JP4176413B2 - Operation method of refrigeration cycle apparatus - Google Patents

Operation method of refrigeration cycle apparatus Download PDF

Info

Publication number
JP4176413B2
JP4176413B2 JP2002230937A JP2002230937A JP4176413B2 JP 4176413 B2 JP4176413 B2 JP 4176413B2 JP 2002230937 A JP2002230937 A JP 2002230937A JP 2002230937 A JP2002230937 A JP 2002230937A JP 4176413 B2 JP4176413 B2 JP 4176413B2
Authority
JP
Japan
Prior art keywords
refrigerant
foreign matter
hfc
heat exchanger
connection pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002230937A
Other languages
Japanese (ja)
Other versions
JP2003065636A (en
Inventor
智彦 河西
光教 倉地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002230937A priority Critical patent/JP4176413B2/en
Publication of JP2003065636A publication Critical patent/JP2003065636A/en
Application granted granted Critical
Publication of JP4176413B2 publication Critical patent/JP4176413B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、冷凍サイクル装置の冷媒の交換に関するものである。さらに詳しくは、熱源機と室内機のみを新規に交換し、熱源機と室内機とを接続する接続配管を交換しないで、冷媒を新規に交換する冷凍サイクル装置とその交換方法及び運転方法に関するものである。
【0002】
【従来の技術】
従来から一般に用いられているセパレ−ト形の空気調和装置を図11に示す。図11において、Aは熱源機であり、圧縮機1、四方弁2、熱源機側熱交換器3、第1の操作弁4、第2の操作弁7、アキュムレ−タ8を内蔵している。Bは室内機であり、流量調整器5(あるいは流量制御弁5)、及び利用側熱交換器6を備えている。熱源機Aと室内機Bは離れた場所に設置され、第1の接続配管C、第2の接続配管Dにより接続されて、冷凍サイクルを形成する。
【0003】
第1の接続配管Cの一端は熱源機側熱交換器3と第1の操作弁4を介して接続され、第1の接続配管Cの他の一端は流量調整器5と接続されている。第2の接続配管Dの一端は四方弁2と第2の操作弁7を介して接続され、第2の接続配管Dの他の一端は利用側熱交換器6と接続されている。また、アキュムレ−タ8のU字管状の流出配管の下部には返油穴8aが設けられている。
【0004】
この空気調和装置の冷媒の流れを図11に添って説明する。図中、実線矢印が冷房運転の流れを、破線矢印が暖房運転の流れを示す。
まず、冷房運転の流れを説明する。圧縮機1で圧縮された高温高圧のガス冷媒は四方弁2を経て、熱源機側熱交換器3へと流入し、ここで空気・水など熱源媒体と熱交換して凝縮液化する。凝縮液化した冷媒は第1の操作弁4、第1の接続配管Cを経て流量調整器5へ流入し、ここで低圧まで減圧されて低圧二相状態となり、利用側熱交換器6で空気などの利用側媒体と熱交換して蒸発・ガス化する。蒸発・ガス化した冷媒は第2の接続配管D、第2の操作弁7、四方弁2、アキュムレ−タ8を経て圧縮機1へ戻る。
【0005】
次に、暖房運転の流れを説明する。圧縮機1で圧縮された高温高圧のガス冷媒は四方弁2、第2の操作弁7、第2の接続配管Dを経て、利用側熱交換器6へと流入し、ここで空気など利用側媒体と熱交換して凝縮液化する。凝縮液化した冷媒は流量調整器5へ流入し、ここで低圧まで減圧されて低圧二相状態となり、第1の接続配管C、第1の操作弁4を経て、熱源機側熱交換器3で空気・水などの熱源媒体と熱交換して蒸発・ガス化する。蒸発・ガス化した冷媒は四方弁2、アキュムレ−タ8を経て圧縮機1へ戻る。
【0006】
従来、このような空気調和装置の冷媒として、CFC(クロロフルオロカ−ボン)やHCFC(ハイドロクロロフルオロカ−ボン)が用いられてきたが、これらの分子に含まれる塩素が成層圏でオゾン層を破壊するため、CFCは既に全廃され、HCFCも生産規制が開始されている。
【0007】
これらに替わって、分子に塩素を含まないHFC(ハイドロフルオロカ−ボン)を使用する空気調和装置が実用化されている。CFCやHCFCを用いた空気調和装置が老朽化した場合、これらの冷媒は全廃・生産規制されているため、HFCを用いた空気調和装置に入れ替える必要がある。
熱源機Aと室内機Bは、HFCで使用する冷凍機油・有機材料・熱交換器がHCFCとは異なるため、HFC専用のものと交換する必要があり、かつ元々CFC・HCFC用の熱源機Aと室内機Bは老朽化しているため交換する必要があるものであり、交換も比較的容易である。
【0008】
一方、熱源機Aと室内機Bを接続する第1の接続配管Cと第2の接続配管Dは配管長が長い場合や、パイプシャフトや天井裏など建物に埋設されている場合には、新規配管に交換することは困難で、しかも老朽化もしないため、CFCやHCFCを用いた空気調和装置で使用していた第1の接続配管Cと第2の接続配管Dをそのまま使用できれば、配管工事が簡略化できる。
【0009】
しかし、CFCやHCFCを用いた空気調和装置で使用していた第1の接続配管Cと第2の接続配管Dには、CFCやHCFCを用いた空気調和装置の冷凍機油である鉱油やCFC・HCFCや冷凍機油の劣化物がスラッジとなったものが残留している。
【0010】
図12は、鉱油混入時のHFC用冷凍機油とHFC冷媒(R407C)との溶解性を示す臨界溶解度曲線を示す図で、横軸は油量(wt%)、縦軸は温度(℃)を示す。
HFCを用いた空気調和装置の冷凍機油(エステル油やエ−テル油などの合成油)に鉱油が一定量以上混入すると図12に示すように、HFC冷媒との相溶性が失われ、アキュムレ−タ8に液冷媒が溜まっている場合にHFC用冷凍機油が液冷媒の上に分離・浮遊するため、アキュムレ−タ8の下部にある返油穴8aから圧縮機へ冷凍機油が戻らず圧縮機の摺動部が焼き付く。
また、鉱油が混入するとHFC用冷凍機油が劣化する。また、CFC・HCFCが混入するとこれらに含まれる塩素成分によりHFC用冷凍機油が劣化する。また、CFC・HCFC用冷凍機油の劣化物がスラッジとなったものに含まれる塩素成分によりHFC用冷凍機油が劣化する。
【0011】
このため、従来はCFCやHCFCを用いた空気調和装置で使用していた第1の接続配管Cと第2の接続配管Dを、洗浄装置を用いて専用の洗浄液(HCFC141bやHCFC225)で洗浄することが行われている(以下、これを洗浄方法1と称する)。
また、特開平7-83545号公報に開示された方法がある。これは、図13に示すように、洗浄装置を用いずに、HFC用熱源機A、HFC用室内機B、第1の接続配管C、第2の接続配管Dを接続し(ステップ100)、HFC、HFC用冷凍機油を充填した後に(ステップ101)運転することで洗浄し(ステップ102)、その後で空気調和装置内の冷媒と冷凍機油を回収し新しい冷媒と冷凍機油を充填してから(ステップ103)、再度運転による洗浄を実施する、ということを所定回数繰り返す(ステップ104、105)ことが、提案されている(以下、これを洗浄方法2と称する)。
【0012】
【発明が解決しようとする課題】
上記した従来の洗浄方法1では以下に示すような問題があった。
第1に、使用する洗浄液がHCFCであり、オゾン層破壊係数がゼロでないため、空気調和装置の冷媒をHCFCからHFCへと代替することと矛盾する。特に、HCFC141bはオゾン破壊係数が0.11と大きく問題である。
【0013】
第2に、使用する洗浄液は可燃性・毒性が完全に安全なものではないことがあげられる。HCFC141bは可燃性で、低毒性である。HCFC225は不燃だが、低毒性である。
第3に、沸点が高く(HCFC141bは32℃、HCFC225は51.1〜56.1℃)、外気温度がこの沸点より低い場合、特に冬期には、洗浄後に洗浄液が液状態で、第1の接続配管Cと第2の接続配管Dに残留する。これら洗浄液はHCFCであることから、塩素成分を含んでおり、HFC用冷凍機油が劣化する。
【0014】
第4に、洗浄液は環境上全量回収する必要があり、かつ上記第3の問題点が発生しないように高温の窒素ガスなどで再洗浄するなど、洗浄工事の手間がかかる。
【0015】
また、上記の従来の洗浄方法2では、以下に示すような問題があった。
第1に、HFC冷媒による洗浄が、特開平7-83545号公報の実施例では3回必要であり、また各洗浄運転で使用したHFC冷媒は不純物を含むため、回収後その場での再利用は不可能である。つまり、通常の充填冷媒量の3倍の冷媒が必要であり、コスト・環境上問題である。
【0016】
第2に、冷凍機油も各洗浄運転後に入れ替えるため、通常の充填冷凍機油量の3倍の冷凍機油が必要であり、コスト・環境上問題である。また、HFC用冷凍機油はエステル油またはエ−テル油であり、吸湿性が高いため、交換用冷凍機油の水分管理も必要となる。また、冷凍機油を、洗浄する人間が封入するため、過不足が生じる危険性もあり、その後の運転において支障を来す可能性がある(過充填時は油圧縮による圧縮部破壊、モ−タ過熱をきたし、不足充填時は潤滑不良をきたす)。
【0017】
この発明は、上述のような従来の課題を解決するためになされたもので、環境保護上問題のあるとされる冷媒を用いた既設の冷凍サイクル装置を、環境保護上問題のないとされる冷媒に置換する冷凍サイクル装置と、その置換方法ならびに運転方法を提供しようとするものである。
【0018】
【課題を解決するための手段】
請求項1の発明による冷凍サイクル装置の運転方法は、
CFC冷媒やHCFC冷媒の冷凍サイクル装置で使用した接続配管を再利用し、圧縮機と熱源機側熱交換器とを有する熱源機と、流量調整器と利用側熱交換器とを有する室内機との間に、HFC冷媒を循環させる第1の冷媒回路を備えた冷凍サイクル装置において、
上記利用側熱交換器と上記圧縮機との間の冷媒回路をバイパスするとともに、前記接続配管に残留していた残留異物を捕捉する異物捕捉手段を有する第1バイパス路を備え、さらに、上記第1バイパス路の上記異物捕捉手段の上流側に冷媒の加熱手段を備え、
通常運転に先立ち、冷媒を上記第1バイパス路に循環させて、上記加熱手段により冷媒を気相に加熱し、上記異物捕捉手段により、流入してきた前記HFC冷媒中から前記接続配管に残留していた残留異物を捕捉するようにしたものである。
【0019】
請求項2の発明による冷凍サイクル装置の運転方法は、
CFC冷媒やHCFC冷媒の冷凍サイクル装置で使用した接続配管を再利用し、圧縮機と熱源機側熱交換器とを有する熱源機と、流量調整器と利用側熱交換器とを有する室内機との間に、HFC冷媒を循環させる第1の冷媒回路を備えた冷凍サイクル装置において、
上記利用側熱交換器と上記圧縮機との間の冷媒回路をバイパスするとともに、前記接続配管に残留していた残留異物を捕捉する異物捕捉手段を有する第1バイパス路を備え、また、上記第1の冷媒回路の上記熱源機側熱交換器と上記流量調整器との間の冷媒回路をバイパスするとともに、冷媒の冷却手段を有する第2バイパス路を備え、
通常運転に先立ち、冷媒を上記第1バイパス路に循環させて、上記異物捕捉手段により、流入してきた前記HFC冷媒中から前記接続配管に残留していた残留異物を捕捉するとともに、
冷媒を上記第2バイパス回路に循環させて、上記冷却手段により冷媒を液相または気液2相状態に冷却するようにしたものである。
【0020】
請求項3の発明による冷凍サイクル装置の運転方法は、
CFC冷媒やHCFC冷媒の冷凍サイクル装置で使用した接続配管を再利用し、圧縮機と熱源機側熱交換器とを有する熱源機と、流量調整器と利用側熱交換器とを有する室内機との間に、HFC冷媒を循環させる第1の冷媒回路を備えた冷凍サイクル装置において、
上記利用側熱交換器と上記圧縮機との間の冷媒回路をバイパスするとともに、前記接続配管に残留していた残留異物を捕捉する異物捕捉手段を有する第1バイパス路を備え、さらに、上記第1バイパス路の上記異物捕捉手段の上流側に冷媒の加熱手段を備え、また、上記第1の冷媒回路の上記熱源機側熱交換器と上記流量調整器との間の冷媒回路をバイパスするとともに、冷媒の冷却手段を有する第2バイパス路を備え、
通常運転に先立ち、冷媒を上記第1バイパス路に循環させて、上記加熱手段により冷媒を気相に加熱し、上記異物捕捉手段により、流入してきた前記HFC冷媒中から前記接続配管に残留していた残留異物を捕捉するとともに、
冷媒を上記第2バイパス回路に循環させて、上記冷却手段により冷媒を液相または気液2相状態に冷却するようにしたことを特徴とする冷凍サイクル装置の運転方法。
【0021】
請求項4の発明による冷凍サイクル装置の運転方法は、上記の運転方法において、上記加熱手段と上記冷却手段との間で、加熱及び冷却のための熱交換をするようにしたものである。
【0022】
請求項5の発明による冷凍サイクル装置の運転方法は、
CFC冷媒やHCFC冷媒の冷凍サイクル装置で使用した接続配管を再利用し、圧縮機と熱源機側熱交換器とを有する熱源機と、流量調整器と利用側熱交換器と有する室内機との間に、HFC冷媒を循環させる第1の冷媒回路を備えた冷凍サイクル装置において、上記利用側熱交換器と上記圧縮機との間の冷媒回路をバイパスするとともに、前記接続配管に残留していた残留異物を捕捉する異物捕捉手段を有する第1バイパス回路を備え、さらに、上記流量調整器と上記利用側熱交換器とをバイパス制御できる室内機バイパス路を備え、
通常運転に先立ち、上記室内機バイパス路に冷媒をバイパスさせるとともに、冷媒を上記第1バイパス回路に循環させて、上記異物捕捉手段により、流入してきた前記HFC冷媒中から前記接続配管に残留していた残留異物を捕捉するようにしたものである。
【0023】
請求項6の発明による冷凍サイクル装置の運転方法は、上記の運転方法において、冷媒を少なくとも上記第1バイパス回路に循環させて上記異物捕捉手段により冷媒中の異物を捕捉するようにした後、上記第1バイパス回路又は上記第2バイパス回路を閉じて、冷媒を上記第1の冷媒回路に循環させて通常運転をするようにしたものである。
【0024】
【発明の実施の形態】
以下、図面を参照してこの発明の実施の形態について説明する。なお、各図中、同一又は相当する部分には、同一符号を付して説明を省略または簡略化する。実施の形態1.
