JP2000349212A - Heat radiator for highly integrated element - Google Patents

Heat radiator for highly integrated element

Info

Publication number
JP2000349212A
JP2000349212A JP11162118A JP16211899A JP2000349212A JP 2000349212 A JP2000349212 A JP 2000349212A JP 11162118 A JP11162118 A JP 11162118A JP 16211899 A JP16211899 A JP 16211899A JP 2000349212 A JP2000349212 A JP 2000349212A
Authority
JP
Japan
Prior art keywords
radiator
highly integrated
heat
cpu
bottom plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11162118A
Other languages
Japanese (ja)
Inventor
Shosuke Iwasaki
省介 岩崎
Masashi Takaso
正志 高祖
Takeshi Koyama
健 小山
Keiji Miki
啓治 三木
Kazumasa Tomita
和政 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP11162118A priority Critical patent/JP2000349212A/en
Publication of JP2000349212A publication Critical patent/JP2000349212A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To avoid enlarging of an element by enhancing the capability of a heat radiator used for cooling a CPU. SOLUTION: A fin part 42 comprising a plurality of parallel thin plates is brazed o the surface of a bottom plate 41. A plate-like heat-dispersion member 50 is eutectic-jointed to the rear surface of the bottom plate 41. A CPU 30 is fitted capable of heat transfer to the central part of the rear surface of the heat-dispersion member 50. The fin part 42 and the bottom plate 41 is made of aluminum. The heat-dispersion member 50 comprises copper which has superior thermal conductivity than that of aluminum, and the heating at the CPU 30 is dispersed around, allowing the fin part 42 to function evenly in the entire area in the direction of parallel thin plates.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CPUに代表され
る高集積素子の冷却に使用される放熱器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiator used for cooling a highly integrated device such as a CPU.

【0002】[0002]

【従来の技術】近年、CPUの性能は飛躍的に向上して
いるが、これに伴う発熱量の増大も顕著である。このた
め、最新の大容量のCPUには、特に高い性能の冷却手
段が必要となる。
2. Description of the Related Art In recent years, the performance of CPUs has been dramatically improved, but the amount of heat generation has been conspicuously increased. For this reason, the latest large-capacity CPU requires a particularly high-performance cooling means.

【0003】CPUの冷却には、従来よりフィン型の放
熱器が多用されている。フィン型の放熱器は、図3に示
すように、薄板11,11・・を並列させたフィン部1
0を底板20の表面上に設けた構造になっており、底板
20の裏面に接合されるCPU30の放熱を薄板11,
11・・により促進する。
For cooling the CPU, a fin type radiator has been frequently used. As shown in FIG. 3, the fin type radiator has a fin portion 1 in which thin plates 11, 11,.
0 is provided on the surface of the bottom plate 20, and the heat radiation of the CPU 30 joined to the back surface of the bottom plate 20
Promote by 11 ...

【0004】この放熱器は、従来はフィン部10と底板
20が一体化された押出成形品であったが、最近では小
型軽量化の点から、フィン部10を底板20から独立し
た別部材により構成して底板20の表面に接合した、セ
パレートタイプのものも種々考案されている。
Conventionally, this radiator is an extruded product in which the fin portion 10 and the bottom plate 20 are integrated, but recently the fin portion 10 is formed by a separate member independent of the bottom plate 20 in terms of size and weight reduction. Various types of separate type which are constructed and joined to the surface of the bottom plate 20 have also been devised.

【0005】CPU用の放熱器では、全高に対する制約
が大きい一方、平面面積に対しては、放熱器の下にも素
子の実装が可能であるため、全高に対するほどの制約は
ない。このため、全高に比して平面面積が大きい偏平な
形状が採用され、CPU30は大面積の底板20の裏面
中央部に接合される。また、放熱器の構成材料として
は、比較的純度の高いアルミニウムが、熱伝導性及び重
量の点から使用されている。
In a heatsink for a CPU, the overall height is greatly restricted, but the planar area is not as restricted as the overall height because elements can be mounted under the heatsink. For this reason, a flat shape having a larger planar area than the overall height is adopted, and the CPU 30 is joined to the center of the rear surface of the large-sized bottom plate 20. Further, as a constituent material of the radiator, aluminum having relatively high purity is used in terms of thermal conductivity and weight.

