JP2000329432A - Method for operating refrigerating cycle device - Google Patents

Method for operating refrigerating cycle device

Info

Publication number
JP2000329432A
JP2000329432A JP11140304A JP14030499A JP2000329432A JP 2000329432 A JP2000329432 A JP 2000329432A JP 11140304 A JP11140304 A JP 11140304A JP 14030499 A JP14030499 A JP 14030499A JP 2000329432 A JP2000329432 A JP 2000329432A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
connection pipe
compressor
side heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11140304A
Other languages
Japanese (ja)
Other versions
JP3361771B2 (en
Inventor
Tomohiko Kasai
智彦 河西
Mitsunori Kurachi
光教 倉地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15265684&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2000329432(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14030499A priority Critical patent/JP3361771B2/en
Priority to US09/572,300 priority patent/US6510698B2/en
Priority to ES03026366.9T priority patent/ES2626979T3/en
Priority to EP03026366.9A priority patent/EP1391667B1/en
Priority to EP00304208A priority patent/EP1054221A3/en
Publication of JP2000329432A publication Critical patent/JP2000329432A/en
Application granted granted Critical
Publication of JP3361771B2 publication Critical patent/JP3361771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To convert an existing refrigerating cycle device into a refrigerating cycle device using a fresh refrigerant as an existing refrigerating piping is utilized, in an existing refrigerating cycle device. SOLUTION: In an existing refrigerating cycle device, a heat source machine A and an indoor machine B are newly exchanged and a means 13 to capture a foreign matter from a refrigerant flowing through a connection piping is situated in a refrigerant piping on the heat source machine side without exchanging connection pipings C and D connected to the heat source machine A and the indoor machine B. Or, a bypass passage is situated at the refrigerant piping on the heat source machine A side and a foreign matter capturing means is arranged in the bypass passage. Or, other bypass passage is provided so as to separate refrigerator oil in the refrigerant. The heat source machine A and the indoor machine B are exchanged and after washing operation is carried out, ordinary operation is executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、冷凍サイクル装
置の冷媒の交換に関するものである。さらに詳しくは、
熱源機と室内機のみを新規に交換し、熱源機と室内機と
を接続する接続配管を交換しないで、冷媒を新規に交換
する冷凍サイクル装置の運転方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to replacement of a refrigerant in a refrigeration cycle apparatus. For more information,
The present invention relates to an operation method of a refrigeration cycle apparatus in which only a heat source unit and an indoor unit are newly exchanged, and a refrigerant is newly exchanged without exchanging a connection pipe connecting the heat source unit and the indoor unit.

【0002】[0002]

【従来の技術】従来から一般に用いられているセパレ−
ト形の冷凍サイクル装置を図19に示す。図19におい
て、Aは熱源機であり、圧縮機1、四方弁2、熱源機側
熱交換器3、第1の操作弁4、第2の操作弁7、アキュ
ムレ−タ8を内蔵している。Bは室内機であり、流量調
整器5(あるいは流量制御弁5)、及び利用側熱交換器
6を備えている。熱源機Aと室内機Bは離れた場所に設
置され、第1の接続配管C、第2の接続配管Dにより接
続されて、冷凍サイクルを形成する。
2. Description of the Related Art Separations generally used in the past have been used.
FIG. 19 shows a G-shaped refrigeration cycle apparatus. In FIG. 19, reference numeral A denotes a heat source unit, which includes a compressor 1, a four-way valve 2, a heat source unit side heat exchanger 3, a first operation valve 4, a second operation valve 7, and an accumulator 8. . B is an indoor unit, which includes a flow regulator 5 (or a flow control valve 5) and a use-side heat exchanger 6. The heat source unit A and the indoor unit B are installed at remote locations, and are connected by a first connection pipe C and a second connection pipe D to form a refrigeration cycle.

【0003】第1の接続配管Cの一端は熱源機側熱交換
器3と第1の操作弁4を介して接続され、第1の接続配
管Cの他の一端は流量調整器5と接続されている。第2
の接続配管Dの一端は四方弁2と第2の操作弁7を介し
て接続され、第2の接続配管Dの他の一端は利用側熱交
換器6と接続されている。また、アキュムレ−タ8のU
字管状の流出配管の下部には返油穴8aが設けられてい
る。
[0003] One end of the first connection pipe C is connected to the heat source device side heat exchanger 3 via the first operation valve 4, and the other end of the first connection pipe C is connected to the flow rate regulator 5. ing. Second
One end of the connection pipe D is connected to the four-way valve 2 via the second operation valve 7, and the other end of the second connection pipe D is connected to the use side heat exchanger 6. In addition, U of accumulator 8
An oil return hole 8a is provided in the lower part of the U-shaped tubular outflow pipe.

【0004】この冷凍サイクル装置の冷媒の流れを図1
9に添って説明する。図中、実線矢印が冷房運転の流れ
を、破線矢印が暖房運転の流れを示す。まず、冷房運転
の流れを説明する。圧縮機1で圧縮された高温高圧のガ
ス冷媒は四方弁2を経て、熱源機側熱交換器3へと流入
し、ここで空気・水など熱源媒体と熱交換して凝縮液化
する。凝縮液化した冷媒は第1の操作弁4、第1の接続
配管Cを経て流量調整器5へ流入し、ここで低圧まで減
圧されて低圧二相状態となり、利用側熱交換器6で空気
などの利用側媒体と熱交換して蒸発・ガス化する。蒸発
・ガス化した冷媒は第2の接続配管D、第2の操作弁
7、四方弁2、アキュムレ−タ8を経て圧縮機1へ戻
る。
FIG. 1 shows the flow of the refrigerant in this refrigeration cycle apparatus.
This will be described with reference to FIG. In the figure, the solid arrows indicate the flow of the cooling operation, and the broken arrows indicate the flow of the heating operation. First, the flow of the cooling operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 flows through the four-way valve 2 into the heat source device side heat exchanger 3, where it exchanges heat with a heat source medium such as air or water to condense and liquefy. The condensed and liquefied refrigerant flows into the flow regulator 5 through the first operation valve 4 and the first connection pipe C, where the pressure is reduced to a low pressure to be in a low-pressure two-phase state. Evaporates and gasifies by exchanging heat with the use side medium. The evaporated and gasified refrigerant returns to the compressor 1 via the second connection pipe D, the second operation valve 7, the four-way valve 2, and the accumulator 8.

【0005】次に、暖房運転の流れを説明する。圧縮機
1で圧縮された高温高圧のガス冷媒は四方弁2、第2の
操作弁7、第2の接続配管Dを経て、利用側側熱交換器
6へと流入し、ここで空気など利用側媒体と熱交換器し
て凝縮液化する。凝縮液化した冷媒は流量調整器5へ流
入し、ここで低圧まで減圧されて低圧二相状態となり、
第1の接続配管C、第1の操作弁4を経て、熱源機側熱
交換器3で空気・水などの熱源媒体と熱交換して蒸発・
ガス化する。蒸発・ガス化した冷媒は四方弁2、アキュ
ムレ−タ8を経て圧縮機1へ戻る。
Next, the flow of the heating operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 flows into the use side heat exchanger 6 via the four-way valve 2, the second operation valve 7, and the second connection pipe D, where the air or the like is used. Condensed and liquefied by heat exchanger with side medium. The condensed and liquefied refrigerant flows into the flow regulator 5, where it is depressurized to a low pressure and becomes a low-pressure two-phase state,
After passing through the first connection pipe C and the first operation valve 4, the heat source device side heat exchanger 3 exchanges heat with a heat source medium such as air or water to evaporate.
Gasify. The evaporated and gasified refrigerant returns to the compressor 1 via the four-way valve 2 and the accumulator 8.

【0006】従来、このような冷凍サイクル装置の冷媒
として、CFC(クロロフルオロカ−ボン)やHCFC
(ハイドロクロロフルオロカ−ボン)が用いられてきた
が、これらの分子に含まれる塩素が成層圏でオゾン層を
破壊するため、CFCは既に全廃され、HCFCも生産
規制が開始されている。
Conventionally, CFC (chlorofluorocarbon) or HCFC has been used as a refrigerant for such a refrigeration cycle apparatus.
(Hydrochlorofluorocarbon) has been used, but since chlorine contained in these molecules destroys the ozone layer in the stratosphere, CFCs have already been totally abolished, and production control of HCFCs has been started.

【0007】これらに替わって、分子に塩素を含まない
HFC(ハイドロフルオロカ−ボン)を使用する冷凍サ
イクル装置が実用化されている。CFCやHCFCを用
いた冷凍サイクル装置が老朽化した場合、これらの冷媒
は全廃・生産規制されているため、HFCを用いた冷凍
サイクル装置に入れ替える必要がある。熱源機Aと室内
機Bは、HFCで使用する冷凍機油・有機材料・熱交換
器がHCFCとは異なるため、HFC専用のものと交換
する必要があり、かつ元々CFC・HCFC用の熱源機
Aと室内機Bは老朽化しているため交換する必要がある
ものであり、交換も比較的容易である。
[0007] Instead, a refrigeration cycle apparatus using HFC (hydrofluorocarbon) containing no chlorine in the molecule has been put to practical use. When a refrigeration cycle apparatus using CFC or HCFC is deteriorated, since these refrigerants are completely abolished and production is regulated, it is necessary to replace the refrigerant with a refrigeration cycle apparatus using HFC. The heat source unit A and the indoor unit B are different from the HCFC in the refrigerating machine oil, the organic material, and the heat exchanger used in the HFC. Therefore, the heat source unit A and the indoor unit B need to be replaced with a dedicated HFC unit. And the indoor unit B are aging and need to be replaced, and replacement is relatively easy.

【0008】一方、熱源機Aと室内機Bを接続する第1
の接続配管Cと第2の接続配管Dは配管長が長い場合
や、パイプシャフトや天井裏など建物に埋設されている
場合には、新規配管に交換することは困難で、しかも老
朽化もしないため、CFCやHCFCを用いた冷凍サイ
クル装置で使用していた第1の接続配管Cと第2の接続
配管Dをそのまま使用できれば、配管工事が簡略化でき
る。
On the other hand, the first connecting the heat source unit A and the indoor unit B
The connection pipe C and the second connection pipe D are difficult to replace with new pipes when the pipe length is long or when the pipes are buried in a building such as a pipe shaft or a ceiling, and the pipes do not age. Therefore, if the first connection pipe C and the second connection pipe D used in the refrigeration cycle apparatus using CFC or HCFC can be used as they are, piping work can be simplified.

【0009】しかし、CFCやHCFCを用いた冷凍サ
イクル装置で使用していた第1の接続配管Cと第2の接
続配管Dには、CFCやHCFCを用いた冷凍サイクル
装置の冷凍機油である鉱油やCFC・HCFCや冷凍機
油の劣化物がスラッジとなったものが残留している。
However, the first connection pipe C and the second connection pipe D used in the refrigeration cycle apparatus using CFC or HCFC have mineral oil which is refrigeration oil of the refrigeration cycle apparatus using CFC or HCFC. Degraded products of CFC / HCFC and refrigerating machine oil remain as sludge.

【0010】図20は、鉱油混入時のHFC用冷凍機油
とHFC冷媒(R407C)との溶解性を示す臨界溶解
度曲線を示す図で、横軸は油量(wt%)、縦軸は温度
(℃)を示す。HFCを用いた冷凍サイクル装置の冷凍
機油(エステル油やエ−テル油などの合成油)に鉱油が
一定量以上混入すると図20に示すように、HFC冷媒
との相溶性が失われ、アキュムレ−タ8に液冷媒が溜ま
っている場合にHFC用冷凍機油が液冷媒の上に分離・
浮遊するため、アキュムレ−タ8の下部にある返油穴8
aから圧縮機へ冷凍機油が戻らず圧縮機の摺動部が焼き
付く。また、鉱油が混入するとHFC用冷凍機油が劣化
する。また、CFC・HCFCが混入するとこれらに含
まれる塩素成分によりHFC用冷凍機油が劣化する。ま
た、CFC・HCFC用冷凍機油の劣化物がスラッジと
なったものに含まれる塩素成分によりHFC用冷凍機油
が劣化する。
FIG. 20 is a diagram showing a critical solubility curve showing the solubility of the HFC refrigerating machine oil and the HFC refrigerant (R407C) when mineral oil is mixed. The horizontal axis is the oil amount (wt%), and the vertical axis is the temperature ( ° C). When a certain amount or more of mineral oil is mixed into the refrigerating machine oil (synthetic oil such as ester oil or ether oil) of a refrigeration cycle apparatus using HFC, the compatibility with the HFC refrigerant is lost as shown in FIG. When the liquid refrigerant is accumulated in the refrigerant 8, the HFC refrigerating machine oil separates on the liquid refrigerant.
Oil return hole 8 at the bottom of accumulator 8 to float
Refrigerator oil does not return from a to the compressor, and the sliding part of the compressor seizes. When mineral oil is mixed, the refrigeration oil for HFC deteriorates. In addition, when CFC / HCFC is mixed, the refrigeration oil for HFC deteriorates due to the chlorine component contained therein. In addition, the HFC refrigerating machine oil is degraded by the chlorine component contained in the sludge formed by the degraded product of the CFC / HCFC refrigerating machine oil.

【0011】このため、従来はCFCやHCFCを用い
た冷凍サイクル装置で使用していた第1の接続配管Cと
第2の接続配管Dを、洗浄装置を用いて専用の洗浄液
(HCFC141bやHCFC225)で洗浄すること
が行われている(以下、これを洗浄方法1と称する)。
また、特開平7-83545号公報に開示された方法がある。
これは、図21に示すように、洗浄装置を用いずに、H
FC用熱源機A、HFC用室内機B、第1の接続配管
C、第2の接続配管Dを接続し(ステップ100)、H
FC、HFC用冷凍機油を充填した後に(ステップ10
1)運転することで洗浄し(ステップ102)、その後
で冷凍サイクル装置内の冷媒と冷凍機油を回収し新しい
冷媒と冷凍機油を充填してから(ステップ103)、再
度運転による洗浄を実施する、ということを所定回数繰
り返す(ステップ104、105)ことが、提案されて
いる(以下、これを洗浄方法2と称する)。
For this reason, the first connection pipe C and the second connection pipe D conventionally used in a refrigeration cycle apparatus using CFC or HCFC are replaced with a dedicated cleaning liquid (HCFC141b or HCFC225) using a cleaning apparatus. (Hereinafter referred to as a cleaning method 1).
There is also a method disclosed in Japanese Patent Application Laid-Open No. 7-83545.
This is because, as shown in FIG.
The FC heat source unit A, the HFC indoor unit B, the first connection pipe C, and the second connection pipe D are connected (step 100).
After filling the refrigerating machine oil for FC and HFC (Step 10
1) Cleaning by operation (Step 102), and then collecting the refrigerant and refrigerating machine oil in the refrigeration cycle apparatus, filling the refrigerant with new refrigerant and refrigerating machine oil (Step 103), and performing cleaning by operation again. It has been proposed that this is repeated a predetermined number of times (steps 104 and 105) (hereinafter, this is referred to as cleaning method 2).

【0012】[0012]

【発明が解決しようとする課題】上記した従来の洗浄方
法1では以下に示すような問題があった。第1に、使用
する洗浄液がHCFCであり、オゾン層破壊係数がゼロ
でないため、冷凍サイクル装置の冷媒をHCFCからH
FCへと代替することと矛盾する。特に、HCFC14
1bはオゾン破壊係数が0.11と大きく問題である。
The above-mentioned conventional cleaning method 1 has the following problems. First, since the cleaning liquid used is HCFC and the ozone depletion coefficient is not zero, the refrigerant of the refrigeration cycle device is
It is inconsistent with replacing with FC. In particular, HCFC14
1b is a serious problem with an ozone depletion potential of 0.11.

【0013】第2に、使用する洗浄液は可燃性・毒性が
完全に安全なものではないことがあげられる。HCFC
141bは可燃性で、低毒性である。HCFC225は
不燃だが、低毒性である。第3に、沸点が高く(HCF
C141bは32℃、HCFC225は51.1〜5
6.1℃)、外気温度がこの沸点より低い場合、特に冬
期には、洗浄後に洗浄液が液状態で、第1の接続配管C
と第2の接続配管Dに残留する。これら洗浄液はHCF
Cであることから、塩素成分を含んでおり、HFC用冷
凍機油が劣化する。
Second, the cleaning liquid used is not completely safe in flammability and toxicity. HCFC
141b is flammable and has low toxicity. HCFC225 is nonflammable but low toxic. Third, the high boiling point (HCF
C141b is 32 ° C, HCFC225 is 51.1 to 5
6.1 ° C.), when the outside air temperature is lower than this boiling point, especially in winter, the cleaning liquid is in a liquid state after cleaning and the first connection pipe C
And remain in the second connection pipe D. These cleaning solutions are HCF
Since it is C, it contains a chlorine component and the refrigerating machine oil for HFC deteriorates.

【0014】第4に、洗浄液は環境上全量回収する必要
があり、かつ上記第3の問題点が発生しないように高温
の窒素ガスなどで再洗浄するなど、洗浄工事の手間がか
かる。
Fourthly, it is necessary to collect the entire amount of the cleaning solution from the environment, and it takes time and labor for cleaning work such as re-cleaning with high-temperature nitrogen gas or the like so as not to cause the third problem.

【0015】また、上記の従来の洗浄方法2では、以下
に示すような問題があった。第1に、HFC冷媒による
洗浄が、特開平7-83545号公報の実施例では3回必要で
あり、また各洗浄運転で使用したHFC冷媒は不純物を
含むため、回収後その場での再利用は不可能である。つ
まり、通常の充填冷媒量の3倍の冷媒が必要であり、コ
スト・環境上問題である。
Further, the above-mentioned conventional cleaning method 2 has the following problems. First, cleaning with HFC refrigerant is required three times in the embodiment of Japanese Patent Application Laid-Open No. 7-83545, and the HFC refrigerant used in each cleaning operation contains impurities. Is impossible. In other words, three times as much refrigerant as the normal amount of charged refrigerant is required, which is a cost and environmental problem.

【0016】第2に、冷凍機油も各洗浄運転後に入れ替
えるため、通常の充填冷凍機油量の3倍の冷凍機油が必
要であり、コスト・環境上問題である。また、HFC用
冷凍機油はエステル油またはエ−テル油であり、吸湿性
が高いため、交換用冷凍機油の水分管理も必要となる。
また、冷凍機油を、洗浄する人間が封入するため、過不
足が生じる危険性もあり、その後の運転において支障を
来す可能性がある(過充填時は油圧縮による圧縮部破
壊、モ−タ過熱をきたし、不足充填時は潤滑不良をきた
す)。
Secondly, since the refrigerating machine oil is also replaced after each washing operation, the refrigerating machine oil needs to be three times the normal amount of the refrigerating machine oil, which is a problem in terms of cost and environment. Further, the refrigerating machine oil for HFC is an ester oil or an ether oil and has a high hygroscopicity, so that it is necessary to control the water content of the refrigerating machine oil for replacement.
In addition, since the refrigerating machine oil is sealed by a person to be washed, there is a danger that excess or deficiency may occur, which may hinder subsequent operation. It causes overheating and poor lubrication when insufficiently filled.)

【0017】この発明は、上述のような従来の課題を解
決するためになされたもので、環境保護上問題のあると
される冷媒を用いた既設の冷凍サイクル装置を、環境保
護上問題のないとされる冷媒に置換する冷凍サイクル装
置の構成方法と冷媒の置換方法とを示し、さらにその冷
凍サイクル装置の洗浄のための運転方法を提供しようと
するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and is intended to reduce an existing refrigeration cycle apparatus using a refrigerant which is considered to have a problem in environmental protection. The present invention is intended to provide a method of replacing a refrigerant with a refrigeration cycle apparatus and a method of replacing the refrigerant, and to provide an operation method for cleaning the refrigeration cycle apparatus.

【0018】[0018]

【課題を解決するための手段】本願の請求項1の発明に
よる冷凍サイクル装置の運転方法は、圧縮機、熱源機側
熱交換器、利用側熱交換器、上記熱源機側熱交換器と上
記利用側熱交換器の一端とを接続する第1の接続配管、
上記利用側熱交換器の他端と上記圧縮機とを接続する第
2の接続配管を備えた冷媒回路を、旧冷媒から新冷媒に
置換する方法において、上記第2の接続配管と上記圧縮
機との間の冷媒回路に冷媒中の異物を捕捉する異物捕捉
手段を挿入し、冷媒置換後に上記圧縮機を駆動源として
上記第1の接続配管、上記第2の接続配管の順に新冷媒
を流して洗浄運転をすることを特徴とするものである。
The operation method of the refrigeration cycle apparatus according to the first aspect of the present invention includes a compressor, a heat source unit-side heat exchanger, a utilization side heat exchanger, the heat source unit-side heat exchanger and the heat source unit-side heat exchanger. A first connection pipe connecting one end of the use side heat exchanger,
In a method of replacing a refrigerant circuit having a second connection pipe connecting the other end of the use side heat exchanger with the compressor, from an old refrigerant to a new refrigerant, the second connection pipe and the compressor Foreign matter capturing means for capturing foreign matter in the refrigerant is inserted into the refrigerant circuit between the first connection pipe and the second connection pipe after the replacement of the refrigerant by using the compressor as a drive source in the order of the first connection pipe and the second connection pipe. Cleaning operation.

【0019】また、本願の請求項2の発明による冷凍サ
イクル装置の運転方法は、圧縮機、熱源機側熱交換器、
利用側熱交換器、上記熱源機側熱交換器と上記利用側熱
交換器の一端とを接続する第1の接続配管、上記利用側
熱交換器の他端と上記圧縮機とを接続する第2の接続配
管を備えた冷媒回路を、旧冷媒から新冷媒に置換する方
法において、上記第1の接続配管と上記圧縮機との間の
冷媒回路に冷媒中の異物を捕捉する異物捕捉手段を挿入
し、冷媒置換後に上記圧縮機を駆動源として上記第2の
接続配管、上記第1の接続配管の順に新冷媒を流して洗
浄運転をすることを特徴とするものである。
The method of operating a refrigeration cycle apparatus according to the second aspect of the present invention includes a compressor, a heat source unit side heat exchanger,
A use side heat exchanger, a first connection pipe connecting the heat source unit side heat exchanger and one end of the use side heat exchanger, and a first connection pipe connecting the other end of the use side heat exchanger and the compressor. In the method of replacing the refrigerant circuit provided with the second connection pipe with the old refrigerant by the new refrigerant, the refrigerant circuit between the first connection pipe and the compressor is provided with a foreign substance capturing means for capturing foreign substances in the refrigerant. After inserting and replacing the refrigerant, a washing operation is performed by flowing a new refrigerant in the order of the second connection pipe and the first connection pipe using the compressor as a drive source.

【0020】また、本願の請求項3の発明による冷凍サ
イクル装置の運転方法は、圧縮機、熱源機側熱交換器、
利用側熱交換器、上記熱源機側熱交換器と上記利用側熱
交換器の一端とを接続する第1の接続配管、上記利用側
熱交換器の他端と上記圧縮機とを接続する第2の接続配
管を備えた冷媒回路を、旧冷媒から新冷媒に置換する方
法において、上記冷媒回路の上記圧縮機の上流側に冷媒
中の異物を捕捉する異物捕捉手段を挿入し、冷媒置換後
に上記圧縮機を駆動源として上記第1の接続配管と上記
第2の接続配管のうち太径配管を上流に、細径配管を下
流にして新冷媒を流して洗浄運転をすることを特徴とす
るものである。
Further, the method of operating a refrigeration cycle apparatus according to the invention of claim 3 of the present application includes a compressor, a heat source unit side heat exchanger,
A use side heat exchanger, a first connection pipe connecting the heat source unit side heat exchanger and one end of the use side heat exchanger, and a first connection pipe connecting the other end of the use side heat exchanger and the compressor. In the method of replacing the refrigerant circuit provided with the second connection pipe with the new refrigerant from the old refrigerant, a foreign matter capturing means for capturing foreign matter in the refrigerant is inserted on the upstream side of the compressor of the refrigerant circuit, and after the refrigerant replacement, A washing operation is performed by flowing a new refrigerant with the large-diameter pipe upstream and the small-diameter pipe downstream of the first connection pipe and the second connection pipe using the compressor as a drive source. Things.

【0021】また、本願の請求項4の発明による冷凍サ
イクル装置の運転方法は、圧縮機、熱源機側熱交換器、
利用側熱交換器、上記熱源機側熱交換器と上記利用側熱
交換器の一端とを接続する第1の接続配管、上記利用側
熱交換器の他端と上記圧縮機とを接続する第2の接続配
管を備えた冷媒回路を、旧冷媒から新冷媒に置換する方
法において、上記冷媒回路の上記圧縮機の上流側に冷媒
中の異物を捕捉する異物捕捉手段を挿入し、冷媒置換後
に上記圧縮機を駆動源として最初に上記第1の接続配
管、上記第2の接続配管の順に置換後の新冷媒を流して
洗浄運転をし、次に上記第2の接続配管、上記第1の接
続配管の順に新冷媒を流して洗浄運転をすることを特徴
とするものである。
Further, the method of operating a refrigeration cycle apparatus according to the invention of claim 4 of the present application includes a compressor, a heat source unit side heat exchanger,
A use side heat exchanger, a first connection pipe connecting the heat source unit side heat exchanger and one end of the use side heat exchanger, and a first connection pipe connecting the other end of the use side heat exchanger and the compressor. In the method of replacing the refrigerant circuit provided with the second connection pipe with the new refrigerant from the old refrigerant, a foreign matter capturing means for capturing foreign matter in the refrigerant is inserted on the upstream side of the compressor of the refrigerant circuit, and after the refrigerant replacement, The compressor is used as a drive source to perform a cleaning operation by first flowing the new refrigerant after replacement in the order of the first connection pipe and the second connection pipe, and then performs the second connection pipe and the first connection pipe. The cleaning operation is performed by flowing a new refrigerant in the order of the connecting pipes.

【0022】また、本願の請求項5の発明による冷凍サ
イクル装置の運転方法は、圧縮機、熱源機側熱交換器、
利用側熱交換器、上記熱源機側熱交換器と上記利用側熱
交換器の一端とを接続する第1の接続配管、上記利用側
熱交換器の他端と上記圧縮機とを接続する第2の接続配
管を備えた冷媒回路を、旧冷媒から新冷媒に置換する方
法において、上記冷媒回路の上記圧縮機の上流側に冷媒
中の異物を捕捉する異物捕捉手段を挿入し、冷媒置換後
に上記圧縮機を駆動源として上記第1の接続配管および
上記第2の接続配管に所定値以上の質量流速で置換後の
新冷媒を流して洗浄運転をすることを特徴とするもので
ある。
Further, the method of operating a refrigeration cycle apparatus according to the invention of claim 5 of the present application includes a compressor, a heat source unit side heat exchanger,
A use side heat exchanger, a first connection pipe connecting the heat source unit side heat exchanger and one end of the use side heat exchanger, and a first connection pipe connecting the other end of the use side heat exchanger and the compressor. In the method of replacing the refrigerant circuit provided with the second connection pipe with the new refrigerant from the old refrigerant, a foreign matter capturing means for capturing foreign matter in the refrigerant is inserted on the upstream side of the compressor of the refrigerant circuit, and after the refrigerant replacement, A washing operation is performed by using the compressor as a drive source and flowing a new refrigerant after replacement at a mass flow rate of a predetermined value or more through the first connection pipe and the second connection pipe.

【0023】また、本願の請求項6の発明による冷凍サ
イクル装置の運転方法は、圧縮機、熱源機側熱交換器、
利用側熱交換器、上記熱源機側熱交換器と上記利用側熱
交換器の一端とを接続する第1の接続配管、上記利用側
熱交換器の他端と上記圧縮機とを接続する第2の接続配
管を備え、かつ、上記第1の接続配管と上記利用側熱交
換器と上記第2の接続配管とを接続した利用側冷媒回路
部分を並列に複数備えた冷媒回路を、旧冷媒から新冷媒
に置換する方法において、上記圧縮機の上流側に冷媒中
の異物を捕捉する異物捕捉手段を挿入し、冷媒置換後
に、上記圧縮機を駆動源として、上記複数の利用側冷媒
回路部分を順次に選択して、置換後の新冷媒を流して洗
浄運転をすることを特徴とするものである。
The method of operating a refrigeration cycle apparatus according to the invention of claim 6 of the present application comprises a compressor, a heat source unit-side heat exchanger,
A use side heat exchanger, a first connection pipe connecting the heat source unit side heat exchanger and one end of the use side heat exchanger, and a first connection pipe connecting the other end of the use side heat exchanger and the compressor. A refrigerant circuit having a plurality of use-side refrigerant circuit portions connected in parallel with the first connection pipe, the use-side heat exchanger, and the second connection pipe. In the method of replacing with a new refrigerant, a foreign matter capturing means for capturing foreign matter in the refrigerant is inserted on the upstream side of the compressor, and after the replacement of the refrigerant, the compressor is used as a drive source, and the plurality of utilization side refrigerant circuit portions are used. Are sequentially selected, and the washing operation is performed by flowing the new refrigerant after the replacement.

【0024】また、本願の請求項7の発明による冷凍サ
イクル装置の運転方法は、圧縮機、熱源機側熱交換器、
利用側熱交換器、上記熱源機側熱交換器と上記利用側熱
交換器の一端とを接続する第1の接続配管、上記利用側
熱交換器の他端と上記圧縮機とを接続する第2の接続配
管を備えた冷媒回路を、旧冷媒から新冷媒に置換する方
法において、上記冷媒回路の上記圧縮機の上流側に冷媒
中の異物を捕捉する異物捕捉手段を挿入し、冷媒置換後
に上記圧縮機を駆動源として上記第1の接続配管および
上記第2の接続配管に所定温度以上に昇温した置換後の
新冷媒を流して洗浄運転をすることを特徴とするもので
ある。
[0024] The method of operating a refrigeration cycle apparatus according to the invention of claim 7 of the present application includes a compressor, a heat source unit side heat exchanger,
A use side heat exchanger, a first connection pipe connecting the heat source unit side heat exchanger and one end of the use side heat exchanger, and a first connection pipe connecting the other end of the use side heat exchanger and the compressor. In the method of replacing the refrigerant circuit provided with the second connection pipe with the new refrigerant from the old refrigerant, a foreign matter capturing means for capturing foreign matter in the refrigerant is inserted on the upstream side of the compressor of the refrigerant circuit, and after the refrigerant replacement, The cleaning operation is performed by using the compressor as a drive source and flowing a new refrigerant after the replacement, which has been heated to a predetermined temperature or higher, into the first connection pipe and the second connection pipe.

【0025】また、本願の請求項8の発明による冷凍サ
イクル装置の運転方法は、圧縮機、熱源機側熱交換器、
利用側熱交換器、上記熱源機側熱交換器と上記利用側熱
交換器の一端とを接続する第1の接続配管、上記利用側
熱交換器の他端と上記圧縮機とを接続する第2の接続配
管を備えた冷媒回路を、旧冷媒から新冷媒に置換する方
法において、上記冷媒回路の上記圧縮機の上流側に冷媒
中の異物を捕捉する異物捕捉手段を挿入し、冷媒置換後
に、冷媒置換前の冷凍機油が溶解しやすく、かつ当該冷
凍機油よりも粘性が低いか同じである添加剤を上記第1
および第2の接続配管の上流部分で注入し、置換後の新
冷媒とともに上記圧縮機を駆動源として上記第1および
第2の接続配管に流して洗浄運転をすることを特徴とす
るものである。
The operation method of the refrigeration cycle apparatus according to the invention of claim 8 of the present application includes a compressor, a heat source unit side heat exchanger,
A use side heat exchanger, a first connection pipe connecting the heat source unit side heat exchanger and one end of the use side heat exchanger, and a first connection pipe connecting the other end of the use side heat exchanger and the compressor. In the method of replacing the refrigerant circuit provided with the second connection pipe with the new refrigerant from the old refrigerant, a foreign matter capturing means for capturing foreign matter in the refrigerant is inserted on the upstream side of the compressor of the refrigerant circuit, and after the refrigerant replacement, The additive, in which the refrigerating machine oil before the refrigerant replacement is easy to dissolve and has a viscosity lower or the same as that of the refrigerating machine oil, is used as the first additive.
And injecting at an upstream portion of the second connection pipe, and flowing the first and second connection pipes together with the new refrigerant after the replacement using the compressor as a drive source to perform a washing operation. .

【0026】また、本願の請求項9の発明による冷凍サ
イクル装置の運転方法は、圧縮機、熱源機側熱交換器、
利用側熱交換器、上記熱源機側熱交換器と上記利用側熱
交換器の一端とを接続する第1の接続配管、上記利用側
熱交換器の他端と上記圧縮機とを接続する第2の接続配
管を備えた冷媒回路を、旧冷媒から新冷媒に置換する方
法において、上記冷媒回路の上記圧縮機の上流側に冷媒
中の異物を捕捉する異物捕捉手段を挿入し、冷媒置換後
に、冷媒置換前の冷凍機油が溶解しやすく、かつ置換後
の新冷媒に溶解しやすい添加剤を上記第1および第2の
接続配管の上流部分に注入して、置換後の新冷媒ととも
に上記圧縮機を駆動源として上記第1および第2の接続
配管に流して洗浄運転をすることを特徴とするものであ
る。
The method of operating the refrigeration cycle apparatus according to the ninth aspect of the present invention includes a compressor, a heat source unit side heat exchanger,
A use side heat exchanger, a first connection pipe connecting the heat source unit side heat exchanger and one end of the use side heat exchanger, and a first connection pipe connecting the other end of the use side heat exchanger and the compressor. In the method of replacing the refrigerant circuit provided with the second connection pipe with the new refrigerant from the old refrigerant, a foreign matter capturing means for capturing foreign matter in the refrigerant is inserted on the upstream side of the compressor of the refrigerant circuit, and after the refrigerant replacement, Injecting an additive that easily dissolves the refrigerating machine oil before the refrigerant replacement and dissolves in the new refrigerant after the replacement into the upstream portion of the first and second connection pipes, and compresses the additive together with the new refrigerant after the replacement. The washing operation is performed by flowing the gas through the first and second connection pipes using the machine as a drive source.

