JP2001019547A - 複雑形状炭素・黒鉛複合成形体の製造方法 - Google Patents

複雑形状炭素・黒鉛複合成形体の製造方法

Info

Publication number
JP2001019547A
JP2001019547A JP11182289A JP18228999A JP2001019547A JP 2001019547 A JP2001019547 A JP 2001019547A JP 11182289 A JP11182289 A JP 11182289A JP 18228999 A JP18228999 A JP 18228999A JP 2001019547 A JP2001019547 A JP 2001019547A
Authority
JP
Japan
Prior art keywords
carbon
graphite
composition
complex
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11182289A
Other languages
English (en)
Inventor
Yutaka Kawamata
裕 川俣
Kunimasa Takahashi
邦昌 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP11182289A priority Critical patent/JP2001019547A/ja
Publication of JP2001019547A publication Critical patent/JP2001019547A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Working-Up Tar And Pitch (AREA)
  • Fuel Cell (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】 【課題】 曲げ強度、電気伝導度、ガス透過性等燃料電
池セパレータ板に要求される特性を具えた複雑形状を有
する炭素・黒鉛複合成形体を安価に、効率よく製造する
方法を提供する。 【解決手段】 タールやピッチのように炭素化時自己焼
結性を有する炭素質前駆体化合物を含有する重質組成物
及び黒鉛質炭素微粒子を混練して複合組成物とし、これ
を粉砕し、造粒し、得られた造粒粉をプレス成形して生
成形体とし、これを機械加工、次いで炭素化して複雑形
状を有する炭素・黒鉛複合成形体を製造する方法におい
て、前記粉砕及び機械加工を、使用する粉砕冶具及び加
工冶具並びにこれに接する前記複合組成物及び前記生成
形体部位周辺を前記重質組成物が溶融しない温度域に冷
却しつつ行うことを特徴とする製造方法。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は自己焼結性を有する
炭素質炭素前駆体化合物で人造黒鉛及び天然黒鉛からな
る群から選ばれた少なくとも1種類の黒鉛質炭素微粒子
表面を被覆して得られる複合組成物を特定条件下で粉
砕、造粒、成形、加工、炭素化することを特徴とする複
雑な形状を有する炭素・黒鉛複合成形体の製造方法に関
する。本発明は曲げ強度、電気伝導度、熱伝導度、ガス
透過性、腐食電流等の固体高分子型及び燐酸型燃料電池
のセパレータ板に要求される特性を満たす複雑形状を有
する炭素・黒鉛複合成形体の製造方法を提供する。
【0002】また、本発明は固体高分子型及び燐酸型燃
料電池の溝付きセパレータ板に見られる複雑な形状を有
する炭素製品をコールタール、石油系重質油、コールタ
ールピッチ及び石油系ピッチ等炭素工業で容易に入手出
来る炭素化時に自己焼結性を呈する自己焼結性炭素質前
駆体を含有するγ成分(キノリン可溶トルエン不溶成
分)含有量が5%未満好ましくは3%未満の重質組成物
で平均粒径が10〜70μm好ましくは15〜60μm
の粒度分布を有する黒鉛質炭素粒子表面が被覆され、室
温で固体になるように該重質組成物中の軽沸点留分含有
量を被覆工程に続く加熱または真空加熱工程で調製して
得た複合組成物が溶融しない温度範囲において粉砕(黒
鉛粒子固有の粒径分布を可能な限り変更しない粉砕を行
う意味で解砕と称することがある)して得られる該複合
組成物が溶融しない条件下で造粒して得られる造粒粉体
を常温でプレス成形後、加工冶具と生成形品の摩擦で発
生する熱によって該バインダー成分が溶融して生成形体
が変形したり、微細な工作形状が失われることを回避す
る方法として該加工冶具及びこれに接する該生成形体部
位周辺を該重質組成物が溶融しない温度域に冷却しつつ
セパレータ板に要求される複雑な形状を高速で刻印する
ことで燃料電池セパレータに代表される複雑形状を有す
る炭素・黒鉛複合成形体を製造する方法を提供するもの
である。
【0003】
【従来の技術】炭素質炭素と黒鉛質炭素とからなる複合
材料の製造方法は種々提案されており、有機質炭素、炭
素質炭素から選ばれた少なくとも1種類の炭素質炭素粉
と人造黒鉛、天然黒鉛から選ばれた少なくとも1種類の
黒鉛質炭素粉を使用するものが多い。炭素質炭素と黒鉛
質炭素の複合の目的は種々有るが一般的にはこれらの組
合せによって黒鉛の持つ特質を1000℃前後の焼成で
得られる成形体に賦与できることがあげられる。また黒
鉛質炭素の持つ弱点を炭素質炭素で補填することがあげ
られる。
【0004】例えば特開昭59−26907号公報の実
施例には、予め3000℃で熱処理した粒度44μm以
下が99%含有される黒鉛微粉80重量部にレゾール系
フェノール樹脂20重量部を常温にて混和したペースト
をロール成形(周速0.3m/分)し、4mm厚みのシ
ートとする。これを硬化させた後、1000℃/10時
間の昇温速度で最高温度1000℃に熱処理し製品とす
る。ロール成形後加圧硬化(0.1kg/cm3 )した
場合の製品特性は、 サイズ;300mm×400mm×厚み3.2mm 嵩密度;1.703(g/cm3 ) 比抵抗;165×10-5(Ω・cm) 曲げ強さ;323(kg/cm2 ) 通気率;3.5×10-5(cm2 /秒) であった。
【0005】該公報では有機質炭素と黒鉛質炭素の複合
の目的を燐酸型燃料電池セパレータ板に要求される低比
抵抗値を黒鉛質炭素が分担し、低通気率をレゾール系フ
ェノール樹脂の炭化物即ちグラッシーカーボンが分担す
ることで所望機能を賦与することに置いている。本発明
者の一人は特開昭61−199737号公報でキノリン
不溶分;70重量%以下、メソフェーズ含有量;40%
以上、加熱溶融温度上限;400℃、1000℃での炭
素化収率;少なくとも70%という性状を有するメソフ
ェーズ含有ピッチと黒鉛粉を混合して得られる粉体を好
ましくは該ピッチの加熱溶融温度以上に加熱して加圧成
形した後に不活性雰囲気中適正温度で焼成することによ
り、1000℃焼成時の体積変化;3%以下の生品と焼
成品の間で線収縮率が1%未満の寸法安定性を有しつ
つ、体積固有抵抗;5.0mΩ・cm、曲げ強度;>2
00kg/cm2 というセパレータ板に適した特性を有
