JP2000323151A - Fuel cell and its manufacture - Google Patents

Fuel cell and its manufacture

Info

Publication number
JP2000323151A
JP2000323151A JP11130902A JP13090299A JP2000323151A JP 2000323151 A JP2000323151 A JP 2000323151A JP 11130902 A JP11130902 A JP 11130902A JP 13090299 A JP13090299 A JP 13090299A JP 2000323151 A JP2000323151 A JP 2000323151A
Authority
JP
Japan
Prior art keywords
conductive
fuel cell
film
flow path
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11130902A
Other languages
Japanese (ja)
Inventor
Hisaaki Gyoten
久朗 行天
Hideo Obara
英夫 小原
Kazuhito Hado
一仁 羽藤
Junji Niikura
順二 新倉
Teruhisa Kanbara
輝壽 神原
Toshihiro Matsumoto
敏宏 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11130902A priority Critical patent/JP2000323151A/en
Publication of JP2000323151A publication Critical patent/JP2000323151A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To restrain the output degradation due to contact resistance in a metal contact of a battery or the like over a long period at a low cost by arranging a conductive contact point having corrosion resistance at least at a part of a conductive gas passage plate abutting on a gas diffusion electrode. SOLUTION: A conductive contact point is not a continuous film but preferably formed into a discontinuous island-like shape, and thereby, a material constituting a protective film can be saved and a film forming time can be reduced. Specifically, a low-conductivity film such as an oxide film formed on the surface of a metallic conductive gas passage plate during a normal storage condition is previously removed in order to secure the conductivity of the protective film and enhance the durability thereof and thereafter, the protective film is formed. At that time, the island-like protective film is formed by adjusting the film forming time and by optimizing the temperature of the gas passage plate. Additionally, it is recommended that the formation of another protective of an organic substance and an oxidation treatment are carried out to the surface of the conductive gas passage plate not covered with the protective film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、民生用コジェネレ
ーションや移動体用の発電器として有用な燃料電池、特
に高分子を電解質とする高分子電解質型燃料電池とその
製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell which is useful as a generator for consumer cogeneration and a mobile body, and more particularly to a polymer electrolyte fuel cell using a polymer as an electrolyte and a method for producing the same.

【0002】[0002]

【従来の技術】燃料電池は、水素などの燃料と空気など
の酸化剤ガスをガス拡散電極によって電気化学的に反応
させ、電力を得る発電装置である。用いる電解質の種類
によっていくつかのタイプがある。電解質として、水素
イオン導電性高分子膜を用いた高分子電解質型の場合
は、側鎖末端基としてスルホン酸を導入したフッ素樹脂
ポリマー膜が主流となっている。
2. Description of the Related Art A fuel cell is a power generation device that obtains electric power by electrochemically reacting a fuel such as hydrogen and an oxidizing gas such as air by a gas diffusion electrode. There are several types depending on the type of electrolyte used. In the case of a polymer electrolyte type using a hydrogen ion conductive polymer membrane as an electrolyte, a fluorine resin polymer membrane into which sulfonic acid is introduced as a side chain terminal group is mainly used.

【0003】燃料電池を構成するとき、こられの電解質
層には、白金系の金属触媒を担持したカーボン粉末を有
する電極反応層を密着させ、さらに電極反応層の外面
に、ガス通気性と導電性を兼ね備えた一対の電極基材が
密着させ、ガス拡散電極とする。ガス拡散電極の外側に
は、これらの電極および電解質の接合体を機械的に固定
するとともに、隣接する接合体を互いに電気的に直列に
接続するための、導電性ガス流路板を配置する。
When a fuel cell is constructed, an electrode reaction layer having a carbon powder carrying a platinum-based metal catalyst is adhered to the electrolyte layer, and gas permeability and conductivity are formed on the outer surface of the electrode reaction layer. A pair of electrode base materials having both properties are brought into close contact to form a gas diffusion electrode. Outside the gas diffusion electrodes, a conductive gas flow path plate for mechanically fixing the joined body of these electrodes and the electrolyte and electrically connecting adjacent joined bodies to each other in series is arranged.

【0004】導電性ガス流路板のガス拡散電極と接触す
る部分には、ガス拡散電極に反応ガスを供給し、また生
成ガスや余剰ガスを運び去るためのガス流路を形成す
る。電解質層、ガス拡散電極、導電性ガス流路板を積層
することで作成した燃料電池を、数十から数百セル直列
に積層し、それぞれのガス流路に、水素などの燃料ガス
と空気とを供給するためのマニホルドを取り付け、電池
モジュールとする。
[0004] In a portion of the conductive gas flow path plate which is in contact with the gas diffusion electrode, a gas flow path for supplying a reaction gas to the gas diffusion electrode and carrying away generated gas and surplus gas is formed. A fuel cell created by stacking an electrolyte layer, a gas diffusion electrode, and a conductive gas flow channel plate is stacked in a series of tens to hundreds of cells, and a fuel gas such as hydrogen and air is provided in each gas flow channel. A manifold for supplying the fuel cell is attached to form a battery module.