【0027】また、本願の請求項10の発明による冷凍
サイクル装置の運転方法は、圧縮機、熱源機側熱交換
器、利用側熱交換器、上記熱源機側熱交換器と上記利用
側熱交換器の一端とを接続する第1の接続配管、上記利
用側熱交換器の他端と上記圧縮機とを接続する第2の接
続配管を備えた冷媒回路を、旧冷媒から新冷媒に置換す
る方法において、上記冷媒回路の上記圧縮機の上流側に
冷媒中の異物を捕捉する異物捕捉手段を挿入し、冷媒置
換後に、冷媒置換後の冷凍機油を添加剤として上記第1
および第2の接続配管の上流部分に注入して、置換後の
新冷媒とともに上記圧縮機を駆動源として上記第1およ
び第2の接続配管に流して洗浄運転をすることを特徴と
するものである。
The operation method of the refrigeration cycle apparatus according to the tenth aspect of the present invention includes a compressor, a heat source unit side heat exchanger, a use side heat exchanger, the heat source unit side heat exchanger and the use side heat exchange. A refrigerant circuit including a first connection pipe connecting one end of a heat exchanger and a second connection pipe connecting the other end of the use side heat exchanger and the compressor is replaced with an old refrigerant by a new refrigerant. In the method, a foreign matter capturing means for capturing foreign matter in the refrigerant is inserted upstream of the compressor in the refrigerant circuit, and after the replacement of the refrigerant, the refrigerant oil after the replacement is used as an additive to the first refrigerant.
And injecting into the upstream portion of the second connection pipe and flowing the same together with the new refrigerant after replacement to the first and second connection pipes by using the compressor as a drive source to perform a washing operation. is there.

【0028】[0028]

【発明の実施の形態】以下、図面を参照してこの発明の
実施の形態について説明する。なお、各図中、同一又は
相当する部分には、同一符号を付してその説明を適宜省
略または簡略化する。 実施の形態1.図1は、この発明の実施の形態1による
冷凍サイクル装置の一例として、冷媒置換を行う冷凍サ
イクル装置の冷媒回路を示す図である。図1において、
Aは熱源機であり、圧縮機1、四方弁2、熱源機側熱交
換器3、第1の操作弁4、第2の操作弁7、アキュムレ
−タ8、油分離器9(油分離手段)、及び異物捕捉手段
13を内蔵している。
Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or corresponding portions are denoted by the same reference characters, and description thereof will be omitted or simplified as appropriate. Embodiment 1 FIG. FIG. 1 is a diagram illustrating a refrigerant circuit of a refrigeration cycle apparatus that performs refrigerant replacement, as an example of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. In FIG.
A is a heat source unit, which includes a compressor 1, a four-way valve 2, a heat source unit side heat exchanger 3, a first operation valve 4, a second operation valve 7, an accumulator 8, an oil separator 9 (oil separation means). ) And foreign matter capturing means 13.

【0029】油分離器9は、圧縮機1の吐出配管に設け
られ、圧縮機1から冷媒とともに吐出される冷凍機油を
分離する。異物捕捉手段13は、四方弁2とアキュムレ
−タ8の間に設けられている。9aは油分離器9の底部
より端を発し、異物捕捉手段13の出口より下流側に至
るバイパス路である。また、アキュムレ−タ8のU字管
状の流出配管の下部には返油穴8aが設けられている。
Bは室内機であり、流量調整器5(あるいは流量調整弁
5)、及び利用側熱交換器6を備えている。
The oil separator 9 is provided in a discharge pipe of the compressor 1 and separates refrigerating machine oil discharged from the compressor 1 together with refrigerant. The foreign matter capturing means 13 is provided between the four-way valve 2 and the accumulator 8. Reference numeral 9a denotes a bypass passage which starts at the bottom of the oil separator 9 and extends downstream from the outlet of the foreign matter capturing means 13. An oil return hole 8a is provided below the U-shaped tubular outflow pipe of the accumulator 8.
B denotes an indoor unit, which includes a flow controller 5 (or a flow control valve 5) and a use-side heat exchanger 6.

【0030】Cは、第1の接続配管であり、その一端は
熱源機側熱交換器3と第1の操作弁4を介して接続さ
れ、他の一端は流量調整器5と接続されている。Dは、
第2の接続配管であり、その一端は第2の操作弁7を介
して四方弁2と接続され、他の一端は利用側熱交換器6
と接続されている。熱源機Aと室内機Bは離れた場所に
設置され、第1の接続配管C、第2の接続配管Dにより
接続されて、冷凍サイクルを形成する。なお、この冷凍
サイクル装置は冷媒としてHFC(以下、適宜、新冷媒
と称する)を使うものである。
C is a first connection pipe, one end of which is connected to the heat source unit side heat exchanger 3 via the first operation valve 4, and the other end of which is connected to the flow regulator 5. . D is
The second connection pipe has one end connected to the four-way valve 2 via the second operation valve 7 and the other end connected to the use-side heat exchanger 6.
Is connected to The heat source unit A and the indoor unit B are installed at remote locations, and are connected by a first connection pipe C and a second connection pipe D to form a refrigeration cycle. This refrigeration cycle apparatus uses HFC (hereinafter, appropriately referred to as a new refrigerant) as a refrigerant.

【0031】次に、CFCやHCFCなど(以下、適
宜、旧冷媒と称する)を使った冷凍サイクル装置が老朽
化した場合の、冷凍サイクル装置交換の手順を示す。既
存の冷凍サイクル装置からCFCまたはHCFCを回収
し、熱源機Aと室内機Bを図1に示すHFCを用いるも
のに交換する。第1の接続配管Cと第2の接続配管Dは
HCFCを使った冷凍サイクル装置のものを再利用す
る。そして、図7に示す冷媒回路を形成する。熱源機A
には予めHFCが充填されているので、第1の操作弁4
と第2の操作弁7は閉じたまま、室内機B、第1の接続
配管C、第2の接続配管Dを接続状態で真空引きをし、
その後第1の操作弁4と第2の操作弁7の開弁とHFC
の追加充填を実施する。その後、通常の空調運転兼洗浄
運転を実施する。
Next, a procedure for replacing the refrigeration cycle device when the refrigeration cycle device using CFC, HCFC, or the like (hereinafter, appropriately referred to as an old refrigerant) is deteriorated will be described. The CFC or HCFC is recovered from the existing refrigeration cycle device, and the heat source unit A and the indoor unit B are replaced with those using the HFC shown in FIG. As the first connection pipe C and the second connection pipe D, those of the refrigeration cycle apparatus using HCFC are reused. Then, the refrigerant circuit shown in FIG. 7 is formed. Heat source machine A
Is filled with HFC in advance, so that the first operation valve 4
And the second operation valve 7 is closed, and the indoor unit B, the first connection pipe C, and the second connection pipe D are connected to each other and evacuated.
Thereafter, the first operating valve 4 and the second operating valve 7 are opened and the HFC
Is carried out. Thereafter, a normal air-conditioning operation and cleaning operation is performed.

【0032】次に、通常の空調運転兼洗浄運転の内容を
図1に添って説明する。図中実線矢印が冷房運転の流れ
を、破線矢印が暖房運転の流れを示す。まず冷房運転に
ついて説明する。圧縮機1で圧縮された高温高圧のガス
冷媒はHFC用冷凍機油と共に圧縮機1を吐出され、油
分離器9へ流入する。
Next, the contents of the ordinary air-conditioning operation and washing operation will be described with reference to FIG. In the drawing, solid arrows indicate the flow of the cooling operation, and broken arrows indicate the flow of the heating operation. First, the cooling operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the refrigeration oil for HFC and flows into the oil separator 9.

【0033】ここで、HFC用の冷凍機油は完全に分離
され、ガス冷媒のみが、四方弁2を経て、熱源機側熱交
換器3へと流入し、ここで空気・水など熱源媒体と熱交
換器して凝縮液化する。凝縮液化した冷媒は第1の操作
弁4を経て第1の接続配管Cに流入する。HFCの液冷
媒が第1の接続配管Cを流れるときに、第1の接続配管
Cに残留しているCFC・HCFC・鉱油・鉱油劣化物
(以下残留異物と称する)を少しずつ洗浄してHFCの
液冷媒と共に流れ、流量調整器5へ流入し、ここで低圧
まで減圧されて低圧二相状態となり、利用側熱交換器6
で空気などの利用側媒体と熱交換して蒸発・ガス化す
る。
Here, the refrigerating machine oil for the HFC is completely separated, and only the gas refrigerant flows into the heat source unit side heat exchanger 3 through the four-way valve 2, where it is separated from the heat source medium such as air and water. Exchange and condense and liquefy. The condensed and liquefied refrigerant flows into the first connection pipe C via the first operation valve 4. When the liquid refrigerant of the HFC flows through the first connection pipe C, CFCs, HCFCs, mineral oils, and mineral oil degraded substances (hereinafter referred to as residual foreign substances) remaining in the first connection pipe C are washed little by little to form an HFC. And flows into the flow controller 5 where the pressure is reduced to a low pressure to be in a low-pressure two-phase state.
Heat exchange with the use side medium such as air to evaporate and gasify.

【0034】蒸発・ガス化した冷媒は、第1の接続配管
Cの残留異物と共に第2の接続配管Dに流入する。第2
の接続配管に残留している残留異物は、ここを流れる冷
媒がガス状のため、配管内面に付着した残留異物の一部
はガス冷媒中にミスト状になって流れるが、大半の液状
の残留異物はガス冷媒の流速より遅い流速で、ガス・液
境界面に発生するせん断力によりガス冷媒に引きずられ
る形で、配管内面を環状に流れるため、洗浄時間は第1
の接続配管Cよりは遅いが、確実に洗浄される。
The evaporated and gasified refrigerant flows into the second connection pipe D together with the remaining foreign matter in the first connection pipe C. Second
The residual foreign matter remaining in the connection pipe is part of the residual foreign matter adhering to the inner surface of the pipe in the form of mist in the gas refrigerant because the refrigerant flowing here is in gaseous form. The foreign material flows in an annular shape on the inner surface of the pipe at a flow rate lower than the flow rate of the gas refrigerant and is dragged by the gas refrigerant by the shearing force generated at the gas-liquid interface, so that the cleaning time is the first.
Although it is slower than the connection pipe C, it is surely washed.

【0035】その後、ガス冷媒は、第1の接続配管Cの
残留異物と第2の接続配管Dの残留異物と共に、第2の
操作弁7、四方弁2を経て異物捕捉手段13へ流入す
る。残留異物は、沸点の違いにより相が異なり、固体異
物・液体異物・気体異物の3種類に分類される。異物捕
捉手段13では、固体異物と液体異物は完全にガス冷媒
と分離され捕捉される。気体異物はその一部が捕捉さ
れ、一部は捕捉されない。その後、ガス冷媒は、異物捕
捉手段13で捕捉されなかった気体異物と共にアキュム
レ−タ8を経て圧縮機1へ戻る。なお、冷房運転時の冷
媒回路、すなわち、圧縮機1から熱源機側熱交換器3と
流量調整器5と利用側熱交換器6とアキュムレータ8と
を順次に経て再び圧縮機1に戻る冷媒回路を、本明細書
では、第1の冷媒回路とする。
Thereafter, the gas refrigerant flows into the foreign matter capturing means 13 through the second operating valve 7 and the four-way valve 2 together with the residual foreign matter in the first connection pipe C and the residual foreign matter in the second connection pipe D. The residual foreign matter has a different phase depending on the boiling point, and is classified into three types: solid foreign matter, liquid foreign matter, and gaseous foreign matter. In the foreign matter capturing means 13, the solid foreign matter and the liquid foreign matter are completely separated from the gas refrigerant and captured. Part of the gaseous foreign substance is captured, and part of the foreign substance is not captured. Thereafter, the gas refrigerant returns to the compressor 1 through the accumulator 8 together with the gaseous foreign matter not captured by the foreign matter capturing means 13. In addition, the refrigerant circuit at the time of the cooling operation, that is, the refrigerant circuit returning to the compressor 1 again from the compressor 1 through the heat source device side heat exchanger 3, the flow rate regulator 5, the use side heat exchanger 6, and the accumulator 8 in order. Is herein referred to as a first refrigerant circuit.

【0036】油分離器9で、ガス冷媒と完全に分離され
たHFC用冷凍機油は、バイパス路9aを経て、異物捕
捉手段13の下流で本流と合流して、圧縮機1へ戻るの
で、第1の接続配管Cや第2の接続配管Dに残留してい
た鉱油と混ざることはなく、HFC用冷凍機油はHFC
に対して非相溶化することはなく、またHFC用冷凍機
油は鉱油により劣化することはない。
The HFC refrigerating machine oil completely separated from the gas refrigerant in the oil separator 9 merges with the main stream downstream of the foreign matter catching means 13 through the bypass 9a, and returns to the compressor 1. Mineral oil remaining in the first connection pipe C and the second connection pipe D does not mix with the refrigeration oil for HFC.
And the refrigerating machine oil for HFC is not deteriorated by mineral oil.

【0037】また、固形異物もHFC用冷凍機油と混合
することはなく、HFC用冷凍機油は劣化しない。ま
た、気体異物はHFC冷媒が冷媒回路を1サイクル循環
して、異物捕捉手段13を1回通る間には一部が捕捉さ
れるだけで、HFC用冷凍機油と気体異物は混合される
が、HFC用冷凍機油の劣化は化学反応で、急激には進
まない。その劣化の一例を図2に示す。図2は、HFC
用冷凍機油に塩素が混入している場合(175℃)の劣
化の時間変化を示す図で、横軸は時間(hr)、縦軸は
全酸価(mgKOH/g)を示す。異物捕捉手段13を
1回通る間に捕捉されなかった気体異物は、HFC冷媒
の循環と共に何回も異物捕捉手段13を通るので、HF
C用冷凍機油の劣化するよりも速く、異物捕捉手段13
で捕捉すればよい。
Further, solid foreign matter does not mix with the HFC refrigerating machine oil, and the HFC refrigerating machine oil does not deteriorate. In addition, while the HFC refrigerant circulates through the refrigerant circuit for one cycle and passes through the foreign matter capturing means 13 only once, the gas foreign matter is only partially captured, and the HFC refrigerating machine oil and the gas foreign matter are mixed. The deterioration of the refrigeration oil for HFC is a chemical reaction and does not proceed rapidly. FIG. 2 shows an example of the deterioration. Figure 2 shows the HFC
Is a graph showing the time change of deterioration when chlorine is mixed in the refrigerator oil (175 ° C.), wherein the horizontal axis represents time (hr) and the vertical axis represents total acid value (mgKOH / g). The gaseous foreign matter that has not been captured while passing through the foreign matter capturing means 13 once passes through the foreign matter capturing means 13 many times with the circulation of the HFC refrigerant.
The foreign matter capturing means 13 is faster than the deterioration of the C refrigerating machine oil.
Can be captured with.

【0038】次に暖房運転の流れを説明する。圧縮機1
で圧縮された高温高圧のガス冷媒はHFC用冷凍機油と
共に圧縮機1を吐出され、油分離器9へ流入する。ここ
で、HFC用の冷凍機油は完全に分離され、ガス冷媒の
みが四方弁2、第2の操作弁7を経て第2の接続配管D
へ流入する。
Next, the flow of the heating operation will be described. Compressor 1
The high-temperature and high-pressure gas refrigerant compressed by the compressor is discharged from the compressor 1 together with the refrigeration oil for HFC and flows into the oil separator 9. Here, the refrigerating machine oil for the HFC is completely separated, and only the gas refrigerant passes through the four-way valve 2 and the second operation valve 7 to the second connection pipe D.
Flows into

【0039】第2の接続配管に残留している残留異物
は、ここを流れる冷媒がガス状のため、配管内面に付着
した残留異物の一部はガス冷媒中にミスト状になって流
れるが、大半の液状の残留異物はガス冷媒の流速より遅
い流速で、ガス・液境界面に発生するせん断力によりガ
ス冷媒に引きずられる形で、配管内面を環状に流れるた
め、洗浄時間は冷房運転時における第1の接続配管Cよ
りは遅いが、確実に洗浄される。
As for the residual foreign matter remaining in the second connection pipe, since the refrigerant flowing therethrough is in a gaseous state, a part of the residual foreign matter adhering to the inner surface of the pipe flows in the gas refrigerant in the form of a mist. Most of the liquid residual contaminants flow at a lower speed than the gas refrigerant flow, and are drawn by the gas refrigerant due to the shearing force generated at the gas-liquid interface. Although it is slower than the first connection pipe C, it is surely washed.

【0040】その後、ガス冷媒は、第2の接続配管Dの
残留異物と共に、利用側側熱交換器6へと流入し、ここ
で空気など利用側媒体と熱交換して凝縮液化する。凝縮
液化した冷媒は流量調整器5へ流入し、ここで低圧まで
減圧されて低圧二相状態となり、第1の接続配管Cに流
入する。気液二相状態のため、流速も速く、かつ液冷媒
と共に、残留異物は洗浄され、冷房運転時の第1の接続
配管Cより速い速度で洗浄される。
Thereafter, the gas refrigerant flows into the use-side heat exchanger 6 together with the foreign matter remaining in the second connection pipe D, where it exchanges heat with the use-side medium such as air to be condensed and liquefied. The condensed and liquefied refrigerant flows into the flow regulator 5, where it is reduced in pressure to a low pressure, enters a low-pressure two-phase state, and flows into the first connection pipe C. Because of the gas-liquid two-phase state, the flow velocity is high, and the residual foreign matter is cleaned together with the liquid refrigerant, and is cleaned at a higher speed than the first connection pipe C during the cooling operation.

【0041】第2の接続配管Dと第1の接続配管Cから
洗浄された残留異物と共に、気液二相状態の冷媒は、第
1の操作弁4を経て、熱源機側熱交換器3で空気・水な
どの熱源媒体と熱交換して蒸発・ガス化する。蒸発・ガ
ス化した冷媒は四方弁2を経て異物捕捉手段13に流入
する。
The refrigerant in the gas-liquid two-phase state together with the residual foreign matter washed from the second connection pipe D and the first connection pipe C passes through the first operation valve 4 and passes through the heat source unit side heat exchanger 3. Evaporates and gasifies by exchanging heat with a heat source medium such as air or water. The evaporated and gasified refrigerant flows into the foreign matter capturing means 13 via the four-way valve 2.

【0042】残留異物は、沸点の違いにより相が異な
り、固体異物・液体異物・気体異物の3種類に分類され
る。異物捕捉手段13では、固体異物と液体異物は完全
にガス冷媒と分離され捕捉される。気体異物はその一部
が捕捉され、一部は捕捉されない。その後、ガス冷媒
は、異物捕捉手段13で捕捉されなかった気体異物と共
にアキュムレ−タ8を経て圧縮機1へ戻る。なお、暖房
運転時の冷媒回路、すなわち、圧縮機1から利用側熱交
換器6と流量調整器5と熱源機側熱交換器3とアキュム
レータ8とを順次に経て再び圧縮機1に戻る冷媒回路
を、本明細書では、第2の冷媒回路とする。
The residual foreign matter has a different phase depending on the boiling point, and is classified into three types: solid foreign matter, liquid foreign matter, and gaseous foreign matter. In the foreign matter capturing means 13, the solid foreign matter and the liquid foreign matter are completely separated from the gas refrigerant and captured. Part of the gaseous foreign substance is captured, and part of the foreign substance is not captured. Thereafter, the gas refrigerant returns to the compressor 1 through the accumulator 8 together with the gaseous foreign matter not captured by the foreign matter capturing means 13. The refrigerant circuit during the heating operation, that is, the refrigerant circuit returning from the compressor 1 to the compressor 1 again through the use side heat exchanger 6, the flow rate regulator 5, the heat source unit side heat exchanger 3, and the accumulator 8 in order. Is herein referred to as a second refrigerant circuit.

【0043】油分離器9で、ガス冷媒と完全に分離され
たHFC用冷凍機油はバイパス路9aを経て、異物捕捉
手段13の下流で本流と合流して、圧縮機1へ戻るの
で、第1の接続配管Cや第2の接続配管Dに残留してい
た鉱油と混ざることはなく、HFC用冷凍機油はHFC
に対して非相溶化することはなく、またHFC用冷凍機
油は鉱油により劣化することはない。
The HFC refrigerating machine oil completely separated from the gas refrigerant in the oil separator 9 joins the main stream downstream of the foreign matter catching means 13 via the bypass 9a and returns to the compressor 1, so that the first Does not mix with the mineral oil remaining in the connection pipe C and the second connection pipe D of the HFC.
And the refrigerating machine oil for HFC is not deteriorated by mineral oil.

【0044】また、固形異物もHFC用冷凍機油と混合
することはなく、HFC用冷凍機油は劣化しない。ま
た、気体異物は、HFC冷媒が冷媒回路を1サイクル循
環して、異物捕捉手段13を1回通る間には一部が捕捉
されるだけで、HFC用冷凍機油と気体異物は混合され
るが、HFC用冷凍機油の劣化は化学反応で、急激には
進まない。その一例を図2に示す。異物捕捉手段13を
1回通る間に捕捉されなかった、気体異物はHFC冷媒
の循環と共に何回も異物捕捉手段13を通るので、HF
C用冷凍機油の劣化するよりも速く、異物捕捉手段13
で捕捉すればよい。
Further, solid foreign matter does not mix with the HFC refrigerating machine oil, and the HFC refrigerating machine oil does not deteriorate. In addition, only a part of the gaseous foreign matter is captured while the HFC refrigerant circulates through the refrigerant circuit for one cycle and passes through the foreign matter capturing means 13 once, and the HFC refrigerating machine oil and the gaseous foreign matter are mixed. The deterioration of the refrigeration oil for HFC is a chemical reaction and does not proceed rapidly. An example is shown in FIG. Since the gaseous foreign matter that has not been captured during one passage through the foreign matter capturing means 13 passes through the foreign matter capturing means 13 many times with the circulation of the HFC refrigerant, the HF
The foreign matter capturing means 13 is faster than the deterioration of the C refrigerating machine oil.
Can be captured with.

【0045】次に、異物捕捉手段13の一例について説
明する。図3は異物捕捉手段13の一例の断面構造を図
示したものである。51は円筒状の容器、52は容器5
1の上部に設けられた流出配管、53は容器51の上部
内面に、円錐の扇状の側面形状に形成・設置されたフィ
ルタ、54は容器51に予め充填されている鉱油、55
は容器51の下部側面に設けられた流入配管、55aは
流入配管55の容器51の内部にある部分の配管側面に
多数設けられた流出穴である。
Next, an example of the foreign matter capturing means 13 will be described. FIG. 3 illustrates a cross-sectional structure of an example of the foreign matter capturing means 13. 51 is a cylindrical container, 52 is a container 5
Reference numeral 53 denotes an outflow pipe provided in the upper part of the container 1, a filter 53 formed and installed in a conical fan-shaped side surface shape on the upper inner surface of the container 51, 54 a mineral oil previously filled in the container 51, 55
Is an inflow pipe provided on the lower side surface of the container 51, and 55a is a number of outflow holes provided on a side surface of the pipe of the portion of the inflow pipe 55 inside the container 51.

【0046】フィルタ53は、例えば細線を編みこんだ
メッシュ状のもであったり、焼結金属で形成され、各隙
間は数ミクロンから数十ミクロンで、これ以上の固体異
物が通過することはできない。また、容器51の上部空
間に微量存在する可能性のあるミスト状の液体異物も、
フィルタ53を通過しようとすると、ここで捕捉され重
力により容器側面方向に流れて容器51の下部に落下す
る。56は塩素イオンを捕捉するイオン交換樹脂であ
る。図1においては、流出配管52はイオン交換樹脂5
6を経てアキュムレ−タ8に、流入配管55は四方弁2
に接続されている。
The filter 53 is, for example, in the form of a mesh in which a fine wire is woven, or is formed of a sintered metal, and each gap is several microns to several tens of microns, and solid foreign substances larger than this cannot pass. . Further, mist-like liquid foreign matter that may be present in a small amount in the upper space of the container 51 also
When trying to pass through the filter 53, it is captured here, flows toward the side of the container due to gravity, and falls to the lower part of the container 51. Reference numeral 56 denotes an ion exchange resin that captures chloride ions. In FIG. 1, the outflow pipe 52 is made of the ion exchange resin 5.
6, the inflow pipe 55 is connected to the accumulator 8 by the four-way valve 2.
It is connected to the.

【0047】流入配管55より流入したガス冷媒は、流
出穴55aを経て、鉱油54の中を泡状になって通過
し、フィルタ53、イオン交換樹脂56を経て、流出配
管52より流出する。流入配管55よりガス冷媒と共に
流入した固体異物は、流出穴55aより鉱油54の中へ
流出後に、鉱油54が抵抗になって速度が低下し、重力
により、容器51の底部に沈殿する。また、鉱油54が
なくても、容器51の断面積は流入配管55の断面積よ
りも大きく、容器51の内部に入ると、冷媒(気体)の
流速は低下するので、個体異物は重力の作用により冷媒
(気体)と分離され、容器51の下部に沈殿する。ま
た、鉱油54の中でのガス流速が大きく、鉱油54の上
部まで、固体異物が万一吹き上げられても、フィルタ5
3により捕捉される。
The gas refrigerant flowing from the inflow pipe 55 passes through the outflow hole 55a, passes through the mineral oil 54 in the form of bubbles, passes through the filter 53, the ion exchange resin 56, and flows out of the outflow pipe 52. The solid foreign matter that has flowed in along with the gas refrigerant from the inflow pipe 55 flows out of the outflow hole 55a into the mineral oil 54, and the speed of the mineral oil 54 decreases due to resistance, and settles at the bottom of the container 51 due to gravity. Even without the mineral oil 54, the cross-sectional area of the container 51 is larger than the cross-sectional area of the inflow pipe 55, and when entering the inside of the container 51, the flow rate of the refrigerant (gas) decreases. As a result, it is separated from the refrigerant (gas) and settles at the lower part of the container 51. Further, even if the gas flow velocity in the mineral oil 54 is large and solid foreign matter is blown up to the upper part of the mineral oil 54, the filter 5
3 captured.

【0048】流入配管55よりガス冷媒と共に流入した
液体異物は、流出穴55aより鉱油54の中へ流出後
に、鉱油54が抵抗になって速度が低下し、気液分離さ
れて、鉱油54と共に滞留する。また、鉱油54がなく
ても、容器51の断面積は流入配管55の断面積よりも
大きく、容器51の内部に入ると、冷媒(気体)の流速
は低下するので、液体異物は重力の作用により冷媒(気
体)と分離され、容器51の下部に滞留する。鉱油54
の中でのガス流速が大きく、鉱油54の液面が乱れて、
鉱油がミスト状になり、ガス冷媒の流れにのったとして
も、フィルタ53により捕捉され、前述のようにここで
捕捉され重力により容器51の側面方向に流れて容器5
1の下部に落下する。
After the liquid foreign matter that has flowed in along with the gas refrigerant from the inflow pipe 55 flows out into the mineral oil 54 through the outflow hole 55a, the speed of the mineral oil 54 decreases due to resistance, is separated into gas and liquid, and stays with the mineral oil 54. I do. Even without the mineral oil 54, the cross-sectional area of the container 51 is larger than the cross-sectional area of the inflow pipe 55, and when entering the inside of the container 51, the flow rate of the refrigerant (gas) decreases. As a result, it is separated from the refrigerant (gas) and stays in the lower part of the container 51. Mineral oil 54
The gas flow velocity in the inside is large, the liquid level of the mineral oil 54 is disturbed,
Even if the mineral oil is in the form of a mist and enters the flow of the gaseous refrigerant, it is captured by the filter 53, captured as described above, flows toward the side of the container 51 by gravity, and
Fall to the bottom of 1.

【0049】流入配管55よりガス冷媒と共に流入した
気体異物は、流出穴55aを経て、鉱油54の中を泡状
になって通過し、フィルタ53、イオン交換樹脂56を
経て、流出配管52より流出する。気体異物中の主成分
はCFCまたはHCFCだが、これらは鉱油54に溶解
する。溶解の一例を図4に示す。図4(a)は鉱油とC
FCとの溶解度曲線、図4(b)は鉱油とHCFCとの
溶解度曲線を示す図である。図において、横軸は温度
(℃)、縦軸はCFC又はHCFCの圧力(kg/cm
2)であり、CFC又はHCFCの濃度(wt%)をパ
ラメータとして溶解度曲線を示している。
The gaseous foreign matter which has flowed in along with the gas refrigerant from the inflow pipe 55 passes through the outflow hole 55a, passes through the mineral oil 54 in a foamy state, passes through the filter 53 and the ion exchange resin 56, and flows out of the outflow pipe 52. I do. The main component in the gaseous foreign matter is CFC or HCFC, which dissolves in the mineral oil 54. An example of the dissolution is shown in FIG. Fig. 4 (a) shows mineral oil and C
FIG. 4 (b) is a diagram showing a solubility curve between a mineral oil and HCFC. In the figure, the horizontal axis is temperature (° C.), and the vertical axis is CFC or HCFC pressure (kg / cm).
2 ), and shows the solubility curve using the concentration (wt%) of CFC or HCFC as a parameter.

【0050】流入配管55よりガス冷媒と共に流入した
気体異物は、流出穴55aを経て、鉱油54の中を泡状
になることで、鉱油54との接触が増え、CFCやHC
FCはより確実に鉱油54に溶解する。しかし、HFC
は鉱油には溶解しないので、全てが流出配管52から流
出される。このようにして、容器51の内部で固体異物
と液体異物は完全に分離され捕捉される。また、気体異
物の主成分であるCFCやHCFCも何回か、この部分
を通過する間に、大部分が溶解し捕捉される。
The gaseous foreign matter that has flowed in along with the gas refrigerant from the inflow pipe 55 passes through the outflow hole 55a and foams in the mineral oil 54, so that contact with the mineral oil 54 increases, and CFC and HC
The FC more reliably dissolves in the mineral oil 54. But HFC
Does not dissolve in mineral oil, so that all of them are discharged from the discharge pipe 52. Thus, the solid foreign matter and the liquid foreign matter are completely separated and captured inside the container 51. In addition, CFCs and HCFCs, which are the main components of gaseous foreign matter, are mostly dissolved and captured several times while passing through this part.

【0051】また、残留異物中のCFCやHCFC以外
の塩素成分は、冷媒回路中では微量の存在する水に溶け
て塩素イオンとして存在するので、何回かイオン交換樹
脂56を通過することにより捕捉される。
Further, chlorine components other than CFC and HCFC in the residual foreign matter are dissolved in a small amount of water in the refrigerant circuit and exist as chlorine ions, and thus are captured by passing through the ion exchange resin 56 several times. Is done.

【0052】次に、油分離器9について説明する。高性
能油分離器の例としては、実公平5-19721号公報に示さ
れたものがある。図5にその内部構造を断面図で示す。
71は上シェル71a及び下シェル71bにより構成さ
れる円形胴体部を有する密閉容器、72は先端に網状体
73を有する入口管であり、入口管72は上シェル71
aの略中央部を貫通して容器71内に突出するように取
り付けられ、冷媒を流入させる。78は網状体73の上
部に設けられた、多数の小孔を有するパンチングメタル
などにより構成される円形の均速板、79は均速板78
の上部に形成される上部空間であり、冷媒流出空間とな
るものである。74は冷媒流出空間79に端部を持つ冷
媒の出口管、77は排油管である。
Next, the oil separator 9 will be described. An example of a high performance oil separator is disclosed in Japanese Utility Model Publication No. 5-19721. FIG. 5 is a sectional view showing the internal structure.
Reference numeral 71 denotes an airtight container having a circular body constituted by an upper shell 71a and a lower shell 71b; 72, an inlet pipe having a net-like body 73 at the tip;
It is attached so as to protrude into the container 71 through a substantially central portion of a, and allows the refrigerant to flow therein. Reference numeral 78 denotes a circular speed equalizing plate provided on the upper part of the mesh member 73 and formed of a punching metal having a large number of small holes.
Is an upper space formed at the upper part of the cooling water, and serves as a refrigerant outflow space. 74 is a refrigerant outlet pipe having an end in the refrigerant outflow space 79, and 77 is an oil drain pipe.

【0053】このような、高性能油分離器を直列に複数
個接続することで、分離効率100%の油分離器を得る
ことができる。図6に、図5の構造の油分離器における
ガス冷媒の流速と分離効率の実験結果を示す。図におい
て、横軸は容器内平均流速(m/s)、縦軸は分離効率
(%)を示す。直列油分離器の最初の油分離器の内径を
最大の流速が0.13m/s以下となるようにすること
で、一般に圧縮機1から吐出される冷凍機油は冷媒流量
比で1.5wt%以下のため、最初の油分離器の2次側
では、冷凍機油は冷媒流量比で0.05wt%以下にな
っている。
By connecting a plurality of such high performance oil separators in series, an oil separator having a separation efficiency of 100% can be obtained. FIG. 6 shows the experimental results of the gas refrigerant flow velocity and the separation efficiency in the oil separator having the structure shown in FIG. In the figure, the horizontal axis indicates the average flow velocity in the container (m / s), and the vertical axis indicates the separation efficiency (%). By setting the inner diameter of the first oil separator of the series oil separator so that the maximum flow rate is 0.13 m / s or less, the refrigerating machine oil discharged from the compressor 1 generally has a refrigerant flow ratio of 1.5 wt%. Therefore, on the secondary side of the first oil separator, the refrigerating machine oil has a refrigerant flow ratio of 0.05 wt% or less.

【0054】この比率では、ガス冷媒と冷凍機油の気液
二相流の流動様式は噴霧流となっているので、2番目の
油分離器も同径以上とし、かつ流入配管のメッシュを焼
結金属など目を非常に細かくすることで、完全に冷凍機
油を分離することができる。このように、既存の油分離
器の寸法を調整したり、複数個を組み合せることで、分
離効率100%の油分離器を実現することは可能であ
り、図1に示す油分離器9はこのようなものである。図
1においては、直列に接続された複数個の油分離器の最
初の入口管72が圧縮器1の下流に接続され、最後の出
口管74が異物捕捉手段13の下流でアキュームレータ
8の上流に接続される。
At this ratio, the flow mode of the gas-liquid two-phase flow of the gas refrigerant and the refrigerating machine oil is a spray flow, so that the second oil separator has the same diameter or more, and the mesh of the inflow pipe is sintered. The refrigerating machine oil can be completely separated by making the metal and the like very fine. As described above, it is possible to realize an oil separator having a separation efficiency of 100% by adjusting the dimensions of the existing oil separator or combining a plurality of oil separators. The oil separator 9 shown in FIG. Something like this. In FIG. 1, the first inlet pipe 72 of a plurality of oil separators connected in series is connected downstream of the compressor 1 and the last outlet pipe 74 is located downstream of the foreign matter capturing means 13 and upstream of the accumulator 8. Connected.