【0006】[0006]

【発明が解決しようとする課題】放熱器の性能は、平面
面積及び構成材料を同一とした場合、フィン部10を構
成する薄板11,11・・の高さ及び並列ピッチに主に
支配されるが、機械的強度及び加工上の制約のために、
セパレートタイプのものでも、薄板11,11・・の並
列ピッチの縮小には限界がある。このため、大容量のC
PUに組み合わされる放熱器では、全高増大や平面面積
の増大といったサイズアップが必要となる。
The performance of the radiator is mainly governed by the height and the parallel pitch of the thin plates 11, 11,... Constituting the fin portion 10 when the plane area and the constituent materials are the same. However, due to mechanical strength and processing constraints,
Even with the separate type, there is a limit to the reduction of the parallel pitch of the thin plates 11, 11... Therefore, a large capacity C
In the radiator combined with the PU, an increase in size such as an increase in overall height and an increase in plane area is required.

【0007】しかしながら、放熱器のサイズアップ、特
に全高の増大は、コンピュータサイズに重大な影響を及
ぼすため、容易には許容されない。また、平面面積の増
大については、後述するように、その増大に見合う性能
を得ることが困難である。このため、サイズアップによ
らない性能向上策が待望されている。
However, an increase in the size of the radiator, particularly, an increase in the overall height is not easily tolerated because it has a significant effect on the computer size. As described later, it is difficult to obtain a performance corresponding to the increase in the planar area. For this reason, there is a long-awaited need for a performance improvement measure that does not depend on an increase in size.

【0008】本発明の目的は、サイズアップによらずに
冷却性能を大幅に向上させることができる高集積素子用
放熱器を提供することにある。
It is an object of the present invention to provide a radiator for a highly integrated device which can greatly improve the cooling performance without increasing the size.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは、CPU用放熱器における熱流挙動を
詳細に調査した。その結果、CPU用放熱器では、全高
に比して平面面積が大きく、その大面積の底板の裏面中
央部にCPUが接合されるため、CPUの熱は底板で板
面に平行な方向に広がってフィン部に伝わるが、底板の
厚みを十分に大きくできない制約もあって、この板面に
平行な方向の熱流が制限され、CPU接合部から離れた
部分では、フィン部を構成する薄板が放熱に十分に寄与
しないことが判明した。
Means for Solving the Problems In order to achieve the above object, the present inventors have investigated in detail the heat flow behavior in a radiator for a CPU. As a result, in the heatsink for CPU, the plane area is larger than the total height, and the CPU is bonded to the central portion of the back surface of the large-sized bottom plate, so that the heat of the CPU spreads in the direction parallel to the plate surface at the bottom plate. However, there is a restriction that the thickness of the bottom plate cannot be made sufficiently large, so that the heat flow in the direction parallel to the plate surface is restricted, and the thin plate that constitutes the fin portion Turned out not to contribute enough.

【0010】本発明の高集積素子用放熱器は、上記知見
事実に基づいて開発されたものであり、複数枚の薄板を
並列して構成されたフィン部を有する放熱器本体と、放
熱器本体を構成する材料より熱伝導性に優れた材料から
なり、且つ、放熱器本体の薄板並列方向に平行な表面に
接合されると共に、中央部に高集積素子が伝熱可能に取
り付けられる平板状の熱拡散部材とを具備することによ
り、上記目的を達成する。
A radiator for a highly integrated device according to the present invention has been developed based on the above findings, and has a radiator body having a fin portion formed by arranging a plurality of thin plates in parallel, and a radiator body. It is made of a material having a higher thermal conductivity than the material constituting it, and is joined to the surface of the radiator body parallel to the thin plate parallel direction, and a highly integrated element is attached at the center to be capable of conducting heat. The above object is achieved by providing a heat diffusion member.