図1は、この発明の実施の形態1による冷凍サイクル装置の一例として、空気調和装置の冷媒回路を示す図である。
図1において、Aは熱源機であり、圧縮機1、四方弁2、熱源機側熱交換器3、第1の操作弁4、第2の操作弁7、アキュムレ−タ8、油分離器9(油分離手段)、及び異物捕捉手段13を内蔵している。
【0025】
油分離器9は、圧縮機1の吐出配管に設けられ、圧縮機1から冷媒とともに吐出される冷凍機油を分離する。異物捕捉手段13は、四方弁2とアキュムレ−タ8の間に設けられている。9aは油分離器9の底部より端を発し、異物捕捉手段13の出口より下流側に至るバイパス路である。また、アキュムレ−タ8のU字管状の流出配管の下部には返油穴8aが設けられている。
Bは室内機であり、流量調整器5(あるいは流量調整弁5)、及び利用側熱交換器6を備えている。
【0026】
Cは、第1の接続配管であり、その一端は熱源機側熱交換器3と第1の操作弁4を介して接続され、他の一端は流量調整器5と接続されている。
Dは、第2の接続配管であり、その一端は四方弁2と第2の操作弁7を介して接続され、他の一端は利用側熱交換器6と接続されている。
熱源機Aと室内機Bは離れた場所に設置され、第1の接続配管C、第2の接続配管Dにより接続されて、冷凍サイクルを形成する。
なお、この空気調和装置は冷媒としてHFCを使うものである。
【0027】
次に、CFCやHCFCを使った空気調和装置が老朽化した場合の、空気調和装置交換の手順を示す。CFCまたはHCFCを回収し、熱源機Aと室内機Bを図1に示すものと交換する。第1の接続配管Cと第2の接続配管DはHCFCを使った空気調和装置のものを再利用する。熱源機Aには予めHFCが充填されているので、第1の操作弁4と第2の操作弁7は閉じたまま、室内機B、第1の接続配管C、第2の接続配管Dを接続状態で真空引きをし、その後第1の操作弁4と第2の操作弁7の開弁とHFCの追加充填を実施する。その後、通常の空調運転兼洗浄運転を実施する。
【0028】
次に、通常の空調運転兼洗浄運転の内容を図1に添って説明する。図中実線矢印が冷房運転の流れを、破線矢印が暖房運転の流れを示す。
まず冷房運転について説明する。圧縮機1で圧縮された高温高圧のガス冷媒はHFC用冷凍機油と共に圧縮機1を吐出され、油分離器9へ流入する。
【0029】
ここで、HFC用の冷凍機油は完全に分離され、ガス冷媒のみが、四方弁2を経て、熱源機側熱交換器3へと流入し、ここで空気・水など熱源媒体と熱交換して凝縮液化する。凝縮液化した冷媒は第1の操作弁4を経て第1の接続配管Cに流入する。
HFCの液冷媒が第1の接続配管Cを流れるときに、第1の接続配管Cに残留しているCFC・HCFC・鉱油・鉱油劣化物(以下残留異物と称する)を少しずつ洗浄してHFCの液冷媒と共に流れ、流量調整器5へ流入し、ここで低圧まで減圧されて低圧二相状態となり、利用側熱交換器6で空気などの利用側媒体と熱交換して蒸発・ガス化する。
【0030】
蒸発・ガス化した冷媒は、第1の接続配管Cの残留異物と共に第2の接続配管Dに流入する。第2の接続配管に残留している残留異物は、ここを流れる冷媒がガス状のため、配管内面に付着した残留異物の一部はガス冷媒中にミスト状になって流れるが、大半の液状の残留異物はガス冷媒の流速より遅い流速で、ガス・液境界面に発生するせん断力によりガス冷媒に引きずられる形で、配管内面を環状に流れるため、洗浄時間は第1の接続配管Cよりは遅いが、確実に洗浄される。
【0031】
その後、ガス冷媒は、第1の接続配管Cの残留異物と第2の接続配管Dの残留異物と共に、第2の操作弁7、四方弁2を経て異物捕捉手段13へ流入する。残留異物は、沸点の違いにより相が異なり、固体異物・液体異物・気体異物の3種類に分類される。
異物捕捉手段13では、固体異物と液体異物は完全にガス冷媒と分離・捕捉される。気体異物はその一部が捕捉され、一部は捕捉されない。その後ガス冷媒は、異物捕捉手段13で捕捉されなかった気体異物と共にアキュムレ−タ8を経て圧縮機1へ戻る。
なお、冷房運転時の冷媒回路、すなわち、圧縮機1から熱源機側熱交換器3と流量調整器5と利用側熱交換器6とアキュムレータ8とを順次に経て再び圧縮機1に戻る冷媒回路を、本明細書では、第1の冷媒回路とする。
【0032】
油分離器9で、ガス冷媒と完全に分離されたHFC用冷凍機油は、バイパス路9aを経て、異物捕捉手段13の下流で本流と合流して、圧縮機1へ戻るので、第1の接続配管Cや第2の接続配管Dに残留していた鉱油と混ざることはなく、HFC用冷凍機油はHFCに対して非相溶化することはなく、またHFC用冷凍機油は鉱油により劣化することはない。
【0033】
また、固形異物もHFC用冷凍機油と混合することはなく、HFC用冷凍機油は劣化しない。また、気体異物はHFC冷媒が冷媒回路を1サイクル循環して、異物捕捉手段13を1回通る間には一部が捕捉されるだけで、HFC用冷凍機油と気体異物は混合されるが、HFC用冷凍機油の劣化は化学反応で、急激には進まない。
その一例を図2に示す。図2は、HFC用冷凍機油に塩素が混入している場合(175℃)の劣化の時間変化を示す図で、横軸は時間(hr)、縦軸は全酸価(mgKOH/g)を示す。
異物捕捉手段13を1回通る間に捕捉されなかった気体異物は、HFC冷媒の循環と共に何回も異物捕捉手段13を通るので、HFC用冷凍機油の劣化するよりも速く、異物捕捉手段13で捕捉すればよい。
【0034】
次に暖房運転の流れを説明する。圧縮機1で圧縮された高温高圧のガス冷媒はHFC用冷凍機油と共に圧縮機1を吐出され、油分離器9へ流入する。ここで、HFC用の冷凍機油は完全に分離され、ガス冷媒のみが四方弁2、第2の操作弁7を経て第2の接続配管Dへ流入する。
【0035】
第2の接続配管に残留している残留異物は、ここを流れる冷媒がガス状のため、配管内面に付着した残留異物の一部はガス冷媒中にミスト状になって流れるが、大半の液状の残留異物はガス冷媒の流速より遅い流速で、ガス・液境界面に発生するせん断力によりガス冷媒に引きずられる形で、配管内面を環状に流れるため、洗浄時間は冷房運転時における第1の接続配管Cよりは遅いが、確実に洗浄される。
【0036】
その後、ガス冷媒は、第2の接続配管Dの残留異物と共に、利用側熱交換器6へと流入し、ここで空気など利用側媒体と熱交換して凝縮液化する。凝縮液化した冷媒は流量調整器5へ流入し、ここで低圧まで減圧されて低圧二相状態となり、第1の接続配管Cに流入する。気液二相状態のため、流速も速く、かつ液冷媒と共に、残留異物は洗浄され、冷房運転時の第1の接続配管より速い速度で洗浄される。
【0037】
第2の接続配管Dと第1の接続配管Cから洗浄された残留異物と共に、気液二相状態の冷媒は、第1の操作弁4を経て、熱源機側熱交換器3で空気・水などの熱源媒体と熱交換して蒸発・ガス化する。蒸発・ガス化した冷媒は四方弁2を経て異物捕捉手段13に流入する。
【0038】
残留異物は、沸点の違いにより相が異なり、固体異物・液体異物・気体異物の3種類に分類される。異物捕捉手段13では、固体異物と液体異物は完全にガス冷媒と分離・捕捉される。気体異物はその一部が捕捉され、一部は捕捉されない。
その後、ガス冷媒は、異物捕捉手段13で捕捉されなかった気体異物と共にアキュムレ−タ8を経て圧縮機1へ戻る。
なお、暖房運転時の冷媒回路、すなわち、圧縮機1から利用側熱交換器6と流量調整器5と熱源機側熱交換器3とアキュムレータ8とを順次に経て再び圧縮機1に戻る冷媒回路を、本明細書では、第2の冷媒回路とする。
【0039】
油分離器9で、ガス冷媒と完全に分離されたHFC用冷凍機油はバイパス路9aを経て、異物捕捉手段13の下流で本流と合流して、圧縮機1へ戻るので、第1の接続配管Cや第2の接続配管Dに残留していた鉱油と混ざることはなく、HFC用冷凍機油はHFCに対して非相溶化することはなく、またHFC用冷凍機油は鉱油により劣化することはない。
【0040】
また、固形異物もHFC用冷凍機油と混合することはなく、HFC用冷凍機油は劣化しない。
また、気体異物は、HFC冷媒が冷媒回路を1サイクル循環して、異物捕捉手段13を1回通る間には一部が捕捉されるだけで、HFC用冷凍機油と気体異物は混合されるが、HFC用冷凍機油の劣化は化学反応で、急激には進まない。その一例を図2に示す。異物捕捉手段13を1回通る間に捕捉されなかった、気体異物はHFC冷媒の循環と共に何回も異物捕捉手段13を通るので、HFC用冷凍機油の劣化するよりも速く、異物捕捉手段13で捕捉すればよい。
【0041】
次に、異物捕捉手段13の一例について説明する。図3は異物捕捉手段13の一例を図示したものである。51は円筒状の容器、52は容器51の上部に設けられた流出配管、53は容器51の上部内面に、円錐の扇状の側面形状に形成・設置されたフィルタ、54は容器51に予め充填されている鉱油、55は容器51の下部側面に設けられた流入配管、55aは流入配管55の容器51の内部にある部分の配管側面に多数設けられた流出穴である。
【0042】
フィルタ53は、例えば細線を編みこんだメッシュ状のものであったり、焼結金属で形成され、各隙間は数ミクロンから数十ミクロンで、これ以上の固体異物が通過することはできない。また、容器51の上部空間に微量存在する可能性のあるミスト状の液体異物も、フィルタ53を通過しようとすると、ここで捕捉され重力により容器側面方向に流れて容器51の下部に落下する。56は塩素イオンを捕捉するイオン交換樹脂である。
図1においては、流出配管52はイオン交換樹脂56を経てアキュムレ−タ8に、流入配管55は四方弁2に接続されている。
【0043】
流入配管55より流入したガス冷媒は、流出穴55aを経て、鉱油54の中を泡状になって通過し、フィルタ53、イオン交換樹脂56を経て、流出配管52より流出する。
流入配管55よりガス冷媒と共に流入した固体異物は、流出穴55aより鉱油54の中へ流出後に、鉱油54が抵抗になって速度が低下し、重力により、容器51の底部に沈殿する。
また、鉱油54がなくても、容器51の断面積は流入配管55の断面積よりも大きく、容器51の内部に入ると、冷媒(気体)の流速は低下するので、個体異物は重力の作用により冷媒(気体)と分離され、容器51の下部に沈殿する。
また、鉱油54の中でのガス流速が大きく、鉱油54の上部まで、固体異物が万一吹き上げられても、フィルタ53により捕捉される。
【0044】
流入配管55よりガス冷媒と共に流入した液体異物は、流出穴55aより鉱油54の中へ流出後に、鉱油54が抵抗になって速度が低下し、気液分離されて、鉱油54と共に滞留する。
また、鉱油54がなくても、容器51の断面積は流入配管55の断面積よりも大きく、容器51の内部に入ると、冷媒(気体)の流速は低下するので、液体異物は重力の作用により冷媒(気体)と分離され、容器51の下部に滞留する。
鉱油54の中でのガス流速が大きく、鉱油54の液面が乱れて、鉱油がミスト状になり、ガス冷媒の流れにのったとしても、フィルタ53により捕捉され、前述のようにここで捕捉され重力により容器51の側面方向に流れて容器51の下部に落下する。
【0045】
流入配管55よりガス冷媒と共に流入した気体異物は、流出穴55aを経て、鉱油54の中を泡状になって通過し、フィルタ53、イオン交換樹脂56を経て、流出配管52より流出する。気体異物中の主成分はCFCまたはHCFCだが、これらは鉱油54に溶解する。
一例を図4に示す。図4(a)は鉱油とCFCとの溶解度曲線、図4(b)は鉱油とHCFCとの溶解度曲線を示す図である。図において、横軸は温度(℃)、縦軸はCFC又はHCFCの圧力(kg/cm2)であり、CFC又はHCFCの濃度(wt%)をパラメータとして溶解度曲線を示している。
【0046】
流入配管55よりガス冷媒と共に流入した気体異物は、流出穴55aを経て、鉱油54の中を泡状になることで、鉱油54との接触が増え、CFCやHCFCはより確実に鉱油54に溶解する。しかし、HFCは鉱油には溶解しないので、全てが流出配管52から流出される。このようにして、容器51の内部で固体異物と液体異物は完全に分離・捕捉される。また、気体異物の主成分であるCFCやHCFCも何回か、この部分を通過する間に、大部分が溶解・捕捉される。
【0047】
また、残留異物中のCFCやHCFC以外の塩素成分は、冷媒回路中では微量の存在する水に溶けて塩素イオンとして存在するので、何回かイオン交換樹脂56を通過することにより捕捉される。
【0048】
次に、油分離器9について説明する。高性能油分離器の例としては、実公平5-19721号公報に示されたものがある。図5にその内部構造図を示す。71は上シェル71a及び下シェル71bにより構成される円形胴体部を有する密閉容器、72は先端に網状体73を有する入口管であり、入口管72は上シェル71aの略中央部を貫通して容器71に突出して取り付けられている。78は網状体73の上部に設けられた、多数の小孔を有するパンチングメタルなどにより構成される円形の均速板、79は均速板78の上部に形成される上部空間であり、冷媒流出空間となるものである。74は冷媒流出空間79に端部を持つ出口管、77は排油管である。
【0049】
このような、高性能油分離器を直列に複数個接続することで、分離効率100%の油分離器を得ることができる。
図6に、図5の構造の油分離器におけるガス冷媒の流速と分離効率の実験結果を示す。図において、横軸は容器内平均流速(m/s)、縦軸は分離効率(%)を示す。
直列油分離器の最初の油分離器の内径を最大の流速が0.13m/s以下となるようにすることで、一般に圧縮機1から吐出される冷凍機油は冷媒流量比で1.5wt%以下のため、最初の油分離器の2次側では、冷凍機油は冷媒流量比で0.05wt%以下になっている。
【0050】
この比率では、ガス冷媒と冷凍機油の気液二相流の流動様式は噴霧流となっているので、2番目の油分離器も同径以上とし、かつ流入配管のメッシュを焼結金属など目を非常に細かくすることで、完全に冷凍機油を分離することができる。このように、既存の油分離器の寸法や複数組み合せることで、分離効率100%の油分離器を実現することは可能であり、図1に示す油分離器9はこのようなものである。
【0051】
以上のように、油分離器9と異物捕捉手段13を熱源機Aに内蔵することで、熱源機Aと室内機Bのみを新規に交換し、第1の接続配管Cと第2の接続配管Dを交換しないで、老朽化したCFCまたはHCFCを用いた空気調和装置を新しいHFCを用いた空気調和装置に入れ替えることができる。このような方法によれば、既設配管再利用方法として、従来の洗浄方法1とは違って、洗浄装置を用いて専用の洗浄液(HCFC141bやHCFC225)で洗浄するということをしないので、オゾン層破壊の可能性は全く無く、また可燃性・毒性も皆無で、洗浄液残留の懸念も無く、洗浄液を回収する必要も無い。
【0052】
また、従来の洗浄方法2と違って、洗浄運転を3回繰り返してHFC冷媒やHFC冷凍機油を3回入れ替える必要がないため、必要なHFCや冷凍機油は1台分で済むためコスト・環境上有利である。また、交換用冷凍機油の管理も不要で、かつ冷凍機油過不足の危険性も全く発生しない。また、HFC用冷凍機油の非相溶化や冷凍機油の劣化の恐れも無い。
【0053】
この実施の形態では、室内機Bが1台接続された例について説明したが、室内機Bが並列または直列に複数台接続された空気調和装置でも同様の効果を奏することは言うまでもない。
また、熱源機側熱交換器3と直列または並列に氷蓄熱槽や水蓄熱槽(湯を含む)が設置されていても同様の効果を奏することは明らかである。また、熱源機Aが複数台並列に接続された空気調和装置においても同様の効果を奏することは明らかである。
また、空気調和装置に限らず、蒸気圧縮式の冷凍サイクル応用品で、熱源機側熱交換器が内蔵されたユニットと利用側熱交換器が内蔵されたユニットが離れて設置されるものであれば、同様の効果を奏することは明らかである。
【0054】
実施の形態2.
図7は、この発明の実施の形態2による冷凍サイクル装置の一例として、空気調和装置の冷媒回路を示す図である。図7において、符号B〜D、1〜9及び8a、9aは、実施の形態1と同様のものであるから、詳細な説明を省略する。
【0055】
次に、12aは高温高圧のガス冷媒を冷却・液化する冷却手段(冷却装置)、12bは低圧二相冷媒をガス化する加熱手段(加熱装置)、13は上記加熱手段12bの出口部に直列に設けられた異物捕捉手段(異物捕捉装置)である。14aは上記異物捕捉手段13の出口部に設けられた第1の電磁弁、14bは上記加熱手段12bの入口部に設けられた第2の電磁弁である。
【0056】
10は第1の切換弁であり、熱源機側熱交換器3の冷房運転時の出口端、四方弁2の暖房運転時の出口端、上記冷却手段12aの入口端、上記電磁弁14aの出口端の4箇所のうち、運転モ−ドに応じて、以下のような接続切換を行うものである。すなわち、冷房洗浄運転時には熱源機側熱交換器3の冷房運転時の出口端と冷却手段12aの入口端とを接続し、かつ電磁弁14aの出口端と四方弁2の冷房運転時の入口端(暖房運転時の出口端)を接続する。
また、暖房洗浄運転時には、四方弁2の暖房運転時の出口端と冷却手段12aの入口端とを接続し、かつ電磁弁14aの出口端と熱源機側熱交換器3の暖房運転時の入口端(冷房運転時の出口端)とを接続する。
【0057】
11は第2の切換弁であり、冷房洗浄運転時及び冷房通常運転時には、冷却手段12aの出口端を第1の操作弁4に接続し、暖房洗浄運転時及び暖房通常運転時には、冷却手段12aの出口端を第2の操作弁7に接続し、かつ、冷房洗浄運転時には電磁弁12bの入口端を第2の操作弁7に接続し、暖房洗浄運転時には電磁弁12bの入口端を第1の操作弁4に接続するものである。
14cは第3の電磁弁であり、第1の切換弁10の熱源機側熱交換器3への接続端と、第2の切換弁11の第1の操作弁4への接続端との間を接続する配管途中に設けられた電磁弁である。14dは第4の電磁弁であり、第1の切換弁10の四方弁2への接続端と、第2の切換弁11の第2の操作弁7への接続端との間を接続する配管途中に設けられた電磁弁である。
【0058】
上記第1の切換弁10は、熱源機側熱交換器3の冷房運転時の出口端から冷却手段12aの入口端への冷媒の流通は許容するがその逆は許容しないように設けられた逆止弁10a、四方弁2の暖房運転時の出口端から冷却手段12aの入口端への冷媒の流通は許容するがその逆は許容しないように設けられた逆止弁10b、第1の電磁弁14aの出口端から熱源機側熱交換器3の冷房運転時の出口端への冷媒の流通は許容するがその逆は許容しないように設けられた逆止弁10c、第1の電磁弁14aの出口端から四方弁2の暖房運転時の出口端への冷媒の流通は許容するがその逆は許容しないように設けられた逆止弁10dより構成されているため、電気信号によらず各接続端の圧力により自己切換可能な切換弁である。
【0059】
上記冷却手段12aの冷却源は、空気・水のいずれでもよく、上記加熱手段12bの加熱源も空気・水のいずれでも、あるいはヒ−タ−でもよい。また、冷却手段12aと加熱手段12bは、第1の切換弁10と第2の切換弁11に挟まれた、高温高圧側の配管と低温低圧側の配管を熱的に接触させて、たとえば、二重管の外側配管として高温高圧側の配管、内側配管として低温低圧側の配管で構成することでもよい。すなわち、加熱手段12bと冷却手段12aとの間で熱移動させてもよい。
【0060】
以上のような構成により、熱源機Aは、油分離器9、分離油のバイパス路9a、冷却手段12a、加熱手段12b、異物捕捉手段13、第1の切換弁10、第2の切換弁11、第1の電磁弁14a、第2の電磁弁14b、第3の電磁弁14c、第4の電磁弁14dを内蔵している。
なお、加熱手段12bおよび異物捕捉手段13を含む冷媒回路部分を、本明細書では、第1のバイパス路とする。また、冷却手段12aを含む冷媒回路部分を、本明細書では、第2のバイパス路とする。
なおまた、この空気調和装置は冷媒としてHFCを使うものである。
【0061】
次に、CFCやHCFCを使った空気調和装置が老朽化した場合の、空気調和装置交換の手順を示す。CFCまたはHCFCを回収し、熱源機Aと室内機Bを図7に示すものと交換する。第1の接続配管Cと第2の接続配管Dは、HCFCを使った空気調和装置のものを再利用する。
熱源機Aには予めHFCが充填されているので、第1の操作弁4と第2の操作弁7は閉じたまま、室内機B、第1の接続配管C、第2の接続配管Dを接続状態で真空引きをし、その後第1の操作弁4と第2の操作弁7の開弁とHFCの追加充填を実施する。その後、まず洗浄運転を実施し、その後通常の空調運転を実施する。
【0062】
次に、洗浄運転の内容を図7に添って説明する。図中、実線矢印が冷房洗浄運転の流れを、破線矢印が暖房洗浄運転の流れを示す。
まず冷房洗浄運転について説明する。圧縮機1で圧縮された高温高圧のガス冷媒は、HFC用冷凍機油と共に圧縮機1を吐出され、油分離器9へ流入する。ここで、HFC用の冷凍機油は完全に分離され、ガス冷媒のみが、四方弁2を経て、熱源機側熱交換器3へと流入し、ここで空気・水など熱源媒体と熱交換器してある程度凝縮液化する。
【0063】
ある程度凝縮液化した冷媒は第1の切換弁10を経て冷却手段12aに流入し、ここで完全に凝縮液化して、第2の切換弁11、第1の操作弁4を経て第1の接続配管Cに流入する。
HFCの液冷媒が第1の接続配管Cを流れるときに、第1の接続配管Cに残留しているCFC・HCFC・鉱油・鉱油劣化物(以下残留異物と称する)を少しずつ洗浄してHFCの液冷媒と共に流れ、流量調整器5へ流入し、ここで低圧まで減圧されて低圧二相状態となり、利用側熱交換器6で空気などの利用側媒体と熱交換してある程度蒸発・ガス化する。
【0064】
ある程度蒸発・ガス化した気液二相状態の冷媒は第1の接続配管Cの残留異物と共に第2の接続配管Dに流入する。第2の接続配管Dに残留している残留異物は、ここを流れる冷媒が気液二相状態のため、流速も速く、かつ液冷媒と共に、残留異物は洗浄され、第1の接続配管Cより速い速度で洗浄される。
【0065】
その後、ある程度蒸発・ガス化した気液二相状態の冷媒は、第1の接続配管Cの残留異物と第2の接続配管Dの残留異物と共に、第2の操作弁7、第2の切換弁11、第2の電磁弁14bを経て、加熱手段12bへ流入し、ここで完全に蒸発・ガス化され、異物捕捉手段13へ流入する。残留異物は、沸点の違いにより相が異なり、固体異物・液体異物・気体異物の3種類に分類される。異物捕捉手段13では、固体異物と液体異物は完全にガス冷媒と分離・捕捉される。
【0066】
気体異物はその一部が捕捉され、一部は捕捉されない。その後ガス冷媒は、異物捕捉手段13で捕捉されなかった気体異物と共に第1の電磁弁14a、第1の切換弁10、四方弁2、アキュムレ−タ8を経て圧縮機1へ戻る。
油分離器9で、ガス冷媒と完全に分離されたHFC用冷凍機油はバイパス路9aを経て、異物捕捉手段13の下流で本流と合流して、圧縮機1へ戻るので、第1の接続配管Cや第2の接続配管Dに残留していた鉱油と混ざることはなく、HFC用冷凍機油はHFCに対して非相溶化することはなく、またHFC用冷凍機油は鉱油により劣化することはない。
【0067】
また、固形異物もHFC用冷凍機油と混合することはなく、HFC用冷凍機油は劣化しない。また、気体異物はHFC冷媒が冷媒回路を1サイクル循環して、異物捕捉手段13を1回通る間には一部が捕捉されるだけで、HFC用冷凍機油と気体異物は混合されるが、HFC用冷凍機油の劣化は化学反応で、急激には進まない。その一例を図2に示す。異物捕捉手段13を1回通る間に捕捉されなかった、気体異物はHFC冷媒の循環と共に何回も異物捕捉手段13を通るので、HFC用冷凍機油の劣化するよりも速く、異物捕捉手段13で捕捉すればよい。
【0068】
次に暖房洗浄運転の流れを説明する。圧縮機1で圧縮された高温高圧のガス冷媒はHFC用冷凍機油と共に圧縮機1を吐出され、油分離器9へ流入する。ここで、HFC用の冷凍機油は完全に分離され、ガス冷媒のみが四方弁2、第1の切換弁10を経て冷却手段12aへ流入する。
【0069】
ここで、ガス冷媒は冷却され、ある程度凝縮・液化する。ある程度凝縮・液化された気液二相状態の冷媒は第2の切換弁11、第2の操作弁7を経て第2の接続配管Dへ流入する。第2の接続配管に残留している残留異物は、ここを流れる冷媒が気液二相状態のため、流速も速く、かつ液冷媒と共に、残留異物は洗浄され、冷房洗浄運転時の第1の接続配管Cより速い速度で洗浄される。
【0070】
その後、ある程度凝縮・液化した冷媒は、第2の接続配管Dの残留異物と共に、利用側熱交換器6へと流入し、ここで空気など利用側媒体と熱交換して完全に凝縮液化する。