【0055】以上のように、油分離器9と異物捕捉手段
13を熱源機Aに内蔵することで、熱源機Aと室内機B
のみを新規に交換し、第1の接続配管Cと第2の接続配
管Dを交換しないで、老朽化したCFCまたはHCFC
を用いた冷凍サイクル装置を新しいHFCを用いた冷凍
サイクル装置に入れ替えることができる。このような方
法によれば、既設配管再利用方法として、前記の従来の
洗浄方法1とは違って、洗浄装置を用いて専用の洗浄液
(HCFC141bやHCFC225)で洗浄するとい
うことをしないので、オゾン層破壊の可能性は全く無
く、また可燃性・毒性も皆無で、洗浄液残留の懸念も無
く、洗浄液を回収する必要も無い。
As described above, by incorporating the oil separator 9 and the foreign matter capturing means 13 in the heat source unit A, the heat source unit A and the indoor unit B
Only a new CFC or HCFC without replacing the first connection pipe C and the second connection pipe D.
Can be replaced with a new refrigeration cycle device using HFC. According to such a method, unlike the above-described conventional cleaning method 1, the existing pipe is not reused by using a cleaning device to perform cleaning with a dedicated cleaning liquid (HCFC141b or HCFC225). There is no possibility of destruction of the layer, there is no flammability and no toxicity, there is no concern that the cleaning liquid remains, and there is no need to collect the cleaning liquid.

【0056】また、前記の従来の洗浄方法2と違って、
洗浄運転を3回繰り返してHFC冷媒やHFC冷凍機油
を3回入れ替える必要がないため、必要なHFCや冷凍
機油は1台分で済むためコスト・環境上有利である。ま
た、交換用冷凍機油の管理も不要で、かつ冷凍機油過不
足の危険性も全く発生しない。また、HFC用冷凍機油
の非相溶化や冷凍機油の劣化の恐れも無い。
Also, unlike the conventional cleaning method 2 described above,
It is not necessary to replace the HFC refrigerant or the HFC refrigerating machine oil three times by repeating the washing operation three times, so that only one HFC or refrigerating machine oil is required, which is advantageous in cost and environment. Further, there is no need to manage the refrigerating machine oil for replacement, and there is no danger of excessive or insufficient refrigerating machine oil. Further, there is no fear of incompatibility of the refrigerating machine oil for HFC or deterioration of the refrigerating machine oil.

【0057】この実施の形態では、室内機Bが1台接続
された例について説明したが、室内機Bが並列または直
列に複数台接続された冷凍サイクル装置でも同様の効果
を奏することは言うまでもない。また、熱源機側熱交換
器3と直列または並列に氷蓄熱槽や水蓄熱槽(湯を含
む)が設置されていても同様の効果を奏することは明ら
かである。また、熱源機Aが複数台並列に接続された冷
凍サイクル装置においても同様の効果を奏することは明
らかである。また、冷凍サイクル装置に限らず、蒸気圧
縮式の冷凍サイクル応用品で、熱源機側熱交換器が内蔵
されたユニットと利用側熱交換器が内蔵されたユニット
が離れて設置されるものであれば、同様の効果を奏する
ことは明らかである。
In this embodiment, an example in which one indoor unit B is connected has been described. However, it is needless to say that a similar effect can be obtained with a refrigeration cycle apparatus in which a plurality of indoor units B are connected in parallel or in series. . It is clear that the same effect can be obtained even if an ice heat storage tank or a water heat storage tank (including hot water) is installed in series or parallel with the heat source unit side heat exchanger 3. It is also apparent that the same effect can be obtained in a refrigeration cycle device in which a plurality of heat source devices A are connected in parallel. In addition, the present invention is not limited to the refrigeration cycle apparatus, and may be applied to a vapor compression type refrigeration cycle applied to a unit having a built-in heat source side heat exchanger and a unit having a built-in use side heat exchanger. It is clear that a similar effect can be achieved.

【0058】以上説明した実施の形態1の構成の一側面
を要約すると次のとおりである。この冷凍サイクル装置
は、圧縮機から熱源機側熱交換器と流量調整器と利用側
熱交換器とアキュムレータとを順次に経て上記圧縮機に
冷媒を循環させる第1の冷媒回路を備えている。また、
上記圧縮機から上記利用側熱交換器と上記流量調整器と
上記熱源機側熱交換器と上記アキュムレータとを順次に
経て上記圧縮機に冷媒を循環させる第2の冷媒回路を備
えている。また、上記第1の冷媒回路の上記利用側熱交
換器と上記アキュムレータとの間で、かつ、上記第2の
冷媒回路の上記熱源機側熱交換器と上記アキュムレータ
との間に、冷媒中の異物を捕捉する異物捕捉手段を備え
ている。さらに、上記第1の冷媒回路の上記圧縮機と上
記熱源機側熱交換器との間で、かつ、上記第2の冷媒回
路の上記圧縮機と上記利用側熱交換器との間に、冷媒の
油成分を分離する油分離手段を備えている。
One aspect of the configuration of the first embodiment described above is summarized as follows. This refrigeration cycle apparatus includes a first refrigerant circuit that circulates a refrigerant from the compressor to the compressor through a heat source-side heat exchanger, a flow regulator, a use-side heat exchanger, and an accumulator in order. Also,
There is provided a second refrigerant circuit for circulating a refrigerant from the compressor to the compressor through the use side heat exchanger, the flow rate regulator, the heat source device side heat exchanger, and the accumulator in order. In addition, between the use side heat exchanger of the first refrigerant circuit and the accumulator, and between the heat source unit side heat exchanger of the second refrigerant circuit and the accumulator, A foreign matter capturing means for capturing foreign matter is provided. Further, a refrigerant is provided between the compressor of the first refrigerant circuit and the heat source device side heat exchanger and between the compressor of the second refrigerant circuit and the use side heat exchanger. Oil separating means for separating the oil component.

【0059】次に、この実施の形態1による冷凍サイク
ル装置について、冷媒置換後の洗浄運転の制御方法につ
いて説明する。 (1)第1の制御方法 実施の形態1の冷凍サイクル装置の洗浄運転時の第1の
制御方法としては、CFCやHCFC等(旧冷媒)を使
った冷媒回路(冷凍サイクル装置)の熱源機Aおよび室
内機Bを、HFC(新冷媒)を用いたものと置換し、さ
らにHFCの追加充填をした後、洗浄運転のステップA
として、冷房運転を実施する。このステップAでは、図
1の実線矢印に示すように、圧縮機1を駆動源として、
冷媒を圧縮機1から熱源機側熱交換器3を経て第1の接
続配管Cに通し、流量調整器4と利用側熱交換器6を経
て第2の接続配管Dへ通し、さらに異物捕捉手段13と
アキュムレ−タ8を経て圧縮機1へと流して洗浄する。
Next, a method of controlling the cleaning operation after the replacement of the refrigerant in the refrigeration cycle apparatus according to the first embodiment will be described. (1) First Control Method As a first control method during the cleaning operation of the refrigeration cycle device of the first embodiment, a heat source device of a refrigerant circuit (refrigeration cycle device) using CFC, HCFC, or the like (old refrigerant) is used. A and indoor unit B are replaced with those using HFC (new refrigerant), and after additional filling of HFC, washing operation step A
The cooling operation is performed as follows. In this step A, as shown by the solid line arrow in FIG.
The refrigerant passes from the compressor 1 through the heat source device side heat exchanger 3 to the first connection pipe C, passes through the flow regulator 4 and the use side heat exchanger 6 to the second connection pipe D, and further contains foreign matter capturing means. 13 and the accumulator 8 to flow to the compressor 1 for cleaning.

【0060】冷媒交換前のCFCやHCFCを使った冷
凍サイクル装置では、第1の接続配管Cは冷房運転でも
暖房運転でも液冷媒単相状態もしくは気液二相状態であ
り、ここには鉱油はあまりたくさん分布していない。一
方、第2の接続配管Dは、冷房運転でも暖房運転でもガ
ス単相状態であり、鉱油は液膜状に管壁内部をガス冷媒
に引きずられるように流れるため、ここには鉱油が多く
分布する。したがって、前述のように洗浄運転の最初に
第1の接続配管Cを上流に、第2の接続配管Dを下流に
なるようにすることで、第2の接続配管Dに多く分布し
ている鉱油を第1の接続配管Cに混入させることなく、
異物捕捉手段13に回収することができる。これによ
り、洗浄時間が短くできる上に、第1、第2の接続配管
C、Dに残留する鉱油の量を低減することができる。
In a refrigeration cycle apparatus using CFC or HCFC before refrigerant exchange, the first connection pipe C is in a liquid refrigerant single-phase state or a gas-liquid two-phase state in both cooling operation and heating operation. Not much distributed. On the other hand, the second connection pipe D is in a gas single-phase state in both the cooling operation and the heating operation, and the mineral oil flows in a liquid film form in the pipe wall so as to be dragged by the gas refrigerant. I do. Therefore, by setting the first connection pipe C upstream and the second connection pipe D downstream at the beginning of the cleaning operation as described above, the mineral oil distributed in the second connection pipe D in a large amount Without mixing into the first connection pipe C,
The foreign matter can be collected by the foreign matter capturing means 13. Thus, the cleaning time can be shortened, and the amount of the mineral oil remaining in the first and second connection pipes C and D can be reduced.

【0061】(2)第2の制御方法 実施の形態1の冷凍サイクル装置の洗浄運転時の第2の
制御方法としては、CFCやHCFCを使った冷媒回路
(冷凍サイクル装置)の熱源機Aおよび室内機BをHF
Cを用いたもの置換し、さらにHFCの追加充填をした
後、洗浄運転のステップBとして、暖房運転を実施す
る。このステップBでは、図1の破線矢印に示すよう
に、圧縮機1を駆動源として、冷媒を圧縮機1から第2
の接続配管Dへ通し、利用側熱交換器6と流量調整器4
を経て第1の接続配管Cに通し、熱源機側熱交換器3と
異物捕捉手段13とアキュムレ−タ8を経て圧縮機1へ
と流して洗浄する。
(2) Second Control Method As a second control method during the cleaning operation of the refrigeration cycle device of the first embodiment, the heat source devices A and C of the refrigerant circuit (refrigeration cycle device) using CFC or HCFC are used. HF for indoor unit B
After replacing with C, and additionally filling with HFC, a heating operation is performed as Step B of the cleaning operation. In this step B, as shown by the dashed arrow in FIG. 1, the refrigerant is
Through the connection pipe D, and the use side heat exchanger 6 and the flow regulator 4
Through the first connection pipe C, the heat source side heat exchanger 3, the foreign matter capturing means 13 and the accumulator 8 to the compressor 1 for washing.

【0062】このステップBでは、第2の接続配管D、
第1の接続配管Cの順に冷媒を流して洗浄することにな
る。一般に、実施の形態1の図1示す冷凍サイクル装置
では、第1の接続配管Cの方が第2の接続配管Dよりも
配管内径が小さい。これは、冷房運転において第2の接
続配管Dでの摩擦損失の大小は蒸発温度に関係し冷房能
力への影響が大きいため可能な限り太くするのに対し
て、第1の接続配管Cでの摩擦損失は蒸発温度や凝縮温
度へ直接与える影響はなく、むしろここを流れる冷媒が
液単相もしくは気液二相であることから冷媒充填量を増
加させない観点から可能な限り細くするためである。つ
まり、このステップBは、第1、第2の接続配管C、D
のうち太径配管が上流で細径配管が下流になるようにし
て冷媒を流して洗浄することと換言することができる。
In this step B, the second connection pipe D,
The cleaning is performed by flowing the refrigerant in the order of the first connection pipe C. Generally, in the refrigeration cycle apparatus shown in FIG. 1 of the first embodiment, the first connection pipe C has a smaller pipe inner diameter than the second connection pipe D. This is because, in the cooling operation, the magnitude of the friction loss in the second connection pipe D is related to the evaporating temperature and greatly affects the cooling capacity, so that it is made as large as possible. The friction loss has no direct effect on the evaporation temperature or the condensation temperature, but rather, the refrigerant flowing therethrough is a single-phase liquid or a two-phase gas-liquid phase. That is, this step B includes the first and second connection pipes C and D
In other words, it can be said that washing is performed by flowing a refrigerant such that the large-diameter pipe is upstream and the small-diameter pipe is downstream.

【0063】HFC冷媒の一種であるR407Cを液または
気液二相状態で配管内の鉱油を洗浄した場合の配管内残
留量を図11に示す。図11において、横軸は冷媒の質
量速度(kg/s・cm2)、縦軸は配管内鉱油残留量(mg/
m)を示す。この図11からもわかるように冷媒の質量
速度が大きくなるほど、洗浄効果は高い。したがって、
暖房運転をすると、配管内径の細い第1の接続配管Cで
は冷媒の質量速度が大きく、非常に高い洗浄効果が得ら
れる。一方、第2の接続配管Dは配管内径が太いため、
冷媒の質量速度が小さいので、この点では洗浄効果が小
さい。しかしながら、この流れ方向では第2の接続配管
Dの方が第1の接続配管Cよりも上流にあり、冷媒の温
度が高いため、鉱油への冷媒の溶解度が高くなり、鉱油
の粘性が小さくなることで、洗浄効果が高くなる。
FIG. 11 shows the residual amount in the pipe when the mineral oil in the pipe is washed with R407C which is a kind of HFC refrigerant in a liquid or gas-liquid two-phase state. In FIG. 11, the horizontal axis represents the mass velocity of the refrigerant (kg / s · cm 2), and the vertical axis represents the residual amount of mineral oil (mg / s
m). As can be seen from FIG. 11, the higher the mass velocity of the refrigerant, the higher the cleaning effect. Therefore,
When the heating operation is performed, the mass velocity of the refrigerant is large in the first connection pipe C having a small pipe inner diameter, and a very high cleaning effect can be obtained. On the other hand, since the second connection pipe D has a large pipe inner diameter,
Since the mass velocity of the refrigerant is low, the cleaning effect is small in this respect. However, in this flow direction, the second connection pipe D is more upstream than the first connection pipe C, and since the temperature of the refrigerant is high, the solubility of the refrigerant in the mineral oil increases, and the viscosity of the mineral oil decreases. This increases the cleaning effect.

【0064】(3)第3の制御方法 実施の形態1の冷凍サイクル装置の洗浄運転時の第3の
制御方法としては、CFCやHCFCを使った冷媒回路
(冷凍サイクル装置)の熱源機Aおよび室内機BをHF
Cを用いたものに置換し、さらにHFCの追加充填をし
た後、先ず上述のステップAの冷房運転、次に上述のス
テップBの暖房運転の順で洗浄運転を実施する。このよ
うに、ステップA、ステップBの順に実施することで、
第2の接続配管Dに多く分布している鉱油を第1の接続
配管Cに混入させることなく、異物捕捉手段13に回収
し、その後に質量流速、溶解度の面で洗浄効果の高い洗
浄を行うことになり、より高い洗浄効果が得られ、洗浄
時間も短くすることができる。
(3) Third Control Method As a third control method during the cleaning operation of the refrigeration cycle device of the first embodiment, the heat source devices A and C of the refrigerant circuit (refrigeration cycle device) using CFC or HCFC are used. HF for indoor unit B
After replacing with C, and additionally filling with HFC, first, the cooling operation in step A described above, and then the cleaning operation in the heating operation in step B described above are performed. Thus, by performing step A and step B in this order,
Mineral oil, which is largely distributed in the second connection pipe D, is collected by the foreign matter capturing means 13 without being mixed into the first connection pipe C, and thereafter, cleaning with a high cleaning effect in terms of mass flow rate and solubility is performed. As a result, a higher cleaning effect can be obtained, and the cleaning time can be shortened.

【0065】(4)第4の制御方法 実施の形態1の冷凍サイクル装置の洗浄運転時の第4の
制御方法としては、CFCやHCFCを使った冷凍サイ
クル装置の熱源機Aおよび室内機BをHFCを用いたも
のに置換し、さらにHFCの追加充填をした後、洗浄運
転のための圧縮機1の運転容量を、洗浄対象である第
1、第2の接続配管C、Dの配管径に応じて制御し、洗
浄運転中の第1、第2の接続配管C、Dを流れる冷媒の
質量速度を所定値以上に、あるいは所定範囲に制御す
る。これにより、高い洗浄効果を確保することができ
る。ここで、一例として好適な所定値以上の質量速度と
しては、150kg/s・cm2以上とする。これは、ステップA
の場合でも、ステップBの場合でも同様である。既に説
明したように、図11に冷媒の質量速度と配管内鉱油残
留量との関係の一例を示した。配管内の冷媒の質量速度
が大きくなるほど、洗浄効果は高いことが示されてい
る。
(4) Fourth Control Method As a fourth control method during the cleaning operation of the refrigeration cycle apparatus according to the first embodiment, the heat source unit A and the indoor unit B of the refrigeration cycle apparatus using CFC or HCFC are used. After replacing with HFC and further adding HFC, the operating capacity of the compressor 1 for the cleaning operation is changed to the diameter of the first and second connection pipes C and D to be cleaned. The mass velocity of the refrigerant flowing through the first and second connection pipes C and D during the cleaning operation is controlled to a predetermined value or more, or to a predetermined range. Thereby, a high cleaning effect can be ensured. Here, as an example, the mass velocity not less than a predetermined value, which is preferable, is 150 kg / s · cm 2 or more. This is step A
The same applies to the case of step B and the case of step B. As already described, FIG. 11 shows an example of the relationship between the mass velocity of the refrigerant and the residual amount of mineral oil in the pipe. It is shown that the higher the mass velocity of the refrigerant in the pipe, the higher the cleaning effect.

【0066】実施の形態2.図7は、この発明の実施の
形態2による冷凍サイクル装置の一例として、冷媒置換
を行う冷凍サイクル装置の冷媒回路を示す図である。図
7において、符号B〜D、1〜9及び8a、9aは、実
施の形態1と同様のものであるから、詳細な説明を省略
する。
Embodiment 2 FIG. 7 is a diagram illustrating a refrigerant circuit of a refrigeration cycle device that performs refrigerant replacement, as an example of a refrigeration cycle device according to Embodiment 2 of the present invention. In FIG. 7, reference numerals B to D, 1 to 9 and 8a and 9a are the same as those in the first embodiment, and a detailed description thereof will be omitted.

【0067】次に、12aは高温高圧のガス冷媒を冷却
・液化する冷却手段(冷却装置)、12bは低圧二相冷
媒をガス化する加熱手段(加熱装置)、13は上記加熱
手段12bの出口部に直列に設けられた異物捕捉手段
(異物捕捉装置)である。14aは上記異物捕捉手段1
3の出口部に設けられた第1の電磁弁、14bは上記加
熱手段12bの入口部に設けられた第2の電磁弁であ
る。
Next, 12a is a cooling means (cooling device) for cooling and liquefying a high-temperature and high-pressure gas refrigerant, 12b is a heating means (heating device) for gasifying a low-pressure two-phase refrigerant, and 13 is an outlet of the heating means 12b. A foreign matter capturing means (foreign matter capturing device) provided in series with the unit. 14a is the foreign matter capturing means 1
Reference numeral 14b denotes a first electromagnetic valve provided at an outlet of the heating means 12b, and reference numeral 14b denotes a second electromagnetic valve provided at an inlet of the heating means 12b.

【0068】10は第1の切換弁であり、熱源機側熱交
換器3の冷房運転時の出口端、四方弁2の暖房運転時の
出口端、上記冷却手段12aの入口端、上記電磁弁14a
の出口端の4箇所のうち、運転モ−ドに応じて、以下の
ような接続切換を行うものである。すなわち、冷房洗浄
運転時には熱源機側熱交換器3の冷房運転時の出口端と
冷却手段12aの入口端とを接続し、かつ電磁弁14aの
出口端と四方弁2の冷房運転時の入口端(暖房運転時の
出口端)を接続する。また、暖房洗浄運転時には、四方
弁2の暖房運転時の出口端と冷却手段12aの入口端と
を接続し、かつ電磁弁14aの出口端と熱源機側熱交換
器3の暖房運転時の入口端(冷房運転時の出口端)とを
接続する。
Reference numeral 10 denotes a first switching valve, which is an outlet end of the heat source unit side heat exchanger 3 during a cooling operation, an outlet end of the four-way valve 2 during a heating operation, an inlet end of the cooling means 12a, and an electromagnetic valve. 14a
The following connection switching is performed in accordance with the operation mode among the four locations at the outlet end of the system. That is, during the cooling washing operation, the outlet end of the heat source unit side heat exchanger 3 during the cooling operation is connected to the inlet end of the cooling means 12a, and the outlet end of the solenoid valve 14a and the inlet end of the four-way valve 2 during the cooling operation. (Exit end during heating operation). Also, during the heating washing operation, the outlet end of the four-way valve 2 during the heating operation is connected to the inlet end of the cooling means 12a, and the outlet end of the solenoid valve 14a and the inlet of the heat source unit side heat exchanger 3 during the heating operation. End (exit end during cooling operation).

【0069】11は第2の切換弁であり、冷房洗浄運転
時及び冷房通常運転時には、冷却手段12aの出口端を
第1の操作弁4に接続し、暖房洗浄運転時及び暖房通常
運転時には、冷却手段12aの出口端を第2の操作弁7
に接続し、かつ、冷房洗浄運転時には電磁弁14bの入
口端を第2の操作弁7に接続し、暖房洗浄運転時には電
磁弁14bの入口端を第1の操作弁4に接続するもので
ある。14cは第3の電磁弁であり、第1の切換弁10
の熱源機側熱交換器3への接続端と、第2の切換弁11
の第1の操作弁4への接続端との間を接続する配管途中
に設けられた電磁弁である。14dは第4の電磁弁であ
り、第1の切換弁10の四方弁2への接続端と、第2の
切換弁11の第2の操作弁7への接続端との間を接続す
る配管途中に設けられた電磁弁である。
Reference numeral 11 denotes a second switching valve, which connects the outlet end of the cooling means 12a to the first operation valve 4 during the cooling washing operation and the normal cooling operation, and performs the heating cleaning operation and the normal heating operation. The outlet end of the cooling means 12a is connected to the second operating valve 7
The inlet end of the solenoid valve 14b is connected to the second operation valve 7 during the cooling washing operation, and the inlet end of the solenoid valve 14b is connected to the first operation valve 4 during the heating washing operation. . 14c is a third solenoid valve, and the first switching valve 10c
And the second switching valve 11
This is an electromagnetic valve provided in the middle of the pipe connecting the connection end to the first operation valve 4. Reference numeral 14d denotes a fourth solenoid valve, which connects between a connection end of the first switching valve 10 to the four-way valve 2 and a connection end of the second switching valve 11 to the second operation valve 7. It is a solenoid valve provided on the way.

【0070】上記第1の切換弁10は、熱源機側熱交換
器3の冷房運転時の出口端から冷却手段12aの入口端
への冷媒の流通は許容するがその逆は許容しないように
設けられた逆止弁10a、四方弁2の暖房運転時の出口
端から冷却手段12aの入口端への冷媒の流通は許容す
るがその逆は許容しないように設けられた逆止弁10
b、第1の電磁弁14aの出口端から熱源機側熱交換器
3の冷房運転時の出口端への冷媒の流通は許容するがそ
の逆は許容しないように設けられた逆止弁10c、第1
の電磁弁14aの出口端から四方弁2の暖房運転時の出
口端への冷媒の流通は許容するがその逆は許容しないよ
うに設けられた逆止弁10dより構成されているため、
電気信号によらず各接続端の圧力により自己切換可能な
切換弁である。
The first switching valve 10 is provided so as to allow the flow of the refrigerant from the outlet end of the heat source unit side heat exchanger 3 during the cooling operation to the inlet end of the cooling means 12a, but not vice versa. The check valve 10a is provided so that the flow of the refrigerant from the outlet end of the four-way valve 2 during the heating operation to the inlet end of the cooling means 12a is allowed, but not vice versa.
b, a check valve 10c provided so as to allow the flow of the refrigerant from the outlet end of the first solenoid valve 14a to the outlet end of the heat source unit side heat exchanger 3 during the cooling operation, but not vice versa; First
Since the refrigerant flow from the outlet end of the solenoid valve 14a to the outlet end of the four-way valve 2 during the heating operation of the four-way valve 2 is allowed, but the reverse is not allowed, the check valve 10d is provided.
It is a switching valve that can switch itself by the pressure at each connection end without using an electric signal.

【0071】上記冷却手段12aの冷却源は、空気・水
のいずれでもよく、上記加熱手段12bの加熱源も空気
・水のいずれでも、あるいはヒ−タ−でもよい。また、
冷却手段12aと加熱手段12bは、第1の切換弁10
と第2の切換弁11に挟まれた、高温高圧側の配管と低
温低圧側の配管を熱的に接触させて、たとえば、二重管
の外側配管として高温高圧側の配管、内側配管として低
温低圧側の配管で構成することでもよい。すなわち、加
熱手段12bと冷却手段12aとの間で熱移動させても
よい。
The cooling source of the cooling means 12a may be air or water, and the heating source of the heating means 12b may be air or water or a heater. Also,
The cooling means 12a and the heating means 12b are connected to the first switching valve 10
The pipe on the high-temperature and high-pressure side and the pipe on the low-temperature and low-pressure side, which are interposed between the second switching valve 11 and the second switching valve 11, are brought into thermal contact with each other. It may be constituted by piping on the low pressure side. That is, heat may be transferred between the heating unit 12b and the cooling unit 12a.

【0072】以上のような構成により、熱源機Aは、油
分離器9、分離油のバイパス路9a、冷却手段12a、
加熱手段12b、異物捕捉手段13、第1の切換弁1
0、第2の切換弁11、第1の電磁弁14a、第2の電
磁弁14b、第3の電磁弁14c、第4の電磁弁14d
を内蔵している。なお、加熱手段12bおよび異物捕捉
手段13を含む冷媒回路部分を、本明細書では、第1の
バイパス路とする。また、冷却手段12aを含む冷媒回
路部分を、本明細書では、第2のバイパス路とする。な
おまた、この冷凍サイクル装置は冷媒としてHFC(新
冷媒)を使うものである。
With the above configuration, the heat source unit A includes the oil separator 9, the separated oil bypass 9a, the cooling means 12a,
Heating means 12b, foreign matter capturing means 13, first switching valve 1
0, the second switching valve 11, the first solenoid valve 14a, the second solenoid valve 14b, the third solenoid valve 14c, and the fourth solenoid valve 14d
Built-in. In this specification, the refrigerant circuit portion including the heating means 12b and the foreign matter capturing means 13 is referred to as a first bypass path. Further, the refrigerant circuit portion including the cooling means 12a is referred to as a second bypass in this specification. This refrigeration cycle apparatus uses HFC (new refrigerant) as a refrigerant.

【0073】次に、CFCやHCFC(旧冷媒)を使っ
た冷凍サイクル装置が老朽化した場合の、冷凍サイクル
装置交換の手順を示す。既存の冷凍サイクル装置からC
FCまたはHCFCを回収し、熱源機Aと室内機Bを図
7に示すHFCを用いるものに交換する。第1の接続配
管Cと第2の接続配管Dは、HCFCを使った冷凍サイ
クル装置のものを再利用する。そして、図7に示す冷媒
回路を形成する。熱源機Aには予めHFCが充填されて
いるので、第1の操作弁4と第2の操作弁7は閉じたま
ま、室内機B、第1の接続配管C、第2の接続配管Dを
接続状態で真空引きをし、その後第1の操作弁4と第2
の操作弁7の開弁とHFCの追加充填を実施する。その
後、まず洗浄運転を実施し、その後通常の空調運転を実
施する。
Next, the procedure of replacing the refrigeration cycle device when the refrigeration cycle device using CFC or HCFC (old refrigerant) is deteriorated will be described. C from existing refrigeration cycle equipment
The FC or HCFC is recovered, and the heat source unit A and the indoor unit B are exchanged with those using the HFC shown in FIG. As the first connection pipe C and the second connection pipe D, those of the refrigeration cycle apparatus using HCFC are reused. Then, the refrigerant circuit shown in FIG. 7 is formed. Since the heat source unit A is pre-filled with HFC, the indoor unit B, the first connection pipe C, and the second connection pipe D are connected with the first operation valve 4 and the second operation valve 7 closed. A vacuum is drawn in the connected state, and then the first operation valve 4 and the second
Of the operation valve 7 and additional filling of HFC. Thereafter, a cleaning operation is first performed, and then a normal air-conditioning operation is performed.

【0074】次に、洗浄運転の内容を図7に添って説明
する。図中、実線矢印が冷房洗浄運転の流れを、破線矢
印が暖房洗浄運転の流れを示す。まず冷房洗浄運転につ
いて説明する。圧縮機1で圧縮された高温高圧のガス冷
媒は、HFC用冷凍機油と共に圧縮機1を吐出され、油
分離器9へ流入する。ここで、HFC用の冷凍機油は完
全に分離され、ガス冷媒のみが、四方弁2を経て、熱源
機側熱交換器3へと流入し、ここで空気・水など熱源媒
体と熱交換器してある程度凝縮液化する。
Next, the contents of the cleaning operation will be described with reference to FIG. In the figure, the solid arrow indicates the flow of the cooling cleaning operation, and the broken arrow indicates the flow of the heating cleaning operation. First, the cooling cleaning operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the refrigeration oil for HFC and flows into the oil separator 9. Here, the refrigerating machine oil for the HFC is completely separated, and only the gas refrigerant flows into the heat source device side heat exchanger 3 via the four-way valve 2, where it is exchanged with a heat source medium such as air and water. To some extent condensed and liquefied.

【0075】ある程度凝縮液化した冷媒は第1の切換弁
10を経て冷却手段12aに流入し、ここで完全に凝縮
液化して、第2の切換弁11、第1の操作弁4を経て第
1の接続配管Cに流入する。HFCの液冷媒が第1の接
続配管Cを流れるときに、第1の接続配管Cに残留して
いるCFC・HCFC・鉱油・鉱油劣化物(以下残留異
物と称する)を少しずつ洗浄してHFCの液冷媒と共に
流れ、流量調整器5へ流入し、ここで低圧まで減圧され
て低圧二相状態となり、利用側熱交換器6で空気などの
利用側媒体と熱交換してある程度蒸発・ガス化する。
The refrigerant which has been condensed and liquefied to some extent flows into the cooling means 12a through the first switching valve 10, where it is completely condensed and liquefied, and the first refrigerant is passed through the second switching valve 11 and the first operation valve 4. Flows into the connection pipe C. When the liquid refrigerant of the HFC flows through the first connection pipe C, CFCs, HCFCs, mineral oils, and mineral oil degraded substances (hereinafter referred to as residual foreign substances) remaining in the first connection pipe C are washed little by little to form an HFC. Flows into the flow controller 5 where the pressure is reduced to a low pressure to form a low-pressure two-phase state, and the use-side heat exchanger 6 exchanges heat with a use-side medium such as air to evaporate and gasify to some extent. I do.

【0076】ある程度蒸発・ガス化した気液二相状態の
冷媒は第1の接続配管Cの残留異物と共に第2の接続配
管Dに流入する。第2の接続配管Dに残留している残留
異物は、ここを流れる冷媒が気液二相状態のため、流速
も速く、かつ液冷媒と共に、残留異物は洗浄され、第1
の接続配管Cより速い速度で洗浄される。
The gas-liquid two-phase refrigerant, which has been vaporized and gasified to some extent, flows into the second connection pipe D together with the foreign matter remaining in the first connection pipe C. The residual foreign matter remaining in the second connection pipe D has a high flow rate because the refrigerant flowing there is in a gas-liquid two-phase state, and the residual foreign matter is cleaned together with the liquid refrigerant.
The cleaning is performed at a higher speed than the connecting pipe C.

【0077】その後、ある程度蒸発・ガス化した気液二
相状態の冷媒は、第1の接続配管Cの残留異物と第2の
接続配管Dの残留異物と共に、第2の操作弁7、第2の
切換弁11、第2の電磁弁14bを経て、加熱手段12
bへ流入し、ここで完全に蒸発・ガス化され、異物捕捉
手段13へ流入する。残留異物は、沸点の違いにより相
が異なり、固体異物・液体異物・気体異物の3種類に分
類される。異物捕捉手段13では、固体異物と液体異物
は完全にガス冷媒と分離され捕捉される。
Thereafter, the refrigerant in the gas-liquid two-phase state, which has been vaporized and gasified to some extent, together with the residual foreign matter in the first connection pipe C and the second foreign matter in the second connection pipe D, together with the second operation valve 7 and the second Through the switching valve 11 and the second solenoid valve 14b,
b, where it is completely evaporated and gasified and flows into the foreign matter capturing means 13. The residual foreign matter has a different phase depending on the boiling point, and is classified into three types: solid foreign matter, liquid foreign matter, and gaseous foreign matter. In the foreign matter capturing means 13, the solid foreign matter and the liquid foreign matter are completely separated from the gas refrigerant and captured.

【0078】気体異物はその一部が捕捉され、一部は捕
捉されない。その後ガス冷媒は、異物捕捉手段13で捕
捉されなかった気体異物と共に第1の電磁弁14a、第
1の切換弁10、四方弁2、アキュムレ−タ8を経て圧
縮機1へ戻る。油分離器9で、ガス冷媒と完全に分離さ
れたHFC用冷凍機油はバイパス路9aを経て、異物捕
捉手段13の下流で本流と合流して、圧縮機1へ戻るの
で、第1の接続配管Cや第2の接続配管Dに残留してい
た鉱油と混ざることはなく、HFC用冷凍機油はHFC
に対して非相溶化することはなく、またHFC用冷凍機
油は鉱油により劣化することはない。
A part of the gaseous foreign matter is captured, and a part is not captured. Thereafter, the gas refrigerant returns to the compressor 1 through the first solenoid valve 14a, the first switching valve 10, the four-way valve 2, and the accumulator 8 together with the gaseous foreign matter not captured by the foreign matter capturing means 13. The HFC refrigerating machine oil completely separated from the gas refrigerant in the oil separator 9 merges with the main stream downstream of the foreign matter capturing means 13 through the bypass 9a and returns to the compressor 1, so that the first connection pipe C and the mineral oil remaining in the second connection pipe D do not mix with the HFC refrigerating machine oil.
And the refrigerating machine oil for HFC is not deteriorated by mineral oil.

