pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11191314A JP2001020946A (en) 1999-07-06 1999-07-06 Dynamic pressure bearing device

Related Child Applications (4)

Application Number Title Priority Date Filing Date
JP2006147513A Division JP2006220311A (en) 2006-05-29 2006-05-29 Dynamic pressure bearing device
JP2006147511A Division JP2006234176A (en) 2006-05-29 2006-05-29 Dynamic pressure bearing device
JP2006147510A Division JP2006220309A (en) 2006-05-29 2006-05-29 Dynamic pressure bearing device
JP2006147512A Division JP2006220310A (en) 2006-05-29 2006-05-29 Dynamic pressure bearing device

Publications (2)

Publication Number Publication Date
JP2001020946A true JP2001020946A (en) 2001-01-23
JP2001020946A5 JP2001020946A5 (en) 2006-07-20

Family

ID=16272506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11191314A Pending JP2001020946A (en) 1999-07-06 1999-07-06 Dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JP2001020946A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036111A1 (en) * 2001-10-24 2003-05-01 Sony Corporation Bearing unit, and motor using this bearing unit
JP2007211845A (en) * 2006-02-08 2007-08-23 Crd Kk Hydrodynamic bearing motor
US7455456B2 (en) 2003-01-10 2008-11-25 Sony Corporation Bearing unit and rotation drive device using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036111A1 (en) * 2001-10-24 2003-05-01 Sony Corporation Bearing unit, and motor using this bearing unit
US7029179B2 (en) 2001-10-24 2006-04-18 Sony Corporation Bearing unit, and motor using same
CN100339603C (en) * 2001-10-24 2007-09-26 索尼公司 Bearing unit and motor provided therewith
CN100458195C (en) * 2001-10-24 2009-02-04 索尼公司 Bearing unit and motor provided therewith
KR100927247B1 (en) * 2001-10-24 2009-11-16 소니 가부시끼 가이샤 Bearing unit and motor using this bearing unit
US7455456B2 (en) 2003-01-10 2008-11-25 Sony Corporation Bearing unit and rotation drive device using the same
US7510329B2 (en) 2003-01-10 2009-03-31 Sony Corporation Bearing unit and rotary drive using the same
JP2007211845A (en) * 2006-02-08 2007-08-23 Crd Kk Hydrodynamic bearing motor

Similar Documents

Publication Publication Date Title
US6127756A (en) Spindle motor having air dynamic pressure bearing and rotating device having the spindle motor as driving source
US4934836A (en) Dynamic pressure type fluid bearing device
US5873657A (en) Conic fluid bearing and head drum and spindle motor each including the same
JP3893021B2 (en) Hydrodynamic bearing unit
KR100709101B1 (en) Hydrodynamic bearing unit
US5878495A (en) Method of manufacturing a dynamic groove bearing by means of a metal-removing tool, and data storage unit provided with such a dynamic groove bearing
KR100952627B1 (en) Method for manufacturing hydro dynamic bearing device
US20070110348A1 (en) Fluid dynamic bearing unit
JP2001020946A (en) Dynamic pressure bearing device
US20080211334A1 (en) Spindle motor
JPS6315096B2 (en)
US6064130A (en) Motor having dynamic pressure bearing, and rotator device having the motor as driving source
JP2006234176A (en) Dynamic pressure bearing device
JP2006220309A (en) Dynamic pressure bearing device
JP2006220311A (en) Dynamic pressure bearing device
JP2006220310A (en) Dynamic pressure bearing device
JPH08114219A (en) Dynamic pressure bearing
JPH05106632A (en) Dynamic pressure fluid bearing and polygon scanner using it
JPS63191117A (en) Dynamic pressure bearing unit for rotary polygon mirror
JP2505916B2 (en) Bearing structure
JP2000126938A (en) Spindle device of discharge machine
JPH05149326A (en) Dynamic pressure bearing device
JPH02211045A (en) Dynamic pressure bearing unit of optical disk spindle motor
JPH09222119A (en) Rotary bearing device and rotational driving method using it
JPS6374565A (en) Superprecision polishing guide roller

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A681

Effective date: 20060605

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070911

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100113

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100212