凝縮液化した冷媒は流量調整器5へ流入し、ここで低圧まで減圧されて低圧二相状態となり、第1の接続配管Cに流入する。気液二相状態のため、流速も速く、かつ液冷媒と共に、残留異物は洗浄され、冷房洗浄運転時の第1の接続配管Cより速い速度で洗浄される。第2の接続配管Dと第1の接続配管Cから洗浄された残留異物と共に、気液二相状態の冷媒は、第1の操作弁4、第2の切換弁11、第2の電磁弁14bを経て、加熱手段12bで加熱され、蒸発・ガス化され、異物捕捉手段13へ流入する。
【0071】
残留異物は、沸点の違いにより相が異なり、固体異物・液体異物・気体異物の3種類に分類される。異物捕捉手段13では、固体異物と液体異物は完全にガス冷媒と分離・捕捉される。気体異物はその一部が捕捉され、一部は捕捉されない。その後ガス冷媒は、異物捕捉手段13で捕捉されなかった気体異物と共に、第1の切換弁10、四方弁2を経て、熱源機側熱交換器3へ流入し、ここでは送風機などを停止して熱交換させずに通過させ、アキュムレ−タ8を経て圧縮機1へ戻る。
【0072】
油分離器9で、ガス冷媒と完全に分離されたHFC用冷凍機油はバイパス路9aを経て、異物捕捉手段13の下流で本流と合流して、圧縮機1へ戻るので、第1の接続配管Cや第2の接続配管Dに残留していた鉱油と混ざることはなく、HFC用冷凍機油はHFCに対して非相溶化することはなく、またHFC用冷凍機油は鉱油により劣化することはない。
【0073】
また、固形異物もHFC用冷凍機油と混合することはなく、HFC用冷凍機油は劣化しない。
また、気体異物はHFC冷媒が冷媒回路を1サイクル循環して、異物捕捉手段13を1回通る間には一部が捕捉されるだけで、HFC用冷凍機油と気体異物は混合されるが、HFC用冷凍機油の劣化は化学反応で、急激には進まない。その一例を図2に示す。
異物捕捉手段13を1回通る間に捕捉されなかった気体異物は、HFC冷媒の循環と共に何回も異物捕捉手段13を通るので、HFC用冷凍機油の劣化するよりも速く、異物捕捉手段13で捕捉すればよい。
異物捕捉手段13、油分離器9は、実施の形態1に示すものと全く同一のため、ここでは説明を省略する。
【0074】
次に、通常空調運転について、図8に添って説明する。図中、実線矢印が冷房通常運転の流れを、破線矢印が暖房通常運転の流れを示す。
まず冷房通常運転について説明する。圧縮機1で圧縮された高温高圧のガス冷媒は、HFC用冷凍機油と共に圧縮機1を吐出され、油分離器9へ流入する。ここで、HFC用の冷凍機油は完全に分離され、ガス冷媒のみが、四方弁2を経て、熱源機側熱交換器3へと流入し、ここで空気・水など熱源媒体と熱交換して凝縮液化する。
【0075】
凝縮液化した冷媒は、その大部分が第3の電磁弁14cを経由し、一方、一部が第1の切換弁10、冷却手段12a、第2の切換弁11を経由して、これらが合流後、第1の操作弁4に流入し、第1の接続配管Cを経て、流量調整器5へ流入し、ここで低圧まで減圧されて低圧二相状態となり、利用側熱交換器6で空気などの利用側媒体と熱交換して蒸発・ガス化する。蒸発・ガス化した冷媒は第2の接続配管D、第2の操作弁7、第4の電磁弁14d、四方弁2、アキュムレ−タ8を経て圧縮機1へ戻る。
【0076】
油分離器9で、ガス冷媒と完全に分離されたHFC用冷凍機油は、バイパス路9aを経て、四方弁2の下流で本流と合流して、圧縮機1へ戻る。
第1の電磁弁14a、第2の電磁弁14bは閉じられているので、異物捕捉手段13は閉鎖空間として隔離されており、洗浄運転中に捕捉した異物が、再び運転回路中に戻ることがない。また、実施の形態1と比べると、異物捕捉手段13を経由しないため、圧縮機1の吸入圧力損失が小さく、能力の低下が小さい。
【0077】
次に暖房通常運転の流れを説明する。圧縮機1で圧縮された高温高圧のガス冷媒は、HFC用冷凍機油と共に圧縮機1を吐出され、油分離器9へ流入する。ここで、HFC用の冷凍機油は完全に分離され、ガス冷媒のみが四方弁2を経て、大部分が第4の電磁弁14dを経由して、一方、一部が第1の切換弁10、冷却手段12a、第2の切換弁11を経由して、これらが合流後、第2の操作弁7に流入し、第2の接続配管Dを経て、利用側熱交換器6へと流入し、ここで空気など利用側媒体と熱交換して完全に凝縮液化する。
【0078】
凝縮液化した冷媒は流量調整器5へ流入し、ここで低圧まで減圧されて低圧二相状態となり、第1の接続配管C、第1の操作弁4、第3の電磁弁14cを経て、熱源機側熱交換器3へ流入し、ここで空気・水などの熱源媒体と熱交換して蒸発・ガス化する。蒸発・ガス化した冷媒は四方弁2、アキュムレ−タ8を経て圧縮機1へ戻る。
【0079】
油分離器9で、ガス冷媒と完全に分離されたHFC用冷凍機油は、バイパス路9aを経て、圧縮機1へ戻る。
第1の電磁弁14a、第2の電磁弁14bは閉じられているので、異物捕捉手段13は閉鎖空間として隔離されているので、洗浄運転中に捕捉した異物が、再び運転回路中に戻ることがない。また、実施の形態1と比べると、異物捕捉手段13を経由しないため、圧縮機1の吸入圧力損失が小さく、能力の低下が小さい。
【0080】
以上のように、油分離器9と異物捕捉手段13を熱源機Aに内蔵することで、熱源機Aと室内機Bのみを新規に交換し、第1の接続配管Cと第2の接続配管Dを交換しないで、老朽化したCFCまたはHCFCを用いた空気調和装置を新しいHFCを用いた空気調和装置に入れ替えることができる。このような方法によれば、既設配管再利用方法として、従来の洗浄方法1とは違って、洗浄装置を用いて専用の洗浄液(HCFC141bやHCFC225)で洗浄するということをしないので、オゾン層破壊の可能性は全く無く、また可燃性・毒性も皆無で、洗浄液残留の懸念も無く、洗浄液を回収する必要も無い。
【0081】
また、従来の洗浄方法2と違って、洗浄運転を3回繰り返してHFC冷媒やHFC冷凍機油を3回入れ替える必要がないため、必要なHFCや冷凍機油は1台分で済むためコスト・環境上有利である。また、交換用冷凍機油の管理も不要で、かつ冷凍機油過不足の危険性も全く発生しない。また、HFC用冷凍機油の非相溶化や冷凍機油の劣化の恐れも無い。
【0082】
第1の電磁弁14a、第2の電磁弁14b、第3の電磁弁14c、第4の電磁弁14dを設けたことで、洗浄運転時には異物捕捉手段13を通過して上記に示す洗浄効果を得つつ、洗浄運転後の通常運転時には、第1の電磁弁14a、第2の電磁弁14bは閉じて、異物捕捉手段13は閉鎖空間として隔離されているので、洗浄運転中に捕捉した異物が、再び運転回路中に戻ることがない。また、実施の形態1と比べると、異物捕捉手段13を経由しないため、圧縮機1の吸入圧力損失が小さく、能力の低下が小さい。
【0083】
また、冷却手段12a、加熱手段12b、第1の切換弁10、第2の切換弁11を設けたので、冷房・暖房に関わらず、洗浄運転時に第1の接続配管C、第2の接続配管Dに液冷媒または気液二相冷媒が流れるので、残留異物を洗浄するのに、洗浄効果が高く、洗浄時間を短くすることができる。
また、冷却手段12a、加熱手段12bにより熱交換量を制御できるので、外気温度や室内の負荷に関係なく、任意の条件時にほぼ同一の洗浄運転が可能で、効果・手間が一定化する。
【0084】
この実施の形態では、室内機Bが1台接続された例について説明したが、室内機Bが並列または直列に複数台接続された空気調和装置でも同様の効果を奏することは言うまでもない。
また、熱源機側熱交換器3と直列または並列に氷蓄熱槽や水蓄熱槽(お湯を含む)が設置されていても同様の効果を奏することは明らかである。
また、熱源機Aが複数台並列に接続された空気調和装置においても同様の効果を奏することは明らかである。
また、空気調和装置に限らず、蒸気圧縮式の冷凍サイクル応用品で、熱源機側熱交換器が内蔵されたユニットと利用側熱交換器が内蔵されたユニットが離れて設置されるものであれば、同様の効果を奏することは明らかである。
【0085】
実施の形態3.
図9は、この発明の実施の形態3による冷凍サイクル装置の一例として、空気調和装置の冷媒回路を示す図である。図9において、符号B〜D、1〜8及び8aは、実施の形態1及び2で説明したものと同様のものであるから、詳細な説明を省略する。また、符号10、11、12a、12b、13は、実施の形態2で説明したものと同様のものであるから、詳細な説明を省略する。
【0086】
次に、図9において、9は油分離器で、実施の形態1、2と同様のものであるが、第1の切換弁10と冷却手段12aの間に設けられている点が異なる。
また、9aは油分離器9の底部に端を発して異物捕捉手段13の下流側に戻るバイパス路で、実施の形態1、2と同様のものだが、戻し位置が異物捕捉手段13と第1の切換弁10との間である点が異なる。
また、15は第2の切換弁11と加熱手段12bとの間に設けられた第1流量制御手段、16は冷却手段12aと第2の切換弁11との間に設けられた第2の流量制御手段である。
【0087】
CCは第1の接続配管Cと第1の操作弁4の間に設けられた第3の接続配管、DDは第2の接続配管Dと第2の操作弁7の間に設けられた第4の接続配管である。
17aは第3の接続配管CCに設けられた第3の操作弁、17bは第4の接続配管DDに設けられた第4の操作弁、17cは第3の接続配管CCの第1の操作弁4と第3の操作弁17aとの間の配管と第1の切換弁10との間に設けられた第5の操作弁、17dは第3の接続配管CCの第3の操作弁17aより第1の接続配管C側の部分と第2の切換弁11との間に設けられた第6の操作弁、17eは第4の接続配管DDの第2の操作弁7と第4の操作弁17bとの間の配管と第1の切換弁10との間に設けられた第7の操作弁、17fは第4の接続配管DDの第4の操作弁17bより第2の接続配管D側の部分と第2の切換弁11との間に設けられた第8の操作弁である。
【0088】
Eは以上のように構成された洗浄機であり、油分離器9、バイパス路9a、冷却手段12a、加熱手段12b、異物捕捉手段13、第1の切換弁10、第2の切換弁11、第1の流量制御手段15、第2の流量制御手段16を内蔵したものである。この洗浄機Eは、第5〜第8の操作弁17c〜17fの部分から、全体の空気調和装置から脱着可能に接続されている。
なお、本明細書では、加熱手段12bおよび異物捕捉手段13を含む冷媒回路部分を、実施の形態2で記載したように、第1のバイパス路とする。また、油分離器9の有無に係わらず、冷却手段12aを含む冷媒回路部分を、第2のバイパス路とする。さらに、冷却手段12aを含まず、油分離器9だけが存在する場合を想定して、これを第3のバイパス路とする。
【0089】
また、18aは第1の接続配管Cと流量調整器5との間に設けられた第5の電磁弁、18bは第2の接続配管Dと利用側熱交換器6との間に設けられた第6の電磁弁、18cは第5の電磁弁18aの第1の接続配管C側接続端と第6の電磁弁18bの第2の接続配管D側接続端とを接続するバイパス路18dの配管途中に設けられた第7の電磁弁である。Fは、第5〜7の電磁弁18a〜18cを内蔵した室内バイパス機である。
なお、この空気調和装置は冷媒としてHFCを使うものである。
【0090】
次に、CFCやHCFCを使った空気調和装置が老朽化した場合の、空気調和装置交換の手順を示す。CFCまたはHCFCを回収し、熱源機Aと室内機Bを図9に示すものと交換する。第1の接続配管Cと第2の接続配管DはHCFCを使った空気調和装置のものを再利用する。第3の接続配管CCと第4の接続配管DDは新規に敷設する。洗浄機Eを、第5、第6の操作弁17c、17dを介して第3の接続配管CCに、かつ、第7、第8の操作弁17e、17fを介して第4の接続配管DDに接続する。第1の接続配管C、第2の接続配管Dを室内バイパス機Fを介して室内機Bに接続する。
【0091】
熱源機Aには予めHFCが充填されているので、第1の操作弁4と第2の操作弁7は閉じたまま、室内機B、第1の接続配管C、第2の接続配管D、第3の接続配管CC、第4の接続配管DD、洗浄機E、室内バイパス機Fを接続状態で真空引きをし、その後第1の操作弁4と第2の操作弁7の開弁とHFCの追加充填を実施する。
【0092】
その後、まず、第3,第4の操作弁17a,17bを閉弁し、第4〜第8の操作弁17c〜17fを開弁し、第5,6の電磁弁18a,18bを閉弁し、第7の電磁弁18cを開弁することで洗浄運転を実施する。その後、第3,第4の操作弁17a,17bを開弁し、第4〜第8の操作弁17c〜17fを閉弁し、第5,6の電磁弁18a,18bを開弁し、第7の電磁弁18cを閉弁することで通常の空調運転を実施する。
【0093】
次に、洗浄運転の内容を図9に添って説明する。図中、実線矢印が冷房洗浄運転の流れを、破線矢印が暖房洗浄運転の流れを示す。
まず冷房洗浄運転について説明する。圧縮機1で圧縮された高温高圧のガス冷媒はHFC用冷凍機油と共に圧縮機1を吐出され、四方弁2を経て、熱源機側熱交換器3へと流入し、ここで空気・水など熱源媒体と熱交換せずに通過し、第1の操作弁4、第5の操作弁17c、第1の切換弁10を経て油分離器9へ流入する。
【0094】
ここで、HFC用の冷凍機油は完全に分離され、ガス冷媒のみが、冷却手段12aに流入し、ここで凝縮液化して、第2の流量制御手段16で少し減圧されて気液二相状態となる。この気液二相状態の冷媒は第2の切換弁11、第6の操作弁17dを経て第1の接続配管Cに流入する。
【0095】
HFCの気液二相冷媒が第1の接続配管Cを流れるときに、第1の接続配管Cに残留しているCFC・HCFC・鉱油・鉱油劣化物(以下残留異物と称する)を気液二相状態のため比較的速く洗浄してHFCの気液二相冷媒と共に流れ、第7の電磁弁18cを経て、接続配管Cの残留異物と共に第2の接続配管Dに流入する。
【0096】
第2の接続配管Dに残留している残留異物は、ここを流れる冷媒が気液二相状態のため、流速も速く、かつ液冷媒と共に、残留異物は洗浄され、比較的速い速度で洗浄される。その後、気液二相状態の冷媒は、第1の接続配管Cの残留異物と第2の接続配管Dの残留異物と共に、第8の操作弁17f、第2の切換弁11を経て、第1の流量制御手段15で低圧まで減圧されて、加熱手段12bへ流入し、ここで蒸発・ガス化され、異物捕捉手段13へ流入する。
【0097】
残留異物は、沸点の違いにより相が異なり、固体異物・液体異物・気体異物の3種類に分類される。異物捕捉手段13では、固体異物と液体異物は完全にガス冷媒と分離・捕捉される。気体異物はその一部が捕捉され、一部は捕捉されない。
【0098】
その後ガス冷媒は、異物捕捉手段13で捕捉されなかった気体異物と共に第1の切換弁10、第7の操作弁17e、第2の操作弁7、四方弁2、アキュムレ−タ8を経て圧縮機1へ戻る。
油分離器9で、ガス冷媒と完全に分離されたHFC用冷凍機油は、バイパス路9aを経て、異物捕捉手段13の下流側で本流と合流して、圧縮機1へ戻るので、第1の接続配管Cや第2の接続配管Dに残留していた鉱油と混ざることはなく、HFC用冷凍機油はHFCに対して非相溶化することはなく、またHFC用冷凍機油は鉱油により劣化することはない。
【0099】
また、固形異物もHFC用冷凍機油と混合することはなく、HFC用冷凍機油は劣化しない。
また、気体異物はHFC冷媒が冷媒回路を1サイクル循環して、異物捕捉手段13を1回通る間には一部が捕捉されるだけで、HFC用冷凍機油と気体異物は混合されるが、HFC用冷凍機油の劣化は化学反応で、急激には進まない。その一例を図2に示す。異物捕捉手段13を1回通る間に捕捉されなかった、気体異物はHFC冷媒の循環と共に何回も異物捕捉手段13を通るので、HFC用冷凍機油の劣化するよりも速く、異物捕捉手段13で捕捉すればよい。
【0100】
次に暖房洗浄運転の流れを説明する。圧縮機1で圧縮された高温高圧のガス冷媒はHFC用冷凍機油と共に圧縮機1を吐出され、四方弁2、第2の操作弁7、第7の操作弁17e、第1の切換弁10を経て油分離器9へ流入する。ここで、HFC用の冷凍機油は完全に分離され、ガス冷媒のみが冷却手段12aへ流入する。ここで、ガス冷媒は冷却され、凝縮・液化する。
【0101】
凝縮・液化された液冷媒は、第2の流量制御手段16で少し減圧され、気液二相状態となり、第2の切換弁11、第8の操作弁17fを経て第2の接続配管Dへ流入する。第2の接続配管に残留している残留異物は、ここを流れる冷媒が気液二相状態のため、流速も速く、かつ液冷媒と共に、残留異物は洗浄され、比較的速い速度で洗浄される。
【0102】
その後、その気液二相冷媒は、第2の接続配管Dの残留異物と共に、第7の電磁弁18cを経て、第1の接続配管Cに流入する。ここでは、気液二相状態のため、流速も速く、かつ液冷媒と共に、残留異物は洗浄され、比較的速い速度で洗浄される。
【0103】
第2の接続配管Dと第1の接続配管Cから洗浄された残留異物と共に、気液二相状態の冷媒は、第6の操作弁17d、第2の切換弁11を経て、第1の流量制御手段15で低圧まで減圧されて、加熱手段12bへ流入し、ここで蒸発・ガス化され、異物捕捉手段13へ流入する。残留異物は、沸点の違いにより相が異なり、固体異物・液体異物・気体異物の3種類に分類される。
【0104】
異物捕捉手段13では、固体異物と液体異物は完全にガス冷媒と分離・捕捉される。気体異物はその一部が捕捉され、一部は捕捉されない。その後ガス冷媒は、異物捕捉手段13で捕捉されなかった気体異物と共に、第1の切換弁10、第5の操作弁17cを経て、熱源機側熱交換器3へ流入し、ここでは送風機などを停止して熱交換させずに通過させ、アキュムレ−タ8を経て圧縮機1へ戻る。
【0105】
油分離器9で、ガス冷媒と完全に分離されたHFC用冷凍機油は、バイパス路9aを経て、異物捕捉手段13の下流側で本流と合流して、圧縮機1へ戻るので、第1の接続配管Cや第2の接続配管Dに残留していた鉱油と混ざることはなく、HFC用冷凍機油はHFCに対して非相溶化することはなく、またHFC用冷凍機油は鉱油により劣化することはない。
【0106】
また、固形異物もHFC用冷凍機油と混合することはなく、HFC用冷凍機油は劣化しない。
また、気体異物はHFC冷媒が冷媒回路を1サイクル循環して、異物捕捉手段13を1回通る間には一部が捕捉されるだけで、HFC用冷凍機油と気体異物は混合されるが、HFC用冷凍機油の劣化は化学反応で、急激には進まない。その一例を図2に示す。異物捕捉手段13を1回通る間に捕捉されなかった気体異物は、HFC冷媒の循環と共に何回も異物捕捉手段13を通るので、HFC用冷凍機油の劣化するよりも速く、異物捕捉手段13で捕捉すればよい。
異物捕捉手段13、油分離器9は、実施の形態1に示すものと全く同一のため、ここでは説明を省略する。
【0107】
次に、通常空調運転について、図10に添って説明する。図中、実線矢印が冷房通常運転の流れを、破線矢印が暖房通常運転の流れを示す。
まず冷房通常運転について説明する。圧縮機1で圧縮された高温高圧のガス冷媒は圧縮機1を吐出され、四方弁2を経て、熱源機側熱交換器3へと流入し、ここで空気・水など熱源媒体と熱交換して凝縮液化する。凝縮液化した冷媒は、第1の操作弁4、第3の操作弁17a、第1の接続配管C、第5の電磁弁18aを経て、流量調整器5へ流入し、ここで低圧まで減圧されて低圧二相状態となり、利用側熱交換器6で空気などの利用側媒体と熱交換して蒸発・ガス化する。
【0108】
蒸発・ガス化した冷媒は、第6の電磁弁18b、第2の接続配管D、第4の操作弁17b、第2の操作弁7、四方弁2、アキュムレ−タ8を経て圧縮機1へ戻る。
第5〜8の操作弁17c〜17fは閉じられているので、異物捕捉手段13は閉鎖空間として隔離されているので、洗浄運転中に捕捉した異物が、再び運転回路中に戻ることがない。また、実施の形態1と比べると、異物捕捉手段13を経由しないため、圧縮機1の吸入圧力損失が小さく、能力の低下が小さい。
【0109】
次に暖房通常運転の流れを説明する。圧縮機1で圧縮された高温高圧のガス冷媒は、圧縮機1を吐出され、四方弁2を経て、第2の操作弁7に流入し、第4の操作弁17b、第2の接続配管D、第6の電磁弁18bを経て、利用側熱交換器6へと流入し、ここで空気など利用側媒体と熱交換器して凝縮液化する。
【0110】
凝縮液化した冷媒は、流量調整器5へ流入し、ここで低圧まで減圧されて低圧二相状態となり、第5の電磁弁18a、第1の接続配管C、第3の操作弁17a、第1の操作弁4、熱源機側熱交換器3へ流入し、ここで空気・水などの熱源媒体と熱交換して蒸発・ガス化する。蒸発・ガス化した冷媒は、四方弁2、アキュムレ−タ8を経て圧縮機1へ戻る。
【0111】
第5〜8の操作弁17c〜17fは閉じられているので、異物捕捉手段13は閉鎖空間として隔離されているので、洗浄運転中に捕捉した異物が、再び運転回路中に戻ることがない。また、実施の形態1と比べると、異物捕捉手段13を経由しないため、圧縮機1の吸入圧力損失が小さく、能力の低下が小さい。また、実施の形態2と違って、冷却手段12aへは冷媒が流れないので、暖房能力のロスもない。
【0112】
以上のように、油分離器9と異物捕捉手段13を洗浄機Eに内蔵することで、熱源機Aと室内機Bのみを新規に交換し、第1の接続配管Cと第2の接続配管Dを交換しないで、老朽化したCFCまたはHCFCを用いた空気調和装置を新しいHFCを用いた空気調和装置に入れ替えることができる。このような方法により、既設配管再利用方法として、従来の洗浄方法1とは違って、洗浄装置を用いて専用の洗浄液(HCFC141bやHCFC225)で洗浄するということをしないので、オゾン層破壊の可能性は全く無く、また可燃性・毒性も皆無で、洗浄液残留の懸念も無く、洗浄液を回収する必要も無い。
【0113】
また、従来の洗浄方法2と違って、洗浄運転を3回繰り返してHFC冷媒やHFC冷凍機油を3回入れ替える必要がないため、必要なHFCや冷凍機油は1台分で済むためコスト・環境上有利である。また、交換用冷凍機油の管理も不要で、かつ冷凍機油過不足の危険性も全く発生しない。また、HFC用冷凍機油の非相溶化や冷凍機油の劣化の恐れも無い。
【0114】
また、第5〜8の操作弁17c〜17fを設けたことで、洗浄運転時には異物捕捉手段13を通過して上記に示す洗浄効果を得つつ、洗浄運転後の通常運転時には、第5〜8の操作弁17c〜17fは閉じて、異物捕捉手段13は閉鎖空間として隔離されているので、洗浄運転中に捕捉した異物が、再び運転回路中に戻ることがない。また、実施の形態1と比べると、異物捕捉手段13を経由しないため、圧縮機1の吸入圧力損失が小さく、能力の低下が小さい。
【0115】
また、冷却却手段12a、加熱手段12b、第1の切換弁10、第2の切換弁11を設けたので、冷房・暖房に関わらず、洗浄運転時に第1の接続配管C、第2の接続配管Dに液冷媒または気液二相冷媒が流れるので、残留異物を洗浄するのに、洗浄効果が高く、洗浄時間を短くすることができる。
また、冷却手段12a、加熱手段12bにより熱交換量を制御できるので、外気温度や室内の負荷に関係なく、任意の条件時にほぼ同一の洗浄運転が可能で、効果・手間が一定化する。
【0116】
また、第1の流量制御手段15と第2の流量制御手段16を設けたので、第1、第2の接続配管C,Dを流れる冷媒を必ず気液二相状態とすることができるので、さらに残留異物を洗浄するのに、洗浄効果が高く、洗浄時間を短くすることができる。また、第1、第2の接続配管C,Dを流れる気液二相冷媒の圧力と乾き度も制御できるので、さらに任意の条件時にほぼ同一の洗浄運転が可能で、効果・手間が一定化する。
【0117】
また、室内バイパス機Fを設けたので、第1、第2の接続配管C,Dを流れる冷媒の状態をほぼ同じにできるので、均一な洗浄運転が可能で、効果・手間が一定化する。また、残留異物が新しい室内機Bに流入することがないので、室内機Bの汚染を防ぐことができる。
【0118】
また、油分離器9、バイパス路9a、冷却手段12a、加熱手段12b、異物捕捉手段13、第1の切換弁10、上記第2の切換弁11、第1の流量制御手段15、第2の流量制御手段16を洗浄機Eに内蔵したので、熱源機Aを小型化・低コスト化できる。また、熱源機Aは、第1,第2の接続配管C,Dを新規に敷設する場合にも共通の熱源機とすることができる。
【0119】
また、洗浄機Eが第5〜第8の操作弁17c〜17fの部分で全体の空気調和装置から脱着可能に接続されているので、洗浄運転後にこれら操作弁を閉じてから洗浄機Eの内部の冷媒を回収し、空気調和装置から取り外し、別の同様の空気調和装置に取り付けて、洗浄運転を実施することができる。
【0120】
この実施の形態では、室内機Bが1台接続された例について説明したが、室内機Bが並列または直列に複数台接続された空気調和装置でも同様の効果を奏することは言うまでもない。また、熱源機側熱交換器3と直列または並列に氷蓄熱槽や水蓄熱槽(湯を含む)が設置されていても同様の効果を奏することは明らかである。
【0121】
また、熱源機Aが複数台並列に接続された空気調和装置においても同様の効果を奏することは明らかである。また、空気調和装置に限らず、蒸気圧縮式の冷凍サイクル応用品で、熱源機側熱交換器が内蔵されたユニットと利用側熱交換器が内蔵されたユニットが離れて設置されるものであれば、同様の効果を奏することは明らかである。