【0079】また、固形異物もHFC用冷凍機油と混合
することはなく、HFC用冷凍機油は劣化しない。ま
た、気体異物はHFC冷媒が冷媒回路を1サイクル循環
して、異物捕捉手段13を1回通る間には一部が捕捉さ
れるだけで、HFC用冷凍機油と気体異物は混合される
が、HFC用冷凍機油の劣化は化学反応で、急激には進
まない。その劣化の一例を図2に示す。異物捕捉手段1
3を1回通る間に捕捉されなかった気体異物は、HFC
冷媒の循環と共に何回も異物捕捉手段13を通るので、
HFC用冷凍機油の劣化するよりも速く、異物捕捉手段
13で捕捉すればよい。
Further, the solid foreign matter does not mix with the HFC refrigerating machine oil, and the HFC refrigerating machine oil does not deteriorate. In addition, while the HFC refrigerant circulates through the refrigerant circuit for one cycle and passes through the foreign matter capturing means 13 only once, the gas foreign matter is only partially captured, and the HFC refrigerating machine oil and the gas foreign matter are mixed. The deterioration of the refrigeration oil for HFC is a chemical reaction and does not proceed rapidly. FIG. 2 shows an example of the deterioration. Foreign matter capturing means 1
Gaseous substances that were not captured during one pass through
As it passes through the foreign matter capturing means 13 many times with the circulation of the refrigerant,
What is necessary is just to catch by the foreign material catching means 13 faster than the deterioration of the HFC refrigerating machine oil.

【0080】次に暖房洗浄運転の流れを説明する。圧縮
機1で圧縮された高温高圧のガス冷媒はHFC用冷凍機
油と共に圧縮機1を吐出され、油分離器9へ流入する。
ここで、HFC用の冷凍機油は完全に分離され、ガス冷
媒のみが四方弁2、第1の切換弁10を経て冷却手段1
2aへ流入する。
Next, the flow of the heating cleaning operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the refrigeration oil for HFC and flows into the oil separator 9.
Here, the refrigerating machine oil for the HFC is completely separated, and only the gas refrigerant passes through the four-way valve 2 and the first switching valve 10 to cool the cooling means 1.
Flow into 2a.

【0081】ここで、ガス冷媒は冷却され、ある程度凝
縮・液化する。ある程度凝縮・液化された気液二相状態
の冷媒は第2の切換弁11、第2の操作弁7を経て第2
の接続配管Dへ流入する。第2の接続配管に残留してい
る残留異物は、ここを流れる冷媒が気液二相状態のた
め、流速も速く、かつ液冷媒と共に、残留異物は洗浄さ
れ、冷房洗浄運転時の第1の接続配管Cより速い速度で
洗浄される。
Here, the gas refrigerant is cooled and condensed and liquefied to some extent. The refrigerant in a gas-liquid two-phase state condensed and liquefied to some extent passes through the second switching valve 11 and the second operation valve 7 and passes through the second
Flows into the connection pipe D. The remaining foreign matter remaining in the second connection pipe has a high flow rate because the refrigerant flowing therethrough is in a gas-liquid two-phase state, and the foreign matter is cleaned together with the liquid refrigerant. The cleaning is performed at a higher speed than the connection pipe C.

【0082】その後、ある程度凝縮・液化した冷媒は、
第2の接続配管Dの残留異物と共に、利用側側熱交換器
6へと流入し、ここで空気など利用側媒体と熱交換器し
て完全に凝縮液化する。凝縮液化した冷媒は流量調整器
5へ流入し、ここで低圧まで減圧されて低圧二相状態と
なり、第1の接続配管Cに流入する。ここでは気液二相
状態のため、流速も速く、かつ液冷媒と共に、残留異物
は洗浄され、冷房洗浄運転時の第1の接続配管Cより速
い速度で洗浄される。第2の接続配管Dと第1の接続配
管Cから洗浄された残留異物と共に、気液二相状態の冷
媒は、第1の操作弁4、第2の切換弁11、第2の電磁
弁14bを経て、加熱手段12bで加熱され、蒸発・ガ
ス化され、異物捕捉手段13へ流入する。
Thereafter, the refrigerant condensed and liquefied to some extent is
Along with the foreign matter remaining in the second connection pipe D, it flows into the use-side heat exchanger 6, where it is heat-exchanged with the use-side medium such as air to be completely condensed and liquefied. The condensed and liquefied refrigerant flows into the flow regulator 5, where it is reduced in pressure to a low pressure, enters a low-pressure two-phase state, and flows into the first connection pipe C. In this case, because of the gas-liquid two-phase state, the flow velocity is high, and the residual foreign matter is cleaned together with the liquid refrigerant, and is cleaned at a higher speed than the first connection pipe C during the cooling cleaning operation. The refrigerant in the gas-liquid two-phase state together with the residual foreign matter washed from the second connection pipe D and the first connection pipe C is supplied to the first operation valve 4, the second switching valve 11, and the second solenoid valve 14b. Then, it is heated by the heating means 12 b, vaporized and gasified, and flows into the foreign matter capturing means 13.

【0083】残留異物は、沸点の違いにより相が異な
り、固体異物・液体異物・気体異物の3種類に分類され
る。異物捕捉手段13では、固体異物と液体異物は完全
にガス冷媒と分離され捕捉される。気体異物はその一部
が捕捉され、一部は捕捉されない。その後ガス冷媒は、
異物捕捉手段13で捕捉されなかった気体異物と共に、
第1の切換弁10、四方弁2を経て、熱源機側熱交換器
3へ流入し、ここでは送風機などを停止して熱交換させ
ずに通過させ、アキュムレ−タ8を経て圧縮機1へ戻
る。
The residual foreign substances have different phases depending on the boiling point, and are classified into three types: solid foreign substances, liquid foreign substances, and gas foreign substances. In the foreign matter capturing means 13, the solid foreign matter and the liquid foreign matter are completely separated from the gas refrigerant and captured. Part of the gaseous foreign substance is captured, and part of the foreign substance is not captured. The gas refrigerant then
Along with the gaseous foreign matter not captured by the foreign matter capturing means 13,
After flowing through the first switching valve 10 and the four-way valve 2, the heat flows into the heat source side heat exchanger 3, where the blower and the like are stopped and passed without exchanging heat, and are passed through the accumulator 8 to the compressor 1. Return.

【0084】油分離器9で、ガス冷媒と完全に分離され
たHFC用冷凍機油はバイパス路9aを経て、異物捕捉
手段13の下流で本流と合流して、圧縮機1へ戻るの
で、第1の接続配管Cや第2の接続配管Dに残留したい
た鉱油と混ざることはなく、HFC用冷凍機油はHFC
に対して非相溶化することはなく、またHFC用冷凍機
油は鉱油により劣化することはない。
The HFC refrigerating machine oil completely separated from the gas refrigerant in the oil separator 9 merges with the main stream downstream of the foreign matter catching means 13 through the bypass 9a and returns to the compressor 1. Does not mix with the mineral oil remaining in the connection pipe C and the second connection pipe D of the HFC.
And the refrigerating machine oil for HFC is not deteriorated by mineral oil.

【0085】また、固形異物もHFC用冷凍機油と混合
することはなく、HFC用冷凍機油は劣化しない。ま
た、気体異物はHFC冷媒が冷媒回路を1サイクル循環
して、異物捕捉手段13を1回通る間には一部が捕捉さ
れるだけで、HFC用冷凍機油と気体異物は混合される
が、HFC用冷凍機油の劣化は化学反応で、急激には進
まない。その劣化の一例を図2に示す。異物捕捉手段1
3を1回通る間に捕捉されなかった気体異物は、HFC
冷媒の循環と共に何回も異物捕捉手段13を通るので、
HFC用冷凍機油の劣化するよりも速く、異物捕捉手段
13で捕捉すればよい。異物捕捉手段13、油分離器9
は、実施の形態1に示すものと全く同一のため、ここで
は説明を省略する。
Further, solid foreign matter does not mix with the HFC refrigerating machine oil, and the HFC refrigerating machine oil does not deteriorate. In addition, while the HFC refrigerant circulates through the refrigerant circuit for one cycle and passes through the foreign matter capturing means 13 only once, the gas foreign matter is only partially captured, and the HFC refrigerating machine oil and the gas foreign matter are mixed. The deterioration of the refrigeration oil for HFC is a chemical reaction and does not proceed rapidly. FIG. 2 shows an example of the deterioration. Foreign matter capturing means 1
Gaseous substances that were not captured during one pass through
As it passes through the foreign matter capturing means 13 many times with the circulation of the refrigerant,
What is necessary is just to catch by the foreign material catching means 13 faster than the deterioration of the HFC refrigerating machine oil. Foreign matter capturing means 13, oil separator 9
Is exactly the same as that shown in the first embodiment, and the description is omitted here.

【0086】次に、通常空調運転について、図8に添っ
て説明する。図中、実線矢印が冷房通常運転の流れを、
破線矢印が暖房通常運転の流れを示す。まず冷房通常運
転について説明する。圧縮機1で圧縮された高温高圧の
ガス冷媒は、HFC用冷凍機油と共に圧縮機1を吐出さ
れ、油分離器9へ流入する。ここで、HFC用の冷凍機
油は完全に分離され、ガス冷媒のみが、四方弁2を経
て、熱源機側熱交換器3へと流入し、ここで空気・水な
ど熱源媒体と熱交換して凝縮液化する。
Next, the normal air-conditioning operation will be described with reference to FIG. In the figure, the solid arrows indicate the flow of cooling normal operation,
The broken arrows indicate the flow of the normal heating operation. First, the normal cooling operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the refrigeration oil for HFC and flows into the oil separator 9. Here, the refrigerating machine oil for the HFC is completely separated, and only the gas refrigerant flows into the heat source device side heat exchanger 3 via the four-way valve 2, where it exchanges heat with a heat source medium such as air and water. Condensed and liquefied.

【0087】凝縮液化した冷媒は、その大部分が第3の
電磁弁14cを経由し、一方、一部が第1の切換弁1
0、冷却手段12a、第2の切換弁11を経由して、こ
れらが合流後、第1の操作弁4に流入し、第1の接続配
管Cを経て、流量調整器5へ流入し、ここで低圧まで減
圧されて低圧二相状態となり、利用側熱交換器6で空気
などの利用側媒体と熱交換して蒸発・ガス化する。蒸発
・ガス化した冷媒は第2の接続配管D、第2の操作弁
7、第4の電磁弁14d、四方弁2、アキュムレ−タ8
を経て圧縮機1へ戻る。
Most of the condensed and liquefied refrigerant passes through the third solenoid valve 14c, while part of the refrigerant flows through the first switching valve 1c.
0, via the cooling means 12a and the second switching valve 11, they merge, then flow into the first operating valve 4, flow through the first connecting pipe C, flow into the flow regulator 5, and Then, the pressure is reduced to a low pressure to be in a low pressure two-phase state, and the heat is exchanged with a use side medium such as air in the use side heat exchanger 6 to evaporate and gasify. The evaporated and gasified refrigerant is supplied to the second connection pipe D, the second operation valve 7, the fourth solenoid valve 14d, the four-way valve 2, and the accumulator 8.
And returns to the compressor 1.

【0088】油分離器9で、ガス冷媒と完全に分離され
たHFC用冷凍機油は、バイパス路9aを経て、四方弁
2の下流で本流と合流して、圧縮機1へ戻る。第1の電
磁弁14a、第2の電磁弁14bは閉じられているの
で、異物捕捉手段13は閉鎖空間として隔離されてお
り、洗浄運転中に捕捉した異物が、再び運転回路中に戻
ることがない。また、実施の形態1と比べると、異物捕
捉手段13を経由しないため、圧縮機1の吸入圧力損失
が小さく、能力の低下が小さい。
The HFC refrigerating machine oil completely separated from the gas refrigerant in the oil separator 9 joins the main stream downstream of the four-way valve 2 via the bypass 9a and returns to the compressor 1. Since the first solenoid valve 14a and the second solenoid valve 14b are closed, the foreign matter capturing means 13 is isolated as a closed space, and foreign matters captured during the cleaning operation may return to the operation circuit again. Absent. Further, as compared with the first embodiment, since there is no passage through the foreign matter capturing means 13, the suction pressure loss of the compressor 1 is small and the decrease in performance is small.

【0089】次に暖房通常運転の流れを説明する。圧縮
機1で圧縮された高温高圧のガス冷媒は、HFC用冷凍
機油と共に圧縮機1を吐出され、油分離器9へ流入す
る。ここで、HFC用の冷凍機油は完全に分離され、ガ
ス冷媒のみが四方弁2を経て、大部分が第4の電磁弁1
4dを経由して、一方、一部が第1の切換弁10、冷却
手段12a、第2の切換弁11を経由して、これらが合
流後、第2の操作弁7に流入し、第2の接続配管Dを経
て、利用側側熱交換器6へと流入し、ここで空気など利
用側媒体と熱交換して完全に凝縮液化する。
Next, the flow of the normal heating operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the refrigeration oil for HFC and flows into the oil separator 9. Here, the refrigerating machine oil for the HFC is completely separated, only the gas refrigerant passes through the four-way valve 2 and most of the refrigerant gas is supplied to the fourth solenoid valve 1.
4d, a part of which passes through the first switching valve 10, the cooling means 12a, and the second switching valve 11, and after they merge, flows into the second operating valve 7, and Flows into the use side heat exchanger 6 through the connection pipe D, where it exchanges heat with the use side medium such as air to be completely condensed and liquefied.

【0090】凝縮液化した冷媒は流量調整器5へ流入
し、ここで低圧まで減圧されて低圧二相状態となり、第
1の接続配管C、第1の操作弁4、第3の電磁弁14c
を経て、熱源機側熱交換器3へ流入し、ここで空気・水
などの熱源媒体と熱交換して蒸発・ガス化する。蒸発・
ガス化した冷媒は四方弁2、アキュムレ−タ8を経て圧
縮機1へ戻る。
The condensed and liquefied refrigerant flows into the flow controller 5, where it is reduced in pressure to a low pressure to be in a low-pressure two-phase state, where the first connection pipe C, the first operating valve 4, the third solenoid valve 14c
After that, it flows into the heat source device side heat exchanger 3, where it exchanges heat with a heat source medium such as air and water to evaporate and gasify. evaporation·
The gasified refrigerant returns to the compressor 1 via the four-way valve 2 and the accumulator 8.

【0091】油分離器9で、ガス冷媒と完全に分離され
たHFC用冷凍機油は、バイパス路9aを経て、圧縮機
1へ戻る。第1の電磁弁14a、第2の電磁弁14bは
閉じられているので、異物捕捉手段13は閉鎖空間とし
て隔離されているので、洗浄運転中に捕捉した異物が、
再び運転回路中に戻ることがない。また、実施の形態1
と比べると、異物捕捉手段13を経由しないため、圧縮
機1の吸入圧力損失が小さく、能力の低下が小さい。
The HFC refrigerating machine oil completely separated from the gas refrigerant in the oil separator 9 returns to the compressor 1 via the bypass 9a. Since the first electromagnetic valve 14a and the second electromagnetic valve 14b are closed, the foreign matter capturing means 13 is isolated as a closed space.
It does not return to the operation circuit again. Embodiment 1
In comparison with the above, since the pressure does not pass through the foreign matter capturing means 13, the suction pressure loss of the compressor 1 is small, and the decrease in performance is small.

【0092】以上のように、油分離器9と異物捕捉手段
13を熱源機Aに内蔵することで、熱源機Aと室内機B
のみを新規に交換し、第1の接続配管Cと第2の接続配
管Dを交換しないで、老朽化したCFCまたはHCFC
を用いた冷凍サイクル装置を新しいHFCを用いた冷凍
サイクル装置に入れ替えることができる。このような方
法によれば、既設配管再利用方法として、前記の従来の
洗浄方法1とは違って、洗浄装置を用いて専用の洗浄液
(HCFC141bやHCFC225)で洗浄するとい
うことをしないので、オゾン層破壊の可能性は全く無
く、また可燃性・毒性も皆無で、洗浄液残留の懸念も無
く、洗浄液を回収する必要も無い。
As described above, by incorporating the oil separator 9 and the foreign matter capturing means 13 in the heat source unit A, the heat source unit A and the indoor unit B
Only a new CFC or HCFC without replacing the first connection pipe C and the second connection pipe D.
Can be replaced with a new refrigeration cycle device using HFC. According to such a method, unlike the above-described conventional cleaning method 1, the existing pipe is not reused by using a cleaning device to perform cleaning with a dedicated cleaning liquid (HCFC141b or HCFC225). There is no possibility of destruction of the layer, there is no flammability and no toxicity, there is no concern that the cleaning liquid remains, and there is no need to collect the cleaning liquid.

【0093】また、前記の従来の洗浄方法2と違って、
洗浄運転を3回繰り返してHFC冷媒やHFC冷凍機油
を3回入れ替える必要がないため、必要なHFCや冷凍
機油は1台分で済むためコスト・環境上有利である。ま
た、交換用冷凍機油の管理も不要で、かつ冷凍機油過不
足の危険性も全く発生しない。また、HFC用冷凍機油
の非相溶化や冷凍機油の劣化の恐れも無い。
Further, unlike the above-mentioned conventional cleaning method 2,
It is not necessary to replace the HFC refrigerant or the HFC refrigerating machine oil three times by repeating the washing operation three times, so that only one HFC or refrigerating machine oil is required, which is advantageous in cost and environment. Further, there is no need to manage the refrigerating machine oil for replacement, and there is no danger of excessive or insufficient refrigerating machine oil. Further, there is no fear of incompatibility of the refrigerating machine oil for HFC or deterioration of the refrigerating machine oil.

【0094】また、第1の電磁弁14a、第2の電磁弁
14b、第3の電磁弁14c、第4の電磁弁14dを設
けたことで、洗浄運転時には異物捕捉手段13を通過し
て上記に示す洗浄効果を得つつ、洗浄運転後の通常運転
時には、第1の電磁弁14a、第2の電磁弁14bは閉
じて、異物捕捉手段13は閉鎖空間として隔離されてい
るので、洗浄運転中に捕捉した異物が、再び運転回路中
に戻ることがない。また、実施の形態1と比べると、異
物捕捉手段13を経由しないため、圧縮機1の吸入圧力
損失が小さく、能力の低下が小さい。
Further, since the first solenoid valve 14a, the second solenoid valve 14b, the third solenoid valve 14c, and the fourth solenoid valve 14d are provided, during the cleaning operation, the first solenoid valve 14a passes through the foreign matter catching means 13 and the above-described operation. During the normal operation after the cleaning operation, the first electromagnetic valve 14a and the second electromagnetic valve 14b are closed, and the foreign matter capturing means 13 is isolated as a closed space. Does not return to the operation circuit again. Further, as compared with the first embodiment, since there is no passage through the foreign matter capturing means 13, the suction pressure loss of the compressor 1 is small and the decrease in performance is small.

【0095】また、冷却手段12a、加熱手段12b、
第1の切換弁10、第2の切換弁11を設けたので、冷
房・暖房に関わらず、洗浄運転時に第1の接続配管C、
第2の接続配管Dに液冷媒または気液二相冷媒が流れる
ので、残留異物を洗浄するのに、洗浄効果が高く、洗浄
時間を短くすることができる。また、冷却手段12a、
加熱手段12bにより熱交換量を制御できるので、外気
温度や室内の負荷に関係なく、任意の条件時にほぼ同一
の洗浄運転が可能で、効果・手間が一定化する。
Further, cooling means 12a, heating means 12b,
Since the first switching valve 10 and the second switching valve 11 are provided, the first connection pipe C,
Since the liquid refrigerant or the gas-liquid two-phase refrigerant flows through the second connection pipe D, the cleaning effect is high and the cleaning time can be shortened for cleaning the remaining foreign matter. Further, cooling means 12a,
Since the amount of heat exchange can be controlled by the heating means 12b, substantially the same cleaning operation can be performed under arbitrary conditions irrespective of the outside air temperature and the indoor load, and the effect and labor are constant.

【0096】この実施の形態では、室内機Bが1台接続
された例について説明したが、室内機Bが並列または直
列に複数台接続された冷凍サイクル装置でも同様の効果
を奏することは言うまでもない。また、熱源機側熱交換
器3と直列または並列に氷蓄熱槽や水蓄熱槽(お湯を含
む)が設置されていても同様の効果を奏することは明ら
かである。また、熱源機Aが複数台並列に接続された冷
凍サイクル装置においても同様の効果を奏することは明
らかである。また、冷凍サイクル装置に限らず、蒸気圧
縮式の冷凍サイクル応用品で、熱源機側熱交換器が内蔵
されたユニットと利用側熱交換器が内蔵されたユニット
が離れて設置されるものであれば、同様の効果を奏する
ことは明らかである。
In this embodiment, an example in which one indoor unit B is connected has been described. However, it is needless to say that the same effect can be obtained with a refrigeration cycle apparatus in which a plurality of indoor units B are connected in parallel or in series. . It is apparent that the same effect can be obtained even if an ice heat storage tank or a water heat storage tank (including hot water) is installed in series or parallel with the heat source unit side heat exchanger 3. It is also apparent that the same effect can be obtained in a refrigeration cycle device in which a plurality of heat source devices A are connected in parallel. In addition, the present invention is not limited to the refrigeration cycle apparatus, and may be applied to a vapor compression type refrigeration cycle applied to a unit having a built-in heat source side heat exchanger and a unit having a built-in use side heat exchanger. It is clear that a similar effect can be achieved.

【0097】以上説明した実施の形態2の構成の一側面
を要約すると次のとおりである。この冷凍サイクル装置
は、圧縮機から熱源機側熱交換器と流量調整器と利用側
熱交換器とアキュムレータとを順次に経て上記圧縮機に
冷媒を循環させる第1の冷媒回路と、上記圧縮機から上
記利用側熱交換器と上記流量調整器と上記熱源機側熱交
換器と上記アキュムレータとを順次に経て上記圧縮機に
冷媒を循環させる第2の冷媒回路とを備えている。ま
た、上記第1の冷媒回路の上記利用側熱交換器と上記ア
キュムレータとの間の冷媒回路をバイパスし、かつ、上
記第2の冷媒回路の上記上記流量調整器と上記熱源機側
熱交換器との間の冷媒回路をバイパスするとともに、冷
媒中の異物を捕捉する異物捕捉手段を有する第1バイパ
ス路を備えている。また、上記第1の冷媒回路の上記熱
源機側熱交換器と上記流量調整器との間の冷媒回路をバ
イパスし、かつ、上記第2の冷媒回路の上記圧縮機と上
記利用側熱交換器との間の冷媒回路をバイパスするとと
もに、冷媒の冷却手段を有する第2バイパス路を備えて
いる。さらに、上記第1バイパス路の上記異物捕捉手段
の上流側に冷媒の加熱手段を備えている。さらに、上記
第1の冷媒回路の上記圧縮機と上記熱源機側熱交換器と
の間で、かつ、上記第2の冷媒回路の上記圧縮機と上記
利用側熱交換器との間に、冷媒の油成分を分離する油分
離手段を備えている。
One aspect of the configuration of the second embodiment described above is summarized as follows. The refrigeration cycle apparatus includes a first refrigerant circuit that circulates a refrigerant from the compressor to the compressor sequentially through a heat source device side heat exchanger, a flow regulator, a use side heat exchanger, and an accumulator; And a second refrigerant circuit for circulating a refrigerant to the compressor through the use side heat exchanger, the flow regulator, the heat source unit side heat exchanger, and the accumulator in order. In addition, the refrigerant circuit between the utilization side heat exchanger of the first refrigerant circuit and the accumulator is bypassed, and the flow regulator and the heat source unit side heat exchanger of the second refrigerant circuit are bypassed. And a first bypass path having foreign matter capturing means for capturing foreign matter in the refrigerant while bypassing the refrigerant circuit between the first and second refrigerant circuits. Also, the refrigerant circuit between the heat source unit side heat exchanger of the first refrigerant circuit and the flow rate regulator is bypassed, and the compressor of the second refrigerant circuit and the utilization side heat exchanger And a second bypass passage having a refrigerant cooling means. Further, a heating means for the refrigerant is provided on the first bypass passage on the upstream side of the foreign matter capturing means. Further, a refrigerant is provided between the compressor of the first refrigerant circuit and the heat source device side heat exchanger and between the compressor of the second refrigerant circuit and the use side heat exchanger. Oil separating means for separating the oil component.

【0098】次に、この実施の形態2による冷凍サイク
ル装置について、冷媒置換後の洗浄運転の制御方法につ
いて説明する。 (1)第1の制御方法 実施の形態2の冷凍サイクル装置の洗浄運転時の第1の
制御方法としては、CFCやHCFC(旧冷媒)を使っ
た冷媒回路(冷凍サイクル装置)の熱源機Aおよび室内
機BをHFC(新冷媒)を用いたものに置換し、さらに
HFCの追加充填をした後、洗浄運転のステップAとし
て、上述した冷房洗浄運転を実施する。このステップA
では、図1の実線矢印に示すように、圧縮機1を駆動源
として、冷媒を圧縮機1から第1の接続配管Cに通した
後、第2の接続配管Dへ通し、異物捕捉手段13を経て
圧縮機1へと還流させて洗浄する。
Next, a method of controlling a cleaning operation after refrigerant replacement in the refrigeration cycle apparatus according to Embodiment 2 will be described. (1) First Control Method As a first control method during the cleaning operation of the refrigeration cycle device according to the second embodiment, a heat source device A of a refrigerant circuit (refrigeration cycle device) using CFC or HCFC (old refrigerant) is used. Further, the indoor unit B is replaced with a unit using HFC (new refrigerant), and after the HFC is additionally charged, the cooling cleaning operation described above is performed as Step A of the cleaning operation. This step A
Then, as shown by the solid line arrow in FIG. 1, the refrigerant is passed from the compressor 1 to the first connection pipe C using the compressor 1 as a drive source, then to the second connection pipe D, and the foreign matter capturing means 13 Then, the mixture is refluxed to the compressor 1 for washing.

【0099】冷媒交換前のCFCやHCFCを使った冷
凍サイクル装置では、第1の接続配管Cは冷房運転でも
暖房運転でも液冷媒単相状態もしくは気液二相状態であ
り、ここには鉱油はあまりたくさん分布していない。一
方、第2の接続配管Dは冷房運転でも暖房運転でもガス
単相状態であり、鉱油は液膜状に管壁内部をガス冷媒に
引きずられるように流れるため、ここには鉱油が多く分
布する。したがって、前述のように洗浄運転の最初に第
1の接続配管Cを上流に、第2の接続配管Dを下流にな
るようにすることで、第2の接続配管Dに多く分布して
いる鉱油を第1の接続配管Cに混入させることなく、異
物捕捉手段13に回収することができる。これにより、
洗浄時間が短くできる上に、第1、第2の接続配管C、
Dに残留する鉱油の量を低減することができる。
In the refrigeration cycle apparatus using CFC or HCFC before the refrigerant exchange, the first connection pipe C is in a liquid refrigerant single-phase state or a gas-liquid two-phase state in both the cooling operation and the heating operation. Not much distributed. On the other hand, the second connection pipe D is in a gas single-phase state in both the cooling operation and the heating operation, and the mineral oil flows so as to be dragged through the inside of the pipe wall by the gas refrigerant in the form of a liquid film. . Therefore, by setting the first connection pipe C upstream and the second connection pipe D downstream at the beginning of the cleaning operation as described above, the mineral oil distributed in the second connection pipe D in a large amount Can be collected by the foreign matter capturing means 13 without being mixed into the first connection pipe C. This allows
In addition to shortening the cleaning time, the first and second connection pipes C,
The amount of mineral oil remaining in D can be reduced.

【0100】(2)第2の制御方法 実施の形態2の冷凍サイクル装置の洗浄運転時の第2の
制御方法としては、CFCやHCFCを使った冷媒回路
(冷凍サイクル装置)の熱源機Aおよび室内機BをHF
Cを用いたものに置換し、さらにHFCの追加充填をし
た後、洗浄運転のステップBとして、上述の暖房洗浄運
転を実施する。このステップBでは、図1の破線矢印に
示すように、圧縮機1を駆動源として、冷媒を圧縮機1
から第2の接続配管Dへ通した後、第1の接続配管Cに
通し、さらに異物捕捉手段13を経て圧縮機1へと還流
させて洗浄する。
(2) Second Control Method As a second control method during the cleaning operation of the refrigeration cycle device of the second embodiment, the heat source devices A and C of the refrigerant circuit (refrigeration cycle device) using CFC or HCFC are used. HF for indoor unit B
After replacing with the one using C and additionally filling with HFC, the heating cleaning operation described above is performed as Step B of the cleaning operation. In this step B, as shown by the dashed arrow in FIG.
After passing through to the second connection pipe D, it passes through the first connection pipe C, and further flows back to the compressor 1 through the foreign matter capturing means 13 for washing.

【0101】このステップBでは、第2の接続配管D、
第1の接続配管Cの順に冷媒を流して洗浄することにな
る。一般に、実施の形態2の図7示す冷凍サイクル装置
では、第1の接続配管Cの方が第2の接続配管Dよりも
配管内径が小さい。これは、冷房運転において第2の接
続配管Dでの摩擦損失の大小は蒸発温度に関係し冷房能
力への影響が大きいため可能な限り太くするのに対し
て、第1の接続配管Cでの摩擦損失は蒸発温度や凝縮温
度へ直接与える影響はなく、むしろここを流れる冷媒が
液単相もしくは気液二相であることから冷媒充填量を増
加させない観点から可能な限り細くするためである。つ
まり、このステップBは、第1、第2の接続配管C、D
のうち太径配管が上流で細径配管が下流になるようにし
て冷媒を流して洗浄することと換言することができる。
In this step B, the second connection pipe D,
The cleaning is performed by flowing the refrigerant in the order of the first connection pipe C. Generally, in the refrigeration cycle apparatus according to the second embodiment shown in FIG. 7, the first connection pipe C has a smaller pipe inner diameter than the second connection pipe D. This is because, in the cooling operation, the magnitude of the friction loss in the second connection pipe D is related to the evaporating temperature and greatly affects the cooling capacity, so that it is made as large as possible. The friction loss has no direct effect on the evaporation temperature or the condensation temperature, but rather, the refrigerant flowing therethrough is a single-phase liquid or a two-phase gas-liquid phase. That is, this step B includes the first and second connection pipes C and D
In other words, it can be said that washing is performed by flowing a refrigerant such that the large-diameter pipe is upstream and the small-diameter pipe is downstream.

【0102】HFC冷媒の一種であるR407Cを液または
気液二相状態で配管内の鉱油を洗浄した場合の配管内残
留量を図11に示す。図11において、横軸は冷媒の質
量速度(kg/s・cm2)、縦軸は配管内鉱油残留量(mg/
m)を示す。この図11からもわかるように冷媒の質量
速度が大きくなるほど、洗浄効果は高い。したがって、
暖房洗浄運転をすると、配管内径の細い第1の接続配管
Cでは冷媒の質量速度が大きく、非常に高い洗浄効果が
得られる。一方、第2の接続配管Dは配管内径が太いた
め、冷媒の質量速度が小さいので、この点では洗浄効果
が小さい。しかしながら、この流れ方向では第2の接続
配管Dの方が第1の接続配管Cよりも上流にあり、冷媒
の温度が高いため、鉱油への冷媒の溶解度が高くなり、
鉱油の粘性が小さくなることで、洗浄効果が高くなる。
FIG. 11 shows the residual amount in the pipe when the mineral oil in the pipe is washed with R407C, which is a kind of HFC refrigerant, in a liquid or gas-liquid two-phase state. In FIG. 11, the horizontal axis represents the mass velocity of the refrigerant (kg / s · cm 2), and the vertical axis represents the residual amount of mineral oil (mg / s
m). As can be seen from FIG. 11, the higher the mass velocity of the refrigerant, the higher the cleaning effect. Therefore,
When the heating and cleaning operation is performed, the mass velocity of the refrigerant is large in the first connection pipe C having a small pipe inner diameter, and a very high cleaning effect can be obtained. On the other hand, since the second connection pipe D has a large pipe inner diameter and a low mass velocity of the refrigerant, the cleaning effect is small in this respect. However, in this flow direction, the second connection pipe D is more upstream than the first connection pipe C, and the temperature of the refrigerant is high, so that the solubility of the refrigerant in mineral oil is high,
As the viscosity of the mineral oil decreases, the cleaning effect increases.

【0103】(3)第3の制御方法 実施の形態2の冷凍サイクル装置の洗浄運転時の第3の
制御方法としては、CFCやHCFCを使った冷凍サイ
クル装置(冷凍サイクル装置)の熱源機Aおよび室内機
BをHFCを用いたものに置換し、さらにHFCの追加
充填をした後、先ず上述のステップAの冷房洗浄運転、
次に上述のステップBの暖房洗浄運転の順で洗浄運転を
実施する。このように、ステップA、ステップBの順に
実施することで、第2の接続配管Dに多く分布している
鉱油を第1の接続配管Cに混入させることなく、異物捕
捉手段13に回収し、その後に質量流速、溶解度の面で
洗浄効果の高い洗浄を行うことになり、より高い洗浄効
果が得られ、洗浄時間も短くすることができる。
(3) Third Control Method As a third control method during the cleaning operation of the refrigeration cycle apparatus according to the second embodiment, a heat source device A of a refrigeration cycle apparatus (refrigeration cycle apparatus) using CFC or HCFC is used. And, after replacing the indoor unit B with the one using HFC, and further adding HFC, first, the cooling cleaning operation in the above-described step A,
Next, the cleaning operation is performed in the order of the heating cleaning operation in step B described above. As described above, by performing Step A and Step B in this order, the mineral oil distributed in a large amount in the second connection pipe D is collected in the foreign matter capturing means 13 without being mixed into the first connection pipe C, Thereafter, cleaning with a high cleaning effect in terms of mass flow rate and solubility is performed, so that a higher cleaning effect is obtained and the cleaning time can be shortened.