する黒鉛質成形体の製造方法を提案している。
【0006】また、特公平7−35250号公報では、
特開昭61−199737号公報に開示したと同様の特
性を有する黒鉛質成形体の製法として黒鉛質微粉を懸濁
させたメソフェーズピッチ前駆体を含むタール留分中の
軽質留分を不活性ガスを吹き込んで350〜500℃に
加熱して留去し、キノリン可溶分5〜90重量%を含む
メソフェーズ含有ピッチを黒鉛質微粉表面に析出させた
炭素質前駆体を用いる方法を開示している。
【0007】また、特公平4−75189号公報では、
(1)黒鉛粉末をメソフェーズピッチ前駆体を含むター
ル留分中に懸濁させる工程、(2)上記の懸濁液に不活
性ガス(例:窒素ガス、炭酸ガス、アルゴン等)で35
0〜500℃で熱処理し、メソフェーズピッチを黒鉛粒
子上に生成させた炭素質前駆体を得る工程、(3)上記
炭素質前駆体を400〜800℃で加圧成形し、生成形
体とする工程、(4)上記生成形体を不活性雰囲気下で
炭素化または黒鉛化する工程からなる黒鉛質成形体の製
法を開示している。
【0008】この製法は炭素質前駆体を成形した生成形
体を得る手法としてホットプレス処理する方法を開示し
ている。炭素質前駆体粉を溝付きセパレータ板のような
複雑な形状に成形した生品を焼成する過程で発生する線
収縮率の微妙な差がもたらす炭素化品の歪みや残存応力
を(3)が示すホットプレス工程で解消することができ
る。また、特公平6−102530号公報では、上記特
公平4−75189号公報記載の(3)工程を省略して
黒鉛モールド等を用いて、真空下または不活性ガス雰囲
気下で、800〜3000℃で加圧成形して黒鉛質成形
体を製造する方法を開示している。
【0009】該発明に従えば表裏に直交する多数の溝を
有する溝付きセパレータを一発成形することが可能とな
る。同時にガス不透過性、熱伝導度及び電気伝導度等燃
料電池セパレータ板に要求される特性も満たすことがで
きる。また、特開昭62−187167号公報では燐酸
型燃料電池のガス分離板として使用できるガス不透過性
にすぐれた黒鉛質成形体を簡略化した工程にて製造する
方法として、コールタール、ナフサ分解残渣等を350
〜550℃程度で熱処理して得たキノリン不溶分;95
重量%以下、メソフェーズ含有量;35重量%以下、1
000℃での炭素化収率;70重量%以上であるメソフ
ェーズ含有ピッチを鱗状天然黒鉛または人造黒鉛から選
ばれた黒鉛粉100重量部に対して5〜60重量部添加
し、ついでこの混合物を真空下または不活性ガス雰囲気
下で昇温速度150〜3000℃/時程度で700〜3
000℃に加熱し、圧力50〜2000kg/cm2
度に加圧成形する方法を提案している。
【0010】また、特許第2566589号公報では黒
鉛質炭素、炭素質炭素、無機化合物、金属及び金属化合
物から選ばれた1種または2種以上の素材とメソフェー
ズ含有ピッチとからなる炭素系複合成形体原料の製造方
法において、(1)黒鉛質炭素、炭素質炭素、無機化合
物、金属及び金属化合物から選ばれた1種または2種以
上の素材をメソフェーズピッチ前駆体を含むタール留分
中に懸濁させてスラリーを調製する工程、(2)懸濁液
スラリーに(イ)炭素数5〜20の脂肪族もしくは脂環
式炭化水素及び(ロ)炭素数3〜5の脂肪族もしくは脂
環式ケトン化合物から成る群より選ばれた1種以上の溶
剤を溶剤比(Sn)2〜15(溶剤重量/原料タール重
量)の割合で添加して0〜60℃で処理することにより
該素材表面にメソフェーズ前駆体を含む多環芳香族ポリ
マーを析出させて、処理溶剤を分離後処理された該スラ
リーをリンス用溶剤比(Sr)1〜15(溶剤重量/原
料タール重量)の割合で0〜60℃で洗浄処理し、該素
材とメソフェーズ前駆体を含む多環芳香族ポリマーとか
ら成る混合体を分離する工程、(3)該混合体を不活性
ガス雰囲気下360〜520℃で熱処理して多環芳香族
ポリマーをメソフェーズ含有ピッチ化させる工程、の3
工程を用いることを特徴とする炭素系複合成形体原料の
製造方法を開示している。
【0011】該方法では黒鉛質炭素や炭素質炭素は勿論
のことSiC、AlN、B4 C、TiC、Si34
の粉体の表面を完璧にメソフェーズ含有ピッチで被覆す
ることができる。従って複数の組成物含有粉体表面に均
質なピッチ被覆を行うことができる特徴を有する。ま
た、使用される溶剤としてアセトンやヘプタンなどが挙
げられるが容易に回収再利用できる特徴を有する。ま
た、特許第2566595号公報では上記特許第256
6589号公報で調製したメソフェーズ含有ピッチで被
覆した黒鉛質炭素からなる複合粉体を例に挙げて従来考
えられなかった複雑形状の精密成形体を金型通りの寸法
で炭素化し大量生産に供するに必須な炭素系粉体の造粒
方法を開示している。
【0012】該造粒方法は自己焼結性炭素系粉体及び所
望により黒鉛質炭素、炭素質炭素、金属及び無機化合物
からなる群から選ばれた少なくとも1種類の粉体を含む
炭素系粉体を結合剤及び湿潤剤の存在下に水に分散させ
たスラリーを加熱水蒸気を含むこともある加熱空気中で
噴霧乾燥して造粒する方法において、(1)該結合剤が
1000℃炭化時に発泡体を作らず且つ残炭収率が10
重量%以上の有機化合物であり、その使用量が炭素系粉
体100重量部に対して0.01から5重量部であるこ
と、(2)該湿潤剤が曇点が25℃以上の曇点範囲を有
する非イオン系界面活性剤であり、その使用量が炭素系
粉体100重量部に対して0.01から3重量部である
こと、を特徴としている。
【0013】造粒に供される粉体は本発明者の上述先行
発明によって得られる全ての粉体を対象にすることがで
きる。鱗片状黒鉛表面をキノリン不溶分量97重量%の
メソフェーズピッチで被覆した炭素系組成物を該方法で
造粒して得られた平均粒径114μmの造粒品は肉厚
1.2mmの底と縦、横十文字の間仕切りを有する中空
箱形の薄肉品をロータリープレス機で連続的に製造する
ことができた。また1000℃迄9時間の昇温速度で炭
素化して得られた製品は金型寸法と同じ寸法に仕上が
り、底部分の収縮割れなどは認められず、100%近い
歩留まり率が得られた。
【0014】また特許第2566589号及び特許第2
566595号を併合した特許が英(308824;9
2.12.23)米(4985184;91.01.1
5)独(P3876913.1;92.12.13)仏
(308824;92.12.23)4ケ国に登録され
ている。また特開平6−192660号公報では、ピッ
チの前駆体組成物又は該ピッチの前駆体組成物と骨材と
の混合物を熱処理して製造する際に、所望により分散剤
の存在下に特殊な静置熱反応容器に輻射加熱手法を組み
合わせて処理するピッチ含有組成物の製造方法を開示し
ている。
【0015】該方法において、黒鉛微粒子に見られる結
晶端面に水酸基やカルボキシル基のような表面活性点を
多く含む局部的親水性素材と親油性メソフェーズ含有ピ
ッチとの親和性を素材に適した各種分散剤を用いること
で画期的に高めることができ、複合特性の飛躍的向上が
果たされている。また、輻射加熱をうまく使うこで複合
成形体強度の重要な支配因子である熱処理温度の大型反