また、この実施の形態では、洗浄機Eはひとつの空気調和装置に1個だけ設置されているが、複数個設置されても同様の効果を呈することは明白である。
【0122】
実施の形態4.
この発明の実施の形態4においては、実施の形態3の図9において、洗浄機Eの油分離器9と第2の切換弁11の間に、鉱油を注入する注入口を設けるか、鉱油のタンクを設ける。洗浄運転時に、この鉱油を第1、第2の接続配管C,Dに供給し、冷凍機油がスラッジ化した残留異物をこの鉱油に溶解させることで、洗浄し、異物捕捉手段13で、実施の形態3と同様に捕捉させる。
【0123】
実施の形態5.
この発明の実施の形態5においては、実施の形態3の図9において、洗浄機Eの油分離器9と第2の切換弁11の間に、水を注入する注入口を設けるか、水のタンクを設ける。洗浄運転時に、この水を第1、第2の接続配管C,Dに供給し、塩化鉄をイオン化させることで、洗浄し、異物捕捉手段13で、実施の形態3と同様に捕捉させる。
このときの水分のうち、低圧冷媒に過飽和分は液体水分となるが、この水分は鉱油より密度が大きいので、異物捕捉手段13の底部に滞留する。
低圧冷媒に飽和した水分は、熱源機Aまたは第1、第2、第3、第4の接続配管C,D,CC,DDのいずれかにドライヤ(水分吸着手段)を設けることで、ドライヤに吸着させ、冷媒回路内の水分を低減させることができる。
【0124】
なお、実施の形態2においても、実施の形態3で説明したように、室内バイパス機Fを装着することができる。
また、実施の形態5においても、実施の形態3に類似して、加熱手段12bおよび異物捕捉手段13を含む冷媒回路部分(第1のバイパス路)と、冷却手段12aを含む冷媒回路部分(第2のバイパス路)とを、冷媒回路本管から閉鎖あるいは分離することができる。
その他、逐一に例示しないが、この発明は、そのような組み合わせあるいは変形をも含むものである。
【0125】
【発明の効果】
この発明は以上のように構成されているので、以下のような効果を奏する。
請求項1〜5のいずれかに記載の発明によれば、冷媒回路の本管に対してバイパスするバイパス管に、すくなくとも異物捕捉手段を設けたので、熱源機や室内機を新規に置換したあと、通常運転に先立ち、バイパス管により接続配管中の異物を洗浄することができる。
【0126】
請求項6に記載の発明によれば、熱源機と室内機を新規に置換した冷凍サイクル装置において、冷媒をバイパス回路に循環させて接続配管中の異物を捕捉するようにした後、バイパス回路を閉じて、通常運転をすることができる。通常運転中は、異物捕捉手段を含むバイパス回路は、閉鎖空間として隔離することができ、洗浄運転中に捕捉した異物が、再び運転回路中に戻ることがない。
また、通常運転中に冷媒がバイパス回路を通らないようにすることができるため、圧縮機の吸入圧力損失が小さく、能力の低下が小さい。
また、冷媒としてHFCを用いるので、環境保護上に問題のない冷凍サイクル装置の運転をすることができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による冷凍サイクル装置の一例として、空気調和装置の冷媒回路を示す図。
【図2】 HFC用冷凍機油に塩素が混入している場合(175℃)の劣化の時間変化を示す図。
【図3】図3は異物捕捉手段13の一例を図示したものである。
【図4】鉱油とCFCとの溶解度曲線、及び鉱油とHCFCとの溶解度曲線を示す図。
【図5】 油分離器の構造を示す図。
【図6】 油分離器におけるガス冷媒の流速と分離効率の関係を示す図。
【図7】 この発明の実施の形態2による冷凍サイクル装置の一例として、空気調和装置の冷媒回路を示す図。
【図8】 この発明の実施の形態2による冷凍サイクル装置の通常空調運転の状態を示す図。
【図9】 この発明の実施の形態3による冷凍サイクル装置の一例として、空気調和装置の冷媒回路を示す図。
【図10】 この発明の実施の形態3による冷凍サイクル装置の通常空調運転の状態を示す図。
【図11】 従来のセパレ−ト形の空気調和装置の冷媒回路を示す図。
【図12】 鉱油混入時のHFC用冷凍機油とHFC冷媒との溶解性を示す臨界溶解度曲線を示す図。
【図13】 従来の空気調和装置の洗浄方法を説明する図。
【符号の説明】
A 熱源機、 B 室内機、 C 第1の接続配管、 D 第2の接続配管、E 洗浄機、 CC 第3の接続配管、 DD 第4の接続配管、 1 圧縮機1、 2 四方弁、 3 熱源機側熱交換器、 4 第1の操作弁、 5 流量調整器、 6 利用側熱交換器、 7 第2の操作弁、 8 アキュムレ−タ、 9 油分離器、 10 第1の切換弁、 11 第2の切換弁、 12a冷却手段、 12b 加熱手段、 13 異物捕捉手段、 14a〜14d 第1〜第4の電磁弁、 15 第1の流量制御手段、 16 第2の流量制御手段、 17a〜17f 第3〜第8の操作弁、 18a〜18c 第5〜第7の電磁弁、 51 容器、 52 流出配管、 53 フィルタ、 54 鉱油、55 流入配管、 56 イオン交換樹脂。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to refrigerant replacement in a refrigeration cycle apparatus. More specifically, the present invention relates to a refrigeration cycle apparatus in which only a heat source unit and an indoor unit are newly replaced, and a refrigerant is newly replaced without replacing a connection pipe connecting the heat source unit and the indoor unit, and a replacement method and an operation method thereof. It is.
[0002]
[Prior art]
FIG. 11 shows a separate type air conditioner that has been conventionally used. In FIG. 11, A is a heat source machine, and includes a compressor 1, a four-way valve 2, a heat source machine side heat exchanger 3, a first operation valve 4, a second operation valve 7, and an accumulator 8. . B is an indoor unit and includes a flow rate regulator 5 (or a flow rate control valve 5) and a use side heat exchanger 6. The heat source unit A and the indoor unit B are installed at separate locations and are connected by a first connection pipe C and a second connection pipe D to form a refrigeration cycle.
[0003]
One end of the first connection pipe C is connected to the heat source apparatus side heat exchanger 3 via the first operation valve 4, and the other end of the first connection pipe C is connected to the flow rate regulator 5. One end of the second connection pipe D is connected via the four-way valve 2 and the second operation valve 7, and the other end of the second connection pipe D is connected to the use side heat exchanger 6. An oil return hole 8 a is provided in the lower part of the U-shaped outflow pipe of the accumulator 8.
[0004]
The flow of the refrigerant in the air conditioner will be described with reference to FIG. In the figure, solid arrows indicate the flow of cooling operation, and broken arrows indicate the flow of heating operation.
First, the flow of the cooling operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 passes through the four-way valve 2 and flows into the heat source machine side heat exchanger 3 where it heat-exchanges with a heat source medium such as air and water to be condensed and liquefied. The condensed and liquefied refrigerant flows into the flow rate regulator 5 via the first operation valve 4 and the first connection pipe C, where the refrigerant is decompressed to a low pressure to be in a low pressure two-phase state, and air is used in the use side heat exchanger 6. Exchanges heat with the medium on the use side and evaporates and gasifies. The evaporated and gasified refrigerant returns to the compressor 1 through the second connection pipe D, the second operation valve 7, the four-way valve 2, and the accumulator 8.
[0005]
Next, the flow of heating operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 flows into the use-side heat exchanger 6 through the four-way valve 2, the second operation valve 7, and the second connection pipe D, where the use side such as air is used. Exchanges heat with the medium and condensates. The condensed and liquefied refrigerant flows into the flow rate regulator 5, where it is decompressed to a low pressure to be in a low pressure two-phase state, passes through the first connection pipe C and the first operation valve 4, and then in the heat source machine side heat exchanger 3. Evaporates and gasifies by exchanging heat with heat source media such as air and water. The evaporated and gasified refrigerant returns to the compressor 1 through the four-way valve 2 and the accumulator 8.
[0006]
Conventionally, CFC (chlorofluorocarbon) and HCFC (hydrochlorofluorocarbon) have been used as the refrigerant of such an air conditioner, but chlorine contained in these molecules forms an ozone layer in the stratosphere. In order to destroy them, CFCs have already been abolished, and HCFCs have also started production restrictions.
[0007]
Instead of these, an air conditioner using HFC (hydrofluorocarbon) that does not contain chlorine in the molecule has been put into practical use. When an air conditioner using CFC or HCFC is aged, these refrigerants are completely abolished and production regulated, so it is necessary to replace them with an air conditioner using HFC.
Heat source unit A and indoor unit B are different from HCFC in refrigeration oil, organic materials, and heat exchangers used in HFC, so it is necessary to replace them with those dedicated to HFC, and originally heat source unit A for CFC / HCFC Since the indoor unit B is old, it needs to be replaced, and replacement is relatively easy.
[0008]
On the other hand, the first connection pipe C and the second connection pipe D that connect the heat source unit A and the indoor unit B are new when the pipe length is long or when they are buried in a building such as a pipe shaft or a ceiling. Since it is difficult to replace the pipes and they do not age, if the first connection pipe C and the second connection pipe D used in the air conditioner using CFC or HCFC can be used as they are, pipe work Can be simplified.
[0009]
However, the first connection pipe C and the second connection pipe D used in the air conditioner using CFC or HCFC include mineral oil or CFC / refrigeration oil for the air conditioner using CFC or HCFC. There is a residual HCFC or refrigeration oil that has become sludge.
[0010]
FIG. 12 is a diagram showing a critical solubility curve indicating the solubility of refrigeration oil for HFC and HFC refrigerant (R407C) when mineral oil is mixed, the horizontal axis is the oil amount (wt%), and the vertical axis is the temperature (° C.). Show.
When a certain amount or more of mineral oil is mixed in the refrigerating machine oil (synthetic oil such as ester oil or ether oil) of the air conditioner using HFC, the compatibility with the HFC refrigerant is lost, as shown in FIG. When the liquid refrigerant is accumulated in the compressor 8, the HFC refrigerating machine oil separates and floats on the liquid refrigerant, so that the refrigerating machine oil does not return to the compressor from the oil return hole 8a at the bottom of the accumulator 8. The sliding part of the image is seized.
Moreover, when mineral oil is mixed, the refrigeration oil for HFC deteriorates. Moreover, when CFC and HCFC are mixed, the refrigeration oil for HFC deteriorates due to the chlorine component contained therein. Moreover, the HFC refrigerating machine oil deteriorates due to the chlorine component contained in the sludge resulting from the deterioration of the CFC / HCFC refrigerating machine oil.
[0011]
For this reason, the 1st connection piping C and the 2nd connection piping D which were conventionally used with the air harmony device using CFC and HCFC are washed with exclusive cleaning fluid (HCFC141b and HCFC225) using a washing device. (Hereinafter, this is referred to as cleaning method 1).
Further, there is a method disclosed in JP-A-7-83545. As shown in FIG. 13, the HFC heat source unit A, the HFC indoor unit B, the first connection pipe C, and the second connection pipe D are connected without using a cleaning device (step 100). After filling with HFC and HFC refrigerating machine oil (step 101), it is cleaned by operation (step 102), and after that, the refrigerant and refrigerating machine oil in the air conditioner are recovered and filled with new refrigerant and refrigerating machine oil ( It has been proposed (step 103, 105) that the cleaning by the operation is performed again a predetermined number of times (steps 104 and 105) (hereinafter referred to as the cleaning method 2).
[0012]
[Problems to be solved by the invention]
The above-described conventional cleaning method 1 has the following problems.
First, since the cleaning liquid to be used is HCFC and the ozone layer depletion coefficient is not zero, it is contradictory to replacing the refrigerant of the air conditioner from HCFC to HFC. In particular, HCFC 141b has a large ozone depletion coefficient of 0.11, which is a problem.
[0013]
Secondly, the cleaning liquid used is not completely safe in terms of flammability and toxicity. HCFC141b is flammable and has low toxicity. HCFC225 is nonflammable but has low toxicity.
Third, when the boiling point is high (HCFC 141b is 32 ° C., HCFC 225 is 51.1-56.1 ° C.) and the outside air temperature is lower than this boiling point, especially in winter, the cleaning liquid is in a liquid state after cleaning, It remains in the connection pipe C and the second connection pipe D. Since these cleaning liquids are HCFCs, they contain a chlorine component, and the refrigeration oil for HFC deteriorates.