【0011】即ち、本発明の高集積素子用放熱器では、
高集積素子が平板状の熱拡散部材の中央部に伝熱可能に
取り付けられる。これにより、高集積素子で発生する熱
は、熱拡散部材を主に通って周囲に効率よく拡散する。
このため、大面積の底板の裏面中央部にCPUが接合さ
れるCPU用放熱器でも、フィン部を構成する複数枚の
薄板が均等に機能するようになる。従って、サイズアッ
プによらずに冷却性能が大幅に向上する。
That is, in the radiator for a highly integrated device of the present invention,
The highly integrated element is mounted on the central portion of the plate-shaped heat diffusion member so as to conduct heat. Thereby, the heat generated in the highly integrated element is efficiently diffused to the surroundings mainly through the heat diffusion member.
For this reason, even in the CPU radiator in which the CPU is joined to the central portion of the rear surface of the large-sized bottom plate, the plurality of thin plates constituting the fin portion function equally. Therefore, the cooling performance is greatly improved regardless of the size increase.

【0012】本発明が特に有効なのは、大容量で発熱量
が多い大型CPUに使用される大面積放熱器であり、具
体的には底面の面積が20cm2 以上のものである。ち
なみに、CPU用放熱器の寸法比率は、薄板並列方向の
寸法を1として、高さは0.5〜3程度である。
The present invention is particularly effective for a large-area radiator used for a large-capacity CPU having a large capacity and a large amount of heat generation, and more specifically, a radiator having a bottom surface area of 20 cm 2 or more. Incidentally, the dimension ratio of the radiator for CPU is about 0.5 to 3 with the dimension in the thin plate parallel direction being 1.

【0013】放熱器本体は、通常は底板の一方の表面上
に複数枚の薄板を並列して構成され、この場合、放熱器
は、その底板の他方の表面に熱拡散部材を接合する構成
となるが、底板を省略して、熱拡散部材の一方の表面に
フィン部を直接取り付けた、熱拡散部材が放熱器本体の
底板を兼ねる構成でもよい。
The radiator body is usually constituted by arranging a plurality of thin plates in parallel on one surface of a bottom plate. In this case, the radiator has a structure in which a heat diffusion member is joined to the other surface of the bottom plate. However, a configuration in which the bottom plate is omitted and the fin portion is directly attached to one surface of the heat diffusion member, and the heat diffusion member also serves as the bottom plate of the radiator body may be adopted.

【0014】放熱器の材質は、放熱器本体を構成する材
料についてはアルミニウム系金属が代表的であり、これ
に組み合わされる熱拡散部材の構成材料は、熱伝導性の
点、入手性の点などから銅系金属が好ましい。
As a material of the radiator body, a typical material of the radiator body is an aluminum-based metal, and a constituent material of a heat diffusion member combined with the radiator body is, for example, in terms of thermal conductivity and availability. To copper-based metals are preferred.

【0015】放熱器本体と熱拡散部材の接合では、伝熱
性の低下を回避するためにボイド等の発生がないことが
望まれ、そのためには接合時の加圧力を大きくするのが
有効であるが、その一方は、薄板を並列して構成された
フィン部は、機械的に軟弱であり、加圧力の増大はフィ
ン部の圧壊を招くため、その加圧力が大きく制限される
という制約がある。このため、放熱器本体と熱拡散部材
の接合法としては、一応は異材接合法として周知の拡散
接合も可能であるが、加圧を必要としない共晶接合が特
に好適である。
In joining the radiator body and the heat diffusion member, it is desirable that no voids or the like be generated in order to avoid a decrease in heat conductivity, and for that purpose, it is effective to increase the pressing force at the time of joining. On the other hand, on the other hand, the fin portion formed by arranging thin plates in parallel is mechanically weak, and an increase in the pressing force causes the fin portion to be crushed, so that the pressing force is greatly limited. . For this reason, as a joining method of the radiator body and the heat diffusion member, a diffusion joining known as a dissimilar material joining method is also possible, but eutectic joining which does not require pressurization is particularly preferable.