応装置内でのバラツキを±2℃以下に抑制することで、
均質な複合素材の工業規模での大量生産が可能になっ
た。
【0016】本発明者らはさきに特定粒度の黒鉛質炭素
粒子と自己焼結性炭素質化合物を混合/造粒した複合組
成物を直接複雑形状に成形する、または平板を成形した
後に高速機械加工することで燃料電池セパレータ板に要
求される複雑な形状を賦与し、生成形体/炭素化成形体
の寸法が同じ特性を同時に賦与することで係る複雑形状
品を廉価に供給する手法を開示した。
【0017】
【発明が解決しようとする課題】本発明者の前の特許で
開示した燐酸型燃料電池の溝付きセパレータ板に要求さ
れる特性を満たしたセパレータ板製造技術は、近年地球
環境問題から脚光を浴びている固体高分子型燃料電池積
載自動車に使われる部材である溝付きセパレータ板の特
性を満たすことは、固体高分子型の作動温度が燐酸型の
170〜200℃に比べて80℃前後と低いことから容
易に理解できる。
【0018】しかしながら従来技術は大型発電装置とし
ての燐酸型燃料電池の溝付きセパレータ板に狙いを定め
た生産技術であるために、自動車の発電装置または家庭
用据え置き小型発電機としての固体高分子型燃料電池で
要求される低価格と将来数百万枚以上に達すると予想さ
れる膨大な生産量を満たすには様々なハードルを越える
必要があった。
【0019】特に本発明者の開示した従来技術のうち燃
料電池セパレータ板に適したメソフェーズ含有ピッチ被
覆黒鉛複合粉体を製造するコストは大きな壁となった。
メソフェーズ含有ピッチ被覆黒鉛は800〜900℃で
ホットプレスすることで好ましい特性を発現するが、大
量生産性及び生産設備に課題がある。また、大量自動無
人プレス成形に適した造粒方法も画期的技術であるが生
産性が良くない高価な噴霧乾燥装置を必須とするために
コストアップにつながった。
【0020】一方メソフェーズ含有ピッチ粉と黒鉛粉の
混合物による製品は300℃以上の加熱プレスを必須と
する為、生産性及びコスト面で解決すべき問題があっ
た。先の出願で開示した特定粒度の黒鉛質炭素粒子と自
己焼結性炭素質化合物を混合/造粒した複合組成物を直
接複雑形状に成形する。または平板を成形した後に高速
機械加工する手法は従来の本発明者の開示した技術に比
較して工業製法として画期的であった。
【0021】しかし自己焼結性炭素質化合物を微粉化す
る工程費など未だ改良すべき事項があった。即ち本発明
が解決すべき問題点は、時代が要求する極めて廉価な製
品をその要求特性を損なうことなく供給できる技術の創
出にある。
【0022】
【課題を解決するための手段】研究開発の大前提として
固体高分子型燃料電池溝付きセパレータ板に要求される
生産性及び物性値に係る以下の諸要請は満たされねばな
らない。 生産性 (イ)200〜500mm角、厚さ1〜5mmの板の大
量生産ができること。 (ロ)深さ1mm、幅1〜2mmの燃料及び空気の供給
溝を板表面または表裏両面に、ガス供給にかかる貫通孔
や側面の各種穴や溝を容易に設置できること。 物性値 (ハ)表面平滑度、反り等の機械的寸法 (ニ)曲げ強度、圧縮強度 (ホ)体積固有抵抗 (ヘ)腐食電流 (ト)ガス透過率 以上それぞれについて要求される値をクリアーするこ
と。
【0023】本発明者らは以下の素材及び生産技術に関
する諸項目を満たすことで廉価製品の大量生産が可能と
考えた。 (1)大量生産されて市場に安定供給されている素材を
組み合わせた製品 (2)自動無人プレス操業に供する事ができる造粒粉体 (3)全工程を高生産効率設備機器で構築
【0024】従来技術での複雑形状黒鉛成形体の切削加
工法や、グラッシーカーボン成形体の製法では高コスト
化が避けられないことは当業者には自明のことである。
先行出願発明で本発明者らは大量生産されて市場に潤沢
に供給されているまたは要請に応じて供給することがで
きる黒鉛粉体及び自己焼結性炭素質化合物粉体で直接複
雑な形状を有する生成形体を得るか、平板状の生成形体
に複雑な形状を高速機械加工で賦与し、これを炭素化し
て製品を得る簡便な手法で固体高分子型及び燐酸型燃料
電池セパレータ板を製造する方法を開示した。
【0025】上に述べた炭素・黒鉛複合成形体に複雑な
形状を付与する2種類の方法は画期的な手法であり、こ
れを併用すればプレス成形では形成不可能なセパレータ
板側面の微細構造も容易に加工できるので公開された特
許等から推定される種々の形状を全て該方法で形成する
ことができる。炭素工業では炭素化もしくは黒鉛化した
製品に後加工で種々の精密な形状を付与する手法が常用
されている。
【0026】これは炭素工業では成形体バインダーとし
て使われる自己焼結性炭素質前駆体化合物がコールター
ルを蒸留して得られる低融点、低着火温度のタールピッ
チであることから発熱を伴う生成形体加工は難しいとさ
れていた。必要に応じて生成形体を冷却した後にニアネ
ットシェイプ加工を施すことは行われている。しかし炭
素工業で常用されるバインダーを用いた混練物の加熱押
し出し製法での生成形体は炭素化時に10%前後の線収
縮が起きるという特性のために、燃料電池セパレータ板
に要求される精密加工を生成形体に施しても炭素化段階
で形状が歪んだり、時には炭素化成形体が破壊されたり
するという問題が起きるために生成形体の段階で炭素化
及び黒鉛化製品に要求される精度の機械加工を施すこと
はできないというのが当業界の常識である。
【0027】黒鉛電極を目的とした従来技術ではニード
ルコークス粒子を主たる骨材として電信柱のような直径
を有する製品を製造するに対して、本発明の目的とする
複雑形状を有する燃料電池セパレータの厚みは1〜5m
mであること、さらに10〜70μmという比較的大き
な扁平性が最大の特徴である黒鉛質炭素微粒子を主たる
骨材とし、これを薄板面に平行に配列する異方性成形が
好ましい選択であること、炭素化製品の段階で要求され
る曲げ強度が5kgf/m2と電極材料の同じ段階での
曲げ強度の1/3程度と低いことからタールや蒸留ピッ
チ使用量を減らせる可能性が高いこと等の点から、本発
明者らは従来技術で用いられる極めて安価なバインダー
を自己焼結性炭素質前駆体化合物として用い、従来技術
の製造方法の範疇で複雑形状燃料電池セパレータ板を製
造する技術の開発も可能と判断して鋭意検討を行った。
【0028】その結果、燃料電池セパレータ板に要求さ
れる体積固有抵抗、熱伝導率などの物性値を満たすため
に必要とされる黒鉛質炭素の粒径とその含有量の範囲内
では黒鉛質炭素の表面が自己焼結性炭素前駆体で被覆さ
れた複合組成物を粉砕(解砕)、造粒して得た造粒粉体
をプレス成形すると鱗片状もしくはそれに近い形状を有
する黒鉛質炭素はその扁平面がプレス圧力に垂直な形で
積層された移動、移送上の操作で破壊される恐れのない
強度を有する生成形体が得られることを見出した。即ち
鱗片状天然黒鉛で顕著に発現する現象であるが、本発明
の複合組成物造粒粉体に一軸または二軸のプレス圧力を
印加すると、黒鉛扁平面が一定方向に配列した緻密な成
形体が形成できることが確認された。
【0029】またかかる生成形体の炭素化時の線収縮率
は自己焼結性炭素質の炭素化成形体中含有量に支配さ