【0104】(4)第4の制御方法 実施の形態2の冷凍サイクル装置の洗浄運転時の第4の
制御方法としては、CFCやHCFCを使った冷凍サイ
クル装置の熱源機Aおよび室内機BをHFCを用いたも
のに置換し、さらにHFCの追加充填をした後、洗浄運
転のための圧縮機1の運転容量を、洗浄対象である第
1、第2の接続配管C、Dの配管径に応じて制御し、洗
浄運転中の第1、第2の接続配管C、Dを流れる冷媒の
質量速度を所定値以上に、あるいは所定範囲に制御す
る。これにより、高い洗浄効果を確保することができ
る。これは、ステップAの場合でも、ステップBの場合
でも同様である。既に説明したように、図11に冷媒の
質量速度と配管内鉱油残留量との関係の一例を示した。
配管内の冷媒の質量速度が大きくなるほど、洗浄効果は
高いことが示されている。
(4) Fourth Control Method As a fourth control method during the cleaning operation of the refrigeration cycle apparatus of the second embodiment, the heat source unit A and the indoor unit B of the refrigeration cycle apparatus using CFC or HCFC are used. After replacing with HFC and further adding HFC, the operating capacity of the compressor 1 for the cleaning operation is changed to the diameter of the first and second connection pipes C and D to be cleaned. The mass velocity of the refrigerant flowing through the first and second connection pipes C and D during the cleaning operation is controlled to a predetermined value or more, or to a predetermined range. Thereby, a high cleaning effect can be ensured. This is the same in the case of step A and the case of step B. As already described, FIG. 11 shows an example of the relationship between the mass velocity of the refrigerant and the residual amount of mineral oil in the pipe.
It is shown that the higher the mass velocity of the refrigerant in the pipe, the higher the cleaning effect.

【0105】実施の形態3.図9は、この発明の実施の
形態3による冷凍サイクル装置の一例として、冷媒置換
を行う冷凍サイクル装置の冷媒回路を示す図である。図
9において、符号B〜D、1〜8及び8aは、実施の形
態1及び2で説明したものと同様のものであるから、詳
細な説明を省略する。また、符号10、11、12a、
12b、13は、実施の形態2で説明したものと同様の
ものであるから、詳細な説明を省略する。
Embodiment 3 FIG. 9 is a diagram showing a refrigerant circuit of a refrigeration cycle device that performs refrigerant replacement, as an example of a refrigeration cycle device according to Embodiment 3 of the present invention. In FIG. 9, reference numerals B to D, 1 to 8 and 8a are the same as those described in the first and second embodiments, and thus detailed description will be omitted. Reference numerals 10, 11, 12a,
Since 12b and 13 are the same as those described in the second embodiment, detailed description will be omitted.

【0106】次に、図9において、9は油分離器で、実
施の形態1、2と同様のものであるが、第1の切換弁1
0と冷却手段12aの間に設けられている点が異なる。
また、9aは油分離器9の底部に端を発して異物捕捉手
段13の下流側に戻るバイパス路で、実施の形態1、2
と同様のものだが、戻し位置が異物捕捉手段13と第1
の切換弁10との間である点が異なる。また、15は第
2の切換弁11と加熱手段12bとの間に設けられた第
1流量制御手段、16は冷却手段12aと第2の切換弁
11との間に設けられた第2の流量制御手段である。
Next, in FIG. 9, reference numeral 9 denotes an oil separator which is the same as in the first and second embodiments, except that the first switching valve 1
0 is different from the cooling means 12a.
Reference numeral 9a denotes a bypass passage originating at the bottom of the oil separator 9 and returning to the downstream side of the foreign matter catching means 13 in the first and second embodiments.
But the return position is the same as that of the foreign matter catching means 13
And the switching valve 10. Reference numeral 15 denotes a first flow rate control means provided between the second switching valve 11 and the heating means 12b, and reference numeral 16 denotes a second flow rate control means provided between the cooling means 12a and the second switching valve 11. Control means.

【0107】CCは第1の接続配管Cと第1の操作弁4
の間に設けられた第3の接続配管、DDは第2の接続配
管Dと第2の操作弁7の間に設けられた第4の接続配管
である。17aは第3の接続配管CCに設けられた第3
の操作弁、17bは第4の接続配管DDに設けられた第
4の操作弁、17cは第3の接続配管CCの第1の操作
弁4と第3の操作弁17aとの間の配管と第1の切換弁
10との間に設けられた第5の操作弁、17dは第3の
接続配管CCの第3の操作弁17aより第1の接続配管
C側の部分と第2の切換弁11との間に設けられた第6
の操作弁、17eは第4の接続配管DDの第2の操作弁
7と第4の操作弁17bとの間の配管と第1の切換弁1
0との間に設けられた第7の操作弁、17fは第4の接
続配管DDの第4の操作弁17bより第2の接続配管D
側の部分と第2の切換弁11との間に設けられた第8の
操作弁である。
CC is the first connection pipe C and the first operation valve 4
A third connection pipe DD provided therebetween is a fourth connection pipe provided between the second connection pipe D and the second operation valve 7. 17a is a third connection pipe provided in the third connection pipe CC.
, 17b is a fourth operation valve provided in the fourth connection pipe DD, and 17c is a pipe between the first operation valve 4 and the third operation valve 17a of the third connection pipe CC. A fifth operating valve 17d provided between the first switching valve 10 and the first switching valve 10 is a portion of the third connecting pipe CC closer to the first connecting pipe C than the third operating valve 17a and the second switching valve. The sixth provided between
The operation valve 17e is provided between the second operation valve 7 and the fourth operation valve 17b of the fourth connection pipe DD and the first switching valve 1
7 is provided between the fourth operation valve 17b of the fourth connection pipe DD and the second operation pipe 17f.
An eighth operation valve provided between the side portion and the second switching valve 11.

【0108】Eは以上のように構成された洗浄機であ
り、油分離器9、バイパス路9a、冷却手段12a、加
熱手段12b、異物捕捉手段13、第1の切換弁10、
第2の切換弁11、第1の流量制御手段15、第2の流
量制御手段16を内蔵したものである。この洗浄機E
は、第5〜第8の操作弁17c〜17fの部分から、全
体の冷凍サイクル装置から脱着可能に接続されている。
なお、本明細書では、加熱手段12bおよび異物捕捉手
段13を含む冷媒回路部分を、実施の形態2で記載した
ように、第1のバイパス路とする。また、油分離器9の
有無に係わらず、冷却手段12aを含む冷媒回路部分
を、第2のバイパス路とする。さらに、冷却手段12a
を含まず、油分離器9だけが存在する場合を想定して、
これを第3のバイパス路とする。
E denotes a washing machine configured as described above, and includes an oil separator 9, a bypass 9a, a cooling means 12a, a heating means 12b, a foreign matter capturing means 13, a first switching valve 10,
It has a built-in second switching valve 11, first flow control means 15, and second flow control means 16. This washing machine E
Are detachably connected to the entire refrigeration cycle apparatus from the fifth to eighth operation valves 17c to 17f.
In the present specification, the refrigerant circuit portion including the heating means 12b and the foreign matter capturing means 13 is a first bypass passage as described in the second embodiment. Also, regardless of the presence or absence of the oil separator 9, the refrigerant circuit portion including the cooling means 12a is used as a second bypass passage. Further, the cooling means 12a
, And assuming that only the oil separator 9 exists,
This is a third bypass path.

【0109】また、18aは第1の接続配管Cと流量調
整器5との間に設けられた第5の電磁弁、18bは第2
の接続配管Dと利用側熱交換器6との間に設けられた第
6の電磁弁、18cは第5の電磁弁18aの第1の接続
配管C側接続端と第6の電磁弁18bの第2の接続配管
D側接続端とを接続するバイパス路18dの配管途中に
設けられた第7の電磁弁である。Fは、第5〜7の電磁
弁18a〜18cを内蔵した室内バイパス機である。な
お、この冷凍サイクル装置は冷媒としてHFC(新冷
媒)を使うものである。
Reference numeral 18a denotes a fifth solenoid valve provided between the first connection pipe C and the flow regulator 5, and 18b denotes a second solenoid valve.
A sixth electromagnetic valve 18c provided between the connection pipe D and the use-side heat exchanger 6 is provided between the connection end of the fifth electromagnetic valve 18a on the first connection pipe C side and the sixth electromagnetic valve 18b. A seventh solenoid valve is provided in the middle of the bypass passage 18d connecting the second connection pipe D-side connection end. F is an indoor bypass unit incorporating the fifth to seventh solenoid valves 18a to 18c. This refrigeration cycle apparatus uses HFC (new refrigerant) as a refrigerant.

【0110】次に、CFCやHCFC(旧冷媒)を使っ
た冷凍サイクル装置が老朽化した場合の、冷凍サイクル
装置交換の手順を示す。既存の冷凍サイクル装置からC
FCまたはHCFCを回収し、熱源機Aと室内機Bを図
9に示すHFCを用いるものに交換する。第1の接続配
管Cと第2の接続配管DはHCFCを使った冷凍サイク
ル装置のものを再利用する。第3の接続配管CCと第4
の接続配管DDは新規に敷設する。洗浄機Eを、第5、
第6の操作弁17c、17dを介して第3の接続配管C
Cに、かつ、第7、第8の操作弁17e、17fを介し
て第4の接続配管DDに接続する。第1の接続配管C、
第2の接続配管Dを室内バイパス機Fを介して室内機B
に接続する。そして、図9に示す冷媒回路を形成する。
Next, the procedure of replacing the refrigeration cycle device when the refrigeration cycle device using CFC or HCFC (old refrigerant) is deteriorated will be described. C from existing refrigeration cycle equipment
The FC or HCFC is recovered, and the heat source unit A and the indoor unit B are exchanged with those using the HFC shown in FIG. As the first connection pipe C and the second connection pipe D, those of the refrigeration cycle apparatus using HCFC are reused. The third connection pipe CC and the fourth connection pipe
Is newly laid. The washing machine E is the fifth,
The third connection pipe C via the sixth operation valves 17c and 17d
C and the fourth connection pipe DD via the seventh and eighth operation valves 17e and 17f. A first connection pipe C,
The second connection pipe D is connected to the indoor unit B via the indoor bypass unit F.
Connect to Then, the refrigerant circuit shown in FIG. 9 is formed.

【0111】熱源機Aには予めHFCが充填されている
ので、第1の操作弁4と第2の操作弁7は閉じたまま、
室内機B、第1の接続配管C、第2の接続配管D、第3
の接続配管CC、第4の接続配管DD、洗浄機E、室内
バイパス機Fを接続状態で真空引きをし、その後第1の
操作弁4と第2の操作弁7の開弁とHFCの追加充填を
実施する。
Since the heat source unit A is previously filled with HFC, the first operation valve 4 and the second operation valve 7 are kept closed.
Indoor unit B, first connection pipe C, second connection pipe D, third
Of the connection pipe CC, the fourth connection pipe DD, the washing machine E, and the indoor bypass machine F are evacuated, and then the first operation valve 4 and the second operation valve 7 are opened and the HFC is added. Perform filling.

【0112】その後、まず、第3,第4の操作弁17
a,17bを閉弁し、第4〜第8の操作弁17c〜17
fを開弁し、第5,6の電磁弁18a,18bを閉弁
し、第7の電磁弁18cを開弁することで洗浄運転を実
施する。その後、第3,第4の操作弁17a,17bを
開弁し、第4〜第8の操作弁17c〜17fを閉弁し、
第5,6の電磁弁18a,18bを開弁し、第7の電磁
弁18cを閉弁することで通常の空調運転を実施する。
Then, first, the third and fourth operation valves 17
a, 17b are closed, and the fourth to eighth operation valves 17c to 17c are closed.
The cleaning operation is performed by opening f, closing the fifth and sixth solenoid valves 18a and 18b, and opening the seventh solenoid valve 18c. Thereafter, the third and fourth operation valves 17a and 17b are opened, and the fourth to eighth operation valves 17c to 17f are closed,
Normal air conditioning operation is performed by opening the fifth and sixth solenoid valves 18a and 18b and closing the seventh solenoid valve 18c.

【0113】次に、洗浄運転の内容を図9に添って説明
する。図中、実線矢印が冷房洗浄運転の流れを、破線矢
印が暖房洗浄運転の流れを示す。まず冷房洗浄運転につ
いて説明する。圧縮機1で圧縮された高温高圧のガス冷
媒はHFC用冷凍機油と共に圧縮機1を吐出され、四方
弁2を経て、熱源機側熱交換器3へと流入し、ここで空
気・水など熱源媒体と熱交換せずに通過し、第1の操作
弁4、第5の操作弁17c、第1の切換弁10を経て油
分離器9へ流入する。
Next, the contents of the cleaning operation will be described with reference to FIG. In the figure, the solid arrow indicates the flow of the cooling cleaning operation, and the broken arrow indicates the flow of the heating cleaning operation. First, the cooling cleaning operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the refrigeration oil for HFC, flows through the four-way valve 2 and flows into the heat source-side heat exchanger 3, where the heat source such as air and water It passes without exchanging heat with the medium, and flows into the oil separator 9 via the first operation valve 4, the fifth operation valve 17c, and the first switching valve 10.

【0114】ここで、HFC用の冷凍機油は完全に分離
され、ガス冷媒のみが、冷却手段12aに流入し、ここ
で凝縮液化して、第2の流量制御手段16で少し減圧さ
れて気液二相状態となる。この気液二相状態の冷媒は第
2の切換弁11、第6の操作弁17dを経て第1の接続
配管Cに流入する。
Here, the refrigerating machine oil for the HFC is completely separated, and only the gas refrigerant flows into the cooling means 12a, where it is condensed and liquefied. It becomes a two-phase state. The refrigerant in the gas-liquid two-phase state flows into the first connection pipe C via the second switching valve 11 and the sixth operation valve 17d.

【0115】HFCの気液二相冷媒が第1の接続配管C
を流れるときに、第1の接続配管Cに残留しているCF
C・HCFC・鉱油・鉱油劣化物(以下残留異物と称す
る)を気液二相状態のため比較的速く洗浄してHFCの
気液二相冷媒と共に流れ、第7の電磁弁18cを経て、
接続配管Cの残留異物と共に第2の接続配管Dに流入す
る。
The gas-liquid two-phase refrigerant of the HFC is supplied to the first connection pipe C
Flowing through the first connection pipe C
C / HCFC / mineral oil / deteriorated mineral oil (hereinafter referred to as residual foreign matter) is washed relatively quickly because of the gas-liquid two-phase state, flows together with the gas-liquid two-phase refrigerant of the HFC, passes through the seventh solenoid valve 18c,
The remaining foreign matter in the connection pipe C flows into the second connection pipe D.

【0116】第2の接続配管Dに残留している残留異物
は、ここを流れる冷媒が気液二相状態のため、流速も速
く、かつ液冷媒と共に、残留異物は洗浄され、比較的速
い速度で洗浄される。その後、気液二相状態の冷媒は、
第1の接続配管Cの残留異物と第2の接続配管Dの残留
異物と共に、第8の操作弁17f、第2の切換弁11を
経て、第1の流量制御手段15で低圧まで減圧されて、
加熱手段12bへ流入し、ここで蒸発・ガス化され、異
物捕捉手段13へ流入する。
The foreign matter remaining in the second connection pipe D has a high flow rate because the refrigerant flowing therethrough is in a gas-liquid two-phase state. Washed with. After that, the refrigerant in the gas-liquid two-phase state
Along with the residual foreign matter in the first connection pipe C and the residual foreign matter in the second connection pipe D, the pressure is reduced to a low pressure by the first flow control means 15 through the eighth operation valve 17f and the second switching valve 11. ,
It flows into the heating means 12b, where it is evaporated and gasified, and flows into the foreign matter capturing means 13.

【0117】残留異物は、沸点の違いにより相が異な
り、固体異物・液体異物・気体異物の3種類に分類され
る。異物捕捉手段13では、固体異物と液体異物は完全
にガス冷媒と分離され捕捉される。気体異物はその一部
が捕捉され、一部は捕捉されない。
The residual foreign matter has a different phase depending on the boiling point, and is classified into three types: solid foreign matter, liquid foreign matter, and gaseous foreign matter. In the foreign matter capturing means 13, the solid foreign matter and the liquid foreign matter are completely separated from the gas refrigerant and captured. Part of the gaseous foreign substance is captured, and part of the foreign substance is not captured.

【0118】その後、ガス冷媒は、異物捕捉手段13で
捕捉されなかった気体異物と共に第1の切換弁10、第
7の操作弁17e、第2の操作弁7、四方弁2、アキュ
ムレ−タ8を経て圧縮機1へ戻る。油分離器9で、ガス
冷媒と完全に分離されたHFC用冷凍機油は、バイパス
路9aを経て、異物捕捉手段13の下流側で本流と合流
して、圧縮機1へ戻るので、第1の接続配管Cや第2の
接続配管Dに残留していた鉱油と混ざることはなく、H
FC用冷凍機油はHFCに対して非相溶化することはな
く、またHFC用冷凍機油は鉱油により劣化することは
ない。
After that, the gas refrigerant together with the gaseous foreign matter not caught by the foreign matter catching means 13 has the first switching valve 10, the seventh operating valve 17e, the second operating valve 7, the four-way valve 2, and the accumulator 8. And returns to the compressor 1. The HFC refrigerating machine oil completely separated from the gas refrigerant in the oil separator 9 merges with the main stream on the downstream side of the foreign matter capturing means 13 via the bypass 9a and returns to the compressor 1, so that the first It does not mix with the mineral oil remaining in the connection pipe C and the second connection pipe D,
The refrigerating machine oil for FC does not become incompatible with HFC, and the refrigerating machine oil for HFC does not deteriorate due to mineral oil.

【0119】また、固形異物もHFC用冷凍機油と混合
することはなく、HFC用冷凍機油は劣化しない。ま
た、気体異物はHFC冷媒が冷媒回路を1サイクル循環
して、異物捕捉手段13を1回通る間には一部が捕捉さ
れるだけで、HFC用冷凍機油と気体異物は混合される
が、HFC用冷凍機油の劣化は化学反応で、急激には進
まない。その劣化の一例を図2に示す。異物捕捉手段1
3を1回通る間に捕捉されなかった、気体異物はHFC
冷媒の循環と共に何回も異物捕捉手段13を通るので、
HFC用冷凍機油の劣化するよりも速く、異物捕捉手段
13で捕捉すればよい。
Further, the solid foreign matter does not mix with the HFC refrigerating machine oil, and the HFC refrigerating machine oil does not deteriorate. In addition, while the HFC refrigerant circulates through the refrigerant circuit for one cycle and passes through the foreign matter capturing means 13 only once, the gas foreign matter is only partially captured, and the HFC refrigerating machine oil and the gas foreign matter are mixed. The deterioration of the refrigeration oil for HFC is a chemical reaction and does not proceed rapidly. FIG. 2 shows an example of the deterioration. Foreign matter capturing means 1
Gaseous foreign matter that was not captured during one pass through
As it passes through the foreign matter capturing means 13 many times with the circulation of the refrigerant,
What is necessary is just to catch by the foreign material catching means 13 faster than the deterioration of the HFC refrigerating machine oil.

【0120】次に暖房洗浄運転の流れを説明する。圧縮
機1で圧縮された高温高圧のガス冷媒はHFC用冷凍機
油と共に圧縮機1を吐出され、四方弁2、第2の操作弁
7、第7の操作弁17e、第1の切換弁10を経て油分
離器9へ流入する。ここで、HFC用の冷凍機油は完全
に分離され、ガス冷媒のみが冷却手段12aへ流入す
る。ここで、ガス冷媒は冷却され、凝縮・液化する。
Next, the flow of the heating cleaning operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the HFC refrigerating machine oil, and the four-way valve 2, the second operating valve 7, the seventh operating valve 17e, and the first switching valve 10 are operated. After that, it flows into the oil separator 9. Here, the refrigeration oil for HFC is completely separated, and only the gas refrigerant flows into the cooling means 12a. Here, the gas refrigerant is cooled, condensed and liquefied.

【0121】凝縮・液化された液冷媒は、第2の流量制
御手段16で少し減圧され、気液二相状態となり、第2
の切換弁11、第8の操作弁17fを経て第2の接続配
管Dへ流入する。第2の接続配管に残留している残留異
物は、ここを流れる冷媒が気液二相状態のため、流速も
速く、かつ液冷媒と共に、残留異物は洗浄され、比較的
速い速度で洗浄される。
The condensed and liquefied liquid refrigerant is slightly depressurized by the second flow control means 16 to be in a gas-liquid two-phase state.
Flows into the second connection pipe D via the switching valve 11 and the eighth operation valve 17f. The residual foreign matter remaining in the second connection pipe has a high flow rate because the refrigerant flowing therethrough is in a gas-liquid two-phase state, and the residual foreign matter is washed together with the liquid refrigerant, and is washed at a relatively high speed. .

【0122】その後、その気液二相冷媒は、第2の接続
配管Dの残留異物と共に、第7の電磁弁18cを経て、
第1の接続配管Cに流入する。ここでは、気液二相状態
のため、流速も速く、かつ液冷媒と共に、残留異物は洗
浄され、比較的速い速度で洗浄される。
Thereafter, the gas-liquid two-phase refrigerant together with the remaining foreign matter in the second connection pipe D passes through the seventh solenoid valve 18c,
It flows into the first connection pipe C. Here, because of the gas-liquid two-phase state, the flow velocity is high, and the residual foreign matter is cleaned together with the liquid refrigerant, and is cleaned at a relatively high speed.

【0123】第2の接続配管Dと第1の接続配管Cから
洗浄された残留異物と共に、気液二相状態の冷媒は、第
6の操作弁17d、第2の切換弁11を経て、第1の流
量制御手段15で低圧まで減圧されて、加熱手段12b
へ流入し、ここで蒸発・ガス化され、異物捕捉手段13
へ流入する。残留異物は、沸点の違いにより相が異な
り、固体異物・液体異物・気体異物の3種類に分類され
る。
The refrigerant in the gas-liquid two-phase state together with the residual foreign matter washed from the second connection pipe D and the first connection pipe C passes through the sixth operation valve 17d and the second switching valve 11, and then flows through the second connection valve 11. The pressure is reduced to a low pressure by the first flow control means 15 and the heating means 12b
And then is evaporated and gasified, and the foreign matter capturing means 13
Flows into The residual foreign matter has a different phase depending on the boiling point, and is classified into three types: solid foreign matter, liquid foreign matter, and gaseous foreign matter.

【0124】異物捕捉手段13では、固体異物と液体異
物は完全にガス冷媒と分離され捕捉される。気体異物は
その一部が捕捉され、一部は捕捉されない。その後、ガ
ス冷媒は、異物捕捉手段13で捕捉されなかった気体異
物と共に、第1の切換弁10、第5の操作弁17cを経
て、熱源機側熱交換器3へ流入し、ここでは送風機など
を停止して熱交換させずに通過させ、アキュムレ−タ8
を経て圧縮機1へ戻る。
In the foreign matter capturing means 13, the solid foreign matter and the liquid foreign matter are completely separated from the gas refrigerant and captured. Part of the gaseous foreign substance is captured, and part of the foreign substance is not captured. After that, the gas refrigerant flows into the heat source unit side heat exchanger 3 through the first switching valve 10 and the fifth operation valve 17c together with the gaseous foreign matter not captured by the foreign matter capturing means 13, where the blower or the like is used. Is stopped and passed without heat exchange, and the accumulator 8
And returns to the compressor 1.

【0125】油分離器9で、ガス冷媒と完全に分離され
たHFC用冷凍機油は、バイパス路9aを経て、異物捕
捉手段13の下流側で本流と合流して、圧縮機1へ戻る
ので、第1の接続配管Cや第2の接続配管Dに残留して
いた鉱油と混ざることはなく、HFC用冷凍機油はHF
Cに対して非相溶化することはなく、またHFC用冷凍
機油は鉱油により劣化することはない。
The HFC refrigerating machine oil completely separated from the gas refrigerant in the oil separator 9 merges with the main stream on the downstream side of the foreign matter capturing means 13 through the bypass 9a, and returns to the compressor 1. It does not mix with the mineral oil remaining in the first connection pipe C and the second connection pipe D, and the refrigeration oil for HFC is HF
It does not become incompatible with C, and the refrigerating machine oil for HFC does not deteriorate with mineral oil.

【0126】また、固形異物もHFC用冷凍機油と混合
することはなく、HFC用冷凍機油は劣化しない。ま
た、気体異物はHFC冷媒が冷媒回路を1サイクル循環
して、異物捕捉手段13を1回通る間には一部が捕捉さ
れるだけで、HFC用冷凍機油と気体異物は混合される
が、HFC用冷凍機油の劣化は化学反応で、急激には進
まない。その劣化の一例を図2に示す。異物捕捉手段1
3を1回通る間に捕捉されなかった気体異物は、HFC
冷媒の循環と共に何回も異物捕捉手段13を通るので、
HFC用冷凍機油の劣化するよりも速く、異物捕捉手段
13で捕捉すればよい。異物捕捉手段13、油分離器9
は、実施の形態1に示すものと全く同一のため、ここで
は説明を省略する。
Also, solid foreign matter does not mix with the HFC refrigerating machine oil, and the HFC refrigerating machine oil does not deteriorate. In addition, while the HFC refrigerant circulates through the refrigerant circuit for one cycle and passes through the foreign matter capturing means 13 only once, the gas foreign matter is only partially captured, and the HFC refrigerating machine oil and the gas foreign matter are mixed. The deterioration of the refrigeration oil for HFC is a chemical reaction and does not proceed rapidly. FIG. 2 shows an example of the deterioration. Foreign matter capturing means 1
Gaseous substances that were not captured during one pass through
As it passes through the foreign matter capturing means 13 many times with the circulation of the refrigerant,
What is necessary is just to catch by the foreign material catching means 13 faster than the deterioration of the HFC refrigerating machine oil. Foreign matter capturing means 13, oil separator 9
Is exactly the same as that shown in the first embodiment, and the description is omitted here.

【0127】次に、通常空調運転について、図10に添
って説明する。図中、実線矢印が冷房通常運転の流れ
を、破線矢印が暖房通常運転の流れを示す。まず冷房通
常運転について説明する。圧縮機1で圧縮された高温高
圧のガス冷媒は圧縮機1を吐出され、四方弁2を経て、
熱源機側熱交換器3へと流入し、ここで空気・水など熱
源媒体と熱交換器して凝縮液化する。凝縮液化した冷媒
は、第1の操作弁4、第3の操作弁17a、第1の接続
配管C、第5の電磁弁18aを経て、流量調整器5へ流
入し、ここで低圧まで減圧されて低圧二相状態となり、
利用側熱交換器6で空気などの利用側媒体と熱交換して
蒸発・ガス化する。
Next, the normal air-conditioning operation will be described with reference to FIG. In the figure, the solid arrows indicate the flow of the normal cooling operation, and the broken arrows indicate the flow of the normal heating operation. First, the normal cooling operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1, passes through the four-way valve 2,
It flows into the heat source device side heat exchanger 3 where it is condensed and liquefied by heat exchange with a heat source medium such as air or water. The condensed and liquefied refrigerant flows into the flow regulator 5 through the first operation valve 4, the third operation valve 17a, the first connection pipe C, and the fifth solenoid valve 18a, where the pressure is reduced to a low pressure. Into a low-pressure two-phase state,
The use side heat exchanger 6 exchanges heat with the use side medium such as air to evaporate and gasify.

【0128】蒸発・ガス化した冷媒は、第6の電磁弁1
8b、第2の接続配管D、第4の操作弁17b、第2の
操作弁7、四方弁2、アキュムレ−タ8を経て圧縮機1
へ戻る。第5〜8の操作弁17c〜17fは閉じられて
いるので、異物捕捉手段13は閉鎖空間として隔離され
ているので、洗浄運転中に捕捉した異物が、再び運転回
路中に戻ることがない。また、実施の形態1と比べる
と、異物捕捉手段13を経由しないため、圧縮機1の吸
入圧力損失が小さく、能力の低下が小さい。
The evaporated and gasified refrigerant is supplied to the sixth solenoid valve 1
8b, the second connection pipe D, the fourth operation valve 17b, the second operation valve 7, the four-way valve 2, and the accumulator 8, and the compressor 1
Return to Since the fifth to eighth operation valves 17c to 17f are closed, the foreign matter capturing means 13 is isolated as a closed space, so that foreign matters captured during the cleaning operation do not return to the operation circuit again. Further, as compared with the first embodiment, since there is no passage through the foreign matter capturing means 13, the suction pressure loss of the compressor 1 is small and the decrease in performance is small.

【0129】次に暖房通常運転の流れを説明する。圧縮
機1で圧縮された高温高圧のガス冷媒は、圧縮機1を吐
出され、四方弁2を経て、第2の操作弁7に流入し、第
4の操作弁17b、第2の接続配管D、第6の電磁弁1
8bを経て、利用側側熱交換器6へと流入し、ここで空
気など利用側媒体と熱交換器して凝縮液化する。
Next, the flow of the normal heating operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1, flows into the second operation valve 7 through the four-way valve 2, and flows into the fourth operation valve 17b and the second connection pipe D. , Sixth solenoid valve 1
After passing through 8b, it flows into the use-side heat exchanger 6, where it is heat-exchanged with the use-side medium such as air and condensed and liquefied.

【0130】凝縮液化した冷媒は、流量調整器5へ流入
し、ここで低圧まで減圧されて低圧二相状態となり、第
5の電磁弁18a、第1の接続配管C、第3の操作弁1
7a、第1の操作弁4、熱源機側熱交換器3へ流入し、
ここで空気・水などの熱源媒体と熱交換して蒸発・ガス
化する。蒸発・ガス化した冷媒は、四方弁2、アキュム
レ−タ8を経て圧縮機1へ戻る。
The condensed and liquefied refrigerant flows into the flow regulator 5, where it is reduced to a low pressure to be in a low-pressure two-phase state, where the fifth solenoid valve 18a, the first connection pipe C, the third operating valve 1
7a, the first operation valve 4, the heat source unit side heat exchanger 3,
Here, heat exchange is performed with a heat source medium such as air or water to evaporate or gasify. The evaporated and gasified refrigerant returns to the compressor 1 via the four-way valve 2 and the accumulator 8.

【0131】第5〜8の操作弁17c〜17fは閉じら
れているので、異物捕捉手段13は閉鎖空間として隔離
されているので、洗浄運転中に捕捉した異物が、再び運
転回路中に戻ることがない。また、実施の形態1と比べ
ると、異物捕捉手段13を経由しないため、圧縮機1の
吸入圧力損失が小さく、能力の低下が小さい。また、実
施の形態2と違って、冷却手段12aへは冷媒が流れな
いので、暖房能力のロスもない。
Since the fifth to eighth operation valves 17c to 17f are closed, the foreign matter capturing means 13 is isolated as a closed space, so that foreign matters captured during the cleaning operation return to the operation circuit again. There is no. Further, as compared with the first embodiment, since there is no passage through the foreign matter capturing means 13, the suction pressure loss of the compressor 1 is small and the decrease in performance is small. Further, unlike the second embodiment, the refrigerant does not flow to the cooling means 12a, so that there is no loss in the heating capacity.

【0132】以上のように、油分離器9と異物捕捉手段
13を洗浄機Eに内蔵することで、熱源機Aと室内機B
のみを新規に交換し、第1の接続配管Cと第2の接続配
管Dを交換しないで、老朽化したCFCまたはHCFC
を用いた冷凍サイクル装置を新しいHFCを用いた冷凍
サイクル装置に入れ替えることができる。このような方
法により、既設配管再利用方法として、前記の従来の洗
浄方法1とは違って、洗浄装置を用いて専用の洗浄液
(HCFC141bやHCFC225)で洗浄するとい
うことをしないので、オゾン層破壊の可能性は全く無
く、また可燃性・毒性も皆無で、洗浄液残留の懸念も無
く、洗浄液を回収する必要も無い。
As described above, by incorporating the oil separator 9 and the foreign matter catching means 13 into the washing machine E, the heat source unit A and the indoor unit B
Only a new CFC or HCFC without replacing the first connection pipe C and the second connection pipe D.
Can be replaced with a new refrigeration cycle device using HFC. According to such a method, unlike the above-described conventional cleaning method 1, the existing pipe is not reused by using a cleaning device to perform cleaning with a dedicated cleaning liquid (HCFC141b or HCFC225). There is no possibility of cleaning, there is no flammability and no toxicity, there is no fear of cleaning liquid remaining, and there is no need to collect the cleaning liquid.

【0133】また、前記の従来の洗浄方法2と違って、
洗浄運転を3回繰り返してHFC冷媒やHFC冷凍機油
を3回入れ替える必要がないため、必要なHFCや冷凍
機油は1台分で済むためコスト・環境上有利である。ま
た、交換用冷凍機油の管理も不要で、かつ冷凍機油過不
足の危険性も全く発生しない。また、HFC用冷凍機油
の非相溶化や冷凍機油の劣化の恐れも無い。
Also, unlike the above-mentioned conventional cleaning method 2,
It is not necessary to replace the HFC refrigerant or the HFC refrigerating machine oil three times by repeating the washing operation three times, so that only one HFC or refrigerating machine oil is required, which is advantageous in cost and environment. Further, there is no need to manage the refrigerating machine oil for replacement, and there is no danger of excessive or insufficient refrigerating machine oil. Further, there is no fear of incompatibility of the refrigerating machine oil for HFC or deterioration of the refrigerating machine oil.