[0014]
Fourthly, it is necessary to recover the entire amount of the cleaning liquid from the viewpoint of the environment, and it takes time and effort for cleaning work such as re-cleaning with high-temperature nitrogen gas or the like so that the third problem does not occur.
[0015]
Further, the conventional cleaning method 2 has the following problems.
First, cleaning with an HFC refrigerant requires three times in the embodiment of JP-A-7-83545, and the HFC refrigerant used in each cleaning operation contains impurities, so it can be reused in situ after recovery. Is impossible. That is, a refrigerant that is three times the normal amount of refrigerant to be charged is necessary, which is a problem in terms of cost and environment.
[0016]
Secondly, since the refrigeration oil is also replaced after each washing operation, the refrigeration oil three times the amount of the normal filling refrigeration oil is necessary, which is a problem in terms of cost and environment. Moreover, since the HFC refrigerating machine oil is ester oil or ether oil and has high hygroscopicity, water management of the refrigerating machine oil for replacement is also required. In addition, since the refrigeration oil is sealed by the person to be washed, there is a risk of excess and deficiency, which may cause problems in subsequent operations (when overfilling, the compressed part is destroyed by the oil compression, the motor Overheating and poor lubrication when underfilled).
[0017]
The present invention has been made in order to solve the above-described conventional problems, and the existing refrigeration cycle apparatus using a refrigerant that is considered to have a problem in environmental protection is considered to have no problem in environmental protection. An object of the present invention is to provide a refrigeration cycle apparatus that replaces with a refrigerant, and a replacement method and an operation method thereof.
[0018]
[Means for Solving the Problems]
  The operation method of the refrigeration cycle apparatus according to the invention of claim 1 is:
  Reusing the connection piping used in the refrigeration cycle device for CFC refrigerant or HCFC refrigerant, a heat source unit having a compressor and a heat source unit side heat exchanger, an indoor unit having a flow rate regulator and a use side heat exchanger, In the refrigeration cycle apparatus including the first refrigerant circuit for circulating the HFC refrigerant during
  A first bypass passage having a foreign matter catching means for bypassing the refrigerant circuit between the use side heat exchanger and the compressor and catching residual foreign matter remaining in the connection pipe.Further comprising a refrigerant heating means on the upstream side of the foreign matter capturing means of the first bypass path,
  Prior to normal operation, the refrigerant is circulated through the first bypass path,The refrigerant is heated to the gas phase by the heating means,The foreign matter has been introduced by the foreign matter capturing means.HFCResidual foreign matter remaining in the connection pipe is captured from the refrigerant.
[0019]
  The operation method of the refrigeration cycle apparatus according to the invention of claim 2 is:
  Reusing the connection piping used in the refrigeration cycle device for CFC refrigerant or HCFC refrigerant, a heat source unit having a compressor and a heat source unit side heat exchanger, an indoor unit having a flow rate regulator and a use side heat exchanger, In the refrigeration cycle apparatus including the first refrigerant circuit for circulating the HFC refrigerant during
  A first bypass passage that bypasses the refrigerant circuit between the use-side heat exchanger and the compressor and includes foreign matter capturing means for capturing residual foreign matter remaining in the connection pipe; Bypassing the refrigerant circuit between the heat source machine side heat exchanger of the refrigerant circuit of 1 and the flow rate regulator, and having a second cooling path having a cooling means for the refrigerantPrepared,
  Prior to normal operation, the refrigerant is circulated through the first bypass passage and flows in by the foreign matter capturing means.HFCCapturing residual foreign matter remaining in the connection pipe from the refrigerantWith
  The refrigerant is circulated through the second bypass circuit, and the cooling means cools the refrigerant into a liquid phase or a gas-liquid two-phase state.Is.
[0020]
  The operation method of the refrigeration cycle apparatus according to the invention of claim 3 is as follows:
  Reusing the connection piping used in the refrigeration cycle device for CFC refrigerant or HCFC refrigerant, a heat source unit having a compressor and a heat source unit side heat exchanger, an indoor unit having a flow rate regulator and a use side heat exchanger, In the refrigeration cycle apparatus including the first refrigerant circuit for circulating the HFC refrigerant during
A first bypass passage having a foreign matter catching means for bypassing the refrigerant circuit between the use side heat exchanger and the compressor and catching the residual foreign matter remaining in the connection pipe; A refrigerant heating means is provided on the upstream side of the foreign matter capturing means in one bypass path, and the refrigerant circuit between the heat source side heat exchanger of the first refrigerant circuit and the flow rate regulator is bypassed. A second bypass passage having a cooling means for the refrigerant,
Prior to normal operation, the refrigerant is circulated through the first bypass passage, the refrigerant is heated to a gas phase by the heating means, and the foreign matter trapping means is left in the connecting pipe from the inflowing HFC refrigerant. While catching residual foreign matter
  The refrigerant is circulated through the second bypass circuit, and the cooling means cools the refrigerant into a liquid phase or a gas-liquid two-phase state.A method for operating a refrigeration cycle apparatus.
[0021]
According to a fourth aspect of the present invention, there is provided a method for operating a refrigeration cycle apparatus, wherein in the above operation method, heat exchange for heating and cooling is performed between the heating means and the cooling means.
[0022]
  The operation method of the refrigeration cycle apparatus according to the invention of claim 5 is:
  Reusing the connection piping used in the refrigeration cycle apparatus for CFC refrigerant and HCFC refrigerant, a heat source unit having a compressor and a heat source unit side heat exchanger, and an indoor unit having a flow rate regulator and a use side heat exchanger In the refrigeration cycle apparatus including the first refrigerant circuit for circulating the HFC refrigerant, the refrigerant circuit between the use side heat exchanger and the compressor was bypassed and remained in the connection pipe. A first bypass circuit having a foreign matter catching means for catching residual foreign matter, and further comprising an indoor unit bypass passage capable of performing bypass control of the flow rate regulator and the use side heat exchanger,
  Prior to normal operation, the refrigerant is bypassed to the indoor unit bypass passage, and the refrigerant is circulated to the first bypass circuit, and flows in by the foreign matter capturing means.HFCResidual foreign matter remaining in the connection pipe is captured from the refrigerant.
[0023]
The operation method of the refrigeration cycle apparatus according to the invention of claim 6 is the above operation method, wherein the refrigerant is circulated through at least the first bypass circuit and foreign matter in the refrigerant is caught by the foreign matter catching means. The first bypass circuit or the second bypass circuit is closed, and the refrigerant is circulated through the first refrigerant circuit for normal operation.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and description is abbreviate | omitted or simplified. Embodiment 1 FIG.
FIG. 1 is a diagram showing a refrigerant circuit of an air conditioner as an example of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
In FIG. 1, A is a heat source machine, and includes a compressor 1, a four-way valve 2, a heat source machine side heat exchanger 3, a first operation valve 4, a second operation valve 7, an accumulator 8, and an oil separator 9. (Oil separation means) and foreign matter catching means 13 are incorporated.
[0025]
The oil separator 9 is provided in the discharge pipe of the compressor 1 and separates refrigeration oil discharged from the compressor 1 together with the refrigerant. The foreign matter catching means 13 is provided between the four-way valve 2 and the accumulator 8. Reference numeral 9 a denotes a bypass passage that starts from the bottom of the oil separator 9 and reaches the downstream side from the outlet of the foreign matter capturing means 13. An oil return hole 8 a is provided in the lower part of the U-shaped outflow pipe of the accumulator 8.
B is an indoor unit and includes a flow rate regulator 5 (or a flow rate regulating valve 5) and a use side heat exchanger 6.
[0026]
C is a first connection pipe, one end of which is connected to the heat source unit side heat exchanger 3 and the first operation valve 4, and the other end is connected to the flow rate regulator 5.
D is a second connection pipe, one end of which is connected via the four-way valve 2 and the second operation valve 7, and the other end is connected to the use side heat exchanger 6.
The heat source unit A and the indoor unit B are installed at separate locations and are connected by a first connection pipe C and a second connection pipe D to form a refrigeration cycle.
This air conditioner uses HFC as a refrigerant.
[0027]
Next, a procedure for replacing the air conditioner when the air conditioner using the CFC or HCFC has deteriorated will be described. CFC or HCFC is collected, and heat source unit A and indoor unit B are replaced with those shown in FIG. As the first connection pipe C and the second connection pipe D, those of the air conditioner using HCFC are reused. Since the heat source machine A is pre-filled with HFC, the indoor unit B, the first connection pipe C, and the second connection pipe D are connected while the first operation valve 4 and the second operation valve 7 are closed. Vacuuming is performed in the connected state, and then the first operation valve 4 and the second operation valve 7 are opened and HFC is additionally charged. Thereafter, a normal air-conditioning operation / cleaning operation is performed.
[0028]
Next, the contents of the normal air conditioning operation / cleaning operation will be described with reference to FIG. In the figure, solid arrows indicate the cooling operation flow, and broken arrows indicate the heating operation flow.
First, the cooling operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the refrigeration oil for HFC and flows into the oil separator 9.
[0029]
Here, the refrigeration oil for HFC is completely separated, and only the gas refrigerant flows into the heat source unit side heat exchanger 3 through the four-way valve 2, where it exchanges heat with a heat source medium such as air or water. Condensed liquid. The condensed and liquefied refrigerant flows into the first connection pipe C through the first operation valve 4.
When the HFC liquid refrigerant flows through the first connection pipe C, the HFC is washed little by little to remove CFC / HCFC / mineral oil / degraded mineral oil (hereinafter referred to as residual foreign matter) remaining in the first connection pipe C. It flows together with the liquid refrigerant and flows into the flow rate regulator 5 where it is depressurized to a low pressure to become a low-pressure two-phase state, and exchanges heat with the use side medium such as air in the use side heat exchanger 6 to evaporate and gasify. .
[0030]
The evaporated and gasified refrigerant flows into the second connection pipe D together with the remaining foreign matter in the first connection pipe C. The remaining foreign matter remaining in the second connection pipe is in the form of mist in the gas refrigerant because a part of the residual foreign matter adhering to the inner surface of the pipe flows in the form of mist because the refrigerant flowing therethrough is gaseous. The remaining foreign matter flows at a flow rate slower than that of the gas refrigerant and is dragged by the gas refrigerant due to the shearing force generated at the gas / liquid interface, and flows in an annular shape on the pipe inner surface. Is slow, but clean.
[0031]
Thereafter, the gas refrigerant flows into the foreign matter capturing means 13 through the second operation valve 7 and the four-way valve 2 together with the residual foreign matter in the first connection pipe C and the residual foreign matter in the second connection pipe D. Residual foreign matter has different phases depending on the boiling point, and is classified into three types: solid foreign matter, liquid foreign matter, and gaseous foreign matter.
In the foreign matter capturing means 13, the solid foreign matter and the liquid foreign matter are completely separated and captured from the gas refrigerant. Part of the gaseous foreign matter is captured, and part is not captured. Thereafter, the gas refrigerant returns to the compressor 1 through the accumulator 8 together with the gaseous foreign matter not captured by the foreign matter capturing means 13.
In addition, the refrigerant circuit at the time of air_conditionaing | cooling operation, ie, the refrigerant circuit which returns to the compressor 1 again through the compressor 1 in order through the heat-source-unit side heat exchanger 3, the flow regulator 5, the utilization side heat exchanger 6, and the accumulator 8. Is the first refrigerant circuit in the present specification.
[0032]
The HFC refrigerating machine oil completely separated from the gas refrigerant by the oil separator 9 is joined to the main stream downstream of the foreign matter catching means 13 via the bypass 9a and returns to the compressor 1, so that the first connection The mineral oil remaining in the pipe C and the second connection pipe D is not mixed, the HFC refrigerating machine oil is not incompatible with HFC, and the HFC refrigerating machine oil is deteriorated by mineral oil. Absent.
[0033]
Further, solid foreign matters are not mixed with the HFC refrigerating machine oil, and the HFC refrigerating machine oil is not deteriorated. Further, the gas foreign matter is only partially captured while the HFC refrigerant circulates through the refrigerant circuit for one cycle and passes through the foreign matter catching means 13 once, but the HFC refrigerating machine oil and the gaseous foreign matter are mixed, Degradation of refrigeration oil for HFC is a chemical reaction and does not progress rapidly.
An example is shown in FIG. FIG. 2 is a graph showing the change over time of deterioration when chlorine is mixed in refrigeration oil for HFC (175 ° C.), where the horizontal axis represents time (hr) and the vertical axis represents the total acid value (mgKOH / g). Show.
The gas foreign matter that has not been captured during one pass through the foreign matter catching means 13 passes through the foreign matter catching means 13 several times as the HFC refrigerant circulates, so that the foreign matter catching means 13 is faster than the deterioration of the refrigeration oil for HFC. Capture it.
[0034]
Next, the flow of heating operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the refrigeration oil for HFC and flows into the oil separator 9. Here, the refrigeration oil for HFC is completely separated, and only the gas refrigerant flows into the second connection pipe D through the four-way valve 2 and the second operation valve 7.
[0035]
The remaining foreign matter remaining in the second connection pipe is in the form of mist in the gas refrigerant because a part of the residual foreign matter adhering to the inner surface of the pipe flows in the form of mist because the refrigerant flowing therethrough is gaseous. The remaining foreign matter flows at a flow rate slower than the flow rate of the gas refrigerant and is dragged by the gas refrigerant due to the shear force generated at the gas / liquid interface, and flows in an annular shape on the pipe inner surface. Although it is slower than the connecting pipe C, it is surely cleaned.
[0036]
Thereafter, the gas refrigerant flows into the use-side heat exchanger 6 together with the remaining foreign matter in the second connection pipe D, and heat-condenses with the use-side medium such as air to be condensed and liquefied. The condensed and liquefied refrigerant flows into the flow rate regulator 5, where the refrigerant is depressurized to a low pressure to be in a low pressure two-phase state, and flows into the first connection pipe C. Due to the gas-liquid two-phase state, the flow rate is high, and the remaining foreign matter is washed together with the liquid refrigerant, and is washed at a higher speed than the first connection pipe during the cooling operation.
[0037]
The refrigerant in the gas-liquid two-phase state, together with residual foreign matter washed from the second connection pipe D and the first connection pipe C, passes through the first operation valve 4 and is then air / water in the heat source unit side heat exchanger 3. Evaporate and gasify by exchanging heat with the heat source medium. The evaporated and gasified refrigerant flows into the foreign matter capturing means 13 through the four-way valve 2.
[0038]
Residual foreign matter has different phases depending on the boiling point, and is classified into three types: solid foreign matter, liquid foreign matter, and gaseous foreign matter. In the foreign matter capturing means 13, the solid foreign matter and the liquid foreign matter are completely separated and captured from the gas refrigerant. Part of the gaseous foreign matter is captured, and part is not captured.
Thereafter, the gas refrigerant returns to the compressor 1 through the accumulator 8 together with the gaseous foreign matter not captured by the foreign matter capturing means 13.
In addition, the refrigerant circuit at the time of heating operation, ie, the refrigerant circuit which returns to the compressor 1 again through the compressor 1 through the use side heat exchanger 6, the flow rate regulator 5, the heat source unit side heat exchanger 3 and the accumulator 8 in order. Is a second refrigerant circuit in the present specification.
[0039]
The HFC refrigerating machine oil completely separated from the gas refrigerant by the oil separator 9 passes through the bypass passage 9a, merges with the main stream downstream of the foreign matter catching means 13, and returns to the compressor 1. Therefore, the first connecting pipe C and the mineral oil remaining in the second connection pipe D are not mixed, the HFC refrigerating machine oil is not incompatible with HFC, and the HFC refrigerating machine oil is not deteriorated by the mineral oil. .
[0040]
Further, solid foreign matters are not mixed with the HFC refrigerating machine oil, and the HFC refrigerating machine oil is not deteriorated.
Further, the gas foreign matter is only partially trapped while the HFC refrigerant circulates through the refrigerant circuit for one cycle and passes through the foreign matter catching means 13 once, but the HFC refrigerating machine oil and the gaseous foreign matter are mixed. The deterioration of refrigeration oil for HFC is a chemical reaction and does not proceed rapidly. An example is shown in FIG. Since the gaseous foreign matter that has not been captured during one pass through the foreign matter catching means 13 passes through the foreign matter catching means 13 several times with the circulation of the HFC refrigerant, the foreign matter catching means 13 is faster than the deterioration of the refrigeration oil for HFC. Capture it.
[0041]
Next, an example of the foreign matter capturing means 13 will be described. FIG. 3 illustrates an example of the foreign matter capturing means 13. 51 is a cylindrical container, 52 is an outflow pipe provided at the top of the container 51, 53 is a filter formed and installed in a conical fan-shaped side surface on the upper inner surface of the container 51, and 54 is prefilled into the container 51 Mineral oil 55, 55 is an inflow pipe provided on the lower side surface of the container 51, and 55 a is a large number of outflow holes provided on the side surface of the pipe inside the container 51 of the inflow pipe 55.
[0042]
The filter 53 is, for example, in the form of a mesh in which fine wires are knitted or formed of sintered metal, and each gap is several microns to several tens of microns, and solid foreign substances beyond this cannot pass through. In addition, when a mist-like liquid foreign substance that may exist in a small amount in the upper space of the container 51 tries to pass through the filter 53, it is captured here and flows in the lateral direction of the container due to gravity and falls to the lower part of the container 51. Reference numeral 56 denotes an ion exchange resin that traps chlorine ions.
In FIG. 1, the outflow pipe 52 is connected to the accumulator 8 through the ion exchange resin 56, and the inflow pipe 55 is connected to the four-way valve 2.
[0043]
The gas refrigerant flowing in from the inflow pipe 55 passes through the outflow hole 55 a in the form of foam through the mineral oil 54, flows out of the outflow pipe 52 through the filter 53 and the ion exchange resin 56.
The solid foreign matter that has flowed in along with the gas refrigerant from the inflow pipe 55 flows out into the mineral oil 54 through the outflow hole 55a, and then the mineral oil 54 becomes a resistance, the speed decreases, and precipitates at the bottom of the container 51 by gravity.
Even if there is no mineral oil 54, the cross-sectional area of the container 51 is larger than the cross-sectional area of the inflow pipe 55, and when entering the container 51, the flow rate of the refrigerant (gas) decreases. Is separated from the refrigerant (gas) by the liquid and settles in the lower part of the container 51.
Further, the gas flow rate in the mineral oil 54 is large, and even if solid foreign matter is blown up to the top of the mineral oil 54, it is captured by the filter 53.
[0044]
The liquid foreign matter that flows in along with the gas refrigerant from the inflow pipe 55 flows out into the mineral oil 54 through the outflow hole 55 a, then the mineral oil 54 becomes a resistance, the speed is reduced, gas-liquid separation is performed, and the liquid stays with the mineral oil 54.
Even without the mineral oil 54, the cross-sectional area of the container 51 is larger than the cross-sectional area of the inflow pipe 55, and when entering the container 51, the flow rate of the refrigerant (gas) decreases. Is separated from the refrigerant (gas) and stays in the lower part of the container 51.
Even if the gas flow velocity in the mineral oil 54 is large, the liquid level of the mineral oil 54 is disturbed, the mineral oil becomes mist, and flows on the flow of the gas refrigerant, it is captured by the filter 53, as described above. It is captured and flows in the lateral direction of the container 51 by gravity and falls to the lower part of the container 51.
[0045]
The gas foreign matter that has flowed in along with the gas refrigerant from the inflow pipe 55 passes through the mineral oil 54 in the form of bubbles through the outflow hole 55a, and flows out from the outflow pipe 52 through the filter 53 and the ion exchange resin 56. The main component in the gaseous foreign matter is CFC or HCFC, but these are dissolved in mineral oil 54.
An example is shown in FIG. FIG. 4 (a) is a solubility curve between mineral oil and CFC, and FIG. 4 (b) is a diagram showing a solubility curve between mineral oil and HCFC. In the figure, the horizontal axis is temperature (° C.), and the vertical axis is CFC or HCFC pressure (kg / cm).2The solubility curve is shown with the concentration (wt%) of CFC or HCFC as a parameter.