れ、炭素化前の自己焼結性炭素質前駆体化合物の形状に
は支配されないことも見出した。即ち自己焼結性炭素質
前駆体化合物含有重質物が廉価なバインダーとして知ら
れているタール、蒸留ピッチのいずれの形態であれ、炭
素化時の炭素質含有量で成形体の収縮率が支配されるこ
とが見出された。これらの事実から生成形体と炭素化成
形体の寸法が金型通りになる特徴を有し、ガス透過率や
電気伝導性を支配する特徴的な黒鉛積層状態が保持され
た炭素・黒鉛複合成形体を、先行出願で開示した特定γ
成分含有熱処理ピッチ微粒子と黒鉛質炭素微粒子の混合
系から製造する方法同様、タールや蒸留ピッチで黒鉛質
炭素微粒子を被覆した複合組成物の造粒粉体を用いて製
造できることが見出された。
【0030】タールや蒸留ピッチなどの自己焼結性炭素
質前駆体化合物含有重質物で黒鉛質炭素微粒子を被覆し
た系では特定γ成分含有熱処理ピッチ微粒子と黒鉛質炭
素微粒子の混合系と比較して該重質成分中の軽沸点留分
が蒸発する100〜300℃領域で遅くせざるを得な
い。本発明の実施において上記温度域での昇温速度は
0.01〜0.5℃/分の範囲が好ましい。低温域での
長時間炭素化を行う場合、特に本発明の目的とする大量
のセパレータ板を製造するには連続炭素化が必須となる
場合、炭素化設備がそれに対応できるかが問題となる。
この問題は例えば耐火煉瓦製造業等で常用されている全
長100m以上に及ぶ長大なプッシャー炉での炭素化で
解決することができる。
【0031】該炉での問題は酸素が大量に存在する炉雰
囲気であるが、本発明で生産する製品の場合、ガス不透
過性容器に生成形加工品を充填し、容器上部に例えば5
00℃までの酸化防止剤として亜麻仁油、コーンオイ
ル、生コークス等から選ばれた少なくとも一種類の化合
物と、500℃以上での酸化防止剤としてけい砂、炭化
ホウ素、鉄粉等から選ばれた少なくとも一種類の無機化
合物を混ぜたコークスプリーズを充填した後に炭素化を
施せば無酸素状態での炭素化と同じ効果が得られる。更
に重質化合物から発生する軽沸点留分は炉内ガス流を適
切に制御することで高温の炉内で燃焼させることができ
る利点がある。
【0032】プレス成形を施すには複合組成物が造粒粉
体であることが好ましい。造粒に先立ち該複合組成物は
所定粒度に粉砕する必要がある。粉砕工程では熱が発生
しそれによって自己焼結性前駆体化合物が溶融し、複合
組成物自体が変質するばかりか粉砕機のフィルター目詰
まりや粉砕ラインの閉塞等が起きる可能性がある。この
場合冷却粉砕が必要となる。粉砕機本体を冷却する方法
と、好ましい手法としてドライアイス微粒子を被粉砕物
に混ぜて一緒に粉砕に供する手法が本発明の実施に有効
である。ドライアイス共粉砕法では冷却と同時に気化し
た炭酸ガスによって不活性ガス雰囲気が醸成され、前駆
体化合物の酸化変質を防ぐ副次的効果も得ることができ
る。
【0033】黒鉛電極製造技術で通常採用される成形方
法、即ち流動性材料の加熱押し出しプレスに適した組成
比は本発明の目的には合致しない。係る用途での複合組
成物は自己焼結性前駆体化合物含有量が高く生成形体/
炭素化成形体の寸法が許容範囲において変化が無いとい
う本発明の要請を満たすことができない。タールで被覆
して得られる室温で固体の複合組成物が粉砕、造粒、成
形の工程のいずれかで軟化/溶融する場合は、該前駆体
化合物の被覆工程に加熱処理及びもしくは真空処理によ
って軟化点の低下に寄与している軽沸点留分を予め除去
する工程を付加する必要がある。係る被覆及び軽沸点成
分除去工程を同時に達成する手段として加熱型混練り機
をあげることができる。
【0034】造粒は常温での湿式造粒が好ましい。噴霧
造粒では通常重質組成物が溶融軟化する温度域を通過す
るため粉体の溶融と大粒化が起き、本発明の要請する物
性を満たせなくなる。湿式造粒では該複合組成物粉体を
水及びポリエチレングリコール、蔗糖、メチルセロルー
ス及び高分子凝集剤等の化合物群から選ばれた少なくと
も1種類の粒子相互粘着用添加剤を含む水溶液を用いて
攪拌混合造粒に供して、最大造粒が0.5mm以下の造
粒体を得て、これを該重質組成物が溶融軟化しない温度
域で乾燥・脱水して所望の造粒粉体が得られる。この場
合も混合・造粒槽を水冷等の手段で冷却することで混合
・造粒時に発生する熱を除去して自己焼結性炭素前駆体
物質の軟化/溶融を抑制する手法を併用することができ
る。
【0035】本発明の目的とする生成形体の機械加工で
複雑形状を賦与する手法においては、主たる骨材が熱伝
導性に優れた黒鉛質炭素粒子の為、切削加工時の発熱は
ある程度生成形体全体に放散される。従って極めて低速
で(例えば幅1mm、深さ1mmの溝を切削速度<10
cm/分)溝を切る操作では切削冶具に空気を吹き付け
る程度の冷却操作で所望の形状を得ることができる。し
かし本発明が目的とする高速且つ効率的な機械加工、例
えば1mm間隔に設置された100本に及ぶ1mm幅の
鋸状冶具を用いて深さ一mmの溝を切削速度100cm
/分で生平板面に刻印する加工工程では発熱>>熱放散
となり、自己焼結性前駆体物質、具体的にはタールや蒸
留ピッチが軟化/溶融し、結果として加工形状が失われ
るまたはその加工精度の信頼性が著しく損なわれること
が見出された。
【0036】本発明者等は係る問題点を解決する手段と
して切削加工冶具及びその加工対象に冷水、液化炭酸ガ
ス、液体窒素ガス、微粒ドライアイス等を接触させるこ
とを試み、目的とする高速切削加工が可能となることを
見出した。使用される冷却媒体は切削加工速度で選択で
きる。低速の場合は水または冷水を選択できる。高速に
なるに従って液化炭酸ガス、液体窒素ガス、微粒ドライ
アイスから適切な媒体を選択できる。係る工作機械に一
般的に用いられる切削油はタールや蒸留ピッチの全部ま
たは一部を溶かし去るので本発明の目的に合致せず、用
いることはできない。20cm角で厚みが2〜3mm程
度の薄肉板状生成形体の板両面への高速機械加工により
燃料電池セパレータ板の複雑形状を従来技術で採用され
ている炭素化素材の機械加工速度の10倍以上の速度で
刻印することが本発明の方法によって可能となった。
【0037】本発明の方法で複雑形状を刻印された生成
形体は炭素化によって製品となる。本発明の手法では生
成形体と炭素化成形体の寸法が実質変化しないことが特
徴であり、炭素化成形体が炭素化時収縮を原因とする歪
みや割れなどが炭素化成形体に発生せず、焼成品をその
まま製品として用いることができる。以上の本発明を纏
めれば、本発明は以下の通りである。
【0038】即ち、本発明は石炭系タール、石油系ター
ル、石炭系ピッチ、石油系ピッチからなる群から選ばれ
た炭素化時に自己焼結性を呈する自己焼結性炭素質前駆
体化合物を含有するγ成分(キノリン可溶トルエン不
溶)が5%未満の重質組成物及び天然黒鉛、人造黒鉛か
らなる群から選ばれた少なくとも1種類の平均粒径が1
0〜70μmの黒鉛質炭素微粒子を混練して該重質組成
物で該黒鉛質炭素微粒子を被覆して得られる室温で固体
状態にある複合組成物を粉砕(解砕)し、造粒し、得ら
れた重質組成物被覆黒鉛質炭素微粒子からなる直径0.