【0016】共晶接合は、接合される2種類の金属を密
着させて、2種類の金属の共晶温度以上に加熱保持する
ものであり、接合時に大きな加圧力を加えずとも(殆ど
無加圧でも)、共晶相を介して2種類の金属を接合する
ことができる。このため、本発明の高集積素子用放熱器
での放熱器本体と熱拡散部材の接合に、この共晶接合は
特に適する。
In the eutectic bonding, two kinds of metals to be joined are brought into close contact with each other and heated and maintained at a temperature higher than the eutectic temperature of the two kinds of metals. Pressure) can join the two metals through the eutectic phase. Therefore, this eutectic bonding is particularly suitable for bonding the radiator body and the heat diffusion member in the radiator for a highly integrated device of the present invention.

【0017】ちなみに、アルミニウムと銅の共晶温度は
548℃であり、この場合の加熱温度としては500〜
600℃が好ましい。加熱温度が低いと共晶反応が起こ
らない。加熱温度が高すぎると、共晶相が厚くなり、製
品寸法等に問題か生じる。保持時間についても同じ理由
から0.1〜1時間が好ましい。
Incidentally, the eutectic temperature of aluminum and copper is 548 ° C., and the heating temperature in this case is 500 to 500 ° C.
600 ° C. is preferred. If the heating temperature is low, no eutectic reaction occurs. If the heating temperature is too high, the eutectic phase becomes thick, which causes problems in product dimensions and the like. The holding time is preferably 0.1 to 1 hour for the same reason.

【0018】[0018]

【発明の実施の形態】以下に本発明の実施形態を図面に
基づいて説明する。図1は本発明の第1実施形態に係る
高集積素子用放熱器の正面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a front view of a radiator for a highly integrated device according to the first embodiment of the present invention.

【0019】本実施形態に係る高集積素子用放熱器は、
CPU30の冷却に使用される。この放熱器は、アルミ
ニウムからなる放熱器本体40と、銅からなる板状の熱
拡散部材50とを備えている。
The radiator for a highly integrated device according to the present embodiment comprises:
Used for cooling the CPU 30. The radiator includes a radiator body 40 made of aluminum and a plate-shaped heat diffusion member 50 made of copper.

【0020】放熱器本体40は、底板41の上面上にフ
ィン部42をろう付けしたセパレート型である。フィン
部42は、頂部と底部が垂直な側壁部を介して交互に繰
り返される波形部材であって、底板41の表面に平行な
方向に所定ピッチで並ぶ複数の側壁部により、並列する
複数の薄板を形成する。フィン部42としては、コルゲ
ートフィンの使用も可能である。
The radiator body 40 is a separate type in which a fin portion 42 is brazed on the upper surface of a bottom plate 41. The fin portion 42 is a corrugated member in which a top portion and a bottom portion are alternately repeated via a vertical side wall portion, and a plurality of thin plates arranged in parallel by a plurality of side wall portions arranged at a predetermined pitch in a direction parallel to the surface of the bottom plate 41. To form As the fin portion 42, a corrugated fin can be used.

【0021】板状の熱拡散部材50は、底板41の下面
全体に共晶接合されており、CPU30は、この熱拡散
部材50の下面中央部に接合される。熱拡散部材50の
厚みとしては3〜10mmが適当である。熱拡散部材5
0が薄すぎると、板面に平行な方向の伝熱が不十分とな
る。逆に厚すぎる場合は、無用な重量増加を招く。
The plate-shaped heat diffusion member 50 is eutectic bonded to the entire lower surface of the bottom plate 41, and the CPU 30 is bonded to the center of the lower surface of the heat diffusion member 50. An appropriate thickness of the heat diffusion member 50 is 3 to 10 mm. Heat diffusion member 5
When 0 is too thin, heat transfer in a direction parallel to the plate surface becomes insufficient. On the other hand, if it is too thick, it causes unnecessary weight increase.

【0022】CPU用放熱器では、板面に平行な方向の
寸法が大きいため、熱拡散部材50がない場合は、底板
41の板面に平行な方向の伝熱が不十分となり、フィン
部42の端縁部分では、放熱用の薄板が十分に機能しな
い。
In the radiator for CPU, since the dimension in the direction parallel to the plate surface is large, when the heat diffusion member 50 is not provided, the heat transfer in the direction parallel to the plate surface of the bottom plate 41 becomes insufficient, and the fin portion 42 In the edge portion of, the heat-dissipating thin plate does not function sufficiently.