[0046]
The gas foreign matter that has flowed in along with the gas refrigerant from the inflow pipe 55 passes through the outflow hole 55a and becomes foamed in the mineral oil 54, thereby increasing contact with the mineral oil 54, and CFC and HCFC are more reliably dissolved in the mineral oil 54. To do. However, since HFC does not dissolve in mineral oil, everything flows out from the outflow pipe 52. In this way, the solid foreign matter and the liquid foreign matter are completely separated and captured inside the container 51. In addition, most of CFC and HCFC, which are main components of gaseous foreign substances, are dissolved and trapped while passing through this portion several times.
[0047]
In addition, chlorine components other than CFC and HCFC in the residual foreign matter are dissolved in a small amount of water and exist as chlorine ions in the refrigerant circuit, and are thus captured by passing through the ion exchange resin 56 several times.
[0048]
Next, the oil separator 9 will be described. An example of a high performance oil separator is disclosed in Japanese Utility Model Publication No. 5-19721. FIG. 5 shows its internal structure. 71 is a sealed container having a circular body portion constituted by an upper shell 71a and a lower shell 71b, 72 is an inlet pipe having a net 73 at the tip, and the inlet pipe 72 passes through a substantially central portion of the upper shell 71a. It protrudes and is attached to the container 71. Reference numeral 78 denotes a circular speed equalizing plate provided at the upper part of the net 73 and made of punching metal having a large number of small holes, and 79 is an upper space formed at the upper part of the speed equalizing plate 78. It becomes a space. 74 is an outlet pipe having an end in the refrigerant outflow space 79, and 77 is an oil drain pipe.
[0049]
By connecting a plurality of such high performance oil separators in series, an oil separator having a separation efficiency of 100% can be obtained.
FIG. 6 shows experimental results of the flow rate and separation efficiency of the gas refrigerant in the oil separator having the structure of FIG. In the figure, the horizontal axis represents the average flow velocity in the container (m / s), and the vertical axis represents the separation efficiency (%).
By setting the inner diameter of the first oil separator of the series oil separator so that the maximum flow velocity is 0.13 m / s or less, the refrigerating machine oil discharged from the compressor 1 generally has a refrigerant flow ratio of 1.5 wt%. For the following reasons, on the secondary side of the first oil separator, the refrigerating machine oil has a refrigerant flow rate ratio of 0.05 wt% or less.
[0050]
At this ratio, the gas-liquid two-phase flow mode of the gas refrigerant and refrigeration oil is spray flow, so the second oil separator should have the same diameter or larger, and the mesh of the inflow piping should be made of sintered metal. It is possible to completely separate the refrigerating machine oil by making the size very fine. In this way, it is possible to realize an oil separator with a separation efficiency of 100% by combining the dimensions and a plurality of existing oil separators, and the oil separator 9 shown in FIG. 1 is like this. .
[0051]
As described above, by incorporating the oil separator 9 and the foreign matter capturing means 13 in the heat source unit A, only the heat source unit A and the indoor unit B are newly replaced, and the first connection pipe C and the second connection pipe are replaced. Without replacing D, an air conditioner using an aged CFC or HCFC can be replaced with an air conditioner using a new HFC. According to such a method, unlike the conventional cleaning method 1, the existing pipe reuse method does not use a cleaning device to clean with a dedicated cleaning liquid (HCFC141b or HCFC225). No flammability and toxicity, no fear of residual cleaning liquid, and no need to recover the cleaning liquid.
[0052]
Unlike conventional cleaning method 2, there is no need to replace the HFC refrigerant and HFC refrigerating machine oil three times by repeating the washing operation three times. It is advantageous. Further, management of replacement refrigeration oil is unnecessary, and there is no risk of excess or shortage of refrigeration oil. Moreover, there is no fear of incompatibility of the refrigeration oil for HFC and deterioration of the refrigeration oil.
[0053]
In this embodiment, an example in which one indoor unit B is connected has been described, but it goes without saying that the same effect can be obtained even in an air conditioner in which a plurality of indoor units B are connected in parallel or in series.
Further, it is obvious that the same effect can be obtained even if an ice heat storage tank or a water heat storage tank (including hot water) is installed in series or in parallel with the heat source device side heat exchanger 3. In addition, it is obvious that the same effect can be obtained in an air conditioner in which a plurality of heat source devices A are connected in parallel.
In addition, not only air conditioners, but also products that are vapor compression refrigeration cycle applications, a unit with a built-in heat source side heat exchanger and a unit with a built-in side heat exchanger are installed separately. It is clear that the same effect can be obtained.
[0054]
Embodiment 2. FIG.
FIG. 7 is a diagram showing a refrigerant circuit of an air conditioner as an example of a refrigeration cycle apparatus according to Embodiment 2 of the present invention. In FIG. 7, reference numerals BD, 1-9, and 8a, 9a are the same as those in the first embodiment, and thus detailed description thereof is omitted.
[0055]
Next, 12a is a cooling means (cooling device) for cooling and liquefying the high-temperature and high-pressure gas refrigerant, 12b is a heating means (heating device) for gasifying the low-pressure two-phase refrigerant, and 13 is in series with the outlet of the heating means 12b. It is the foreign material capture means (foreign material capture device) provided in the. Reference numeral 14a denotes a first electromagnetic valve provided at the outlet of the foreign matter capturing means 13, and reference numeral 14b denotes a second electromagnetic valve provided at the inlet of the heating means 12b.
[0056]
Reference numeral 10 denotes a first switching valve, which is an outlet end during the cooling operation of the heat source unit side heat exchanger 3, an outlet end during the heating operation of the four-way valve 2, an inlet end of the cooling means 12a, and an outlet of the electromagnetic valve 14a. Of the four locations at the end, the following connection switching is performed in accordance with the operation mode. That is, the outlet end of the heat source unit side heat exchanger 3 during the cooling operation and the inlet end of the cooling means 12a are connected during the cooling washing operation, and the outlet end of the electromagnetic valve 14a and the inlet end during the cooling operation of the four-way valve 2 are connected. Connect (exit end during heating operation).
Further, during the heating washing operation, the outlet end of the four-way valve 2 during the heating operation and the inlet end of the cooling means 12a are connected, and the outlet end of the electromagnetic valve 14a and the inlet during the heating operation of the heat source unit side heat exchanger 3 are connected. Connect the end (exit end during cooling operation).
[0057]
Reference numeral 11 denotes a second switching valve, which connects the outlet end of the cooling means 12a to the first operation valve 4 during the cooling cleaning operation and the normal cooling operation, and cools the cooling means 12a during the heating cleaning operation and the normal heating operation. The outlet end of the electromagnetic valve 12b is connected to the second operating valve 7, the inlet end of the electromagnetic valve 12b is connected to the second operating valve 7 during the cooling cleaning operation, and the inlet end of the electromagnetic valve 12b is connected to the first operating valve during the heating cleaning operation. This is connected to the operation valve 4.
14c is a 3rd solenoid valve, Between the connection end to the heat source apparatus side heat exchanger 3 of the 1st switching valve 10, and the connection end to the 1st operation valve 4 of the 2nd switching valve 11 It is a solenoid valve provided in the middle of the piping which connects. Reference numeral 14d denotes a fourth electromagnetic valve, which is a pipe that connects between the connection end of the first switching valve 10 to the four-way valve 2 and the connection end of the second switching valve 11 to the second operation valve 7. It is a solenoid valve provided on the way.
[0058]
The first switching valve 10 is a reverse valve provided to allow the refrigerant to flow from the outlet end during the cooling operation of the heat source unit side heat exchanger 3 to the inlet end of the cooling means 12a, but not vice versa. The check valve 10b, the first solenoid valve, which is provided so as to allow the refrigerant to flow from the outlet end during the heating operation of the stop valve 10a and the four-way valve 2 to the inlet end of the cooling means 12a but not vice versa. The check valve 10c and the first solenoid valve 14a are provided so as to allow the refrigerant to flow from the outlet end of 14a to the outlet end during the cooling operation of the heat source unit side heat exchanger 3, but not vice versa. Since the refrigerant flow from the outlet end to the outlet end during the heating operation of the four-way valve 2 is allowed but not vice versa, the check valve 10d is provided. This is a switching valve that can be switched by the pressure at the end.
[0059]
The cooling source of the cooling means 12a may be either air or water, and the heating source of the heating means 12b may be either air or water, or a heater. In addition, the cooling means 12a and the heating means 12b are provided by thermally contacting the high-temperature high-pressure side pipe and the low-temperature low-pressure side pipe sandwiched between the first switching valve 10 and the second switching valve 11, for example, It may be configured by a high-temperature high-pressure side pipe as an outer pipe of the double pipe and a low-temperature low-pressure side pipe as an inner pipe. That is, heat transfer may be performed between the heating unit 12b and the cooling unit 12a.
[0060]
With the configuration as described above, the heat source machine A includes the oil separator 9, the separated oil bypass 9a, the cooling means 12a, the heating means 12b, the foreign matter capturing means 13, the first switching valve 10, and the second switching valve 11. The first electromagnetic valve 14a, the second electromagnetic valve 14b, the third electromagnetic valve 14c, and the fourth electromagnetic valve 14d are incorporated.
In this specification, the refrigerant circuit portion including the heating unit 12b and the foreign matter capturing unit 13 is referred to as a first bypass path. Further, in this specification, the refrigerant circuit portion including the cooling means 12a is defined as a second bypass path.
This air conditioner uses HFC as a refrigerant.
[0061]
Next, a procedure for replacing the air conditioner when the air conditioner using the CFC or HCFC has deteriorated will be described. CFC or HCFC is collected, and heat source unit A and indoor unit B are replaced with those shown in FIG. As the first connection pipe C and the second connection pipe D, those of the air conditioner using HCFC are reused.
Since the heat source machine A is pre-filled with HFC, the indoor unit B, the first connection pipe C, and the second connection pipe D are connected while the first operation valve 4 and the second operation valve 7 are closed. Vacuuming is performed in the connected state, and then the first operation valve 4 and the second operation valve 7 are opened and HFC is additionally charged. Thereafter, a cleaning operation is first performed, and then a normal air conditioning operation is performed.
[0062]
Next, the contents of the cleaning operation will be described with reference to FIG. In the figure, solid arrows indicate the flow of the cooling cleaning operation, and broken arrows indicate the flow of the heating cleaning operation.
First, the cooling cleaning operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the HFC refrigerating machine oil and flows into the oil separator 9. Here, the refrigerating machine oil for HFC is completely separated, and only the gas refrigerant flows through the four-way valve 2 into the heat source machine side heat exchanger 3 where it is exchanged with a heat source medium such as air or water. To some extent.
[0063]
The refrigerant having been condensed to some extent flows into the cooling means 12a through the first switching valve 10, where it is completely condensed and liquefied, through the second switching valve 11 and the first operation valve 4, and to the first connection pipe. Flows into C.
When the HFC liquid refrigerant flows through the first connection pipe C, the HFC is washed little by little to remove CFC / HCFC / mineral oil / degraded mineral oil (hereinafter referred to as residual foreign matter) remaining in the first connection pipe C. It flows with the liquid refrigerant and flows into the flow rate regulator 5 where it is decompressed to a low pressure to become a low pressure two-phase state, and exchanges heat with the use side medium such as air in the use side heat exchanger 6 to some extent evaporate and gasify To do.
[0064]
The gas-liquid two-phase refrigerant evaporated and gasified to some extent flows into the second connection pipe D together with the remaining foreign matter in the first connection pipe C. The residual foreign matter remaining in the second connection pipe D is a gas-liquid two-phase state because the refrigerant flowing therethrough is high in flow rate, and with the liquid refrigerant, the residual foreign matter is washed away from the first connection pipe C. Washed at a fast speed.
[0065]
Thereafter, the gas-liquid two-phase refrigerant evaporated and gasified to a certain degree, together with the residual foreign matter in the first connection pipe C and the residual foreign matter in the second connection pipe D, the second operation valve 7 and the second switching valve. 11, through the second electromagnetic valve 14 b, flows into the heating means 12 b, where it is completely evaporated and gasified, and flows into the foreign matter capturing means 13. Residual foreign matter has different phases depending on the boiling point, and is classified into three types: solid foreign matter, liquid foreign matter, and gaseous foreign matter. In the foreign matter capturing means 13, the solid foreign matter and the liquid foreign matter are completely separated and captured from the gas refrigerant.
[0066]
Part of the gaseous foreign matter is captured, and part is not captured. Thereafter, the gas refrigerant returns to the compressor 1 through the first electromagnetic valve 14 a, the first switching valve 10, the four-way valve 2, and the accumulator 8 together with the gaseous foreign matter not captured by the foreign matter capturing means 13.
The HFC refrigerating machine oil completely separated from the gas refrigerant by the oil separator 9 passes through the bypass passage 9a, merges with the main stream downstream of the foreign matter catching means 13, and returns to the compressor 1. Therefore, the first connecting pipe C and the mineral oil remaining in the second connection pipe D are not mixed, the HFC refrigerating machine oil is not incompatible with HFC, and the HFC refrigerating machine oil is not deteriorated by the mineral oil. .
[0067]
Further, solid foreign matters are not mixed with the HFC refrigerating machine oil, and the HFC refrigerating machine oil is not deteriorated. Further, the gas foreign matter is only partially captured while the HFC refrigerant circulates through the refrigerant circuit for one cycle and passes through the foreign matter catching means 13 once, but the HFC refrigerating machine oil and the gaseous foreign matter are mixed, Degradation of refrigeration oil for HFC is a chemical reaction and does not progress rapidly. An example is shown in FIG. Since the gaseous foreign matter that has not been captured during one pass through the foreign matter catching means 13 passes through the foreign matter catching means 13 several times with the circulation of the HFC refrigerant, the foreign matter catching means 13 is faster than the deterioration of the refrigeration oil for HFC. Capture it.
[0068]
Next, the flow of the heating and washing operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the refrigeration oil for HFC and flows into the oil separator 9. Here, the refrigeration oil for HFC is completely separated, and only the gas refrigerant flows into the cooling means 12a through the four-way valve 2 and the first switching valve 10.
[0069]
Here, the gas refrigerant is cooled and condensed and liquefied to some extent. The gas-liquid two-phase refrigerant that has been condensed and liquefied to some extent flows into the second connection pipe D through the second switching valve 11 and the second operation valve 7. The residual foreign matter remaining in the second connection pipe is a gas-liquid two-phase state because the refrigerant flowing therethrough is high in flow rate, and the residual foreign matter is washed together with the liquid refrigerant. Cleaning is performed at a faster speed than the connecting pipe C.
[0070]
Thereafter, the refrigerant condensed and liquefied to some extent flows into the use side heat exchanger 6 together with the remaining foreign matter in the second connection pipe D, where it is completely condensed and liquefied by exchanging heat with the use side medium such as air.
The condensed and liquefied refrigerant flows into the flow rate regulator 5, where the refrigerant is depressurized to a low pressure to be in a low pressure two-phase state, and flows into the first connection pipe C. Due to the gas-liquid two-phase state, the flow rate is high, and the remaining foreign matter is washed together with the liquid refrigerant, and is washed at a faster speed than the first connection pipe C during the cooling washing operation. The refrigerant in the gas-liquid two-phase state together with the remaining foreign matter washed from the second connection pipe D and the first connection pipe C is the first operation valve 4, the second switching valve 11, and the second electromagnetic valve 14b. Then, it is heated by the heating means 12b, evaporated and gasified, and flows into the foreign matter capturing means 13.
[0071]
Residual foreign matter has different phases depending on the boiling point, and is classified into three types: solid foreign matter, liquid foreign matter, and gaseous foreign matter. In the foreign matter capturing means 13, the solid foreign matter and the liquid foreign matter are completely separated and captured from the gas refrigerant. Part of the gaseous foreign matter is captured, and part is not captured. Thereafter, the gas refrigerant flows into the heat source unit side heat exchanger 3 through the first switching valve 10 and the four-way valve 2 together with the gaseous foreign matter not captured by the foreign matter capturing means 13, and the blower is stopped here. It passes without heat exchange and returns to the compressor 1 through the accumulator 8.
[0072]
The HFC refrigerating machine oil completely separated from the gas refrigerant by the oil separator 9 passes through the bypass passage 9a, merges with the main stream downstream of the foreign matter catching means 13, and returns to the compressor 1. Therefore, the first connecting pipe C and the mineral oil remaining in the second connection pipe D are not mixed, the HFC refrigerating machine oil is not incompatible with HFC, and the HFC refrigerating machine oil is not deteriorated by the mineral oil. .
[0073]
Further, solid foreign matters are not mixed with the HFC refrigerating machine oil, and the HFC refrigerating machine oil is not deteriorated.
Further, the gas foreign matter is only partially captured while the HFC refrigerant circulates through the refrigerant circuit for one cycle and passes through the foreign matter catching means 13 once, but the HFC refrigerating machine oil and the gaseous foreign matter are mixed, Degradation of refrigeration oil for HFC is a chemical reaction and does not progress rapidly. An example is shown in FIG.
The gas foreign matter that has not been captured during one pass through the foreign matter catching means 13 passes through the foreign matter catching means 13 several times as the HFC refrigerant circulates, so that the foreign matter catching means 13 is faster than the deterioration of the refrigeration oil for HFC. Capture it.
The foreign matter catching means 13 and the oil separator 9 are exactly the same as those shown in the first embodiment, and thus the description thereof is omitted here.
[0074]
Next, the normal air conditioning operation will be described with reference to FIG. In the figure, solid arrows indicate the flow of normal cooling operation, and broken arrows indicate the flow of normal heating operation.
First, the normal cooling operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the HFC refrigerating machine oil and flows into the oil separator 9. Here, the refrigeration oil for HFC is completely separated, and only the gas refrigerant flows into the heat source unit side heat exchanger 3 through the four-way valve 2, where it exchanges heat with a heat source medium such as air or water. Condensed liquid.
[0075]
Most of the condensed and liquefied refrigerant passes through the third electromagnetic valve 14c, while the other part passes through the first switching valve 10, the cooling means 12a, and the second switching valve 11, and these are merged. After that, it flows into the first operation valve 4, flows into the flow rate regulator 5 through the first connection pipe C, and is decompressed to a low pressure to become a low pressure two-phase state. Evaporate and gasify by exchanging heat with the user side media. The evaporated and gasified refrigerant returns to the compressor 1 through the second connection pipe D, the second operation valve 7, the fourth electromagnetic valve 14d, the four-way valve 2, and the accumulator 8.
[0076]
The HFC refrigerating machine oil completely separated from the gas refrigerant by the oil separator 9 merges with the main stream downstream of the four-way valve 2 through the bypass 9 a and returns to the compressor 1.
Since the first electromagnetic valve 14a and the second electromagnetic valve 14b are closed, the foreign matter capturing means 13 is isolated as a closed space, and the foreign matter captured during the cleaning operation may return to the operation circuit again. Absent. Further, as compared with the first embodiment, since the foreign matter capturing means 13 is not passed, the suction pressure loss of the compressor 1 is small, and the decrease in performance is small.
[0077]
Next, the flow of normal heating operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the HFC refrigerating machine oil and flows into the oil separator 9. Here, the refrigeration oil for HFC is completely separated, and only the gas refrigerant passes through the four-way valve 2 and mostly passes through the fourth electromagnetic valve 14d, while a part thereof is the first switching valve 10, Via the cooling means 12 a and the second switching valve 11, these flow together and then flow into the second operation valve 7, flow into the use side heat exchanger 6 through the second connection pipe D, Here, heat is exchanged with the use-side medium such as air to completely condense.
[0078]
The condensed and liquefied refrigerant flows into the flow rate regulator 5, where it is decompressed to a low pressure to become a low pressure two-phase state, passes through the first connection pipe C, the first operation valve 4, and the third electromagnetic valve 14c, It flows into the machine side heat exchanger 3, where it evaporates and gasifies by exchanging heat with a heat source medium such as air or water. The evaporated and gasified refrigerant returns to the compressor 1 through the four-way valve 2 and the accumulator 8.
[0079]
The HFC refrigerating machine oil completely separated from the gas refrigerant by the oil separator 9 returns to the compressor 1 through the bypass 9a.