5mm以下の粒からなる造粒粉体をプレス成形し、得ら
れた生成形体を、機械加工、炭素化して複雑形状を有す
る炭素・黒鉛複合成形体を製造する方法に於いて、該粉
砕(解砕)及び該機械加工工程で使用する粉砕(解砕)
冶具及び該加工冶具並びにこれに接する該複合組成物及
び該生成形体部位周辺を該重質組成物が溶融しない温度
域に冷却しつつ粉砕(解砕)及び機械加工することを特
徴とする複雑形状炭素・黒鉛複合成形体の製造方法を要
旨とするものである。
【0039】
【発明の実施の形態】以下本発明を更に詳細に説明す
る。実施態様を、原料、混合/造粒、成形、加工、焼成
系に大別して説明する。 原料とその複合化系 (1)黒鉛質炭素微粒子として鱗片状及び土状天然黒鉛
及び人造黒鉛からなる群から選ばれた少なくとも1種類
の黒鉛質炭素微粒子を用いることができる。黒鉛の物性
及び供給安定性の両面で人造黒鉛がより好ましい。好ま
しい人造黒鉛として例えばティムカル社製KSシリーズ
をあげることができる。黒鉛成形体製造業から供給され
る各種人造黒鉛も対象として選択することができる。天
然黒鉛としては日本黒鉛社製CPB及びその化学精製品
をあげることができる。
【0040】(2)黒鉛質炭素微粒子の粒径は成形性の
観点からは幅広く選択できる。しかし、体積固有抵抗、
熱伝導度、成形体強度、生成形体と焼成成形体の寸法安
定性及びガス透過率などの諸物性値を同時に満たす観点
からは余り大きくても小さくても本発明の目的に合致し
なくなる。黒鉛微粒子の平均粒径は10〜70μm、好
ましくは15〜50μmの範囲から選ぶことができる。
セパレータ板の溝部分の形状が微細になり、寸法精度や
ガス透過率の要求が厳しくなると小粒径黒鉛が選択され
る。黒鉛粒子径が小さくなればなるほど後述する強度発
現機構から自己焼結性炭素質化合物の量を増やすか、そ
の平均粒子径を小さくする選択がなされる。
【0041】(3)黒鉛含有量は幅広く選択できるが、
生成形品と炭素化成形品の寸法が同じになるように設定
するためには混合物の90〜50重量部、好ましくは8
5〜60重量部、更に好ましくは80〜65重量部を選
択することができる。なお、この黒鉛含有量範囲は自己
焼結性炭素質前駆体化合物の炭素化時焼結物性に支配さ
れる因子でもあり、自己焼結性炭素質前駆体化合物特性
をも踏まえて総合的に決定される。当然のことであるが
黒鉛質炭素含有量が高いほど電気伝導度及び熱伝導度等
の黒鉛由来特性が向上する余地がある。しかし自己焼結
性炭素質前駆体化合物の焼結特性や後述する平均粒子径
等が不適切であると、炭素化成形体が膨潤して折角の黒
鉛質炭素固有の特性を生かせなくなることもあるので、
適切な設計を要する。
【0042】(4)本発明で用いることができる自己焼
結性炭素質前駆体化合物は種々市販されている。石炭系
及び石油系由来のタール、及びこれらを蒸留して得られ
るタールピッチであってそのγ成分含有量が5%未満、
好ましくは3%未満の製品をあげることができる。
【0043】(5)自己焼結性炭素質前駆体化合物のう
ちタールや軽沸点留分を大量に含有する蒸留タールを用
いる場合は、前駆体化合物で黒鉛質炭素微粒子を被覆し
て得られる複合組成物に含有される軽沸点留分を除去し
て該複合化組成物の軟化溶融点が少なくとも50〜70
℃以上になるように設定する。具体的な手法として加熱
型混練機の使用があげられる。前駆体化合物が液化する
条件で黒鉛質炭素微粒子と混練して該黒鉛質炭素微粒子
表面を前駆体化合物で被覆した後に混練温度を上げて前
駆体化合物に含有される軽沸点留分を留去する事で目的
が達成される。空気や窒素ガスを吹き込んで軽沸点留分
の留去を促進することも本発明の技術範囲である。但し
空気を吹き込む場合は前駆体化合物が酸素を取り込む温
度域迄は昇温しないことが要請される。該前駆体化合物
が酸素を取り込むと薄膜故に自己焼結性が損なわれ本発
明の目的を達成できなくなる。自己焼結性は本発明の実
施において炭素・黒鉛複合成形体の曲げ強度やガス透過
率及び腐食電流値を支配する重要な因子であり、自己焼
結性の維持は原料調製段階で十分配慮すべき事項であ
る。
【0044】粉砕/造粒系 セパレータ厚みは燃料電池システムの重要支配因子であ
り、体積固有抵抗由来の内部発熱損失を支配する重要因
子でもあり、当然薄いほど好ましい。本発明の主旨から
は例えば冷間等方圧プレス(Cold Isotact
icPress(CIPと略記される))でブロックを
作って薄板を切りだしていく方法をその実施態様に含む
ことはできる。しかし自動車積載用固体高分子型燃料電
池のセパレータ板のように大量の平板製品を必要とする
用途向けには、まず所望厚みの平板をプレス成形した後
に高速機械加工を施す手法が本発明の目的を達成する好
ましい実施態様である。従ってプレス成形で所望の厚み
を有する平板を高速且つ均一厚みで製造するにおいては
造粒粉体の流れ性賦与が重要な因子となる。
【0045】(6)造粒粉体の流れ性を賦与するために
は該前駆体化合物で被覆された黒鉛質炭素微粒子からな
る複合組成物を粉砕(解砕)工程で該黒鉛質炭素微粒子
の粒径分布を考慮した粒度に整えた後に、製造工程で該
自己焼結性炭素前駆体化合物が溶融軟化しない温度域で
操業されることを特徴とする湿式造粒工程に供して0.
5mm以下、好ましくは0.3mm以下の粒径の造粒粉
体に変換することが本発明のより好ましい実施態様とな
る。
【0046】粉砕(解砕)機は種々機種から選択でき
る。ハンマーミル、ピンミルで代表される粉砕機から適
切な機種と操作条件を選ぶことで本発明の目的は達成さ
れる。粉砕(解砕)に伴う発熱は自己焼結性炭素前駆体
化合物の軟化・溶融をもたらし、粉砕を実質不可能にす
る場合もあり、冷却粉砕(解砕)が好ましい。冷却手段
としては粉砕機外套を冷却することを具体的対応方法と
してあげることができる。より好ましい対応方法として
ドライアイス微粒子を共粉砕する方法をあげることがで
きる。
【0047】(7)本発明者等はハイスピードミキサー
(深江パウテック社製)で造粒条件を探索した。造粒は
粉砕(解砕)が終了した粉体に攪拌状態で造粒液を添加
することで達成される。造粒液は様々な形態を選択する
ことができる。もっとも単純な造粒液は水である。ただ
し水造粒の混合乾燥後に得られる造粒粉体は崩壊しやす
い。従って大きなコンテナーで造粒粉体を輸送するよう
な製造形態には不向きであるが、造粒・乾燥・成形がシ
ステム化されている工場では水造粒でも所望の機能が得
られる。また、高分子凝集剤、ポリエチレングリコー
ル、メチルセルロース、蔗糖等水溶性と粘結性を兼ね備
えた各種化合物を粘結助剤として水に添加することでよ
り強度の高い造粒粉体を得ることができる。
【0048】セパレータ内に残存して電気化学反応に関
与することで腐食や発熱を起こすような元素を含まない
粘結助剤を選択することで目的は達成される。ただし、
ここで得られる造粒粉体の強度が高すぎるとプレス成形
工程で所定圧力で成形しても粒が崩壊しなくなる。極端
な場合成形体断面は造粒粒子の結合体として観察され
る。このような場合にはガス透過率に代表される所望物
性が満たされなくなる。従って粘結助剤の添加量はそれ
ぞれの物性に合わせて最適化する必要がある。具体的に
はメチルセルロース、高分子凝集剤やポリエチレングリ
コール系では重合度に関係なく外割で0.05〜1.0
%、好ましくは0.1〜0.5%が選択される。蔗糖で
は外割で0.1〜10%、好ましくは0.5〜5%、よ
り好ましくは1〜3%が選択される。
【0049】添加量の差はポリエチレングリコールでは
乾燥状態で強固な膜を形成するのに対して蔗糖は無数の
ひび割れが入った膜を形成することに起因する。即ちポ
リエチレングリコールでは強固な膜がプレス与圧時に粒
の崩壊を阻止する方向に働くのでその添加量を極力少な
くすることが必要である。一方、ポリエチレングリコー
ルを添加すると通常の取り扱い時に粒は崩壊し難いので
極めて安定した流れ性が確保される。この造粒粉体は自
動プレスでの一般的な材料均一充填法に十分対応でき
る。蔗糖やメチルセルロースでも同じ効果が期待でき
る。更にこれらの系では炭素化時その一部が炭素として
成形体に残存し、炭素粒及び黒鉛粒の粘結剤として作用
するので成形体強度の向上に寄与する。
【0050】造粒粉体は重質組成物が溶融軟化しない温
度域での乾燥・脱水工程を経た後にプレス成形に供され
る。水分を含んだままでも成形することができるが、自
動成形には適さない形態であることは当業者には自明の