【0023】しかるに、本実施形態に係る高集積素子用
放熱器では、CPU30で発生した熱は、主に熱拡散部
材50を通って板面に平行な方向に効率的に広がる。こ
のため、板面に平行な方向の寸法が大きいCPU用放熱
器でも、並列する複数の薄板が放熱に均等に寄与し、そ
の結果、サイズアップなしに冷却能が向上する。また、
板面に平行な方向のサイズや高さを増大した場合は、そ
の増大に見合う能力が確保される。また、同一冷却能を
確保する場合は、放熱器が小型化される。
However, in the radiator for a highly integrated device according to the present embodiment, the heat generated by the CPU 30 spreads efficiently mainly through the heat diffusion member 50 in the direction parallel to the plate surface. For this reason, even in a CPU radiator having a large dimension in a direction parallel to the plate surface, a plurality of thin plates arranged in parallel contribute to heat radiation uniformly, and as a result, the cooling capacity is improved without increasing the size. Also,
When the size or height in the direction parallel to the plate surface is increased, the ability to keep up with the increase is secured. When the same cooling capacity is to be ensured, the radiator is downsized.

【0024】共晶接合では、板面に直角な方向(薄板に
平行な方向)の加圧が実質不要のため、フィン部42の
圧壊が防止される。また、加圧を実質省略するにもかか
わらず、ボイドのない伝熱性に優れた接合部が得られ
る。
In the eutectic bonding, since the pressurization in the direction perpendicular to the plate surface (the direction parallel to the thin plate) is substantially unnecessary, the fin portion 42 is prevented from being crushed. In addition, despite the fact that the pressurization is substantially omitted, it is possible to obtain a joint having excellent heat conductivity without voids.

【0025】フィン部42は、ここでは波形部材である
が、独立する複数枚の薄板を底板41上で並列させたも
のでもよく、底板41と一体のものでもよい。
Although the fin portion 42 is a corrugated member in this case, a plurality of independent thin plates may be arranged in parallel on the bottom plate 41, or may be integrated with the bottom plate 41.

【0026】図2は本発明の第2実施形態に係る高集積
素子用放熱器の正面図である。本実施形態に係る高集積
素子用放熱器もCPU30の冷却に使用されるが、第1
実施形態に係る高集積素子用放熱器とは放熱器本体40
の構造が相違する。
FIG. 2 is a front view of a radiator for a highly integrated device according to a second embodiment of the present invention. The radiator for the highly integrated device according to the present embodiment is also used for cooling the CPU 30.
The radiator for a highly integrated device according to the embodiment is a radiator main body 40.
Are different.

【0027】即ち、本実施形態に係る高集積素子用放熱
器の放熱器本体40は、底板41を省略し、フィン部4
2の下面に熱拡散部材50を直接共晶接合した構造にな
っている。フィン部42は、頂部と底部が垂直な側壁部
を介して交互に繰り返される波形一体構造のため、底板
41がなくても、放熱器本体40と熱拡散部材50の共
晶接合が可能である。
That is, the radiator body 40 of the radiator for a highly integrated device according to the present embodiment does not include the bottom plate 41 and
2 has a structure in which a heat diffusion member 50 is directly eutectic bonded to the lower surface. The fin portion 42 has a corrugated integrated structure in which a top portion and a bottom portion are alternately repeated via a vertical side wall portion, so that eutectic bonding between the radiator body 40 and the heat diffusion member 50 is possible without the bottom plate 41. .

【0028】本実施形態に係る高集積素子用放熱器の放
熱器本体40では、冷却能力が向上するだけでなく、底
板41が省略されることにより、熱拡散部材50を追加
することによる部品コストの増大及び組立コストの増大
が回避される。
In the radiator body 40 of the radiator for a highly integrated device according to the present embodiment, not only the cooling capacity is improved, but also because the bottom plate 41 is omitted, the component cost due to the addition of the heat diffusion member 50 is reduced. And the cost of assembly are avoided.