【0134】また、第5〜8の操作弁17c〜17fを
設けたことで、洗浄運転時には異物捕捉手段13を通過
して上記に示す洗浄効果を得つつ、洗浄運転後の通常運
転時には、第5〜8の操作弁17c〜17fは閉じて、
異物捕捉手段13は閉鎖空間として隔離されているの
で、洗浄運転中に捕捉した異物が、再び運転回路中に戻
ることがない。また、実施の形態1と比べると、異物捕
捉手段13を経由しないため、圧縮機1の吸入圧力損失
が小さく、能力の低下が小さい。
Further, by providing the fifth to eighth operation valves 17c to 17f, the cleaning effect is obtained by passing through the foreign matter capturing means 13 during the cleaning operation, and the first to fifth operation valves 17c to 17f during the normal operation after the cleaning operation. The operation valves 17c to 17f of 5 to 8 are closed,
Since the foreign matter capturing means 13 is isolated as a closed space, the foreign matter captured during the cleaning operation does not return to the operation circuit again. Further, as compared with the first embodiment, since there is no passage through the foreign matter capturing means 13, the suction pressure loss of the compressor 1 is small and the decrease in performance is small.

【0135】また、冷却却手段12a、加熱手段12
b、第1の切換弁10、第2の切換弁11を設けたの
で、冷房・暖房に関わらず、洗浄運転時に第1の接続配
管C、第2の接続配管Dに液冷媒または気液二相冷媒が
流れるので、残留異物を洗浄するのに、洗浄効果が高
く、洗浄時間を短くすることができる。また、冷却手段
12a、加熱手段12bにより熱交換量を制御できるの
で、外気温度や室内の負荷に関係なく、任意の条件時に
ほぼ同一の洗浄運転が可能で、効果・手間が一定化す
る。
The cooling means 12a, the heating means 12
b, since the first switching valve 10 and the second switching valve 11 are provided, regardless of cooling / heating, the first connection pipe C and the second connection pipe D are connected to the liquid refrigerant or the gas-liquid Since the phase refrigerant flows, the cleaning effect is high and the cleaning time can be shortened for cleaning the remaining foreign matter. Further, since the amount of heat exchange can be controlled by the cooling means 12a and the heating means 12b, almost the same cleaning operation can be performed under arbitrary conditions irrespective of the outside air temperature and the load in the room, and the effect and labor can be made constant.

【0136】また、第1の流量制御手段15と第2の流
量制御手段16を設けたので、第1、第2の接続配管
C,Dを流れる冷媒を必ず気液二相状態とすることがで
きるので、さらに残留異物を洗浄するのに、洗浄効果が
高く、洗浄時間を短くすることができる。また、第1、
第2の接続配管C,Dを流れる気液二相冷媒の圧力と乾
き度も制御できるので、さらに任意の条件時にほぼ同一
の洗浄運転が可能で、効果・手間が一定化する。
Further, since the first flow rate control means 15 and the second flow rate control means 16 are provided, the refrigerant flowing through the first and second connection pipes C and D can be always in a gas-liquid two-phase state. Since the residual foreign matter can be further cleaned, the cleaning effect is high and the cleaning time can be shortened. First,
Since the pressure and the dryness of the gas-liquid two-phase refrigerant flowing through the second connection pipes C and D can also be controlled, substantially the same cleaning operation can be performed under arbitrary conditions, and the effect and labor can be made constant.

【0137】また、室内バイパス機Fを設けたので、第
1、第2の接続配管C,Dを流れる冷媒の状態をほぼ同
じにできるので、均一な洗浄運転が可能で、効果・手間
が一定化する。また、残留異物が新しい室内機Bに流入
することがないので、室内機Bの汚染を防ぐことができ
る。
Further, since the indoor bypass unit F is provided, the state of the refrigerant flowing through the first and second connection pipes C and D can be made substantially the same, so that a uniform cleaning operation can be performed, and the effect and the labor are constant. Become Further, since the remaining foreign matter does not flow into the new indoor unit B, the contamination of the indoor unit B can be prevented.

【0138】また、油分離器9、バイパス路9a、冷却
手段12a、加熱手段12b、異物捕捉手段13、第1
の切換弁10、上記第2の切換弁11、第1の流量制御
手段15、第2の流量制御手段16を洗浄機Eに内蔵し
たので、熱源機Aを小型化・低コスト化できる。また、
熱源機Aは、第1,第2の接続配管C,Dを新規に敷設
する場合にも共通の熱源機とすることができる。
Further, the oil separator 9, the bypass 9a, the cooling means 12a, the heating means 12b, the foreign matter catching means 13, the first
Since the switching valve 10, the second switching valve 11, the first flow control means 15, and the second flow control means 16 are incorporated in the washing machine E, the heat source device A can be reduced in size and cost. Also,
The heat source device A can be a common heat source device even when the first and second connection pipes C and D are newly laid.

【0139】また、洗浄機Eが第5〜第8の操作弁17
c〜17fの部分で全体の冷凍サイクル装置から脱着可
能に接続されているので、洗浄運転後にこれら操作弁を
閉じてから洗浄機Eの内部の冷媒を回収し、冷凍サイク
ル装置から取り外し、別の同様の冷凍サイクル装置に取
り付けて、洗浄運転を実施することができる。
The washing machine E is provided with the fifth to eighth operation valves 17.
Since it is detachably connected to the entire refrigeration cycle device at the portions c to 17f, the operation valve is closed after the cleaning operation, the refrigerant inside the washer E is recovered, removed from the refrigeration cycle device, and separated. The washing operation can be performed by attaching to a similar refrigeration cycle device.

【0140】この実施の形態では、室内機Bが1台接続
された例について説明したが、室内機Bが並列または直
列に複数台接続された冷凍サイクル装置でも同様の効果
を奏することは言うまでもない。また、熱源機側熱交換
器3と直列または並列に氷蓄熱槽や水蓄熱槽(湯を含
む)が設置されていても同様の効果を奏することは明ら
かである。
In this embodiment, an example in which one indoor unit B is connected has been described. However, it is needless to say that the same effect can be obtained in a refrigeration cycle apparatus in which a plurality of indoor units B are connected in parallel or in series. . It is clear that the same effect can be obtained even if an ice heat storage tank or a water heat storage tank (including hot water) is installed in series or parallel with the heat source unit side heat exchanger 3.

【0141】また、熱源機Aが複数台並列に接続された
冷凍サイクル装置においても同様の効果を奏することは
明らかである。また、冷凍サイクル装置に限らず、蒸気
圧縮式の冷凍サイクル応用品で、熱源機側熱交換器が内
蔵されたユニットと利用側熱交換器が内蔵されたユニッ
トが離れて設置されるものであれば、同様の効果を奏す
ることは明らかである。また、この実施の形態では、洗
浄機Eはひとつの冷凍サイクル装置に1個だけ設置され
ているが、複数個設置されても同様の効果を呈すること
は明白である。
It is apparent that the same effect can be obtained in a refrigeration cycle apparatus in which a plurality of heat source units A are connected in parallel. In addition, the present invention is not limited to the refrigeration cycle apparatus, and may be applied to a vapor compression type refrigeration cycle applied to a unit having a built-in heat source side heat exchanger and a unit having a built-in use side heat exchanger. It is clear that a similar effect can be achieved. Further, in this embodiment, only one washing machine E is installed in one refrigeration cycle apparatus, but it is apparent that the same effect is exhibited even if a plurality of washing machines E are installed.

【0142】以上説明した実施の形態1の構成の一側面
を要約すると次のとおりである。この冷凍サイクル装置
は、圧縮機から熱源機側熱交換器と流量調整器と利用側
熱交換器とアキュムレータとを順次に経て上記圧縮機に
冷媒を循環させる第1の冷媒回路と、上記圧縮機から上
記利用側熱交換器と上記流量調整器と上記熱源機側熱交
換器と上記アキュムレータとを順次に経て上記圧縮機に
冷媒を循環させる第2の冷媒回路とを備えている。ま
た、上記第1の冷媒回路の上記利用側熱交換器と上記ア
キュムレータとの間の冷媒回路をバイパスし、かつ、上
記第2の冷媒回路の上記上記流量調整器と上記熱源機側
熱交換器との間の冷媒回路をバイパスするとともに、冷
媒中の異物を捕捉する異物捕捉手段を有する第1バイパ
ス路を備えている。また、上記第1の冷媒回路の上記熱
源機側熱交換器と上記流量調整器との間の冷媒回路をバ
イパスし、かつ、上記第2の冷媒回路の上記圧縮機と上
記利用側熱交換器との間の冷媒回路をバイパスするとと
もに、冷媒の冷却手段を有する第2バイパス路を備えて
いる。また、上記第1バイパス路の上記異物捕捉手段の
上流側に冷媒の加熱手段を備えている。さらに、上記第
1の冷媒回路の上記熱源機側熱交換器と上記流量調整器
との間の冷媒回路をバイパスし、かつ、上記第2の冷媒
回路の上記圧縮機と上記利用側熱交換器との間の冷媒回
路をバイパスするとともに、冷媒の油成分を分離する油
分離手段を有する第3バイパス路を備えている。
One aspect of the configuration of the first embodiment described above is summarized as follows. The refrigeration cycle apparatus includes a first refrigerant circuit that circulates a refrigerant from the compressor to the compressor sequentially through a heat source device side heat exchanger, a flow regulator, a use side heat exchanger, and an accumulator; And a second refrigerant circuit for circulating a refrigerant to the compressor through the use side heat exchanger, the flow regulator, the heat source unit side heat exchanger, and the accumulator in order. In addition, the refrigerant circuit between the utilization side heat exchanger of the first refrigerant circuit and the accumulator is bypassed, and the flow regulator and the heat source unit side heat exchanger of the second refrigerant circuit are bypassed. And a first bypass path having foreign matter capturing means for capturing foreign matter in the refrigerant while bypassing the refrigerant circuit between the first and second refrigerant circuits. Also, the refrigerant circuit between the heat source unit side heat exchanger of the first refrigerant circuit and the flow rate regulator is bypassed, and the compressor of the second refrigerant circuit and the utilization side heat exchanger And a second bypass passage having a refrigerant cooling means. Further, a heating means for the refrigerant is provided upstream of the foreign matter capturing means in the first bypass passage. Furthermore, the refrigerant circuit between the heat source unit side heat exchanger of the first refrigerant circuit and the flow rate regulator is bypassed, and the compressor of the second refrigerant circuit and the utilization side heat exchanger And a third bypass having oil separating means for separating an oil component of the refrigerant.

【0143】次に、この実施の形態3による冷凍サイク
ル装置について、冷媒置換後の洗浄運転の制御方法につ
いて説明する。 (1)第1の制御方法 実施の形態3の冷凍サイクル装置の洗浄運転時の第1の
制御方法としては、CFCやHCFC(旧冷媒)を使っ
た冷媒回路(冷凍サイクル装置)の熱源機Aおよび室内
機BをHFC(新冷媒)を用いたものに置換し、さらに
HFCの追加充填をした後、洗浄運転のステップAとし
て、前述の冷房洗浄運転を実施する。
Next, a method of controlling the cleaning operation after the replacement of the refrigerant in the refrigeration cycle apparatus according to the third embodiment will be described. (1) First Control Method As a first control method during the cleaning operation of the refrigeration cycle apparatus according to the third embodiment, a heat source device A of a refrigerant circuit (refrigeration cycle apparatus) using CFC or HCFC (old refrigerant) is used. After replacing the indoor unit B with the one using HFC (new refrigerant), and additionally charging HFC, the cooling cleaning operation described above is performed as Step A of the cleaning operation.

【0144】洗浄の状況は、実施の形態2と同様である
から、その詳細な説明は省略する。これにより、前述の
ように洗浄運転の最初に第1の接続配管Cを上流に、第
2の接続配管Dを下流になるようにすることで、第2の
接続配管Dに多く分布している鉱油を第1の接続配管C
に混入させることなく、異物捕捉手段13に回収するこ
とができる。これにより、洗浄時間が短くできる上に、
第1、第2の接続配管C、Dに残留する鉱油の量を低減
することができる。
Since the condition of the cleaning is the same as that of the second embodiment, the detailed description is omitted. Accordingly, as described above, the first connection pipe C is located upstream and the second connection pipe D is located downstream at the beginning of the cleaning operation, so that the first connection pipe C is distributed more in the second connection pipe D. Mineral oil is supplied to the first connection pipe C
Can be collected by the foreign matter capturing means 13 without being mixed with the water. This not only shortens the cleaning time, but also
The amount of mineral oil remaining in the first and second connection pipes C and D can be reduced.

【0145】(2)第2の制御方法 実施の形態3の冷凍サイクル装置の洗浄運転時の第2の
制御方法としては、CFCやHCFC(旧冷媒)を使っ
た冷媒回路(冷凍サイクル装置)の熱源機Aおよび室内
機BをHFC(新冷媒)を用いたものに置換し、さらに
HFCの追加充填をした後、洗浄運転のステップBとし
て、前述の暖房洗浄運転を実施する。洗浄の状況は、実
施の形態2と同様であるから、その詳細な説明は省略す
る。
(2) Second control method As a second control method during the cleaning operation of the refrigeration cycle apparatus according to the third embodiment, a refrigeration circuit (refrigeration cycle apparatus) using CFC or HCFC (old refrigerant) is used. After replacing the heat source unit A and the indoor unit B with those using HFC (new refrigerant), and additionally charging HFC, the above-described heating cleaning operation is performed as Step B of the cleaning operation. Since the state of the cleaning is the same as that of the second embodiment, a detailed description thereof will be omitted.

【0146】このステップBでは、第2の接続配管D、
第1の接続配管Cの順に冷媒を流して洗浄することにな
る。また、このステップBは、第1、第2の接続配管
C、Dのうち太径配管が上流で細径配管が下流になるよ
うにして冷媒を流して洗浄することと換言することがで
きる。
In this step B, the second connection pipe D,
The cleaning is performed by flowing the refrigerant in the order of the first connection pipe C. In addition, this step B can be described as washing by flowing a refrigerant so that the large-diameter pipe is upstream and the small-diameter pipe is downstream in the first and second connection pipes C and D.

【0147】このように暖房洗浄運転をすると、実施の
形態2の説明と同様に、配管内径の細い第1の接続配管
Cでは冷媒の質量速度が大きく、非常に高い洗浄効果が
得られる。一方、第2の接続配管Dは配管内径が太いた
め、冷媒の質量速度が小さいので、この点では洗浄効果
が小さい。しかしながら、この流れ方向では第2の接続
配管Dの方が第1の接続配管Cよりも上流にあり、冷媒
の温度が高いため、鉱油への冷媒の溶解度が高くなり、
鉱油の粘性が小さくなることで、洗浄効果が高くなる。
When the heating cleaning operation is performed as described above, the mass velocity of the refrigerant is large in the first connection pipe C having a small pipe inner diameter, as in the description of the second embodiment, and a very high cleaning effect can be obtained. On the other hand, since the second connection pipe D has a large pipe inner diameter and a low mass velocity of the refrigerant, the cleaning effect is small in this respect. However, in this flow direction, the second connection pipe D is more upstream than the first connection pipe C, and the temperature of the refrigerant is high, so that the solubility of the refrigerant in mineral oil is high,
As the viscosity of the mineral oil decreases, the cleaning effect increases.

【0148】(3)第3の制御方法 実施の形態3の冷凍サイクル装置の洗浄運転時の第3の
制御方法としては、CFCやHCFC(旧冷媒)を使っ
た冷媒回路(冷凍サイクル装置)の熱源機Aおよび室内
機BをHFC(新冷媒)を用いたもの置換し、さらにH
FCの追加充填をした後、先ず上述のステップAの冷房
洗浄運転、次にステップBの暖房洗浄運転の順で洗浄運
転を実施する。このように、ステップA、ステップBの
順に実施することで、第2の接続配管Dに多く分布して
いる鉱油を第1の接続配管Cに混入させることなく、異
物捕捉手段13に回収し、その後に質量流速、溶解度の
面で洗浄効果の高い洗浄を行うことになり、より高い洗
浄効果が得られ、洗浄時間も短くすることができる。
(3) Third Control Method As a third control method during the cleaning operation of the refrigeration cycle device of the third embodiment, a refrigeration circuit (refrigeration cycle device) using CFC or HCFC (old refrigerant) is used. The heat source unit A and the indoor unit B are replaced with those using HFC (new refrigerant).
After the additional filling of the FC, the cleaning operation is performed in the order of the cooling cleaning operation in step A described above and then the heating cleaning operation in step B. As described above, by performing Step A and Step B in this order, the mineral oil distributed in a large amount in the second connection pipe D is collected in the foreign matter capturing means 13 without being mixed into the first connection pipe C, Thereafter, cleaning with a high cleaning effect in terms of mass flow rate and solubility is performed, so that a higher cleaning effect is obtained and the cleaning time can be shortened.

【0149】(4)第4の制御方法 実施の形態3の冷凍サイクル装置の洗浄運転時の第4の
制御方法としては、CFCやHCFC(旧冷媒)を使っ
た冷凍サイクル装置の熱源機Aおよび室内機BをHFC
(新冷媒)を用いたもの置換し、さらにHFCの追加充
填をした後、洗浄運転のための圧縮機1の運転容量を、
洗浄対象である第1、第2の接続配管C、Dの配管径に
応じて制御し、洗浄運転中の第1、第2の接続配管C、
Dを流れる冷媒の質量速度を所定値以上に、あるいは所
定範囲に制御する。これにより、高い洗浄効果を確保す
ることができる。これは、ステップAの場合でも、ステ
ップBの場合でも同様である。既に説明したように、図
11に冷媒の質量速度と配管内鉱油残留量との関係の一
例を示した。配管内の冷媒の質量速度が大きくなるほ
ど、洗浄効果は高いことが示されている。
(4) Fourth Control Method As a fourth control method during the cleaning operation of the refrigeration cycle apparatus according to the third embodiment, the heat source units A and C of the refrigeration cycle apparatus using CFC or HCFC (old refrigerant) are used. HFC for indoor unit B
After replacing with the (new refrigerant) and additionally filling with HFC, the operating capacity of the compressor 1 for the washing operation is
The first and second connection pipes C, which are controlled according to the pipe diameters of the first and second connection pipes C and D to be cleaned, and which are in the cleaning operation,
The mass velocity of the refrigerant flowing through D is controlled to a predetermined value or more, or to a predetermined range. Thereby, a high cleaning effect can be ensured. This is the same in the case of step A and the case of step B. As already described, FIG. 11 shows an example of the relationship between the mass velocity of the refrigerant and the residual amount of mineral oil in the pipe. It is shown that the higher the mass velocity of the refrigerant in the pipe, the higher the cleaning effect.

【0150】実施の形態4.図12、図13、図14
は、この発明の実施の形態4による冷凍サイクル装置の
一例として、冷凍サイクル装置の冷媒回路を示す図であ
る。これらは、いずれも図1、図7、図9の冷媒回路に
おいて、第1の接続配管Cと室内機B(流量調整器5と
利用側熱交換器6)と第2の接続配管Dとを含む利用側
冷媒回路の部分が複数並列に設置された場合を示してい
る。
Embodiment 4 12, 13, and 14
FIG. 9 is a diagram showing a refrigerant circuit of a refrigeration cycle device as an example of a refrigeration cycle device according to Embodiment 4 of the present invention. In the refrigerant circuits shown in FIGS. 1, 7 and 9, the first connection pipe C, the indoor unit B (the flow regulator 5 and the use-side heat exchanger 6), and the second connection pipe D are connected. This shows a case where a plurality of use-side refrigerant circuits including a plurality of use-side refrigerant circuits are installed in parallel.

【0151】先ず、図12の冷媒回路とその洗浄運転の
制御について説明する。図12において、Ci,Bi,
Di(いずれもi=1〜n)は、それぞれ第i番目の利
用側冷媒回路の接続配管、室内機、第2の接続配管を示
す。また、18ai(i=1〜n)は、第iの接続配管
Ciと室内機Biとの間に設けられた第5の電磁弁を示
す。
First, control of the refrigerant circuit of FIG. 12 and its cleaning operation will be described. In FIG. 12, Ci, Bi,
Di (all i = 1 to n) indicates a connection pipe, an indoor unit, and a second connection pipe of the i-th use-side refrigerant circuit, respectively. In addition, 18ai (i = 1 to n) indicates a fifth solenoid valve provided between the i-th connection pipe Ci and the indoor unit Bi.

【0152】このように、室内機Biが複数台並列接続
されたマルチエアコンの場合には、第1、第2の接続配
管Ci、Diに供給する冷媒が気液二相状態の場合、各
室内機Biに分岐する分岐部で、気液が偏って分配され
るのが一般的である(気液を等分配するには特別な構造
が必要だが、これは天井裏やパイプシャフトに埋設され
ており、交換が不可能である)。したがって、ある室内
機Biには洗浄に十分な質量速度の冷媒が確保される
が、別の室内機Biには洗浄に十分な質量速度の冷媒が
確保されないということが発生し得る。
As described above, in the case of a multi air conditioner in which a plurality of indoor units Bi are connected in parallel, when the refrigerant supplied to the first and second connection pipes Ci and Di is in a gas-liquid two-phase state, It is general that gas and liquid are distributed unevenly at a branching point that branches to the machine Bi (a special structure is required for equal distribution of gas and liquid, but this is buried under the ceiling or in a pipe shaft). And cannot be replaced). Therefore, a refrigerant having a mass velocity sufficient for cleaning may be secured in one indoor unit Bi, but a refrigerant having a mass velocity sufficient for cleaning may not be secured in another indoor unit Bi.

【0153】そこで、1台の室内機Biの第5の電磁弁
18aiだけを開弁し、残りの室内機Biの第5の電磁
弁18aiを閉弁すると、開弁した室内機Biの配管に
はすべての冷媒が流れるので、その室内機Biには十分
な質量速度の冷媒が確保される。第5の電磁弁18ai
を各室内機Bi毎に個別に順次開弁していくことで、す
べての室内機Biに十分な質量速度の冷媒が確保される
ことになり、鉱油は十分に洗浄される。
Therefore, when only the fifth electromagnetic valve 18ai of one indoor unit Bi is opened and the fifth electromagnetic valve 18ai of the remaining indoor unit Bi is closed, the pipe of the opened indoor unit Bi is opened. Since all the refrigerant flows, the refrigerant having a sufficient mass velocity is secured in the indoor unit Bi. Fifth solenoid valve 18ai
Is sequentially and individually opened for each indoor unit Bi, so that a refrigerant having a sufficient mass velocity is secured in all the indoor units Bi, and the mineral oil is sufficiently washed.

【0154】次に、図13の冷媒回路とその洗浄運転の
制御について説明する。図13において、Ci,Bi,
Di(いずれもi=1〜n)は、それぞれ第i番目の利
用側冷媒回路の第1の接続配管、室内機、第2の接続配
管を示す。また、18ai(i=1〜n)は、第1の接
続配管Ciと室内機Biとの間に設けられた第5の電磁
弁を示す。このように、室内機Biが複数台並列接続さ
れたマルチエアコンの場合には、図12について上述し
たように、1台の室内機Biの第5の電磁弁18aiだ
けを開弁し、残りの室内機Biの第5の電磁弁18ai
を閉弁して洗浄する。第5の電磁弁18aiを各室内機
Bi毎に順次開弁していくことで、すべての室内機Bi
に十分な質量速度の冷媒が確保されることになり、鉱油
は十分に洗浄される。
Next, control of the refrigerant circuit of FIG. 13 and its cleaning operation will be described. In FIG. 13, Ci, Bi,
Di (all i = 1 to n) indicate the first connection pipe, the indoor unit, and the second connection pipe of the i-th use-side refrigerant circuit, respectively. 18ai (i = 1 to n) indicates a fifth solenoid valve provided between the first connection pipe Ci and the indoor unit Bi. As described above, in the case of a multi air conditioner in which a plurality of indoor units Bi are connected in parallel, only the fifth solenoid valve 18ai of one indoor unit Bi is opened and the remaining indoor units Bi are opened as described above with reference to FIG. Fifth solenoid valve 18ai of indoor unit Bi
Close and wash. By sequentially opening the fifth solenoid valve 18ai for each indoor unit Bi, all the indoor units Bi are opened.
Therefore, a refrigerant having a sufficient mass velocity is secured, and the mineral oil is sufficiently washed.

【0155】次に、図14の冷媒回路とその洗浄運転の
制御について説明する。図14において、Ci,Fi,
Bi,Di(いずれもi=1〜n)は、それぞれ第i番
目の利用側冷媒回路の第1の接続配管、バイパス機、室
内機、第2の接続配管を示す。また、18ci(i=1
〜n)は、第1の接続配管Ciと第2の接続配管Diと
を接続するバイパス路18diの配管途中に設けられた
第7の電磁弁である。このように、室内機Biが複数台
並列接続されたマルチエアコンの場合には、図12につ
いて上述したのと同様に、1台の室内機Biの第7の電
磁弁18ciだけを開弁し、残りの室内機Biの第7の
電磁弁18ciを閉弁する。第7の電磁弁18ciを各
室内機毎に個別に順次開弁していくことで、すべての室
内機Biの配管に十分な質量速度の冷媒が確保されるこ
とになり、鉱油は十分に洗浄される。
Next, control of the refrigerant circuit of FIG. 14 and its cleaning operation will be described. In FIG. 14, Ci, Fi,
Bi and Di (both i = 1 to n) indicate a first connection pipe, a bypass unit, an indoor unit, and a second connection pipe of the i-th use-side refrigerant circuit, respectively. Also, 18ci (i = 1
To n) are seventh solenoid valves provided in the middle of the bypass passage 18di connecting the first connection pipe Ci and the second connection pipe Di. As described above, in the case of a multi-air conditioner in which a plurality of indoor units Bi are connected in parallel, only the seventh electromagnetic valve 18ci of one indoor unit Bi is opened as described above with reference to FIG. The seventh electromagnetic valves 18ci of the remaining indoor units Bi are closed. By opening the seventh solenoid valve 18ci individually and sequentially for each indoor unit, a refrigerant having a sufficient mass velocity is secured in the pipes of all the indoor units Bi, and the mineral oil is sufficiently washed. Is done.

【0156】実施の形態5.図15は、この発明の実施
の形態5による冷凍サイクル装置の一例として、冷凍サ
イクル装置の冷媒回路を示す図である。図15におい
て、200aは、熱源機側熱交換器3と第1の操作弁4
との間の配管途中に設けられた、冷房時の冷媒温度を検
出する温度検出手段で、冷房運転時の第1、第2の接続
配管C、Dに供給される冷媒の温度を検出するものであ
る。また、200bは、四方弁2と第2の操作弁7との
間の配管途中に設けられた、暖房時の冷媒温度を検出す
る温度検出手段で、暖房運転時の第1、第2の接続配管
C、Dに供給される冷媒の温度を検出するものである。
Embodiment 5 FIG. FIG. 15 is a diagram illustrating a refrigerant circuit of a refrigeration cycle apparatus as an example of a refrigeration cycle apparatus according to Embodiment 5 of the present invention. In FIG. 15, reference numeral 200a denotes a heat source unit side heat exchanger 3 and a first operation valve 4;
Detecting means for detecting the temperature of the refrigerant supplied to the first and second connection pipes C and D during the cooling operation, the temperature detecting means being provided in the middle of the pipe between the first and second connection pipes C and D during the cooling operation. It is. 200b is a temperature detecting means provided in the middle of the pipe between the four-way valve 2 and the second operation valve 7 for detecting the refrigerant temperature during heating, and the first and second connections during heating operation. The temperature of the refrigerant supplied to the pipes C and D is detected.

【0157】201は、冷媒温度制御手段であり、温度
検出手段200a,200bからの信号を受けて、圧縮
機1の運転容量を制御し、圧縮機1から吐出される冷媒
温度を制御するものである。また、202は洗浄運転時
に鉱油および冷凍機油劣化促進残留物(塩化鉄の水和
物、塩化銅の水和物)の洗浄効果を高めるための添加剤
を注入する添加剤注入装置であり、油分離器9と四方弁
2の間に設けられている。その他の構成は、実施の形態
1の図1と同様であるから、詳細な説明を省略する。
Reference numeral 201 denotes a refrigerant temperature control unit which receives the signals from the temperature detection units 200a and 200b, controls the operating capacity of the compressor 1, and controls the temperature of the refrigerant discharged from the compressor 1. is there. Reference numeral 202 denotes an additive injection device for injecting an additive for enhancing the cleaning effect of mineral oil and refrigerating machine oil deterioration promoting residues (hydrate of iron chloride and hydrate of copper chloride) during the cleaning operation. It is provided between the separator 9 and the four-way valve 2. Other configurations are the same as those in FIG. 1 of the first embodiment, and thus detailed description is omitted.

【0158】冷媒温度制御手段201は、洗浄運転中に
温度検出手段200a,200bの検出温度T200が予め
設定された第1の洗浄冷媒温度TC1と比較し低ければ(T
200<TC1であれば)、圧縮機1の運転容量を増加し、高
圧圧力を上昇させることで検出温度T200を上昇させよう
と制御する。また、検出温度T200が予め第1の洗浄冷媒
温度TC1より高く設定された第2の洗浄冷媒温度TC2と
比較し高ければ(T200>TC2であれば)、圧縮機1の運
転容量を減少させて圧縮機1の駆動エネルギ−を低減さ
せ、吐出される冷媒の温度を下降させるように制御す
る。
If the detected temperature T200 of the temperature detecting means 200a, 200b is lower than the preset first cleaning refrigerant temperature TC1 during the cleaning operation (T
If 200 <TC1, control is performed to increase the detected temperature T200 by increasing the operating capacity of the compressor 1 and increasing the high pressure. If the detected temperature T200 is higher than the second cleaning refrigerant temperature TC2 set in advance higher than the first cleaning refrigerant temperature TC1 (if T200> TC2), the operating capacity of the compressor 1 is reduced. Control is performed such that the driving energy of the compressor 1 is reduced and the temperature of the discharged refrigerant is decreased.

【0159】この冷媒温度制御によって、洗浄運転中に
第1、第2の接続配管C、Dに供給される冷媒の温度
を、予め設定された第1の洗浄冷媒温度TC1以上の温度に
制御することができるので、第1、第2の接続配管C、
Dに残留している鉱油への冷媒溶解度が高まり、鉱油の
粘性が低下し、高い洗浄効果を確保することがでる。こ
こで冷媒交換後の新冷媒の温度を所定値以上にする場
合、その設定温度としては、好適には、冷媒中の異物の
温度、または冷媒中の異物が新冷媒へ溶解しはじめる温
度、または残留冷凍機油の粘度が新冷凍機油の粘度と同
オーダーとなる温度、またはそれ以上の温度として設定
する。また、第1、第2の接続配管C、Dに残留してい
る塩化鉄の水和物、塩化銅の水和物は、新しい冷凍機油
の劣化を著しく促進するが、これらの融点あるいは冷媒
溶解温度以上に第1の洗浄冷媒温度TC1を設定すること
で、冷媒温度制御によって洗浄運転中に第1、第2の接
続配管C、Dに供給される冷媒の温度を塩化鉄の水和
物、塩化銅の水和物の融点あるいは冷媒溶解温度以上に
することができ、塩化鉄の水和物、塩化銅の水和物を洗
浄することができ、圧縮機1の信頼性を向上することが
できる。
By this refrigerant temperature control, the temperature of the refrigerant supplied to the first and second connection pipes C and D during the cleaning operation is controlled to a temperature equal to or higher than the preset first cleaning refrigerant temperature TC1. Therefore, the first and second connection pipes C,
The solubility of the refrigerant in the mineral oil remaining in D increases, the viscosity of the mineral oil decreases, and a high cleaning effect can be ensured. When the temperature of the new refrigerant after the refrigerant exchange is set to a predetermined value or more, the set temperature is preferably the temperature of foreign matter in the refrigerant, or the temperature at which foreign matter in the refrigerant starts to dissolve in the new refrigerant, or The temperature is set as a temperature at which the viscosity of the residual refrigeration oil is on the same order as the viscosity of the new refrigeration oil, or higher. Iron chloride hydrate and copper chloride hydrate remaining in the first and second connection pipes C and D remarkably accelerate the deterioration of new refrigerating machine oil. By setting the first cleaning refrigerant temperature TC1 to be equal to or higher than the temperature, the temperature of the refrigerant supplied to the first and second connection pipes C and D during the cleaning operation by the refrigerant temperature control can be set to the hydrate of iron chloride, The melting point of the copper chloride hydrate or the refrigerant dissolution temperature or higher can be set, and the iron chloride hydrate and the copper chloride hydrate can be washed, and the reliability of the compressor 1 can be improved. it can.

【0160】次に、添加剤注入装置202は、洗浄運転
時に鉱油および冷凍機油劣化促進残留物(塩化鉄の水和
物、塩化銅の水和物)の洗浄効果を高めるための添加剤
を注入する。図16は、添加剤注入装置202の一例を
示す断面図である。図16に添って添加剤注入装置20
2の構造と動作について説明する。図16において、2
03は添加剤を封入する容器、204は容器203の上
部に設けられた冷媒の入口配管、205は容器203の
上部に設けられた冷媒の出口配管、206は容器203
の底面と出口配管205とを接続する添加剤供給バイパ
ス、207は添加剤供給バイパス途中に設けられた添加
剤供給量調整手段、208は洗浄前に予め容器203に
封入された添加剤、209は添加剤が空になったことを
検出する添加剤枯渇検出手段である。添加剤枯渇検出手
段209は、パイプ内部の下部にリ−ドスイッチが内蔵
され、フロ−ト210にインサ−ト成形された磁石によ
り形成される磁界により、フロ−ト210が容器203
の底部に位置するときに信号線を短絡することで、添加
剤が枯渇することを検出するものである。
Next, the additive injecting device 202 injects an additive for enhancing the cleaning effect of mineral oil and refrigeration oil deterioration promoting residues (hydrate of iron chloride and hydrate of copper chloride) during the cleaning operation. I do. FIG. 16 is a cross-sectional view illustrating an example of the additive injection device 202. According to FIG.
The structure and operation of No. 2 will be described. In FIG. 16, 2
Numeral 03 denotes a container for enclosing the additive, 204 denotes a refrigerant inlet pipe provided at the upper part of the container 203, 205 denotes a refrigerant outlet pipe provided at the upper part of the container 203, and 206 denotes a container 203
207 is an additive supply amount adjusting means provided in the middle of the additive supply bypass, 208 is an additive previously sealed in the container 203 before cleaning, and 209 is an additive supply amount adjusting means provided in the middle of the additive supply bypass. This is an additive depletion detecting means for detecting that the additive is empty. The additive depletion detecting means 209 has a built-in lead switch in the lower portion of the inside of the pipe, and the float 210 is formed into a container 203 by a magnetic field formed by a magnet formed in the float 210 by insert molding.
Is to detect that the additive is depleted by short-circuiting the signal line when it is located at the bottom of the line.