ことである。ハイスピードミキサーのような機器では外
套を適切な温度に制御して溶融軟化を防ぐ条件を賦与す
ることができる。またマグネトロン乾燥装置を付与して
造粒粉体の乾燥を行うことができる。この場合水分は内
部から蒸発するので造粒粉体内部に無数の気孔を形成す
ることができ、成型与圧によって粒の崩壊を一層促進す
ることができる。また、流動層連続乾燥機及びこれにマ
グネトロン乾燥装置を付加した乾燥装置でも同様の効果
を得ることができる。
【0051】成形/加工系 炭素成形材料を扱う者においては自明のことであるが、
燃料電池セパレータ板に要求される複雑な形状を炭素化
または黒鉛化した板の上に形成することは極めて難し
く、工作機械を長時間占有する結果として高価な製品に
ならざるを得ないのである。ましてやグラッシーカーボ
ンを主体として高硬度素材においては量産は極めて難し
い。本発明の目的は係る複雑な形状をプレス成形された
平板上の生成形体に炭素工業で一般的に使用されている
工作機器で高速且つ効率的に形成することを特徴とす
る。
【0052】本発明の目的は自己焼結性炭素前駆体化合
物で被覆された黒鉛質炭素微粒子からなる複合組成物か
らなる通常は機械加工に供すると軟化溶融する複合組成
物から得られた生成形体を高速且つ効率的な機械加工に
供する手段を提供することにある。工作機械としてはエ
ンドミル、旋盤等を挙げられる。切削加工は加工冶具及
び被加工物を冷却した状態で行うことができる。冷却媒
体として水、液体炭酸ガス、液体窒素ガス、微粒化ドラ
イアイス等をあげることができる。冷却媒体は加工冶具
数、加工速度、加工深さ等の要素を総合的に加味して最
適なものが選択される。工作機械に使用される機械オイ
ルは生成形体の変形をもたらすので用いることはできな
い。
【0053】多数の刃を有する鋸状切削冶具を複数用い
た加工機械では通常の炭素製品加工速度の10〜100
倍が得られる。本発明の手法に従えば少数の加工機械で
大量のセパレータ板の超精密加工が容易にできるため、
そのコストダウン効果は極めて大きくなる。側面の穴や
溝なども容易に形成できるのでプレス一発成形と同様の
コスト削減効果が期待できる。またプレス成形では到達
できないレベルの厚みのばらつき精度が要求される場合
には冷却状態で生平板を鉋掛け装置にて表裏を一定寸法
に削りだした後で複雑形状加工工程に投入することで、
鉋掛け工作機械の保有する精度の範囲で安定した寸法精
度を有する製品を製作できる。また造粒粉体の金型への
充填を細分化する方法を用いることで複雑形状を有し、
焼成時に収縮歪みを起こさない生成形体をプレス成形で
得ることもできる。
【0054】焼成系 本発明では自己焼結性炭素質前駆体化合物が炭素質炭素
になる温度まで不活性雰囲気下で熱処理を行うことで製
品を得ることができる。自己焼結性炭素質前駆体化合物
は900℃前後で水素を放出して炭素化を終了すること
が一般的に知られている。従って通常の炭素化温度とし
て知られている1000℃まで加熱処理すれば炭素化は
完了する。しかし本発明での炭素化温度は1100〜1
800℃、好ましくは1150〜1600℃、更に好ま
しくは1200〜1500℃から選択される。
【0055】従来の炭素化温度より高い温度を選択する
理由は腐食電流の低減にある。即ちプロトン型燃料電池
では燐酸であれ高分子膜に硫酸基が固定された固体高分
子型高分子であれ作動状態のセパレータ板には電流が流
れ、水分とプロトンが共存しているために、作動温度の
差がもたらす多寡はあれ、黒鉛結晶や炭素結晶の端面に
存在する官能基での電気化学反応が起こり、それが腐食
電流として観察される。また腐食電流によって黒鉛や炭
素の結晶組織が破壊されることによって極端な場合セパ
レータ板がぼろぼろになる現象が起きる。特に黒鉛結晶
端面は多くの官能基があることは良く知られており、こ
こが腐食電流の発生源になる。また、炭素質炭素も炭化
が不十分な場合に残存する官能基によって腐食電流反応
が生起される。
【0056】本発明の腐食電流対策として以下をあげる
ことができる。まず、黒鉛結晶端面官能基の反応阻害に
関しては自己焼結性炭素質前駆体化合物で黒鉛端面を被
覆して得られる被覆の炭素化焼結によって黒鉛結晶端面
を保護してその反応性を低下させることができる。次に
炭素化温度を上記範囲に設定することで、炭素質炭素結
晶及び黒鉛質炭素結晶の官能基を予め除去し、大量の官
能基が残存するときに起きる電気化学反応の加速度的進
行を抑え長時間の安定性を確保することができる。特に
好ましい温度範囲1200〜1500℃を選択すると初
期腐食電流値は1000℃焼結時の1/10以下に激減
し、長時間の作動でも許容範囲内の電流値にて推移す
る。
【0057】一方初期腐食電流値を高める原因として成
形時に使用するBNがあげられるので、これは使用しな
いか極力その使用量を削減することが好ましい。本発明
の複合組成物中の自己焼結性炭素質前駆体化合物含有重
質組成物は軽沸点留分を多く含むため、本発明の生成形
体は炭素化温度域50〜500℃、特に70〜300℃
で軽沸点留分及び炭素化時分解生成物を主体とするガス
を大量に発生する。このとき単位時間、単位面積当たり
のガス発生量が発生ガスが成形体部から抜け出す量を上
回ると成形体内部のガス圧が上昇し、これが成形体の膨
潤をもたらし、曲げ強度、ガラス透過率、電気伝導度な
どの諸物性を悪化させるのみならず、時として製品の形
態を失することになる。
【0058】また速やかな昇温によって自己焼結性炭素
質前駆体化合物自体が軟化溶融すると複雑な形状の変形
や喪失が起きる。従って炭素化時の昇温速度は自己焼結
性炭素質前駆体化合物の軽沸点留分含有量、複合組成物
中の含有量、成形体の面積や成形圧等の因子を勘案して
最適化される。これらの手法は当業者には公知の技術範
囲であるが、本発明の生成形体の昇温速度を50〜50
0℃の炭素化温度範囲では0.01〜3℃/分で、好ま
しくは0.02〜2℃/分、より好ましくは0.05〜
1℃/分の範囲に設定することで製品自体の軟化溶融を
回避しつつ所望の炭素化が達成される。
【0059】成形圧の上昇及び生形成体の面積の増加に
対応して50〜500℃温度域での昇温速度の低減化を
計る必要がある。200〜400℃の温度域での炭素化
時に、成形体に外部から酸素が接触すると自己焼結性炭
素質前駆体化合物が酸素を吸収して酸素含有炭素質化合
物に変質した上で炭素質炭素になる。この場合酸化を受
けずに炭素質炭素になる化合物との間で炭素化時線収縮
率に差ができる為製品の歪みや破壊をもたらすことにな
る。従って該温度域で炭素化中は酸素と成形体との接触
を抑止することが必要になる。この温度域での酸素侵入
抑止法として、従来から知られている技術であるが、不
活性ガス(窒素ガスが好ましい)雰囲気炭素化があげら
れる。
【0060】また通常用いられる炭素化充填物である
「コークスプリーズ」はこの温度域での酸素侵入抑止能
力を有さないので、本発明者らが特開平5−18626
5号公報で開示したコークスプリーズに亜麻仁油を混ぜ
て得た酸素透過抑止層を容器上部に設置して500℃領
域までの酸素侵入を実質零とする方法も利用することが
できる。600℃以上の炭素化は0.5〜10℃/分の
範囲の昇温速度から成形体性状にあわせて任意に選択す
ることができる。ここでは炭素化最終段階での水素の脱
離が起きるが、すでに強度的に向上した段階での脱離で
あり、ガス流路も確保されていることから軽沸点留分ガ
ス及び炭素化時分解ガス発生時に要求される緩速昇温は
炭素化原理上必要としない。耐火煉瓦連続焼成炉のよう
な雰囲気ガスの酸素含有量が数%以上の設備では500
℃以上の領域での酸化防止処置を行う必要があるが、炭
化ホウ素、硼砂、鉄などを含有するコークスプリーズで
ガス不透過性容器の開放上部を被覆することで所望の抑
止効果が賦与される。
【0061】
【実施例】以下に実施例をあげて本発明の内容を具体的
に説明する。 実施例1 コールタールを蒸留して得られる溶融温度70℃の蒸留
タールピッチ粗砕品3kg、日本黒鉛社製CPB(天然
黒鉛)5kgを90℃に保持した混練り槽内容量15L
の2軸スクリュウ式加熱型混練り機に装入し、窒素ガス
で槽内部を置換しつつ物温が90℃に達した後更に15
分間混練りした後に混練り槽温度を130℃に昇温して
2時間保持した。混練り槽を強制冷却しつつ2軸スクリ
ュウを回転させて得た粗砕複合組成物を混練り機外に排
出した。得られた粗粉砕品100重量部に3重量部のド