【0029】[0029]

【発明の効果】以上に説明した通り、本発明の高集積素
子用放熱器は、放熱器本体の薄板並列方向に平行な表面
に、放熱器本体を構成する材料より熱伝導性に優れた材
料からなる平板状の熱拡散部材を接合することにより、
CPU用放熱器の場合も、実質的なサイズアップによら
ずに冷却性能を大幅に向上させることができる。従っ
て、小型化と特に高い性能が要求される大容量のCPU
用放熱器として特に好適であり、そのCPU用放熱器に
用いて、コンピュータの小型化及び性能向上に寄与す
る。
As described above, the radiator for a highly integrated device of the present invention has a material having better thermal conductivity on the surface of the radiator body parallel to the thin plate parallel direction than the material constituting the radiator body. By joining a flat heat diffusion member consisting of
Also in the case of the CPU radiator, the cooling performance can be greatly improved without substantially increasing the size. Therefore, a large-capacity CPU that requires miniaturization and particularly high performance
It is particularly suitable as a radiator for a CPU, and contributes to downsizing and performance improvement of a computer when used for the radiator for a CPU.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る高集積素子用放熱
器の正面図である。
FIG. 1 is a front view of a radiator for a highly integrated device according to a first embodiment of the present invention.

【図2】本発明の第2実施形態に係る高集積素子用放熱
器の正面図である。
FIG. 2 is a front view of a radiator for a highly integrated device according to a second embodiment of the present invention.

【図3】従来の高集積素子用放熱器の正面図である。FIG. 3 is a front view of a conventional radiator for a highly integrated device.

【符号の説明】[Explanation of symbols]

30 CPU(高集積素子) 40 放熱器本体 41 底板 42 フィン部 50 熱拡散部材 Reference Signs List 30 CPU (highly integrated device) 40 radiator main body 41 bottom plate 42 fin part 50 heat diffusion member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 健 兵庫県尼崎市扶桑町1番10号 住友精密工 業株式会社内 (72)発明者 三木 啓治 兵庫県尼崎市扶桑町1番10号 住友精密工 業株式会社内 (72)発明者 富田 和政 兵庫県尼崎市扶桑町1番10号 住友精密工 業株式会0内 Fターム(参考) 5F036 AA01 BB05 BB21 BD01 BD03 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Ken Koyama 1-10 Fuso-cho, Amagasaki-shi, Hyogo Sumitomo Precision Industries Co., Ltd. (72) Inventor Keiji Miki 1-10 Fuso-cho, Amagasaki-shi, Hyogo Sumitomo Precision (72) Inventor Kazuma Tomita 1-10 Fuso-cho, Amagasaki-shi, Hyogo F-term (reference) 5F036 AA01 BB05 BB21 BD01 BD03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数枚の薄板を並列して構成されたフィ
ン部を有する放熱器本体と、放熱器本体を構成する材料
より熱伝導性に優れた材料からなり、且つ、放熱器本体
の薄板並列方向に平行な表面に接合されると共に、中央
部に高集積素子が伝熱可能に取り付けられる平板状の熱
拡散部材とを具備することを特徴とする高集積素子用放
熱器。
1. A radiator body having a fin portion formed by arranging a plurality of thin plates in parallel, and a thin plate of the radiator body made of a material having higher thermal conductivity than a material forming the radiator body. A heat radiator for a highly integrated device, comprising: a flat heat diffusion member to which a highly integrated device is attached so as to be able to conduct heat at a center portion, the radiator being joined to surfaces parallel to the parallel direction.
【請求項2】 放熱器本体は、底板の一方の表面上にフ
ィン部を設けて構成され、熱拡散部材は、当該放熱器本
体の底板の他方の表面に接合されたことを特徴とする請
求項1に記載の高集積素子用放熱器。
2. The radiator body is provided with a fin on one surface of a bottom plate, and the heat diffusion member is joined to the other surface of the bottom plate of the radiator body. Item 4. A radiator for a highly integrated device according to item 1.
【請求項3】 高集積素子はCPUであることを特徴と
する請求項1又は2に記載の高集積素子用放熱器。
3. The radiator for a highly integrated device according to claim 1, wherein the highly integrated device is a CPU.
【請求項4】 放熱器本体を構成する材料はアルミニウ
ム系金属であり、熱拡散部材を構成する材料は銅系金属
であることを特徴とする請求項1、2又は3に記載の高
集積素子用放熱器。
4. The highly integrated device according to claim 1, wherein the material forming the radiator body is an aluminum-based metal, and the material forming the heat diffusion member is a copper-based metal. Radiator.
【請求項5】 放熱器本体と熱拡散部材の接合は共晶接
合であることを特徴とする請求項1、2、3又は4に記
載の高集積素子用放熱器。
5. The radiator for a highly integrated device according to claim 1, wherein the radiator body and the heat diffusion member are joined by eutectic bonding.
JP11162118A 1999-06-09 1999-06-09 Heat radiator for highly integrated element Pending JP2000349212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11162118A JP2000349212A (en) 1999-06-09 1999-06-09 Heat radiator for highly integrated element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11162118A JP2000349212A (en) 1999-06-09 1999-06-09 Heat radiator for highly integrated element