【0161】洗浄運転中に、ガス冷媒が入口配管204
から流入し、容器203内部を経て、出口配管205か
ら流出する。容器203内部では動圧がほぼゼロとな
り、出口配管205では動圧が大きくなるので、添加剤
供給量調整手段207の出入口には差圧が発生する。こ
の差圧により添加剤208は容器203内部から出口配
管205に供給される。添加剤供給量調整手段207は
たとえばオリフィス、毛細管、電気式膨張弁などで形成
されており、少量ずつ添加剤を供給する機構になってい
る。ここで冷媒に注入された添加剤は冷媒とともに第
1、第2の接続配管C、Dに供給され、残留鉱油および
冷凍機油劣化促進残留物(塩化鉄の水和物、塩化銅の水
和物)を洗浄して、再び熱源機A<もしくは洗浄機E>
へ戻ってくる。ここで、異物捕捉手段13で捕捉され、
圧縮機1へはほとんど戻らない。
During the cleaning operation, the gas refrigerant is
And flows out of the outlet pipe 205 through the inside of the container 203. Since the dynamic pressure becomes almost zero inside the container 203 and the dynamic pressure becomes large at the outlet pipe 205, a differential pressure is generated at the entrance and exit of the additive supply amount adjusting means 207. The additive 208 is supplied from the inside of the container 203 to the outlet pipe 205 by this differential pressure. The additive supply amount adjusting means 207 is formed of, for example, an orifice, a capillary, an electric expansion valve, or the like, and has a mechanism for supplying the additive little by little. Here, the additive injected into the refrigerant is supplied to the first and second connection pipes C and D together with the refrigerant, and the residual mineral oil and the refrigerating machine oil deterioration accelerating residue (hydrate of iron chloride, hydrate of copper chloride) ), And again heat source machine A <or washing machine E>
Come back to. Here, the foreign matter is captured by the foreign substance capturing means 13,
It hardly returns to the compressor 1.

【0162】添加剤としては、鉱油を溶解し、鉱油より
も粘性が小さいかもしくはHFC冷媒が溶解しやすいも
の(添加剤第1条件)で、冷媒よりも沸点が高く冷媒が
ガス状態で冷凍サイクル内で存在しても液体となるもの
(添加剤第2条件)であればよい。また、冷凍機油劣化
促進残留物(塩化鉄の水和物、塩化銅の水和物)を溶解
させやすいもの(添加剤第3条件)であれば、なおよ
い。また、添加剤が圧縮機1まで混入しても信頼性上特
に問題とならない物質(添加剤第4条件)であれば、異
物捕捉機構13での捕捉が不十分であっても問題となら
ない。
The additive is one which dissolves mineral oil and has lower viscosity than mineral oil or easily dissolves HFC refrigerant (additive first condition). It has a higher boiling point than refrigerant and the refrigerant is in gaseous state. What is necessary is just to be a liquid (the second condition of the additive) even if it exists in the inside. Further, it is more preferable that the residue (the third condition of the additive) easily dissolve the refrigerating machine oil deterioration promoting residue (hydrate of iron chloride, hydrate of copper chloride). In addition, if the additive does not cause a problem in reliability even if it is mixed into the compressor 1 (fourth condition of the additive), there is no problem even if the trapping by the foreign matter trapping mechanism 13 is insufficient.

【0163】このような物質として、エステル油、エ−
テル油、アルキルベンゼン油がある。エステル油、エ−
テル油は鉱油を溶解しやすい上に、HFC冷媒に溶解し
やすい。また、アルキルベンゼン油は鉱油を溶解しやす
い上に、HFC冷媒には鉱油よりも溶解しやすい。ま
た、これらエステル油、エ−テル油、アルキルベンゼン
油は一般的な冷凍機油よりも粘度グレ−ドが低いものを
用いることで、それ自体としても鉱油よりも粘性が低く
なる。このようにエステル油、エ−テル油、アルキルベ
ンゼン油は添加剤第1条件を満たしている。
Examples of such a substance include ester oils and ethers.
There are tellurium and alkylbenzene oils. Ester oil, d
Tellurium oil easily dissolves mineral oil and also easily dissolves in HFC refrigerant. In addition, the alkylbenzene oil is easy to dissolve the mineral oil, and is more easily dissolved in the HFC refrigerant than the mineral oil. Also, by using those ester oils, ether oils, and alkylbenzene oils having lower viscosity grades than general refrigerating machine oils, the viscosity itself becomes lower than that of mineral oil. As described above, ester oil, ether oil, and alkylbenzene oil satisfy the first additive requirement.

【0164】また、エステル油、エ−テル油、アルキル
ベンゼン油は冷媒よりも沸点が高く冷媒がガス状態で冷
凍サイクル内で存在しても液体となる、すなわち添加剤
第2条件を満たしている。また、エステル油、エ−テル
油、アルキルベンゼン油は冷凍機油劣化促進残留物(塩
化鉄の水和物、塩化銅の水和物)を溶解させやすく、添
加剤第3条件を満たしている。
The ester oil, ether oil and alkylbenzene oil have a higher boiling point than the refrigerant and become liquid even if the refrigerant is present in the refrigeration cycle in a gaseous state, that is, it satisfies the second additive condition. In addition, ester oil, ether oil and alkylbenzene oil easily dissolve refrigerating machine oil deterioration accelerating residues (hydrate of iron chloride and hydrate of copper chloride) and satisfy the third condition of the additive.

【0165】また、エステル油を冷凍機油として用いて
いる場合には、添加剤としてエステル油を用いれば、添
加剤が圧縮機1まで混入しても信頼性上特に問題となら
ない。同様にエ−テル油を冷凍機油として用いている場
合には、添加剤としてエ−テル油を用いれば、添加剤が
圧縮機1まで混入しても信頼性上特に問題とならない。
このように、冷凍機油と添加剤が同一の場合には混入量
に関わらず、信頼性上特に問題とならない。
When the ester oil is used as the refrigerating machine oil, if the ester oil is used as an additive, even if the additive is mixed up to the compressor 1, there is no particular problem in reliability. Similarly, when ether oil is used as the refrigerating machine oil, if the oil is used as an additive, even if the additive is mixed up to the compressor 1, there is no particular problem in reliability.
Thus, when the refrigerating machine oil and the additive are the same, there is no particular problem in reliability regardless of the mixing amount.

【0166】また、エステル油を冷凍機油として用い、
エ−テル油を添加剤として用いる場合、あるいは、エ−
テル油を冷凍機油として用い、エステル油を添加剤とし
て用いる場合には、圧縮機1へ混入する添加剤の量が少
なければ信頼性上特に問題とならない。また、エステル
油またはエ−テル油を冷凍機油として用い、アルキルベ
ンゼン油を添加剤として用いる場合には、圧縮機1へ混
入する添加剤の量が少なければ信頼性上特に問題となら
ない。すなわち以上のような場合には、添加剤第4条件
を満たしている。
Further, an ester oil is used as a refrigerator oil,
When ether oil is used as an additive, or
In the case where tellurium oil is used as the refrigerating machine oil and ester oil is used as the additive, there is no particular problem in reliability if the amount of the additive mixed into the compressor 1 is small. When using ester oil or ether oil as refrigerating machine oil and using alkylbenzene oil as an additive, there is no particular problem in reliability if the amount of the additive mixed into the compressor 1 is small. That is, in the case described above, the additive fourth condition is satisfied.

【0167】実施の形態6.図17は、この発明の実施
の形態6による冷凍サイクル装置の一例として、冷凍サ
イクル装置の冷媒回路を示す図である。図17におい
て、200は冷却手段12aと第2の切換弁11との間
の配管途中に設けられた冷媒の温度検出手段で、冷房洗
浄運転および暖房洗浄運転時の第1、第2の接続配管
C、Dに供給される冷媒の温度を検出するものである。
Embodiment 6 FIG. FIG. 17 is a diagram illustrating a refrigerant circuit of a refrigeration cycle device as an example of a refrigeration cycle device according to Embodiment 6 of the present invention. In FIG. 17, reference numeral 200 denotes a refrigerant temperature detecting means provided in the piping between the cooling means 12a and the second switching valve 11, and the first and second connection pipes at the time of the cooling washing operation and the heating washing operation. The temperature of the refrigerant supplied to C and D is detected.

【0168】201は、冷媒温度制御手段であり、温度
検出手段200からの信号を受けて、圧縮機1の運転容
量を制御し、圧縮機1から吐出される冷媒温度を制御す
るものである。また、202は,洗浄運転時に鉱油およ
び冷凍機油劣化促進残留物(塩化鉄の水和物、塩化銅の
水和物)の洗浄効果を高めるための添加剤を注入する添
加剤注入装置であり、第1の切換弁10と冷却手段12
aの間に設けられている。その他の構成は、実施の形態
2の図7と同様であるから、詳細な説明を省略する。
Reference numeral 201 denotes a refrigerant temperature control means, which receives a signal from the temperature detection means 200, controls the operating capacity of the compressor 1, and controls the temperature of the refrigerant discharged from the compressor 1. Reference numeral 202 denotes an additive injection device for injecting an additive for enhancing the cleaning effect of mineral oil and refrigerating machine oil deterioration accelerating residues (hydrate of iron chloride and hydrate of copper chloride) during the cleaning operation. First switching valve 10 and cooling means 12
a. Other configurations are the same as those in FIG. 7 of the second embodiment, and thus detailed description will be omitted.

【0169】冷媒温度制御手段201は、実施の形態の
図15について説明したのと同様に動作し、圧縮機1の
運転容量を変化させ、圧縮機1から吐出される冷媒の温
度を制御する。この冷媒温度制御によって、洗浄運転中
に第1、第2の接続配管C、Dに供給される冷媒の温度
を、予め設定された第1の洗浄冷媒温度以上の温度に制
御することができるので、第1、第2の接続配管C、D
に残留している鉱油への冷媒溶解度が高まり、鉱油の粘
性が低下し、高い洗浄効果を確保することがでる。重複
した説明は省略する。
The refrigerant temperature control means 201 operates in the same manner as described with reference to FIG. 15 of the embodiment, changes the operating capacity of the compressor 1, and controls the temperature of the refrigerant discharged from the compressor 1. By this refrigerant temperature control, the temperature of the refrigerant supplied to the first and second connection pipes C and D during the cleaning operation can be controlled to a temperature equal to or higher than the preset first cleaning refrigerant temperature. , First and second connection pipes C and D
The solubility of the refrigerant in the mineral oil remaining in the oil increases, the viscosity of the mineral oil decreases, and a high cleaning effect can be secured. Duplicate description is omitted.

【0170】添加剤注入装置202の構造と動作は、実
施の形態5で図15、図16を参照して説明したことと
同様である。また、添加剤とその機能も実施の形態5で
説明したことと同様である。重複を避けるためその説明
は省略する。
The structure and operation of the additive injection device 202 are the same as those described in the fifth embodiment with reference to FIGS. The additives and their functions are the same as those described in the fifth embodiment. The description is omitted to avoid duplication.

【0171】実施の形態7.図18は、この発明の実施
の形態7による冷凍サイクル装置の一例として、冷凍サ
イクル装置の冷媒回路を示す図である。図18におい
て、200は、第2の流量制御手段16と第2の切換弁
11との間の配管途中に設けられた冷媒の温度検出手段
で、冷房洗浄運転および暖房洗浄運転時の第1、第2の
接続配管C、Dに供給される冷媒の温度を検出するもの
である。
Embodiment 7 FIG. FIG. 18 is a diagram illustrating a refrigerant circuit of a refrigeration cycle device as an example of a refrigeration cycle device according to Embodiment 7 of the present invention. In FIG. 18, reference numeral 200 denotes a refrigerant temperature detecting unit provided in the middle of a pipe between the second flow control unit 16 and the second switching valve 11. The temperature of the refrigerant supplied to the second connection pipes C and D is detected.

【0172】また、201は、冷媒温度制御手段であ
り、温度検出手段200からの信号を受けて、圧縮機1
の運転容量を制御し、圧縮機1から吐出される冷媒温度
を制御するものである。また、202は、洗浄運転時に
鉱油および冷凍機油劣化促進残留物(塩化鉄の水和物、
塩化銅の水和物)の洗浄効果を高めるための添加剤を注
入する添加剤注入装置であり、第1の切換弁10と冷却
手段12aの間に設けられている。その他の構成は、実
施の形態3の図9と同様であるから、詳細な説明を省略
する。
A refrigerant temperature control means 201 receives a signal from the temperature detection means 200 and receives a signal from the compressor 1.
And the temperature of the refrigerant discharged from the compressor 1 is controlled. Further, 202 is a mineral oil and a refrigerating machine oil deterioration accelerating residue (a hydrate of iron chloride,
This is an additive injection device for injecting an additive for enhancing the cleaning effect of copper chloride hydrate, and is provided between the first switching valve 10 and the cooling means 12a. The other configuration is the same as that of FIG. 9 of the third embodiment, and thus the detailed description is omitted.

【0173】冷媒温度制御手段201は、実施の形態の
図15について説明したのと同様に動作し、圧縮機1の
運転容量を変化させ、圧縮機1から吐出される冷媒の温
度を制御する。この冷媒温度制御によって、洗浄運転中
に第1、第2の接続配管C、Dに供給される冷媒の温度
を、予め設定された第1の洗浄冷媒温度TC1以上の温度に
制御することができるので、第1、第2の接続配管C、
Dに残留している鉱油への冷媒溶解度が高まり、鉱油の
粘性が低下し、高い洗浄効果を確保することがでる。重
複した説明は省略する。
The refrigerant temperature control means 201 operates in the same manner as described with reference to FIG. 15 of the embodiment, changes the operating capacity of the compressor 1, and controls the temperature of the refrigerant discharged from the compressor 1. By this refrigerant temperature control, the temperature of the refrigerant supplied to the first and second connection pipes C and D during the cleaning operation can be controlled to a temperature equal to or higher than the preset first cleaning refrigerant temperature TC1. Therefore, the first and second connection pipes C,
The solubility of the refrigerant in the mineral oil remaining in D increases, the viscosity of the mineral oil decreases, and a high cleaning effect can be ensured. Duplicate description is omitted.

【0174】添加剤注入装置202の構造と動作は、実
施の形態5で図15図、16を参照して説明したことと
同様である。また、添加剤とその機能も実施の形態5で
説明したことと同様である。重複を避けるためその説明
は省略する。
The structure and operation of the additive injection device 202 are the same as those described in the fifth embodiment with reference to FIGS. The additives and their functions are the same as those described in the fifth embodiment. The description is omitted to avoid duplication.

【0175】他の実施の形態.この発明については、い
ろいろの変形、要素の追加などが考えられる。以下に、
上述した以外のこのの発明の他の実施の形態について説
明する。この発明の他の実施の形態の冷凍サイクル装置
によれば、圧縮機、熱源機側熱交換器、利用側熱交換
器、上記熱源機側熱交換器と上記利用側熱交換器の一端
とを接続する第1の接続配管、上記利用側熱交換器の他
端と上記圧縮機とを接続する第2の接続配管を備えた冷
媒回路で、CFCまたはHCFCからHFCに置換する
方法において、冷媒置換後に上記圧縮機を駆動源として
上記第1の接続配管と上記第2の接続配管のうち置換前
の最後の運転で温度が高い方の配管を上流に、温度が低
い方の配管を下流に置換後のHFC冷媒を流す運転を実
施する。これにより、洗浄効果を高めることができる。
Other Embodiments As for the present invention, various modifications and addition of elements can be considered. less than,
Other embodiments of the present invention other than those described above will be described. According to the refrigeration cycle device of another embodiment of the present invention, the compressor, the heat source unit side heat exchanger, the use side heat exchanger, the heat source unit side heat exchanger and one end of the use side heat exchanger In a method of replacing a CFC or an HCFC with an HFC in a refrigerant circuit including a first connection pipe to be connected, and a second connection pipe connecting the other end of the use side heat exchanger and the compressor, Later, with the compressor as a drive source, the first operation pipe of the first connection pipe and the second connection pipe in the last operation before the replacement is replaced with the pipe with the higher temperature upstream, and the pipe with the lower temperature is replaced with the downstream pipe. An operation for flowing the subsequent HFC refrigerant is performed. Thereby, the cleaning effect can be enhanced.

【0176】この発明の他の実施の形態によれば、前述
のような冷凍サイクル装置またはその運転方法におい
て、冷媒置換後に、まず最初に上記添加剤を添加せずに
上記圧縮機を駆動源として上記第1、第2の接続配管に
置換後のHFC冷媒を流し、次に上記添加剤を上記第
1、第2の接続配管の上流部分に注入して、置換後のH
FC冷媒とともに上記圧縮機を駆動源として上記第1、
第2の接続配管に流すようにする。これにより、洗浄効
果をさらに高めることができる。
According to another embodiment of the present invention, in the above-described refrigeration cycle apparatus or its operating method, after replacing the refrigerant, the compressor is used as a drive source without first adding the additive. The replacement HFC refrigerant is passed through the first and second connection pipes, and then the additive is injected into an upstream portion of the first and second connection pipes, and the replaced HFC refrigerant is injected.
Using the compressor as a drive source together with the FC refrigerant,
It flows to the second connection pipe. Thereby, the cleaning effect can be further enhanced.

【0177】また、この発明の他の実施の形態によれ
ば、前述のような冷凍サイクル装置またはその運転方法
において、冷媒置換後に、上記添加剤を注入した後に、
上記圧縮機を駆動源として上記第1、第2の接続配管に
流す置換後のHFC冷媒を、ガス単相状態とする。これ
により、洗浄効果をさらに高めることができる。
According to another embodiment of the present invention, in the above-described refrigeration cycle apparatus or method of operating the same, after the refrigerant is replaced, the additive is injected,
The replaced HFC refrigerant flowing through the first and second connection pipes using the compressor as a drive source is brought into a gas single-phase state. Thereby, the cleaning effect can be further enhanced.

【0178】また、この発明の他の実施の形態によれ
ば、前述のような冷凍サイクル装置またはその運転方法
において、上記第1、第2の接続配管の下流でかつ上記
圧縮機の上流の位置に添加剤回収装置を設け、上記添加
剤を上記添加剤回収装置で回収する。これにより、洗浄
効果をさらに高めることができる。
Further, according to another embodiment of the present invention, in the refrigeration cycle apparatus or the method for operating the same described above, a position downstream of the first and second connection pipes and upstream of the compressor. Is provided with an additive recovery device, and the additive is recovered by the additive recovery device. Thereby, the cleaning effect can be further enhanced.

【0179】また、この発明の他の実施の形態によれ
ば、前述のような冷凍サイクル装置またはその運転方法
において、上記第1、第2の接続配管の下流でかつ上記
圧縮機の上流の位置に回収装置を設け、冷媒置換前の冷
凍機油を上記回収装置で回収するとともに、上記添加剤
を上記回収装置で回収する。これにより、洗浄効果をさ
らに高めることができる。
Further, according to another embodiment of the present invention, in the above-described refrigeration cycle apparatus or its operating method, a position downstream of the first and second connection pipes and upstream of the compressor. And a collecting device for collecting the refrigerating machine oil before the refrigerant replacement with the collecting device, and collecting the additive with the collecting device. Thereby, the cleaning effect can be further enhanced.

【0180】また、この発明の他の実施の形態によれ
ば、前述のような冷凍サイクル装置またはその運転方法
において、上記第1、第2の接続配管の下流でかつ上記
圧縮機の上流の位置に冷凍機油回収装置及び添加剤回収
装置を相互に並列に設け、上記冷凍機油回収装置と上記
添加剤回収装置の入口に上記第1、第2の接続配管を上
記冷凍機油回収装置側と上記添加剤回収装置とに切換可
能に接続する回収装置切換弁を設け、添加剤注入前には
上記回収装置切換弁を上記冷凍機油回収装置側に切換
え、添加剤注入後に上記切換弁を添加剤回収装置へ切換
えて、冷媒置換前の冷凍機油を上記冷凍機油回収装置に
回収し、上記添加剤を上記添加剤回収装置に回収するこ
とで冷媒置換前の冷凍機油と添加剤を分離回収する。こ
れにより、洗浄効果をさらに高めることができる。
According to another embodiment of the present invention, in the above-described refrigeration cycle apparatus or its operating method, a position downstream of the first and second connection pipes and upstream of the compressor. A refrigerating machine oil recovery device and an additive recovery device are provided in parallel with each other, and the first and second connection pipes are provided at the inlet of the refrigerating machine oil recovery device and the additive recovery device with the refrigerating machine oil recovery device side and the additive. A recovery device switching valve that is switchably connected to the agent recovery device; the recovery device switching valve is switched to the refrigerating machine oil recovery device side before the additive is injected; and the switching valve is connected to the additive recovery device after the additive is injected. Then, the refrigerating machine oil before the refrigerant replacement is recovered in the refrigerating machine oil recovery device, and the additive is recovered in the additive recovery device, thereby separating and recovering the refrigerating machine oil and the additive before the refrigerant replacement. Thereby, the cleaning effect can be further enhanced.

【0181】また、この発明の他の実施の形態によれ
ば、前述のような冷凍サイクル装置またはその運転方法
において、上記第1、第2の接続配管の上流でかつ上記
圧縮機の下流に添加剤注入装置を設け、上記添加剤回収
装置から上記添加剤注入装置へ添加剤を移動させる添加
剤移動手段を設け、上記第1、第2の接続配管に添加剤
を連続的に注入し続ける。これにより、洗浄効果をさら
に高めることができる。
According to another embodiment of the present invention, in the above-described refrigeration cycle apparatus or method of operating the same, the refrigeration cycle apparatus is added upstream of the first and second connection pipes and downstream of the compressor. An agent injection device is provided, and an additive moving means for moving the additive from the additive recovery device to the additive injection device is provided, and the additive is continuously injected into the first and second connection pipes. Thereby, the cleaning effect can be further enhanced.

【0182】また、この発明の他の実施の形態によれ
ば、前述のような冷凍サイクル装置またはその運転方法
において、上記添加剤注入装置と上記添加剤回収装置と
を接続する配管、及び上記配管途中に設けられたポンプ
により上記添加剤移動手段を構成する。これにより、洗
浄効果をさらに高めることができる。
According to another embodiment of the present invention, in the above-described refrigeration cycle apparatus or its operating method, the piping connecting the additive injection device and the additive recovery device, and the piping The additive moving means is constituted by a pump provided on the way. Thereby, the cleaning effect can be further enhanced.

【0183】また、この発明の他の実施の形態によれ
ば、前述のような冷凍サイクル装置またはその運転方法
において、上記添加剤注入装置と上記添加剤回収装置と
を接続する配管を設け、上記配管途中に上記添加剤回収
装置から上記添加剤注入装置への流れは許容するがその
逆の流れを閉止する逆止弁を設け、上記添加剤回収装置
を上記添加剤注入装置より高い位置に設け、上記添加剤
注入装置内の添加剤の枯渇を検出するかもしくは一定時
間経過後に上記圧縮機を停止させ、上記添加剤注入装置
と上記添加剤回収装置の圧力をバランスさせ、重力によ
り添加剤を上記添加剤回収装置から上記添加剤注入装置
へ移動させる添加剤移動手段を設ける。これにより、洗
浄効果をさらに高めることができる。
According to another embodiment of the present invention, in the above-described refrigeration cycle apparatus or its operating method, a pipe for connecting the additive injection device and the additive recovery device is provided. In the middle of the pipe, a flow from the additive recovery device to the additive injection device is allowed, but a check valve for closing the reverse flow is provided, and the additive recovery device is provided at a position higher than the additive injection device. Detecting the depletion of the additive in the additive injection device or stopping the compressor after a lapse of a predetermined time, balancing the pressures of the additive injection device and the additive recovery device, and adding the additive by gravity. An additive moving means for moving the additive from the additive recovery device to the additive injection device is provided. Thereby, the cleaning effect can be further enhanced.

【0184】また、この発明の他の実施の形態によれ
ば、前述のような冷凍サイクル装置またはその運転方法
において、上記第1、第2の接続配管を挟んで第1、第
2の添加剤注入兼回収装置を設け、上記第1の添加剤注
入兼回収装置に添加剤がある間は、上記圧縮機、上記第
1の添加剤注入兼回収装置、上記第1及び第2の接続配
管、上記第2の添加剤注入兼回収装置、上記圧縮機の順
に冷媒置換後のHFC冷媒及び上記添加剤を上記圧縮機
を駆動源として流し、上記第1の添加剤注入兼回収装置
内の上記添加剤が枯渇し上記第2の添加剤注入兼回収装
置内に上記添加剤が溜まってくると、上記圧縮機、上記
第2の添加剤注入兼回収装置、上記第1及び第2の接続
配管、上記第1の添加剤注入兼回収装置、上記圧縮機の
順に冷媒置換後のHFC冷媒及び上記添加剤を上記圧縮
機を駆動源として流す添加剤流れ方向切換弁を設ける。
これにより、洗浄効果をさらに高めることができる。な
お、以上、実施の形態1〜7及び他の実施の形態につい
て説明した。これらの実施の形態は相互に適切に組み合
わせて実施することが可能である。また、例えば、実施
の形態1〜3について制御方法を説明したが、これ他の
実施の形態にも適用できるものである。
According to another embodiment of the present invention, in the above-described refrigeration cycle apparatus or its operating method, the first and second additives are sandwiched between the first and second connection pipes. An injection and recovery device is provided, and while the additive is present in the first additive injection and recovery device, the compressor, the first additive injection and recovery device, the first and second connection pipes, The HFC refrigerant after the refrigerant replacement and the additive are flowed using the compressor as a drive source in the order of the second additive injection and recovery device and the compressor, and the addition in the first additive injection and recovery device is performed. When the agent is depleted and the additive accumulates in the second additive injection and recovery device, the compressor, the second additive injection and recovery device, the first and second connection pipes, H after the refrigerant replacement in the order of the first additive injection and recovery device and the compressor. The C refrigerant and the additive providing the additive flow directional control valve to flow the compressor as a driving source.
Thereby, the cleaning effect can be further enhanced. The first to seventh embodiments and other embodiments have been described above. These embodiments can be implemented in appropriate combination with each other. Further, for example, the control method has been described for the first to third embodiments, but the present invention can be applied to other embodiments.

【0185】[0185]

【発明の効果】本発明は以上のように構成されており、
以下のような効果を奏する。本願の請求項1の発明によ
れば、旧冷媒を用いる冷凍サイクル装置を新冷媒を用い
る冷凍サイクル装置に置換する方法において、冷媒置換
後に圧縮機を駆動源として、最初に、熱源機側熱交換器
と利用側熱交換器とを接続する第1の接続配管、利用側
熱交換器と圧縮機とを接続する第2の接続配管の順に、
新冷媒を流して洗浄運転をする。これにより、接続配管
などの残留している旧冷媒並びに鉱油および鉱油劣化物
などの残留異物を分離・捕捉し、環境保護上問題のない
とされる新冷媒に置換することができる。
The present invention is configured as described above.
The following effects are obtained. According to the invention of claim 1 of the present application, in a method of replacing a refrigeration cycle apparatus using an old refrigerant with a refrigeration cycle apparatus using a new refrigerant, first, using the compressor as a drive source after the refrigerant replacement, first heat exchange on the heat source device side. Connection pipe connecting the heat exchanger and the use side heat exchanger, and second connection pipe connecting the use side heat exchanger and the compressor in this order.
Washing operation is performed by flowing new refrigerant. As a result, the old refrigerant remaining in the connecting pipe and the like and the residual foreign substances such as mineral oil and mineral oil degraded substances can be separated and captured, and replaced with a new refrigerant having no environmental protection problem.

【0186】また、本願の請求項2の発明によれば、旧
冷媒を用いる冷凍サイクル装置を新冷媒を用いる冷凍サ
イクル装置に置換する方法において、冷媒置換後に、圧
縮機を駆動源として、最初に、利用側熱交換器と圧縮機
とを接続する第2の接続配管、熱源機側熱交換器と利用
側熱交換器とを接続する第1の接続配管の順に、新冷媒
を流して洗浄運転をする。これにより、接続配管などの
残留している旧冷媒並びに鉱油および鉱油劣化物などの
残留異物を分離・捕捉し、環境保護上問題のないとされ
る新冷媒に置換することができる。
According to the invention of claim 2 of the present application, in the method for replacing a refrigeration cycle apparatus using an old refrigerant with a refrigeration cycle apparatus using a new refrigerant, after the refrigerant replacement, the compressor is first used as a drive source. Washing operation by flowing a new refrigerant in the order of the second connection pipe connecting the use side heat exchanger and the compressor, and the first connection pipe connecting the heat source unit heat exchanger and the use side heat exchanger. do. As a result, the old refrigerant remaining in the connecting pipe and the like and the residual foreign substances such as mineral oil and mineral oil degraded substances can be separated and captured, and replaced with a new refrigerant having no environmental protection problem.

【0187】また、本願の請求項3の発明によれば、旧
冷媒を用いる冷凍サイクル装置を新冷媒を用いる冷凍サ
イクル装置に置換する方法において、冷媒置換後に、圧
縮機を駆動源として、熱源機側熱交換器と利用側熱交換
器とを接続する第1の接続配管と、利用側熱交換器と圧
縮機とを接続する第2の接続配管とのうち、最初に、太
径配管を上流に、細径配管を下流にして新冷媒を流して
洗浄運転をする。これにより、接続配管などの残留して
いる旧冷媒並びに鉱油および鉱油劣化物などの残留異物
を分離・捕捉し、環境保護上問題のないとされる新冷媒
に置換することができる。
According to the invention of claim 3 of the present application, in the method for replacing a refrigeration cycle apparatus using an old refrigerant with a refrigeration cycle apparatus using a new refrigerant, after replacing the refrigerant, the compressor is used as a drive source, and the heat source unit is used. Of the first connection pipe connecting the side heat exchanger and the use side heat exchanger and the second connection pipe connecting the use side heat exchanger and the compressor, first, the large-diameter pipe is upstream. Next, a washing operation is performed by flowing a new refrigerant with the small-diameter pipe positioned downstream. As a result, the old refrigerant remaining in the connecting pipe and the like and the residual foreign substances such as mineral oil and mineral oil degraded substances can be separated and captured, and replaced with a new refrigerant having no environmental protection problem.

【0188】また、本願の請求項4の発明によれば、旧
冷媒を用いる冷凍サイクル装置を新冷媒を用いる冷凍サ
イクル装置に置換する方法において、冷媒置換後に、圧
縮機を駆動源として、最初に、熱源機側熱交換器と利用
側熱交換器とを接続する第1の接続配管、利用側熱交換
器と圧縮機とを接続する第2の接続配管の順に置換後の
新冷媒を流して洗浄運転をし、次に上記第2の接続配
管、上記第1の接続配管の順に新冷媒を流して洗浄運転
をする。これにより、接続配管などの残留している旧冷
媒並びに鉱油および鉱油劣化物などの残留異物を分離・
捕捉し、環境保護上問題のないとされる新冷媒に置換す
ることができる。
According to the invention of claim 4 of the present application, in the method for replacing a refrigeration cycle device using an old refrigerant with a refrigeration cycle device using a new refrigerant, after the refrigerant replacement, the compressor is first used as a drive source. Flowing the new refrigerant after replacement in the order of a first connection pipe connecting the heat source unit side heat exchanger and the use side heat exchanger, and a second connection pipe connecting the use side heat exchanger and the compressor. The washing operation is performed, and then the washing operation is performed by flowing a new refrigerant in the order of the second connection pipe and the first connection pipe. As a result, residual foreign substances such as old refrigerant remaining in connection pipes and mineral oil and degraded mineral oil can be separated and
It can be captured and replaced with a new refrigerant that is considered to be environmentally friendly.

【0189】また、本願の請求項5の発明によれば、旧
冷媒を用いる冷凍サイクル装置を新冷媒を用いる冷凍サ
イクル装置に置換する方法において、冷媒置換後に、圧
縮機を駆動源として、熱源機側熱交換器と利用側熱交換
器とを接続する第1の接続配管と、利用側熱交換器と圧
縮機とを接続する第2の接続配管とに、所定値以上の質
量流速(好適には150kg/s・cm2以上)で置換後の新冷媒
を流して洗浄運転をする。これにより、接続配管などの
残留している旧冷媒並びに鉱油および鉱油劣化物などの
残留異物を分離・捕捉し、環境保護上問題のないとされ
る新冷媒に置換することができる。
According to the invention of claim 5 of the present application, in the method for replacing a refrigeration cycle apparatus using an old refrigerant with a refrigeration cycle apparatus using a new refrigerant, after replacing the refrigerant, the compressor is used as a drive source, and the heat source unit is used. The first connection pipe connecting the side heat exchanger and the use side heat exchanger and the second connection pipe connecting the use side heat exchanger and the compressor are provided with a mass flow rate (preferably not less than a predetermined value). Is 150 kg / s · cm 2 or more) to perform the washing operation by flowing the new refrigerant after replacement. As a result, the old refrigerant remaining in the connecting pipe and the like and the residual foreign substances such as mineral oil and mineral oil degraded substances can be separated and captured, and replaced with a new refrigerant having no environmental protection problem.

【0190】また、本願の請求項6の発明によれば、室
内機とその接続配管からなる利用側冷媒回路を複数並列
に備え、旧冷媒を用いる冷凍サイクル装置を新冷媒を用
いる冷凍サイクル装置に置換する方法において、冷媒置
換後に、圧縮機を駆動源として、複数の利用側冷媒回路
部分を順次に選択して、置換後の新冷媒を流して洗浄運
転をする。これにより、接続配管などの残留している旧
冷媒並びに鉱油および鉱油劣化物などの残留異物を分離
・捕捉し、環境保護上問題のないとされる新冷媒に置換
することができる。
Further, according to the invention of claim 6 of the present application, a refrigeration cycle apparatus using an old refrigerant is provided with a plurality of use side refrigerant circuits comprising an indoor unit and connection pipes in parallel, and using a new refrigerant. In the replacement method, after the replacement of the refrigerant, a plurality of use-side refrigerant circuit portions are sequentially selected by using the compressor as a drive source, and the new refrigerant after the replacement is flown to perform the washing operation. As a result, the old refrigerant remaining in the connecting pipe and the like and the residual foreign substances such as mineral oil and mineral oil degraded substances can be separated and captured, and replaced with a new refrigerant having no environmental protection problem.