ライアイス微粒を加えつつ鑓屋粉砕機で解砕し、平均粒
径50μmの粉砕複合組成物を得た。
【0062】該複合組成物300gを外套温度を冷水循
環機を用いて10℃に設定した深江パウテック社製ハイ
スピードミキサー(LFS−GS−2J型)に投入し、
アジテータ回転数2000rpm、チョッパー回転数平
均500rpmで攪拌しつつ、蔗糖2.5g、水50g
からなる造粒用水溶液を2分間で注入し、3分間造粒を
継続した。得られた造粒粉体を50℃に設定した熱風循
環型乾燥機で乾燥し、室温に冷却した。網目0.425
mmの篩で篩上を分離した。99%以上が篩下として回
収された。2軸600トン型プレス機に縦200.0m
m×横200.0mmの金型を設置し、平滑面を有する
上下部押し型を用い、篩下造粒体216gを投入し、ガ
ス抜き操作後1トン/cm2 の成形圧で成形し、厚み
3.3mmの平板生成形体を得た。
【0063】該生成形体をエンドミル加工に供した。加
工刃直近に加工刃と一緒に動くことができる液体炭酸ガ
ス吹き出しノズルを設置し、加工刃とその周囲に液体炭
酸ガスを吹きかけつつ、2枚刃の直径1mmのドリルを
2500rpm、走行速度320mm/分で運転し、両
端を30mm残して溝幅2mmで深さ1mm、幅1mm
の溝を両面に刻んだ。溝は表裏で直交する形式を採用し
た。加工済み生成形体重量は187gであった。ステン
レス容器に設置した平滑面を有する厚み50mmの黒鉛
板で加工済み生成形体上下を挟み、周囲をコークスプリ
ーズで覆い、上部はコークスプリーズに亜麻仁油を混ぜ
た酸化防止層を設置した。マッフル炉に容器を設置し蓋
の上部からプリーズ層に導入されたアルミナパイプから
5L/分の供給速度で窒素を供給しつつ毎分0.05℃
の昇温速度で室温から500℃迄昇温し500℃で2時
間保持した後に毎分1℃の昇温速度で1200℃まで加
熱し2時間1200℃に維持した後に炉冷した。得られ
た炭素化成形体重量から蒸留タールピッチ基準の炭素化
収率は60重量%であった。炭素化成形体は平面方向で
金型寸法に比べて0.1%の線収縮率を与えた。エンド
ミルで形成された溝はそのまま炭素化され、歪み、曲が
り及び部分破壊は認められなかった。
【0064】平面部分から長さ100mm、幅10mm
の試験片を切削加工で切り出して、3点曲げ試験を行い
曲げ強度3.5kgf/mm2 を得た。平面部分から5
0mm角の試験片を切り出し窒素を使って背圧1kg/
cm2でガス透過率を求め、3×10-5Ncc/分/c
2 を得た。また該試験片を油化電子社製ロレスタを用
いて体積固有抵抗を測定し、1.3mΩ・cmを得た。
平面部分から10mm×10mmの試験片を切り出して
腐食電流を測定し、1000分後に60μA/cm2
得た。
【0065】
【発明の効果】本発明方法に従えば、炭素化前の生成形
体は炭素化によって寸法、形状に変化を生じることがな
いので、曲げ強度、電気伝導度、熱伝導度、ガス透過性
等燃料電池セパレータ板に要求される種々の特性を満し
た複雑形状を有する炭素・黒鉛複合成形体を安価に、効
率よく製造することができる。
フロントページの続き Fターム(参考) 4G032 AA04 AA09 BA04 GA01 GA02 GA03 GA04 GA06 GA08 GA12 GA14 4G046 EA02 EA05 EB04 EB06 EC01 EC05 4H058 DA02 DA03 DA06 DA13 EA32 EA33 EA34 EA35 FA08 FA18 FA22 HA06 HA13 5H026 AA04 BB00 BB01 BB02 BB04 BB06 BB08 EE06 EE18 HH01 HH05 HH08

Claims (14)

    【特許請求の範囲】
  1. 【請求項1】 石炭系タール、石油系タール、石炭系ピ
    ッチ、石油系ピッチからなる群から選ばれた炭素化時に
    自己焼結性を呈する自己焼結性炭素質前駆体化合物を含
    有するγ成分(キノリン可溶トルエン不溶成分)が5%
    未満の重質組成物及び天然黒鉛、人造黒鉛からなる群か
    ら選ばれた少なくとも1種類の平均粒径が10〜70μ
    mの黒鉛質炭素微粒子を混練して該重質組成物で該黒鉛
    質炭素微粒子を被覆して得られる室温で固体状態にある
    複合組成物を粉砕(解砕)し、造粒し、得られた重質組
    成物被覆黒鉛質炭素微粒子からなる直径0.5mm以下
    の粒からなる造粒粉体をプレス成形し、得られた生成形
    体を、機械加工、炭素化して複雑形状を有する炭素・黒
    鉛複合成形体を製造する方法に於いて、該粉砕(解砕)
    及び該機械加工工程で使用する粉砕(解砕)冶具及び該
    加工冶具並びにこれに接する該複合組成物及び該生成形
    体部位周辺を該重質組成物が溶融しない温度域に冷却し
    つつ粉砕(解砕)及び機械加工することを特徴とする複
    雑形状炭素・黒鉛複合成形体の製造方法。
  2. 【請求項2】 該重質組成物のγ成分含有量が3%未満
    である請求項1記載の複雑形状炭素・黒鉛複合成形体の
    製造方法。
  3. 【請求項3】 該重質組成物で該黒鉛質炭素微粒子を被
    覆して得られる該複合組成物を該粉砕(解砕)に先立ち
    該重質組成物に含まれる軽沸点留分を所要量除去する操
    作を行う請求項1記載の複雑形状炭素・黒鉛複合成形体
    の製造方法。
  4. 【請求項4】 造粒操作が水または高分子凝集剤、ポリ
    エチレングリコール、蔗糖、メチルセルロースから選ば
    れた少なくとも1種類の粒子相互結着用添加剤を含む水
    溶液を用い、該重質組成物が軟化/溶融しない温度条件
    下、撹拌混合造粒して、最大粒直径が0.5mm以下の
    造粒粉体を得て、次いで該重質組成物が軟化/溶融しな
    い温度域での水分除去操作を施して乾燥造粒粉体とする
    ことから成る請求項1に記載の複雑形状炭素・黒鉛複合
    成形体の製造方法。
  5. 【請求項5】 プレス成形が一軸プレス、二軸プレス、
    ロータリープレスから選ばれた一つの成形機器を用い、
    必要に応じてニアネットシェイプ成形を伴う成形をおこ
    なう請求項1記載の複雑形状炭素・黒鉛複合成形体の製
    造方法。
  6. 【請求項6】 冷却しつつ粉砕(解砕)する操作が粉砕
    機器を冷却することによって行う請求項1記載の複雑形
    状炭素・黒鉛複合成形体の製造方法。
  7. 【請求項7】 冷却しつつ粉砕(解砕)する操作が該複
    合組成物と微粒子ドライアイスの共粉砕(解砕)である
    請求項1記載の複雑形状炭素・黒鉛複合成形体の製造方
    法。
  8. 【請求項8】 冷却しつつ加工する工程で水、液化炭酸
    ガス、液化窒素ガス、微粒化ドライアイスからなる群か
    ら選ばれた少なくとも1種類を冷却媒体に用いる請求項
    1記載の複雑形状炭素・黒鉛複合成形体の製造方法。
  9. 【請求項9】 複雑形状炭素・黒鉛複合成形体が自己焼
    結性炭素質前駆体由来の炭素質炭素が10〜40重量部
    及び黒鉛質炭素微粒子由来の黒鉛質炭素が90〜60重
    量部で構成されている請求項1記載の複雑形状炭素・黒
    鉛複合成形体の製造方法。
  10. 【請求項10】 複雑形状炭素・黒鉛複合成形体が自己
    焼結性炭素質前駆体由来の炭素質炭素が15〜30重量
    部及び黒鉛質炭素微粒子由来の黒鉛質炭素が85〜70
    重量部で構成されている請求項1記載の複雑形状炭素・
    黒鉛複合成形体の製造方法。
  11. 【請求項11】 炭素化が非酸素雰囲気下で行われる請
    求項1記載の複雑形状炭素・黒鉛複合成形体の製造方
    法。
  12. 【請求項12】 黒鉛質炭素微粒子の平均粒径が15〜
    50μmである請求項1記載の複雑形状炭素・黒鉛複合
    成形体の製造方法。
  13. 【請求項13】 炭素化の最高温度が1200〜160
    0℃である請求項1記載の複雑形状炭素・黒鉛複合成形
    体の製造方法。
  14. 【請求項14】 非酸素雰囲気下での炭素化が生成形体
    をガス不透過性容器のコークスブリーズ中に埋設し容器
    上部をアマニ油含浸コークスブリーズで被覆した系で実
    施される請求項11記載の複雑形状炭素・黒鉛複合成形
    体の製造方法。