Since the first solenoid valve 14a and the second solenoid valve 14b are closed, the foreign matter capturing means 13 is isolated as a closed space, so that the foreign matter captured during the cleaning operation returns to the operation circuit again. There is no. Further, as compared with the first embodiment, since the foreign matter capturing means 13 is not passed, the suction pressure loss of the compressor 1 is small, and the decrease in performance is small.
[0080]
As described above, by incorporating the oil separator 9 and the foreign matter capturing means 13 in the heat source unit A, only the heat source unit A and the indoor unit B are newly replaced, and the first connection pipe C and the second connection pipe are replaced. Without replacing D, an air conditioner using an aged CFC or HCFC can be replaced with an air conditioner using a new HFC. According to such a method, unlike the conventional cleaning method 1, the existing pipe reuse method does not use a cleaning device to clean with a dedicated cleaning liquid (HCFC141b or HCFC225). No flammability and toxicity, no fear of residual cleaning liquid, and no need to recover the cleaning liquid.
[0081]
Unlike conventional cleaning method 2, there is no need to replace the HFC refrigerant and HFC refrigerating machine oil three times by repeating the washing operation three times. It is advantageous. Further, management of replacement refrigeration oil is unnecessary, and there is no risk of excess or shortage of refrigeration oil. Moreover, there is no fear of incompatibility of the refrigeration oil for HFC and deterioration of the refrigeration oil.
[0082]
By providing the first solenoid valve 14a, the second solenoid valve 14b, the third solenoid valve 14c, and the fourth solenoid valve 14d, the cleaning effect shown above is obtained by passing through the foreign matter capturing means 13 during the cleaning operation. In the normal operation after the cleaning operation, the first electromagnetic valve 14a and the second electromagnetic valve 14b are closed and the foreign matter capturing means 13 is isolated as a closed space. , It does not return to the operation circuit again. Further, as compared with the first embodiment, since the foreign matter capturing means 13 is not passed, the suction pressure loss of the compressor 1 is small, and the decrease in performance is small.
[0083]
In addition, since the cooling means 12a, the heating means 12b, the first switching valve 10 and the second switching valve 11 are provided, the first connection pipe C and the second connection pipe can be used during the cleaning operation regardless of cooling or heating. Since the liquid refrigerant or the gas-liquid two-phase refrigerant flows through D, the cleaning effect is high and the cleaning time can be shortened for cleaning the remaining foreign matter.
In addition, since the heat exchange amount can be controlled by the cooling means 12a and the heating means 12b, almost the same washing operation can be performed under any condition regardless of the outside air temperature and the indoor load, and the effects and labor are made constant.
[0084]
In this embodiment, an example in which one indoor unit B is connected has been described, but it goes without saying that the same effect can be obtained even in an air conditioner in which a plurality of indoor units B are connected in parallel or in series.
Further, it is obvious that the same effect can be obtained even if an ice heat storage tank or a water heat storage tank (including hot water) is installed in series or in parallel with the heat source device side heat exchanger 3.
In addition, it is obvious that the same effect can be obtained in an air conditioner in which a plurality of heat source devices A are connected in parallel.
In addition, not only air conditioners, but also products that are vapor compression refrigeration cycle applications, a unit with a built-in heat source side heat exchanger and a unit with a built-in side heat exchanger are installed separately. It is clear that the same effect can be obtained.
[0085]
Embodiment 3 FIG.
FIG. 9 is a diagram showing a refrigerant circuit of an air conditioner as an example of a refrigeration cycle apparatus according to Embodiment 3 of the present invention. 9, reference numerals BD, 1-8, and 8a are the same as those described in the first and second embodiments, and thus detailed description thereof is omitted. Reference numerals 10, 11, 12a, 12b, and 13 are the same as those described in the second embodiment, and thus detailed description thereof is omitted.
[0086]
Next, in FIG. 9, 9 is an oil separator, which is the same as in the first and second embodiments, except that it is provided between the first switching valve 10 and the cooling means 12a.
Reference numeral 9a denotes a bypass path that starts from the bottom of the oil separator 9 and returns to the downstream side of the foreign matter catching means 13, which is the same as in the first and second embodiments, but the return position is the same as that of the foreign matter catching means 13 and the first. This is different from the switching valve 10.
Reference numeral 15 denotes a first flow rate control means provided between the second switching valve 11 and the heating means 12b, and reference numeral 16 denotes a second flow rate provided between the cooling means 12a and the second switching valve 11. It is a control means.
[0087]
CC is a third connection pipe provided between the first connection pipe C and the first operation valve 4, and DD is a fourth connection provided between the second connection pipe D and the second operation valve 7. This is a connecting pipe.
17a is a third operation valve provided in the third connection pipe CC, 17b is a fourth operation valve provided in the fourth connection pipe DD, and 17c is a first operation valve of the third connection pipe CC. The fifth operating valve 17d provided between the first switching valve 10 and the pipe between the first operating valve 17 and the third operating valve 17a is more than the third operating valve 17a of the third connecting pipe CC. The 6th operation valve 17e provided between the part by the side of 1 connection piping C and the 2nd switching valve 11, 17e is the 2nd operation valve 7 of the 4th connection piping DD, and the 4th operation valve 17b. A seventh operation valve 17f provided between the first connection valve 10 and the first switching valve 10 is a portion of the fourth connection pipe DD closer to the second connection pipe D than the fourth operation valve 17b. And the second switching valve 11 is an eighth operation valve.
[0088]
E is a washing machine configured as described above, and includes an oil separator 9, a bypass 9a, a cooling means 12a, a heating means 12b, a foreign matter capturing means 13, a first switching valve 10, a second switching valve 11, The first flow rate control means 15 and the second flow rate control means 16 are incorporated. This washing machine E is detachably connected to the entire air conditioner from the fifth to eighth operation valves 17c to 17f.
In the present specification, the refrigerant circuit portion including the heating means 12b and the foreign matter capturing means 13 is the first bypass path as described in the second embodiment. Regardless of the presence or absence of the oil separator 9, the refrigerant circuit portion including the cooling means 12a is defined as a second bypass path. Further, assuming that only the oil separator 9 exists without including the cooling means 12a, this is defined as a third bypass path.
[0089]
Further, 18a is a fifth solenoid valve provided between the first connection pipe C and the flow rate regulator 5, and 18b is provided between the second connection pipe D and the use side heat exchanger 6. The sixth solenoid valve 18c is a bypass passage 18d that connects the first connection pipe C side connection end of the fifth solenoid valve 18a and the second connection pipe D side connection end of the sixth solenoid valve 18b. It is the 7th solenoid valve provided in the middle. F is an indoor bypass machine incorporating the fifth to seventh electromagnetic valves 18a to 18c.
This air conditioner uses HFC as a refrigerant.
[0090]
Next, a procedure for replacing the air conditioner when the air conditioner using the CFC or HCFC has deteriorated will be described. CFC or HCFC is collected, and heat source unit A and indoor unit B are replaced with those shown in FIG. As the first connection pipe C and the second connection pipe D, those of the air conditioner using HCFC are reused. The third connection pipe CC and the fourth connection pipe DD are newly laid. The cleaning machine E is connected to the third connection pipe CC via the fifth and sixth operation valves 17c and 17d, and to the fourth connection pipe DD via the seventh and eighth operation valves 17e and 17f. Connecting. The first connection pipe C and the second connection pipe D are connected to the indoor unit B via the indoor bypass machine F.
[0091]
Since the heat source machine A is pre-filled with HFC, the indoor unit B, the first connection pipe C, the second connection pipe D, the first operation valve 4 and the second operation valve 7 are closed. The third connection pipe CC, the fourth connection pipe DD, the washing machine E, and the indoor bypass machine F are evacuated in a connected state, and then the first operation valve 4 and the second operation valve 7 are opened and the HFC is opened. Perform additional filling.
[0092]
Thereafter, first, the third and fourth operation valves 17a and 17b are closed, the fourth to eighth operation valves 17c to 17f are opened, and the fifth and sixth electromagnetic valves 18a and 18b are closed. The cleaning operation is performed by opening the seventh electromagnetic valve 18c. Thereafter, the third and fourth operation valves 17a and 17b are opened, the fourth to eighth operation valves 17c to 17f are closed, the fifth and sixth electromagnetic valves 18a and 18b are opened, A normal air-conditioning operation is performed by closing the 7 electromagnetic valve 18c.
[0093]
Next, the contents of the cleaning operation will be described with reference to FIG. In the figure, solid arrows indicate the flow of the cooling cleaning operation, and broken arrows indicate the flow of the heating cleaning operation.
First, the cooling cleaning operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the HFC refrigerating machine oil, and flows into the heat source unit side heat exchanger 3 through the four-way valve 2, where the heat source such as air or water is supplied. It passes without exchanging heat with the medium, and flows into the oil separator 9 through the first operation valve 4, the fifth operation valve 17c, and the first switching valve 10.
[0094]
Here, the refrigeration oil for HFC is completely separated, and only the gas refrigerant flows into the cooling means 12a, where it condenses and liquefies, and is slightly decompressed by the second flow rate control means 16, and is in a gas-liquid two-phase state. It becomes. The refrigerant in the gas-liquid two-phase state flows into the first connection pipe C through the second switching valve 11 and the sixth operation valve 17d.
[0095]
When the gas-liquid two-phase refrigerant of HFC flows through the first connection pipe C, the CFC / HCFC / mineral oil / mineral oil deteriorated substance (hereinafter referred to as residual foreign matter) remaining in the first connection pipe C is Because of the phase state, it is cleaned relatively quickly and flows together with the gas-liquid two-phase refrigerant of HFC, and flows into the second connection pipe D together with the remaining foreign matter in the connection pipe C through the seventh electromagnetic valve 18c.
[0096]
The remaining foreign matter remaining in the second connection pipe D is a gas-liquid two-phase state of the refrigerant flowing therethrough, so that the flow rate is high and the residual foreign matter is washed together with the liquid refrigerant and washed at a relatively high speed. The Thereafter, the gas-liquid two-phase refrigerant passes through the eighth operation valve 17 f and the second switching valve 11 together with the residual foreign matter in the first connection pipe C and the residual foreign matter in the second connection pipe D, and then passes through the first switching pipe 11. The pressure is reduced to a low pressure by the flow rate control means 15 and flows into the heating means 12 b where it is evaporated and gasified and flows into the foreign matter capturing means 13.
[0097]
Residual foreign matter has different phases depending on the boiling point, and is classified into three types: solid foreign matter, liquid foreign matter, and gaseous foreign matter. In the foreign matter capturing means 13, the solid foreign matter and the liquid foreign matter are completely separated and captured from the gas refrigerant. Part of the gaseous foreign matter is captured, and part is not captured.
[0098]
Thereafter, the gas refrigerant passes through the first switching valve 10, the seventh operation valve 17 e, the second operation valve 7, the four-way valve 2, and the accumulator 8 together with the gas foreign matter not captured by the foreign matter capturing means 13. Return to 1.
The HFC refrigerating machine oil completely separated from the gas refrigerant by the oil separator 9 merges with the main stream on the downstream side of the foreign matter catching means 13 through the bypass 9a and returns to the compressor 1, so that the first It does not mix with the mineral oil remaining in the connection pipe C or the second connection pipe D, the HFC refrigerating machine oil is not incompatible with HFC, and the HFC refrigerating machine oil is deteriorated by mineral oil. There is no.
[0099]
Further, solid foreign matters are not mixed with the HFC refrigerating machine oil, and the HFC refrigerating machine oil is not deteriorated.
Further, the gas foreign matter is only partially captured while the HFC refrigerant circulates through the refrigerant circuit for one cycle and passes through the foreign matter catching means 13 once, but the HFC refrigerating machine oil and the gaseous foreign matter are mixed, Degradation of refrigeration oil for HFC is a chemical reaction and does not progress rapidly. An example is shown in FIG. Since the gaseous foreign matter that has not been captured during one pass through the foreign matter catching means 13 passes through the foreign matter catching means 13 several times with the circulation of the HFC refrigerant, the foreign matter catching means 13 is faster than the deterioration of the refrigeration oil for HFC. Capture it.
[0100]
Next, the flow of the heating and washing operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the HFC refrigeration oil, and the four-way valve 2, the second operation valve 7, the seventh operation valve 17e, and the first switching valve 10 are discharged. Then, it flows into the oil separator 9. Here, the refrigeration oil for HFC is completely separated, and only the gas refrigerant flows into the cooling means 12a. Here, the gas refrigerant is cooled, condensed and liquefied.
[0101]
The condensed and liquefied liquid refrigerant is slightly depressurized by the second flow rate control means 16, enters a gas-liquid two-phase state, and passes through the second switching valve 11 and the eighth operation valve 17f to the second connection pipe D. Inflow. Residual foreign matter remaining in the second connection pipe has a high flow rate because the refrigerant flowing therethrough is in a gas-liquid two-phase state, and the residual foreign matter is washed together with the liquid refrigerant and washed at a relatively high speed. .
[0102]
Thereafter, the gas-liquid two-phase refrigerant flows into the first connection pipe C through the seventh electromagnetic valve 18 c together with the remaining foreign matter in the second connection pipe D. Here, because of the gas-liquid two-phase state, the flow rate is high, and the remaining foreign matter is washed together with the liquid refrigerant, and is washed at a relatively high rate.
[0103]
The refrigerant in the gas-liquid two-phase state together with the remaining foreign matter washed from the second connection pipe D and the first connection pipe C passes through the sixth operation valve 17d and the second switching valve 11, and flows through the first flow rate. The pressure is reduced to a low pressure by the control means 15 and flows into the heating means 12 b where it is evaporated and gasified and flows into the foreign matter capturing means 13. Residual foreign matter has different phases depending on the boiling point, and is classified into three types: solid foreign matter, liquid foreign matter, and gaseous foreign matter.
[0104]
In the foreign matter capturing means 13, the solid foreign matter and the liquid foreign matter are completely separated and captured from the gas refrigerant. Part of the gaseous foreign matter is captured, and part is not captured. Thereafter, the gas refrigerant flows into the heat source unit side heat exchanger 3 through the first switching valve 10 and the fifth operation valve 17c together with the gaseous foreign matter not captured by the foreign matter capturing means 13, and here the blower or the like is connected. It stops and passes without heat exchange, and returns to the compressor 1 via the accumulator 8.
[0105]
The HFC refrigerating machine oil completely separated from the gas refrigerant by the oil separator 9 merges with the main stream on the downstream side of the foreign matter catching means 13 through the bypass 9a and returns to the compressor 1, so that the first It does not mix with the mineral oil remaining in the connection pipe C or the second connection pipe D, the HFC refrigerating machine oil is not incompatible with HFC, and the HFC refrigerating machine oil is deteriorated by mineral oil. There is no.
[0106]
Further, solid foreign matters are not mixed with the HFC refrigerating machine oil, and the HFC refrigerating machine oil is not deteriorated.
Further, the gas foreign matter is only partially captured while the HFC refrigerant circulates through the refrigerant circuit for one cycle and passes through the foreign matter catching means 13 once, but the HFC refrigerating machine oil and the gaseous foreign matter are mixed, Degradation of refrigeration oil for HFC is a chemical reaction and does not progress rapidly. An example is shown in FIG. The gas foreign matter that has not been captured during one pass through the foreign matter catching means 13 passes through the foreign matter catching means 13 several times as the HFC refrigerant circulates, so that the foreign matter catching means 13 is faster than the deterioration of the refrigeration oil for HFC. Capture it.
The foreign matter catching means 13 and the oil separator 9 are exactly the same as those shown in the first embodiment, and thus the description thereof is omitted here.
[0107]
Next, the normal air conditioning operation will be described with reference to FIG. In the figure, solid arrows indicate the flow of normal cooling operation, and broken arrows indicate the flow of normal heating operation.
First, the normal cooling operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 and flows into the heat source unit side heat exchanger 3 through the four-way valve 2, where it exchanges heat with a heat source medium such as air or water. To condense. The condensed and liquefied refrigerant flows into the flow rate regulator 5 through the first operation valve 4, the third operation valve 17a, the first connection pipe C, and the fifth electromagnetic valve 18a, where the pressure is reduced to a low pressure. Thus, a low-pressure two-phase state is obtained, and the use side heat exchanger 6 exchanges heat with a use side medium such as air to evaporate and gasify.
[0108]
The evaporated / gasified refrigerant passes through the sixth solenoid valve 18b, the second connection pipe D, the fourth operation valve 17b, the second operation valve 7, the four-way valve 2, and the accumulator 8 to the compressor 1. Return.
Since the fifth to eighth operation valves 17c to 17f are closed, the foreign matter catching means 13 is isolated as a closed space, so that the foreign matter caught during the cleaning operation does not return to the operation circuit again. Further, as compared with the first embodiment, since the foreign matter capturing means 13 is not passed, the suction pressure loss of the compressor 1 is small, and the decrease in performance is small.
[0109]
Next, the flow of normal heating operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 and flows into the second operation valve 7 through the four-way valve 2, and the fourth operation valve 17b and the second connection pipe D. Then, it flows into the use side heat exchanger 6 through the sixth electromagnetic valve 18b, where it is condensed with the use side medium such as air.
[0110]
The condensed and liquefied refrigerant flows into the flow rate regulator 5 where it is depressurized to a low pressure to be in a low pressure two-phase state. The fifth solenoid valve 18a, the first connection pipe C, the third operation valve 17a, the first The operation valve 4 and the heat source machine side heat exchanger 3 flow into the heat source medium such as air and water to evaporate and gasify. The evaporated and gasified refrigerant returns to the compressor 1 through the four-way valve 2 and the accumulator 8.
[0111]
Since the fifth to eighth operation valves 17c to 17f are closed, the foreign matter catching means 13 is isolated as a closed space, so that the foreign matter caught during the cleaning operation does not return to the operation circuit again. Further, as compared with the first embodiment, since the foreign matter capturing means 13 is not passed, the suction pressure loss of the compressor 1 is small, and the decrease in performance is small. Further, unlike the second embodiment, the refrigerant does not flow to the cooling means 12a, so there is no loss of heating capacity.
[0112]
As described above, by incorporating the oil separator 9 and the foreign matter capturing means 13 in the washing machine E, only the heat source unit A and the indoor unit B are newly replaced, and the first connection pipe C and the second connection pipe are replaced. Without replacing D, an air conditioner using an aged CFC or HCFC can be replaced with an air conditioner using a new HFC. By this method, unlike the conventional cleaning method 1, the existing pipe reuse method does not use a cleaning device (HCFC141b or HCFC225) to clean the ozone layer, unlike the conventional cleaning method 1. No flammability, no flammability, no toxicity, no concern about residual cleaning liquid, and no need to recover cleaning liquid.
[0113]
Unlike conventional cleaning method 2, there is no need to replace the HFC refrigerant and HFC refrigerating machine oil three times by repeating the washing operation three times. It is advantageous. Further, management of replacement refrigeration oil is unnecessary, and there is no risk of excess or shortage of refrigeration oil. Moreover, there is no fear of incompatibility of the refrigeration oil for HFC and deterioration of the refrigeration oil.
[0114]
In addition, by providing the fifth to eighth operation valves 17c to 17f, the cleaning effect shown above is obtained through the foreign matter capturing means 13 during the cleaning operation, while the fifth to eighth operation valves are used during the normal operation after the cleaning operation. Since the operation valves 17c to 17f are closed and the foreign matter capturing means 13 is isolated as a closed space, foreign matter captured during the cleaning operation does not return to the operation circuit again. Further, as compared with the first embodiment, since the foreign matter capturing means 13 is not passed, the suction pressure loss of the compressor 1 is small, and the decrease in performance is small.
[0115]
In addition, since the cooling rejection means 12a, the heating means 12b, the first switching valve 10 and the second switching valve 11 are provided, the first connection pipe C and the second connection during the cleaning operation regardless of cooling or heating. Since the liquid refrigerant or the gas-liquid two-phase refrigerant flows through the pipe D, the cleaning effect is high and the cleaning time can be shortened for cleaning the remaining foreign matter.
In addition, since the heat exchange amount can be controlled by the cooling means 12a and the heating means 12b, almost the same washing operation can be performed under any condition regardless of the outside air temperature and the indoor load, and the effects and labor are made constant.