【0191】また、本願の請求項7の発明によれば、旧
冷媒を用いる冷凍サイクル装置を新冷媒を用いる冷凍サ
イクル装置に置換する方法において、冷媒置換後に、圧
縮機を駆動源として、熱源機側熱交換器と利用側熱交換
器とを接続する第1の接続配管と、利用側熱交換器と圧
縮機とを接続する第2の接続配管とに、所定温度以上に
昇温した置換後の新冷媒を流して洗浄運転をする。な
お、上記所定温度としては、好適には、冷媒中の異物の
温度、または冷媒中の異物が新冷媒へ溶解しはじめる温
度、または残留冷凍機油の粘度が新冷凍機油の粘度と同
オーダーとなる温度とする。これにより、接続配管など
の残留している旧冷媒並びに鉱油および鉱油劣化物など
の残留異物を分離・捕捉し、環境保護上問題のないとさ
れる新冷媒に置換することができる。
According to the invention of claim 7 of the present application, in the method for replacing a refrigeration cycle apparatus using an old refrigerant with a refrigeration cycle apparatus using a new refrigerant, after replacing the refrigerant, the heat source unit The first connection pipe connecting the side heat exchanger and the use side heat exchanger, and the second connection pipe connecting the use side heat exchanger and the compressor are replaced after being heated to a predetermined temperature or higher. The washing operation is performed by flowing the new refrigerant. The predetermined temperature is preferably the temperature of the foreign matter in the refrigerant, or the temperature at which the foreign matter in the refrigerant starts to dissolve in the new refrigerant, or the viscosity of the residual refrigerating machine oil has the same order as the viscosity of the new refrigerating machine oil. Temperature. As a result, the old refrigerant remaining in the connecting pipe and the like and the residual foreign substances such as mineral oil and mineral oil degraded substances can be separated and captured, and replaced with a new refrigerant having no environmental protection problem.

【0192】また、本願の請求項8の発明によれば、旧
冷媒を用いる冷凍サイクル装置を新冷媒を用いる冷凍サ
イクル装置に置換する方法において、冷媒置換後に、冷
媒置換前の冷凍機油が溶解しやすく、かつ冷凍機油より
も粘性が低いか同じである添加剤を、熱源機側熱交換器
と利用側熱交換器とを接続する第1の接続配管と、利用
側熱交換器と圧縮機とを接続する第2の接続配管との上
流部分で注入し、置換後の新冷媒とともに圧縮機を駆動
源として上記第1および第2の接続配管に流して洗浄運
転をする。これにより、接続配管などの残留している旧
冷媒並びに鉱油および鉱油劣化物などの残留異物を分離
・捕捉し、環境保護上問題のないとされる新冷媒に置換
することができる。
Further, according to the invention of claim 8 of the present application, in the method for replacing a refrigeration cycle apparatus using an old refrigerant with a refrigeration cycle apparatus using a new refrigerant, after the refrigerant replacement, the refrigerating machine oil before the refrigerant replacement is dissolved. A first connection pipe for connecting the heat source side heat exchanger and the use side heat exchanger with an additive that is easy and has a viscosity lower or the same as that of the refrigerating machine oil, a use side heat exchanger and a compressor; Is injected at an upstream portion of the second connection pipe connecting the first and second connection pipes, and the new refrigerant after the replacement is supplied to the first and second connection pipes by using the compressor as a drive source to perform a cleaning operation. As a result, the old refrigerant remaining in the connecting pipe and the like and the residual foreign substances such as mineral oil and mineral oil degraded substances can be separated and captured, and replaced with a new refrigerant having no environmental protection problem.

【0193】また、本願の請求項9の発明によれば、旧
冷媒を用いる冷凍サイクル装置を新冷媒を用いる冷凍サ
イクル装置に置換する方法において、冷媒置換後に、冷
媒置換前の冷凍機油が溶解しやすく、かつ置換後の新冷
媒に溶解しやすい添加剤を、熱源機側熱交換器と利用側
熱交換器とを接続する第1の接続配管と、利用側熱交換
器と圧縮機とを接続する第2の接続配管との上流部分に
注入して、置換後の新冷媒とともに、圧縮機を駆動源と
して、上記第1および第2の接続配管に流して洗浄運転
をする。これにより、接続配管などの残留している旧冷
媒並びに鉱油および鉱油劣化物などの残留異物を分離・
捕捉し、環境保護上問題のないとされる新冷媒に置換す
ることができる。
According to the ninth aspect of the present invention, in the method for replacing a refrigeration cycle apparatus using an old refrigerant with a refrigeration cycle apparatus using a new refrigerant, the refrigerant oil before the refrigerant replacement is dissolved after the refrigerant replacement. An additive that is easy to dissolve in the new refrigerant after replacement is connected to the first connection pipe connecting the heat source unit side heat exchanger and the use side heat exchanger, and the use side heat exchanger and the compressor. The cleaning operation is performed by injecting the refrigerant into the upstream portion of the first and second connection pipes together with the new refrigerant after the replacement using the compressor as a drive source. As a result, residual foreign substances such as old refrigerant remaining in connection pipes and mineral oil and degraded mineral oil can be separated and
It can be captured and replaced with a new refrigerant that is considered to be environmentally friendly.

【0194】また、本願の請求項10の発明によれば、
旧冷媒を用いる冷凍サイクル装置を新冷媒を用いる冷凍
サイクル装置に置換する方法において、冷媒置換後に、
冷媒置換後の冷凍機油を添加剤として、熱源機側熱交換
器と利用側熱交換器とを接続する第1の接続配管と、利
用側熱交換器と圧縮機とを接続する第2の接続配管との
上流部分に注入して、置換後の新冷媒とともに、圧縮機
を駆動源として、上記第1および第2の接続配管に流し
て洗浄運転をする。これにより、接続配管などの残留し
ている旧冷媒並びに鉱油および鉱油劣化物などの残留異
物を分離・捕捉し、環境保護上問題のないとされる新冷
媒に置換することができる。
According to the tenth aspect of the present invention,
In a method of replacing a refrigeration cycle device using an old refrigerant with a refrigeration cycle device using a new refrigerant, after replacing the refrigerant,
Using the refrigerating machine oil after the refrigerant replacement as an additive, a first connection pipe connecting the heat source unit side heat exchanger and the use side heat exchanger, and a second connection connecting the use side heat exchanger and the compressor The cleaning operation is performed by injecting the refrigerant into the upstream portion of the pipe and flowing the same along with the new refrigerant after replacement to the first and second connection pipes by using the compressor as a drive source. As a result, the old refrigerant remaining in the connecting pipe and the like and the residual foreign substances such as mineral oil and mineral oil degraded substances can be separated and captured, and replaced with a new refrigerant having no environmental protection problem.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1による冷凍サイクル
装置の一例として、冷凍サイクル装置の冷媒回路を示す
図。
FIG. 1 is a diagram showing a refrigerant circuit of a refrigeration cycle apparatus as an example of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.

【図2】 HFC用冷凍機油に塩素が混入している場合
(175℃)の劣化の時間変化を示す図。
FIG. 2 is a diagram showing a time change of deterioration when chlorine is mixed in a refrigerating machine oil for HFC (175 ° C.).

【図3】 本発明における異物捕捉手段の一例を示す断
面図。
FIG. 3 is a cross-sectional view illustrating an example of a foreign matter capturing unit according to the present invention.

【図4】 鉱油とCFCとの溶解度曲線、及び鉱油とH
CFCとの溶解度曲線を示す図。
FIG. 4. Solubility curve of mineral oil and CFC, and mineral oil and H
The figure which shows the solubility curve with CFC.

【図5】 本発明における油分離器の一例の構造を示す
断面図。
FIG. 5 is a sectional view showing the structure of an example of an oil separator according to the present invention.

【図6】 油分離器におけるガス冷媒の流速と分離効率
の関係を示す図。
FIG. 6 is a diagram showing the relationship between the flow rate of gas refrigerant and the separation efficiency in an oil separator.

【図7】 この発明の実施の形態2による冷凍サイクル
装置の一例として、冷凍サイクル装置の冷媒回路を示す
図。
FIG. 7 is a diagram showing a refrigerant circuit of a refrigeration cycle device as an example of a refrigeration cycle device according to Embodiment 2 of the present invention.

【図8】 この発明の実施の形態2による冷凍サイクル
装置の通常空調運転の状態を示す図。
FIG. 8 is a diagram showing a state of a normal air-conditioning operation of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.

【図9】 この発明の実施の形態3による冷凍サイクル
装置の一例として、冷凍サイクル装置の冷媒回路を示す
図。
FIG. 9 is a diagram showing a refrigerant circuit of a refrigeration cycle apparatus as an example of a refrigeration cycle apparatus according to Embodiment 3 of the present invention.

【図10】 この発明の実施の形態3による冷凍サイク
ル装置の通常空調運転の状態を示す図。
FIG. 10 is a diagram illustrating a state of a normal air-conditioning operation of a refrigeration cycle apparatus according to Embodiment 3 of the present invention.

【図11】 冷媒配管を流れる冷媒の質量速度と配管内
鉱油残留量の関係の一例を示す図。
FIG. 11 is a diagram illustrating an example of a relationship between a mass velocity of a refrigerant flowing through a refrigerant pipe and a residual amount of mineral oil in the pipe.

【図12】 この発明の実施の形態4による冷凍サイク
ル装置の冷媒回路の一例示す図。
FIG. 12 is a diagram showing an example of a refrigerant circuit of a refrigeration cycle device according to Embodiment 4 of the present invention.

【図13】 この発明の実施の形態4による冷凍サイク
ル装置の冷媒回路の他の一例示す図。
FIG. 13 is a diagram showing another example of the refrigerant circuit of the refrigeration cycle device according to Embodiment 4 of the present invention.

【図14】 この発明の実施の形態4による冷凍サイク
ル装置の冷媒回路のさらに他の一例示す図。
FIG. 14 is a diagram showing still another example of the refrigerant circuit of the refrigeration cycle device according to Embodiment 4 of the present invention.

【図15】 この発明の実施の形態5による冷凍サイク
ル装置の冷媒回路を示す図。
FIG. 15 is a diagram showing a refrigerant circuit of a refrigeration cycle device according to Embodiment 5 of the present invention.

【図16】 この発明における添加剤注入装置の一例を
示す断面図。
FIG. 16 is a sectional view showing an example of an additive injection device according to the present invention.

【図17】 この発明の実施の形態6による冷凍サイク
ル装置の冷媒回路を示す図。
FIG. 17 is a diagram showing a refrigerant circuit of a refrigeration cycle device according to Embodiment 6 of the present invention.

【図18】 この発明の実施の形態7による冷凍サイク
ル装置の冷媒回路を示す図。
FIG. 18 is a diagram showing a refrigerant circuit of a refrigeration cycle device according to Embodiment 7 of the present invention.

【図19】 従来のセパレ−ト形の冷凍サイクル装置の
冷媒回路を示す図。
FIG. 19 is a diagram showing a refrigerant circuit of a conventional separate type refrigeration cycle device.

【図20】 鉱油混入時のHFC用冷凍機油とHFC冷
媒との溶解性を示す臨界溶解度曲線を示す図。
FIG. 20 is a diagram showing a critical solubility curve showing the solubility of the HFC refrigerant and the refrigeration oil for HFC when mineral oil is mixed.

【図21】 従来の冷凍サイクル装置の洗浄方法を説明
する図。
FIG. 21 is a diagram illustrating a conventional method for cleaning a refrigeration cycle device.

【符号の説明】[Explanation of symbols]

A 熱源機、 B 室内機、 C 第1の接続配管、
D 第2の接続配管、E 洗浄機、 CC 第3の接続
配管、 DD 第4の接続配管、 1 圧縮機、 2
四方弁、 3 熱源機側熱交換器、 4 第1の操作
弁、 5 流量調整器、 6 利用側熱交換器、 7
第2の操作弁、 8 アキュムレ−タ、9 油分離器、
10 第1の切換弁、 11 第2の切換弁、 1
2a冷却手段、 12b 加熱手段、 13 異物捕捉
手段、 14a〜14d 第1〜第4の電磁弁、 15
第1の流量制御手段、 16 第2の流量制御手段、
17a〜17f 第3〜第8の操作弁、 18a〜1
8c 第5〜第7の電磁弁、 51 容器、 52 流
出配管、 53 フィルタ、 54 鉱油、55 流入
配管、 56 イオン交換樹脂、 200,200a,
200b 温度検出手段、 201 冷媒温度制御手
段、 202 添加剤注入装置。
A heat source unit, B indoor unit, C first connection pipe,
D second connection pipe, E washing machine, CC third connection pipe, DD fourth connection pipe, 1 compressor, 2
Four-way valve, 3 Heat source unit side heat exchanger, 4 First operating valve, 5 Flow rate regulator, 6 Use side heat exchanger, 7
Second operating valve, 8 accumulator, 9 oil separator,
10 first switching valve, 11 second switching valve, 1
2a cooling means, 12b heating means, 13 foreign matter capturing means, 14a to 14d first to fourth solenoid valves, 15
First flow control means, 16 second flow control means,
17a to 17f Third to eighth operation valves, 18a to 1
8c 5th to 7th solenoid valves, 51 container, 52 outlet pipe, 53 filter, 54 mineral oil, 55 inlet pipe, 56 ion exchange resin, 200, 200a,
200b Temperature detection means, 201 Refrigerant temperature control means, 202 Additive injection device.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、熱源機側熱交換器、利用側熱交
換器、上記熱源機側熱交換器と上記利用側熱交換器の一
端とを接続する第1の接続配管、上記利用側熱交換器の
他端と上記圧縮機とを接続する第2の接続配管を備えた
冷媒回路を、旧冷媒から新冷媒に置換する方法におい
て、上記第2の接続配管と上記圧縮機との間の冷媒回路
に冷媒中の異物を捕捉する異物捕捉手段を挿入し、冷媒
置換後に上記圧縮機を駆動源として上記第1の接続配
管、上記第2の接続配管の順に新冷媒を流して洗浄運転
をすることを特徴とする冷凍サイクル装置の運転方法。
1. A compressor, a heat source unit side heat exchanger, a use side heat exchanger, a first connection pipe connecting the heat source unit side heat exchanger and one end of the use side heat exchanger, and the use side In a method for replacing a refrigerant circuit provided with a second connection pipe connecting the other end of a heat exchanger and the compressor with an old refrigerant by a new refrigerant, the method comprises the steps of: A foreign matter capturing means for capturing foreign matter in the refrigerant is inserted into the refrigerant circuit of the first embodiment, and after the replacement of the refrigerant, a new refrigerant flows in the order of the first connection pipe and the second connection pipe using the compressor as a drive source to perform a cleaning operation. A method for operating a refrigeration cycle device, comprising:
【請求項2】 圧縮機、熱源機側熱交換器、利用側熱交
換器、上記熱源機側熱交換器と上記利用側熱交換器の一
端とを接続する第1の接続配管、上記利用側熱交換器の
他端と上記圧縮機とを接続する第2の接続配管を備えた
冷媒回路を、旧冷媒から新冷媒に置換する方法におい
て、上記第1の接続配管と上記圧縮機との間の冷媒回路
に冷媒中の異物を捕捉する異物捕捉手段を挿入し、冷媒
置換後に上記圧縮機を駆動源として上記第2の接続配
管、上記第1の接続配管の順に新冷媒を流して洗浄運転
をすることを特徴とする冷凍サイクル装置の運転方法。
2. A compressor, a heat source unit side heat exchanger, a use side heat exchanger, a first connection pipe connecting the heat source unit side heat exchanger and one end of the use side heat exchanger, and the use side In a method of replacing a refrigerant circuit having a second connection pipe connecting the other end of a heat exchanger and the compressor with an old refrigerant and a new refrigerant, the method includes the steps of: A foreign matter capturing means for capturing foreign matter in the refrigerant is inserted into the refrigerant circuit, and after the replacement of the refrigerant, the new refrigerant flows in the order of the second connection pipe and the first connection pipe using the compressor as a drive source, thereby performing a cleaning operation. A method for operating a refrigeration cycle device, comprising:
【請求項3】 圧縮機、熱源機側熱交換器、利用側熱交
換器、上記熱源機側熱交換器と上記利用側熱交換器の一
端とを接続する第1の接続配管、上記利用側熱交換器の
他端と上記圧縮機とを接続する第2の接続配管を備えた
冷媒回路を、旧冷媒から新冷媒に置換する方法におい
て、上記冷媒回路の上記圧縮機の上流側に冷媒中の異物
を捕捉する異物捕捉手段を挿入し、冷媒置換後に上記圧
縮機を駆動源として上記第1の接続配管と上記第2の接
続配管のうち太径配管を上流に、細径配管を下流にして
新冷媒を流して洗浄運転をすることを特徴とする冷凍サ
イクル装置の運転方法。
3. A compressor, a heat source unit side heat exchanger, a use side heat exchanger, a first connection pipe connecting the heat source unit side heat exchanger and one end of the use side heat exchanger, the use side In a method of replacing a refrigerant circuit provided with a second connection pipe connecting the other end of a heat exchanger and the compressor with an old refrigerant by a new refrigerant, the refrigerant circuit is provided upstream of the compressor in the refrigerant circuit. Foreign matter capturing means for capturing foreign matter is inserted, and after replacing the refrigerant, the compressor is used as a driving source, and the large-diameter pipe is upstream of the first connection pipe and the second connection pipe, and the small-diameter pipe is downstream. Operating the refrigeration cycle, wherein a washing operation is performed by flowing a new refrigerant.
【請求項4】 圧縮機、熱源機側熱交換器、利用側熱交
換器、上記熱源機側熱交換器と上記利用側熱交換器の一
端とを接続する第1の接続配管、上記利用側熱交換器の
他端と上記圧縮機とを接続する第2の接続配管を備えた
冷媒回路を、旧冷媒から新冷媒に置換する方法におい
て、上記冷媒回路の上記圧縮機の上流側に冷媒中の異物
を捕捉する異物捕捉手段を挿入し、冷媒置換後に上記圧
縮機を駆動源として最初に上記第1の接続配管、上記第
2の接続配管の順に置換後の新冷媒を流して洗浄運転を
し、次に上記第2の接続配管、上記第1の接続配管の順
に新冷媒を流して洗浄運転をすることを特徴とする冷凍
サイクル装置の運転方法。。
4. A compressor, a heat source unit side heat exchanger, a use side heat exchanger, a first connection pipe connecting the heat source unit side heat exchanger and one end of the use side heat exchanger, and the use side In a method of replacing a refrigerant circuit provided with a second connection pipe connecting the other end of a heat exchanger and the compressor with an old refrigerant by a new refrigerant, the refrigerant circuit is provided upstream of the compressor in the refrigerant circuit. After the replacement of the refrigerant, the compressor is used as a drive source and the first connection pipe and the second connection pipe are flown in the order of the new refrigerant to perform the cleaning operation. Then, a washing operation is performed by flowing a new refrigerant in the order of the second connection pipe and the first connection pipe, thereby performing a cleaning operation. .
【請求項5】 圧縮機、熱源機側熱交換器、利用側熱交
換器、上記熱源機側熱交換器と上記利用側熱交換器の一
端とを接続する第1の接続配管、上記利用側熱交換器の
他端と上記圧縮機とを接続する第2の接続配管を備えた
冷媒回路を、旧冷媒から新冷媒に置換する方法におい
て、上記冷媒回路の上記圧縮機の上流側に冷媒中の異物
を捕捉する異物捕捉手段を挿入し、冷媒置換後に上記圧
縮機を駆動源として上記第1の接続配管および上記第2
の接続配管に所定値以上の質量流速で置換後の新冷媒を
流して洗浄運転をすることを特徴とする冷凍サイクル装
置の運転方法。。
5. A compressor, a heat source unit side heat exchanger, a use side heat exchanger, a first connection pipe connecting the heat source unit side heat exchanger and one end of the use side heat exchanger, and the use side In a method of replacing a refrigerant circuit provided with a second connection pipe connecting the other end of a heat exchanger and the compressor with an old refrigerant by a new refrigerant, the refrigerant circuit is provided upstream of the compressor in the refrigerant circuit. Foreign matter capturing means for capturing foreign matter is inserted, and after the refrigerant is replaced, the first connection pipe and the second
Washing operation by flowing a new refrigerant after replacement at a mass flow rate equal to or higher than a predetermined value through the connection pipe of (1). .
【請求項6】 圧縮機、熱源機側熱交換器、利用側熱交
換器、上記熱源機側熱交換器と上記利用側熱交換器の一
端とを接続する第1の接続配管、上記利用側熱交換器の
他端と上記圧縮機とを接続する第2の接続配管を備え、
かつ、上記第1の接続配管と上記利用側熱交換器と上記
第2の接続配管とを接続した利用側冷媒回路部分を並列
に複数備えた冷媒回路を、旧冷媒から新冷媒に置換する
方法において、上記圧縮機の上流側に冷媒中の異物を捕
捉する異物捕捉手段を挿入し、冷媒置換後に、上記圧縮
機を駆動源として、上記複数の利用側冷媒回路部分を順
次に選択して、置換後の新冷媒を流して洗浄運転をする
ことを特徴とする冷凍サイクル装置の運転方法。
6. A compressor, a heat source unit side heat exchanger, a use side heat exchanger, a first connection pipe connecting the heat source unit side heat exchanger and one end of the use side heat exchanger, the use side A second connection pipe for connecting the other end of the heat exchanger and the compressor,
A method of replacing a refrigerant circuit provided with a plurality of use-side refrigerant circuit portions connected in parallel with the first connection pipe, the use-side heat exchanger, and the second connection pipe from an old refrigerant to a new refrigerant. In, at the upstream side of the compressor, a foreign matter capturing means for capturing foreign matter in the refrigerant is inserted, and after the replacement of the refrigerant, the compressor is used as a drive source, and the plurality of use-side refrigerant circuit portions are sequentially selected, A method for operating a refrigeration cycle device, wherein a washing operation is performed by flowing a new refrigerant after replacement.
【請求項7】 圧縮機、熱源機側熱交換器、利用側熱交
換器、上記熱源機側熱交換器と上記利用側熱交換器の一
端とを接続する第1の接続配管、上記利用側熱交換器の
他端と上記圧縮機とを接続する第2の接続配管を備えた
冷媒回路を、旧冷媒から新冷媒に置換する方法におい
て、上記冷媒回路の上記圧縮機の上流側に冷媒中の異物
を捕捉する異物捕捉手段を挿入し、冷媒置換後に上記圧
縮機を駆動源として上記第1の接続配管および上記第2
の接続配管に所定温度以上に昇温した置換後の新冷媒を
流して洗浄運転をすることを特徴とする冷凍サイクル装
置の運転方法。
7. A compressor, a heat source unit side heat exchanger, a use side heat exchanger, a first connection pipe connecting the heat source unit side heat exchanger and one end of the use side heat exchanger, and the use side In a method of replacing a refrigerant circuit provided with a second connection pipe connecting the other end of a heat exchanger and the compressor with an old refrigerant by a new refrigerant, the refrigerant circuit is provided upstream of the compressor in the refrigerant circuit. Foreign matter capturing means for capturing foreign matter is inserted, and after the refrigerant is replaced, the first connection pipe and the second
And performing a washing operation by flowing a new refrigerant after the replacement, the temperature of which has been raised to a predetermined temperature or higher, through the connection pipe of (1).
【請求項8】 圧縮機、熱源機側熱交換器、利用側熱交
換器、上記熱源機側熱交換器と上記利用側熱交換器の一
端とを接続する第1の接続配管、上記利用側熱交換器の
他端と上記圧縮機とを接続する第2の接続配管を備えた
冷媒回路を、旧冷媒から新冷媒に置換する方法におい
て、上記冷媒回路の上記圧縮機の上流側に冷媒中の異物
を捕捉する異物捕捉手段を挿入し、冷媒置換後に、冷媒
置換前の冷凍機油が溶解しやすく、かつ当該冷凍機油よ
りも粘性が低いか同じである添加剤を上記第1および第
2の接続配管の上流部分で注入し、置換後の新冷媒とと
もに上記圧縮機を駆動源として上記第1および第2の接
続配管に流して洗浄運転をすることを特徴とする冷凍サ
イクル装置の運転方法。
8. A compressor, a heat source unit side heat exchanger, a use side heat exchanger, a first connection pipe connecting the heat source unit side heat exchanger and one end of the use side heat exchanger, the use side In a method of replacing a refrigerant circuit provided with a second connection pipe connecting the other end of a heat exchanger and the compressor with an old refrigerant by a new refrigerant, the refrigerant circuit is provided upstream of the compressor in the refrigerant circuit. After the refrigerant replacement, the refrigerating machine oil before the refrigerant replacement is easily dissolved and the additive having the same or lower viscosity than the refrigerating machine oil is added to the first and second additives. A method for operating a refrigeration cycle device, comprising: injecting the refrigerant into an upstream portion of a connecting pipe, flowing the compressed refrigerant together with the new refrigerant after replacement into the first and second connecting pipes using the compressor as a drive source, and performing a washing operation.
【請求項9】 圧縮機、熱源機側熱交換器、利用側熱交
換器、上記熱源機側熱交換器と上記利用側熱交換器の一
端とを接続する第1の接続配管、上記利用側熱交換器の
他端と上記圧縮機とを接続する第2の接続配管を備えた
冷媒回路を、旧冷媒から新冷媒に置換する方法におい
て、上記冷媒回路の上記圧縮機の上流側に冷媒中の異物
を捕捉する異物捕捉手段を挿入し、冷媒置換後に、冷媒
置換前の冷凍機油が溶解しやすく、かつ置換後の新冷媒
に溶解しやすい添加剤を上記第1および第2の接続配管
の上流部分に注入して、置換後の新冷媒とともに上記圧
縮機を駆動源として上記第1および第2の接続配管に流
して洗浄運転をすることを特徴とする冷凍サイクル装置
の運転方法。
9. A compressor, a heat source unit side heat exchanger, a use side heat exchanger, a first connection pipe connecting the heat source unit side heat exchanger and one end of the use side heat exchanger, the use side In a method of replacing a refrigerant circuit provided with a second connection pipe connecting the other end of a heat exchanger and the compressor with an old refrigerant by a new refrigerant, the refrigerant circuit is provided upstream of the compressor in the refrigerant circuit. After the refrigerant replacement, the refrigerating machine oil before the refrigerant replacement is easily dissolved, and the additive easily soluble in the new refrigerant after the replacement is inserted into the first and second connection pipes. A method for operating a refrigeration cycle device, comprising: injecting the refrigerant into an upstream portion, flowing the fresh refrigerant after replacement into the first and second connection pipes using the compressor as a drive source, and performing a washing operation.
【請求項10】 圧縮機、熱源機側熱交換器、利用側熱
交換器、上記熱源機側熱交換器と上記利用側熱交換器の
一端とを接続する第1の接続配管、上記利用側熱交換器
の他端と上記圧縮機とを接続する第2の接続配管を備え
た冷媒回路を、旧冷媒から新冷媒に置換する方法におい
て、上記冷媒回路の上記圧縮機の上流側に冷媒中の異物
を捕捉する異物捕捉手段を挿入し、冷媒置換後に、冷媒
置換後の冷凍機油を添加剤として上記第1および第2の
接続配管の上流部分に注入して、置換後の新冷媒ととも
に上記圧縮機を駆動源として上記第1および第2の接続
配管に流して洗浄運転をすることを特徴とする冷凍サイ
クル装置の運転方法。
10. A compressor, a heat source unit side heat exchanger, a use side heat exchanger, a first connection pipe connecting the heat source unit side heat exchanger and one end of the use side heat exchanger, the use side In a method of replacing a refrigerant circuit provided with a second connection pipe connecting the other end of a heat exchanger and the compressor with an old refrigerant by a new refrigerant, the refrigerant circuit is provided upstream of the compressor in the refrigerant circuit. After the replacement of the refrigerant, the refrigerant oil after the replacement is injected into the upstream portion of the first and second connection pipes as an additive. A method for operating a refrigeration cycle apparatus, wherein a washing operation is performed by flowing the first and second connection pipes using a compressor as a drive source.
JP14030499A 1999-05-20 1999-05-20 Operation method of refrigeration cycle device Expired - Lifetime JP3361771B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14030499A JP3361771B2 (en) 1999-05-20 1999-05-20 Operation method of refrigeration cycle device
US09/572,300 US6510698B2 (en) 1999-05-20 2000-05-17 Refrigeration system, and method of updating and operating the same
ES03026366.9T ES2626979T3 (en) 1999-05-20 2000-05-18 Conversion of a cooling system
EP03026366.9A EP1391667B1 (en) 1999-05-20 2000-05-18 Converting a refrigerating system
EP00304208A EP1054221A3 (en) 1999-05-20 2000-05-18 Refrigeration system, and method of updating and operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14030499A JP3361771B2 (en) 1999-05-20 1999-05-20 Operation method of refrigeration cycle device

Publications (2)

Publication Number Publication Date
JP2000329432A true JP2000329432A (en) 2000-11-30
JP3361771B2 JP3361771B2 (en) 2003-01-07

Family

ID=15265684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14030499A Expired - Lifetime JP3361771B2 (en) 1999-05-20 1999-05-20 Operation method of refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP3361771B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267293A (en) * 2001-03-05 2002-09-18 Mitsubishi Electric Corp Method for replacing refrigerant of refrigeration cycle device
JP2002267294A (en) * 2001-03-05 2002-09-18 Mitsubishi Electric Corp Refrigerant circuit switching device for refrigeration cycle device
JP2002357377A (en) * 2001-03-28 2002-12-13 Mitsubishi Electric Corp Device and method for cleaning piping
JP2003042603A (en) * 2001-08-02 2003-02-13 Mitsubishi Electric Corp Refrigerating cycle apparatus, method for manufacturing the same and method for operating the same
JP2006317097A (en) * 2005-05-13 2006-11-24 Mitsubishi Electric Corp Piping washing method and refrigerating cycle device
US7334426B2 (en) 2003-11-25 2008-02-26 Daikin Industries, Ltd. Refrigerating apparatus
CN100400983C (en) * 2001-01-10 2008-07-09 广东科龙电器股份有限公司 Oil return method and device for refrigeration system
WO2014111041A1 (en) * 2013-01-18 2014-07-24 四川长虹电器股份有限公司 Air-conditioning system, control system and air-conditioning control method
CN111536637A (en) * 2019-02-07 2020-08-14 三星电子株式会社 Air conditioning system comprising a refrigerant circulation circuit for oil flow blocking

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100400983C (en) * 2001-01-10 2008-07-09 广东科龙电器股份有限公司 Oil return method and device for refrigeration system
JP2002267293A (en) * 2001-03-05 2002-09-18 Mitsubishi Electric Corp Method for replacing refrigerant of refrigeration cycle device
JP2002267294A (en) * 2001-03-05 2002-09-18 Mitsubishi Electric Corp Refrigerant circuit switching device for refrigeration cycle device
JP4508446B2 (en) * 2001-03-05 2010-07-21 三菱電機株式会社 Refrigerant circuit switching device for refrigeration cycle apparatus
JP2002357377A (en) * 2001-03-28 2002-12-13 Mitsubishi Electric Corp Device and method for cleaning piping
JP2003042603A (en) * 2001-08-02 2003-02-13 Mitsubishi Electric Corp Refrigerating cycle apparatus, method for manufacturing the same and method for operating the same
US7334426B2 (en) 2003-11-25 2008-02-26 Daikin Industries, Ltd. Refrigerating apparatus
JP2006317097A (en) * 2005-05-13 2006-11-24 Mitsubishi Electric Corp Piping washing method and refrigerating cycle device
WO2014111041A1 (en) * 2013-01-18 2014-07-24 四川长虹电器股份有限公司 Air-conditioning system, control system and air-conditioning control method
CN111536637A (en) * 2019-02-07 2020-08-14 三星电子株式会社 Air conditioning system comprising a refrigerant circulation circuit for oil flow blocking
US11378315B2 (en) 2019-02-07 2022-07-05 Samsung Electronics Co., Ltd. Air conditioner system including refrigerant cycle circuit for oil flow blocking

Also Published As

Publication number Publication date
JP3361771B2 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
US6510698B2 (en) Refrigeration system, and method of updating and operating the same
EP1400767B1 (en) A method of changing a refrigeration cycle device
JP3361771B2 (en) Operation method of refrigeration cycle device
JP2003042603A (en) Refrigerating cycle apparatus, method for manufacturing the same and method for operating the same
JP3361765B2 (en) Refrigeration cycle apparatus, method of forming the same, and outdoor unit of refrigeration cycle apparatus
JP4409075B2 (en) Cleaning operation method of refrigeration cycle apparatus
JP3431552B2 (en) Refrigeration air conditioner and method for updating refrigeration air conditioner
JP2004263885A (en) Cleaning method of refrigerant pipe, renewing method of air conditioner and air conditioner
JP4391559B2 (en) Refrigerant changing method of refrigerant circuit for refrigeration apparatus and refrigeration apparatus
JP4472200B2 (en) Refrigeration / air-conditioning apparatus and operation method thereof
JP4128796B2 (en) Refrigeration cycle equipment
JP3370959B2 (en) Renewal method and operation method of refrigeration cycle device
JP4176413B2 (en) Operation method of refrigeration cycle apparatus
JP4425457B2 (en) Refrigeration cycle apparatus and operation method thereof
JP2007085643A (en) Cleaning method for air conditioning system, and outdoor unit used therein
JP4554098B2 (en) Refrigeration cycle apparatus and operation method thereof
JP4517834B2 (en) How to use existing refrigerant piping
JP2004333121A (en) Method for updating air conditioner, and air conditioner
JP3666343B2 (en) Cleaning device, refrigeration air conditioner and its replacement method
KR100709595B1 (en) Refrigerating apparatus
JP2003139444A (en) Refrigerant replacement method for air conditioner, cleaner, and air conditioner
JP2004308934A (en) Freezing apparatus and method of washing piping
JP2002267293A (en) Method for replacing refrigerant of refrigeration cycle device
JP4375925B2 (en) Air conditioner
JP2011117668A (en) Air conditioner and method for cleaning operation of the air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071018

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111018

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121018

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131018

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term