JP11182289A 1999-06-28 1999-06-28 複雑形状炭素・黒鉛複合成形体の製造方法 Pending JP2001019547A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11182289A JP2001019547A (ja) 1999-06-28 1999-06-28 複雑形状炭素・黒鉛複合成形体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11182289A JP2001019547A (ja) 1999-06-28 1999-06-28 複雑形状炭素・黒鉛複合成形体の製造方法

Publications (1)

Publication Number Publication Date
JP2001019547A true JP2001019547A (ja) 2001-01-23

Family

ID=16115688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11182289A Pending JP2001019547A (ja) 1999-06-28 1999-06-28 複雑形状炭素・黒鉛複合成形体の製造方法

Country Status (1)

Country Link
JP (1) JP2001019547A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242196A (ja) * 2008-03-31 2009-10-22 Ibiden Co Ltd 黒鉛製弾性体及びその製造方法
KR101079666B1 (ko) 2009-06-23 2011-11-03 극동씰테크 주식회사 그라핀-피치 복합체 제조 방법 및 탄소블록 제조 방법
KR101169389B1 (ko) * 2010-06-29 2012-07-30 극동씰테크 주식회사 코크스의 자기소결성을 이용한 탄소복합재, 그 제조방법 및 이를 이용한 연료전지 분리판
WO2012161410A1 (ko) * 2011-05-26 2012-11-29 금오공과대학교 산학협력단 흑연블록의 제조방법
CN102887497A (zh) * 2011-07-19 2013-01-23 无锡中强电碳有限公司 碳石墨材料一次成型的生产方法
KR101891197B1 (ko) * 2017-04-11 2018-08-23 주식회사 포스코 원료 저장 장치 및 그 저장방법
CN110437862A (zh) * 2019-09-04 2019-11-12 北京旭阳科技有限公司 一种中间相沥青焦的制备方法、中间相沥青焦、负极材料及锂电池
RU2748329C1 (ru) * 2020-08-20 2021-05-24 Публичное акционерное общество "Авиационная корпорация "Рубин" Способ получения самосмазывающегося материала на основе искусственного мелкозернистого графита
CN114478012A (zh) * 2021-12-29 2022-05-13 宁波伏尔肯科技股份有限公司 一种碳部件制造方法及其制造的碳部件
CN116565199A (zh) * 2023-04-18 2023-08-08 湖南钠能时代科技发展有限公司 一种钠离子电池碳负极材料复合颗粒及其制备方法和装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242196A (ja) * 2008-03-31 2009-10-22 Ibiden Co Ltd 黒鉛製弾性体及びその製造方法
KR101079666B1 (ko) 2009-06-23 2011-11-03 극동씰테크 주식회사 그라핀-피치 복합체 제조 방법 및 탄소블록 제조 방법
KR101169389B1 (ko) * 2010-06-29 2012-07-30 극동씰테크 주식회사 코크스의 자기소결성을 이용한 탄소복합재, 그 제조방법 및 이를 이용한 연료전지 분리판
WO2012161410A1 (ko) * 2011-05-26 2012-11-29 금오공과대학교 산학협력단 흑연블록의 제조방법
CN102887497A (zh) * 2011-07-19 2013-01-23 无锡中强电碳有限公司 碳石墨材料一次成型的生产方法
KR101891197B1 (ko) * 2017-04-11 2018-08-23 주식회사 포스코 원료 저장 장치 및 그 저장방법
CN110437862A (zh) * 2019-09-04 2019-11-12 北京旭阳科技有限公司 一种中间相沥青焦的制备方法、中间相沥青焦、负极材料及锂电池
RU2748329C1 (ru) * 2020-08-20 2021-05-24 Публичное акционерное общество "Авиационная корпорация "Рубин" Способ получения самосмазывающегося материала на основе искусственного мелкозернистого графита
CN114478012A (zh) * 2021-12-29 2022-05-13 宁波伏尔肯科技股份有限公司 一种碳部件制造方法及其制造的碳部件
CN116565199A (zh) * 2023-04-18 2023-08-08 湖南钠能时代科技发展有限公司 一种钠离子电池碳负极材料复合颗粒及其制备方法和装置
CN116565199B (zh) * 2023-04-18 2024-02-13 湖南钠能时代科技发展有限公司 一种钠离子电池碳负极材料复合颗粒及其制备方法和装置

Similar Documents

Publication Publication Date Title
US4327186A (en) Sintered silicon carbide-titanium diboride mixtures and articles thereof
CN106699182B (zh) 一种耐高温氧化、耐高温强碱腐蚀石墨制品的制备方法
US3346678A (en) Process for preparing carbon articles
CN102898156B (zh) 一种钢包渣线镁碳砖及其制备方法
CN1145089A (zh) 用于石墨电极的针状焦炭及其生产方法
CN112266248B (zh) 一种利用低质石墨原料制备石墨坩埚的方法
JP2001019547A (ja) 複雑形状炭素・黒鉛複合成形体の製造方法
CN115583835A (zh) 一种低气孔率高机械强度炭石墨材料及其制备方法
CN109609087A (zh) 一种高散热磨料及其制备方法
CN105152653A (zh) 一种抗腐蚀碳化硅棚板及其制备方法
JP4311777B2 (ja) 黒鉛材の製造方法
JP4004180B2 (ja) 炭素・黒鉛複合成形体の製造方法
CN105130439A (zh) 一种高强度碳化硅棚板及其制备方法
CN105130440A (zh) 一种耐氧化碳化硅棚板及其制备方法
US20060029805A1 (en) High thermal conductivity graphite and method of making
JP2000319067A (ja) 炭素・黒鉛複合成形体
JPH0234902B2 (ja)
JP2001130963A (ja) 等方性高密度炭素材の製造方法
JPS6172610A (ja) 高密度黒鉛材の製造法
Dyatkin et al. Synthesis, structure, and properties of polymer‐derived, metal‐reinforced boron carbide cermet composites
JPS632913B2 (ja)
JP2005008436A (ja) 黒鉛材料とその製造方法及び燃料電池セパレータ
JP2566595B2 (ja) 炭素系粉体の造粒方法
KR100879332B1 (ko) 코크스 더스트를 이용한 탄소 성형체의 제조 방법
KR960008619B1 (ko) 기계적 성질이 우수한 고밀도 탄소재료의 제조방법