Publications (1)

Publication Number Publication Date
JP2000349212A true JP2000349212A (en) 2000-12-15

Family

ID=15748393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11162118A Pending JP2000349212A (en) 1999-06-09 1999-06-09 Heat radiator for highly integrated element

Country Status (1)

Country Link
JP (1) JP2000349212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7817425B2 (en) 2005-03-24 2010-10-19 Samsung Sdi Co., Ltd. Dissipating apparatus for integrated circuit chip and display module including the same
JP2019087608A (en) * 2017-11-06 2019-06-06 三菱マテリアル株式会社 Conjugate, insulation circuit board, insulation circuit board with heat sink, heat sink, and manufacturing method of conjugate, manufacturing method of insulation circuit board, manufacturing method of insulation circuit board with heat sink, and manufacturing method of heat sink

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7817425B2 (en) 2005-03-24 2010-10-19 Samsung Sdi Co., Ltd. Dissipating apparatus for integrated circuit chip and display module including the same
JP2019087608A (en) * 2017-11-06 2019-06-06 三菱マテリアル株式会社 Conjugate, insulation circuit board, insulation circuit board with heat sink, heat sink, and manufacturing method of conjugate, manufacturing method of insulation circuit board, manufacturing method of insulation circuit board with heat sink, and manufacturing method of heat sink
JP7039933B2 (en) 2017-11-06 2022-03-23 三菱マテリアル株式会社 Bond, Insulated Circuit Board, Insulated Circuit Board with Heat Sink, Heat Sink, and Joined Body Manufacturing Method, Insulated Circuit Board Manufacturing Method, Heat Sinked Insulated Circuit Board Manufacturing Method, Heat Sink Manufacturing Method

Similar Documents

Publication Publication Date Title
TWI458927B (en) Heat sink
JP3529358B2 (en) Finned heat sink
US7093648B1 (en) Heat pipe cooling device and method for manufacturing the same
US7025125B2 (en) Heat dissipating device with heat pipe
US20110232877A1 (en) Compact vapor chamber and heat-dissipating module having the same
US20150219400A1 (en) Heat sink
US20030178181A1 (en) Heat sink with fins
TWI465885B (en) Heat sink
US6862183B2 (en) Composite fins for heat sinks
US20140000851A1 (en) Heat-dissipating module for digital light processing projector
JP2002286380A (en) Heat pipe type cooling device
JP2005150249A (en) Heat conductive member and heat radiating structure using the same
EP3518072B1 (en) Heat transferring module
TWI251460B (en) Compound heat sink with multi-directional fins
TW200401601A (en) Cooling element for an electronic device
JP2000349212A (en) Heat radiator for highly integrated element
JP2007165486A (en) Heat sink and semiconductor device
JP3414996B2 (en) Board mounted heat exchange structure
JP3449285B2 (en) Thermal strain absorber and power semiconductor device using the same
JP2003234443A (en) Heat sink with fin
JP2807415B2 (en) Heat dissipation structure of heat generating components in electronic equipment
TWI656828B (en) Heat sink
TWI304927B (en)
JP7182403B2 (en) Cooling system
JP4753131B2 (en) Element heatsink