[0116]
In addition, since the first flow rate control means 15 and the second flow rate control means 16 are provided, the refrigerant flowing through the first and second connection pipes C and D can always be in a gas-liquid two-phase state. Furthermore, the cleaning effect is high and the cleaning time can be shortened for cleaning the remaining foreign matter. In addition, since the pressure and dryness of the gas-liquid two-phase refrigerant flowing through the first and second connection pipes C and D can be controlled, almost the same cleaning operation can be performed under arbitrary conditions, and the effects and labor are made constant. To do.
[0117]
Further, since the indoor bypass machine F is provided, the state of the refrigerant flowing through the first and second connection pipes C and D can be made substantially the same, so that a uniform cleaning operation is possible and the effects and labor are made constant. Moreover, since the residual foreign material does not flow into the new indoor unit B, contamination of the indoor unit B can be prevented.
[0118]
In addition, the oil separator 9, the bypass 9a, the cooling means 12a, the heating means 12b, the foreign matter capturing means 13, the first switching valve 10, the second switching valve 11, the first flow control means 15, the second Since the flow rate control means 16 is built in the washing machine E, the heat source machine A can be reduced in size and cost. Further, the heat source machine A can be a common heat source machine even when the first and second connection pipes C and D are newly laid.
[0119]
Further, since the washing machine E is detachably connected to the entire air conditioner at the fifth to eighth operation valves 17c to 17f, the inside of the washing machine E is closed after these operation valves are closed after the washing operation. The refrigerant can be recovered, removed from the air conditioner, and attached to another similar air conditioner to perform the cleaning operation.
[0120]
In this embodiment, an example in which one indoor unit B is connected has been described, but it goes without saying that the same effect can be obtained even in an air conditioner in which a plurality of indoor units B are connected in parallel or in series. Further, it is obvious that the same effect can be obtained even if an ice heat storage tank or a water heat storage tank (including hot water) is installed in series or in parallel with the heat source device side heat exchanger 3.
[0121]
In addition, it is obvious that the same effect can be obtained in an air conditioner in which a plurality of heat source devices A are connected in parallel. In addition, not only air conditioners, but also products that are vapor compression refrigeration cycle applications, a unit with a built-in heat source side heat exchanger and a unit with a built-in side heat exchanger are installed separately. It is clear that the same effect can be obtained.
In this embodiment, only one cleaning machine E is installed in one air conditioner. However, it is obvious that the same effect can be obtained even if a plurality of cleaning machines E are installed.
[0122]
Embodiment 4 FIG.
In Embodiment 4 of the present invention, in FIG. 9 of Embodiment 3, an inlet for injecting mineral oil is provided between the oil separator 9 of the washing machine E and the second switching valve 11, or the mineral oil Provide a tank. During the cleaning operation, the mineral oil is supplied to the first and second connection pipes C and D, and the residual foreign matter sludged by the refrigerating machine oil is dissolved in the mineral oil for cleaning. Captured in the same manner as in the third mode.
[0123]
Embodiment 5 FIG.
In Embodiment 5 of the present invention, in FIG. 9 of Embodiment 3, an inlet for injecting water is provided between the oil separator 9 of the washing machine E and the second switching valve 11, or Provide a tank. During the cleaning operation, this water is supplied to the first and second connection pipes C and D, and the iron chloride is ionized for cleaning, and the foreign matter capturing means 13 captures the same as in the third embodiment.
Of the moisture at this time, the supersaturated component in the low-pressure refrigerant becomes liquid moisture, but this moisture has a density higher than that of mineral oil, and therefore stays at the bottom of the foreign matter capturing means 13.
The moisture saturated in the low-pressure refrigerant is provided to the dryer by providing a dryer (moisture adsorbing means) in the heat source unit A or any of the first, second, third, and fourth connection pipes C, D, CC, and DD. It can be adsorbed to reduce moisture in the refrigerant circuit.
[0124]
In the second embodiment, as described in the third embodiment, the indoor bypass machine F can be attached.
Also in the fifth embodiment, similar to the third embodiment, a refrigerant circuit portion (first bypass passage) including the heating means 12b and the foreign matter trapping means 13 and a refrigerant circuit portion (first operation) including the cooling means 12a. 2 bypass passage) can be closed or separated from the refrigerant circuit main.
In addition, although not illustrated one by one, the present invention includes such combinations or modifications.
[0125]
【The invention's effect】
Since this invention is comprised as mentioned above, there exist the following effects.
According to the invention according to any one of claims 1 to 5, since at least the foreign matter capturing means is provided in the bypass pipe that bypasses the main pipe of the refrigerant circuit, the heat source machine and the indoor unit are newly replaced. Prior to normal operation, foreign substances in the connection pipe can be cleaned by the bypass pipe.
[0126]
According to the invention described in claim 6, in the refrigeration cycle apparatus in which the heat source unit and the indoor unit are newly replaced, the refrigerant is circulated to the bypass circuit so as to capture the foreign matter in the connection pipe, and then the bypass circuit is It can be closed for normal operation. During the normal operation, the bypass circuit including the foreign matter capturing means can be isolated as a closed space, and the foreign matter captured during the cleaning operation does not return to the operation circuit again.
Further, since it is possible to prevent the refrigerant from passing through the bypass circuit during normal operation, the suction pressure loss of the compressor is small, and the reduction in capacity is small.
In addition, since HFC is used as the refrigerant, it is possible to operate the refrigeration cycle apparatus having no problem in environmental protection.
[Brief description of the drawings]
FIG. 1 is a diagram showing a refrigerant circuit of an air conditioner as an example of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a graph showing deterioration over time when chlorine is mixed in refrigeration oil for HFC (175 ° C.).
FIG. 3 illustrates an example of the foreign matter capturing means 13.
FIG. 4 is a diagram showing solubility curves of mineral oil and CFC and solubility curves of mineral oil and HCFC.
FIG. 5 is a diagram showing the structure of an oil separator.
FIG. 6 is a graph showing the relationship between the flow rate of gas refrigerant and separation efficiency in an oil separator.
FIG. 7 is a diagram showing a refrigerant circuit of an air conditioner as an example of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.
FIG. 8 is a diagram showing a state of normal air conditioning operation of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.
FIG. 9 is a diagram showing a refrigerant circuit of an air conditioner as an example of a refrigeration cycle apparatus according to Embodiment 3 of the present invention.
FIG. 10 is a diagram showing a state of normal air conditioning operation of a refrigeration cycle apparatus according to Embodiment 3 of the present invention.
FIG. 11 is a diagram showing a refrigerant circuit of a conventional separate type air conditioner.
FIG. 12 is a diagram showing a critical solubility curve showing the solubility of the HFC refrigerating machine oil and the HFC refrigerant when mixed with mineral oil.
FIG. 13 is a diagram for explaining a conventional method of cleaning an air conditioner.
[Explanation of symbols]
A heat source machine, B indoor unit, C first connection pipe, D second connection pipe, E washing machine, CC third connection pipe, DD fourth connection pipe, 1 compressor 1, 2 four-way valve, 3 Heat source machine side heat exchanger, 4 first operation valve, 5 flow rate regulator, 6 utilization side heat exchanger, 7 second operation valve, 8 accumulator, 9 oil separator, 10 first switching valve, 11 second switching valve, 12a cooling means, 12b heating means, 13 foreign matter capturing means, 14a to 14d first to fourth solenoid valves, 15 first flow control means, 16 second flow control means, 17a to 17f 3rd-8th operation valve, 18a-18c 5th-7th solenoid valve, 51 container, 52 outflow piping, 53 filter, 54 mineral oil, 55 inflow piping, 56 ion exchange resin.

Claims (6)

CFC冷媒やHCFC冷媒の冷凍サイクル装置で使用した接続配管を再利用し、圧縮機と熱源機側熱交換器とを有する熱源機と、流量調整器と利用側熱交換器とを有する室内機との間に、HFC冷媒を循環させる第1の冷媒回路を備えた冷凍サイクル装置において、
上記利用側熱交換器と上記圧縮機との間の冷媒回路をバイパスするとともに、前記接続配管に残留していた残留異物を捕捉する異物捕捉手段を有する第1バイパス路を備え、さらに、上記第1バイパス路の上記異物捕捉手段の上流側に冷媒の加熱手段を備え、
通常運転に先立ち、冷媒を上記第1バイパス路に循環させて、上記加熱手段により冷媒を気相に加熱し、上記異物捕捉手段により、流入してきた前記HFC冷媒中から前記接続配管に残留していた残留異物を捕捉するようにしたことを特徴とする冷凍サイクル装置の運転方法。
Reusing the connection piping used in the refrigeration cycle device for CFC refrigerant or HCFC refrigerant, a heat source unit having a compressor and a heat source unit side heat exchanger, an indoor unit having a flow rate regulator and a use side heat exchanger, In the refrigeration cycle apparatus including the first refrigerant circuit for circulating the HFC refrigerant during
Thereby bypassing the refrigerant circuit between the utilization-side heat exchanger and the compressor, provided with a first bypass passage having extraneous matter catching means for catching the residual foreign material remaining in the connecting pipe, further, the first A refrigerant heating means is provided upstream of the foreign matter capturing means in one bypass path;
Prior to normal operation, the refrigerant is circulated through the first bypass passage, the refrigerant is heated to a gas phase by the heating means, and the foreign matter trapping means is left in the connecting pipe from the inflowing HFC refrigerant. A method for operating a refrigeration cycle apparatus characterized by trapping residual foreign matter.
CFC冷媒やHCFC冷媒の冷凍サイクル装置で使用した接続配管を再利用し、圧縮機と熱源機側熱交換器とを有する熱源機と、流量調整器と利用側熱交換器とを有する室内機との間に、HFC冷媒を循環させる第1の冷媒回路を備えた冷凍サイクル装置において、
上記利用側熱交換器と上記圧縮機との間の冷媒回路をバイパスするとともに、前記接続配管に残留していた残留異物を捕捉する異物捕捉手段を有する第1バイパス路を備え、また、上記第1の冷媒回路の上記熱源機側熱交換器と上記流量調整器との間の冷媒回路をバイパスするとともに、冷媒の冷却手段を有する第2バイパス路を備え、
通常運転に先立ち、冷媒を上記第1バイパス路に循環させて、上記異物捕捉手段により、流入してきた前記HFC冷媒中から前記接続配管に残留していた残留異物を捕捉するとともに、
冷媒を上記第2バイパス回路に循環させて、上記冷却手段により冷媒を液相または気液2相状態に冷却するようにしたことを特徴とする冷凍サイクル装置の運転方法。
Reusing the connection piping used in the refrigeration cycle device for CFC refrigerant or HCFC refrigerant, a heat source unit having a compressor and a heat source unit side heat exchanger, an indoor unit having a flow rate regulator and a use side heat exchanger, In the refrigeration cycle apparatus including the first refrigerant circuit for circulating the HFC refrigerant during
A first bypass passage that bypasses the refrigerant circuit between the use-side heat exchanger and the compressor and includes foreign matter capturing means for capturing residual foreign matter remaining in the connection pipe; Bypassing the refrigerant circuit between the heat source machine side heat exchanger of the refrigerant circuit of 1 and the flow rate regulator, and having a second bypass passage having a cooling means for the refrigerant ,
Prior to normal operation, the refrigerant is circulated through the first bypass passage, and the foreign matter capturing means captures residual foreign matter remaining in the connection pipe from the HFC refrigerant that has flowed in .
A method of operating a refrigeration cycle apparatus, wherein the refrigerant is circulated through the second bypass circuit, and the refrigerant is cooled to a liquid phase or a gas-liquid two-phase state by the cooling means.
CFC冷媒やHCFC冷媒の冷凍サイクル装置で使用した接続配管を再利用し、圧縮機と熱源機側熱交換器とを有する熱源機と、流量調整器と利用側熱交換器とを有する室内機との間に、HFC冷媒を循環させる第1の冷媒回路を備えた冷凍サイクル装置において、
上記利用側熱交換器と上記圧縮機との間の冷媒回路をバイパスするとともに、前記接続配管に残留していた残留異物を捕捉する異物捕捉手段を有する第1バイパス路を備え、さらに、上記第1バイパス路の上記異物捕捉手段の上流側に冷媒の加熱手段を備え、また、上記第1の冷媒回路の上記熱源機側熱交換器と上記流量調整器との間の冷媒回路をバイパスするとともに、冷媒の冷却手段を有する第2バイパス路を備え、
通常運転に先立ち、冷媒を上記第1バイパス路に循環させて、上記加熱手段により冷媒を気相に加熱し、上記異物捕捉手段により、流入してきた前記HFC冷媒中から前記接続配管に残留していた残留異物を捕捉するとともに、
冷媒を上記第2バイパス回路に循環させて、上記冷却手段により冷媒を液相または気液2相状態に冷却するようにしたことを特徴とする冷凍サイクル装置の運転方法。
Reusing the connection piping used in the refrigeration cycle device for CFC refrigerant or HCFC refrigerant, a heat source unit having a compressor and a heat source unit side heat exchanger, an indoor unit having a flow rate regulator and a use side heat exchanger, In the refrigeration cycle apparatus including the first refrigerant circuit for circulating the HFC refrigerant during
A first bypass passage having a foreign matter catching means for bypassing the refrigerant circuit between the use side heat exchanger and the compressor and catching the residual foreign matter remaining in the connection pipe; A refrigerant heating means is provided on the upstream side of the foreign matter capturing means in one bypass path, and the refrigerant circuit between the heat source side heat exchanger of the first refrigerant circuit and the flow rate regulator is bypassed. A second bypass passage having a cooling means for the refrigerant,
Prior to normal operation, the refrigerant is circulated through the first bypass passage, the refrigerant is heated to a gas phase by the heating means, and the foreign matter trapping means is left in the connecting pipe from the inflowing HFC refrigerant. While catching residual foreign matter ,
A method of operating a refrigeration cycle apparatus, wherein the refrigerant is circulated through the second bypass circuit, and the refrigerant is cooled to a liquid phase or a gas-liquid two-phase state by the cooling means.
上記加熱手段と上記冷却手段との間で、加熱及び冷却のための熱交換をするようにしたことを特徴とする請求項3に記載の冷凍サイクル装置の運転方法。  The operation method of the refrigeration cycle apparatus according to claim 3, wherein heat exchange for heating and cooling is performed between the heating means and the cooling means. CFC冷媒やHCFC冷媒の冷凍サイクル装置で使用した接続配管を再利用し、圧縮機と熱源機側熱交換器とを有する熱源機と、流量調整器と利用側熱交換器と有する室内機との間に、HFC冷媒を循環させる第1の冷媒回路を備えた冷凍サイクル装置において、
上記利用側熱交換器と上記圧縮機との間の冷媒回路をバイパスするとともに、前記接続配管に残留していた残留異物を捕捉する異物捕捉手段を有する第1バイパス回路を備え、さらに、上記流量調整器と上記利用側熱交換器とをバイパス制御できる室内機バイパス路を備え、
通常運転に先立ち、上記室内機バイパス路に冷媒をバイパスさせるとともに、冷媒を上記第1バイパス回路に循環させて、上記異物捕捉手段により、流入してきた前記HFC冷媒中から前記接続配管に残留していた残留異物を捕捉するようにしたことを特徴とする冷凍サイクル装置の運転方法。
Reusing the connection piping used in the refrigeration cycle apparatus for CFC refrigerant and HCFC refrigerant, a heat source unit having a compressor and a heat source unit side heat exchanger, and an indoor unit having a flow rate regulator and a use side heat exchanger In the refrigeration cycle apparatus provided with the first refrigerant circuit for circulating the HFC refrigerant in between,
A bypass circuit that bypasses the refrigerant circuit between the use-side heat exchanger and the compressor, and includes a first bypass circuit that has a foreign matter capturing unit that captures residual foreign matter remaining in the connection pipe, and further includes the flow rate Provided with an indoor unit bypass that can bypass control the regulator and the use side heat exchanger,
Prior to normal operation, the refrigerant is bypassed to the indoor unit bypass passage, and the refrigerant is circulated to the first bypass circuit, and remains in the connection pipe from the HFC refrigerant flowing in by the foreign matter capturing means. A method for operating a refrigeration cycle apparatus characterized by trapping residual foreign matter.
請求項1〜5のいずれかに記載の冷凍サイクル装置の運転方法において、冷媒を少なくとも上記第1バイパス回路に循環させて上記異物捕捉手段により冷媒中の異物を捕捉するようにした後、上記第1バイパス回路又は上記第2バイパス回路を閉じて、冷媒を上記第1の冷媒回路に循環させて通常運転をするようにしたことを特徴とする冷凍サイクル装置の運転方法。  In the operating method of the refrigeration cycle apparatus according to any one of claims 1 to 5, after the refrigerant is circulated through at least the first bypass circuit and foreign matter in the refrigerant is captured by the foreign matter capturing means, the first A method for operating a refrigeration cycle apparatus, wherein one bypass circuit or the second bypass circuit is closed and the refrigerant is circulated through the first refrigerant circuit for normal operation.
JP2002230937A 1998-04-24 2002-08-08 Operation method of refrigeration cycle apparatus Expired - Lifetime JP4176413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002230937A JP4176413B2 (en) 1998-04-24 2002-08-08 Operation method of refrigeration cycle apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-114717 1998-04-24
JP11471798 1998-04-24
JP2002230937A JP4176413B2 (en) 1998-04-24 2002-08-08 Operation method of refrigeration cycle apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP03613599A Division JP3361765B2 (en) 1998-04-24 1999-02-15 Refrigeration cycle apparatus, method of forming the same, and outdoor unit of refrigeration cycle apparatus

Publications (2)

Publication Number Publication Date
JP2003065636A JP2003065636A (en) 2003-03-05
JP4176413B2 true JP4176413B2 (en) 2008-11-05

Family

ID=26453400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230937A Expired - Lifetime JP4176413B2 (en) 1998-04-24 2002-08-08 Operation method of refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP4176413B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308288A (en) * 2004-04-21 2005-11-04 Mitsubishi Electric Corp Air-conditioner
JP5610843B2 (en) * 2010-05-24 2014-10-22 三菱電機株式会社 Air conditioner
CN116972562B (en) * 2023-07-28 2025-04-15 江苏拓米洛高端装备股份有限公司 Oil return control method for refrigeration system, refrigeration system and environmental chamber

Also Published As

Publication number Publication date
JP2003065636A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
EP1391667B1 (en) Converting a refrigerating system
EP0952407B1 (en) A refrigeration cycle device
JP2009300041A (en) Refrigerating cycle device and pressure loss suppressing method for refrigerating cycle device
JP3361771B2 (en) Operation method of refrigeration cycle device
JP4169875B2 (en) Refrigeration cycle equipment
JP3361765B2 (en) Refrigeration cycle apparatus, method of forming the same, and outdoor unit of refrigeration cycle apparatus
JP4409075B2 (en) Cleaning operation method of refrigeration cycle apparatus
JP4176413B2 (en) Operation method of refrigeration cycle apparatus
JP2004263885A (en) Method for cleaning refrigerant piping, method for updating air conditioner, and air conditioner
JP4391559B2 (en) Refrigerant changing method of refrigerant circuit for refrigeration apparatus and refrigeration apparatus
JP3431552B2 (en) Refrigeration air conditioner and method for updating refrigeration air conditioner
JP4472200B2 (en) Refrigeration / air-conditioning apparatus and operation method thereof
JP4128796B2 (en) Refrigeration cycle equipment
JP3370959B2 (en) Renewal method and operation method of refrigeration cycle device
JP2004333121A (en) Update method of air conditioner and air conditioner
JP4425457B2 (en) Refrigeration cycle apparatus and operation method thereof
JP4067809B2 (en) Refrigerant replacement method for air conditioner, cleaning machine, air conditioner
JP3700723B2 (en) Refrigeration equipment
JP4554098B2 (en) Refrigeration cycle apparatus and operation method thereof
JP3751091B2 (en) Water removal trial operation method of refrigeration cycle apparatus and refrigeration cycle apparatus
JP2004308934A (en) Refrigeration apparatus and pipe cleaning method thereof
JP2005009839A (en) Refrigeration equipment
JP4375925B2 (en) Air conditioner
JP2005061830A (en) Using method for existing refrigerant piping
JP2002267293A (en) Refrigeration cycle device refrigerant replacement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term