【0005】通常、導電性ガス流路板の構成材料は、ガ
ス気密性があり、同時に導電性と耐食性とを兼ね備えた
カーボン材料が用いられてきた。また、低コスト化とさ
らなる薄型化をねらいとしてて、金属材料によるものが
提案されている。
In general, a carbon material having gas tightness and having both conductivity and corrosion resistance has been used as a constituent material of the conductive gas flow path plate. Further, with the aim of lowering the cost and further reducing the thickness, a device using a metal material has been proposed.

【0006】[0006]

【発明が解決しようとする課題】高分子電解質型燃料電
池では、電解質膜の乾燥を防ぐため、加湿した酸化剤ガ
スと燃料ガスを供給する。したがって、このような加湿
雰囲気でも耐食性を維持するため、金属材料を用いて構
成した導電性ガス流路板は、その表面に耐食処理を施し
たり、導電性の保護皮膜を形成する必要がある。例えば
金などの貴金属は耐食性が高く、導電性も高いが、金そ
のものの材料コストが高く、実用性が低くなる。貴金属
に代わり、導電性の窒化物や炭化物などで表面保護膜を
形成する方法では、製膜や表面処理に長時間かかり、低
コスト化の妨げとなっている。また、導電性ガス流路板
上に平面状連続被膜を形成すると接触の極圧性が低くな
り、接触抵抗が増大し、この結果電池性能が低下する。
In a polymer electrolyte fuel cell, a humidified oxidizing gas and a fuel gas are supplied to prevent the electrolyte membrane from drying. Therefore, in order to maintain the corrosion resistance even in such a humidified atmosphere, it is necessary to perform a corrosion resistance treatment on the surface of the conductive gas flow path plate made of a metal material or to form a conductive protective film. For example, a noble metal such as gold has high corrosion resistance and high conductivity, but the material cost of gold itself is high and its practicality is low. In the method of forming a surface protective film using a conductive nitride or carbide instead of a noble metal, it takes a long time for film formation and surface treatment, which hinders cost reduction. Further, when a flat continuous film is formed on the conductive gas flow path plate, the extreme pressure property of the contact is reduced, the contact resistance is increased, and as a result, the battery performance is reduced.

【0007】また、カーボン板で構成した導電性ガス流
路板は、カーボン板がポーラスであるため、電池のイン
ピーダンスを低く保つためには、高い圧力で電池全体を
締め付けなけらばならず、このためには外部締め付け治
具が大型化するという課題があった。
Further, since the conductive gas flow path plate made of a carbon plate has a porous carbon plate, the entire battery must be tightened with a high pressure in order to keep the impedance of the battery low. Therefore, there is a problem that the external fastening jig becomes large.

【0008】[0008]

【課題を解決するための手段】以上の課題を解決するた
め本発明の燃料電池は、水素イオン伝導性高分子電解質
膜を挟んだ一対のガス拡散電極と、前記ガス拡散電極を
挟んだ一対の導電性ガス流路板とを具備した燃料電池に
おいて、前記ガス拡散電極に接触する前記導電性ガス流
路板の少なくとも一部分に、耐食性を有する導電性接触
ポイントを配置したことを特徴とする。
To solve the above problems, a fuel cell according to the present invention comprises a pair of gas diffusion electrodes sandwiching a hydrogen ion conductive polymer electrolyte membrane, and a pair of gas diffusion electrodes sandwiching the gas diffusion electrode. In a fuel cell including a conductive gas flow path plate, a conductive contact point having corrosion resistance is arranged on at least a part of the conductive gas flow path plate in contact with the gas diffusion electrode.

【0009】このとき、導電性接触ポイントを配置した
以外の、導電性ガス流路板の表面に、耐食性を有する被
膜層を形成したことが有効である。
At this time, it is effective to form a coating layer having corrosion resistance on the surface of the conductive gas flow path plate except for the arrangement of the conductive contact points.

【0010】また、導電性接触ポイントは、導電性ガス
流路板の表面で不連続な島状構造を有することが有効で
ある。
It is effective that the conductive contact point has a discontinuous island structure on the surface of the conductive gas flow path plate.

【0011】また、導電性接触ポイントの一部分が、導
電性ガス流路板の内部に嵌入していることが有効であ
る。
It is effective that a part of the conductive contact point is fitted inside the conductive gas channel plate.

【0012】以上では、導電性接触ポイントを、貴金
属、チタン、導電性窒化物、導電性炭化物、導電性酸化
物より選ばれる少なくとも1種の材料で構成したことが
有効である。
In the above, it is effective that the conductive contact point is made of at least one material selected from noble metals, titanium, conductive nitride, conductive carbide and conductive oxide.

【0013】また以上では、導電性ガス流路板を金属材
料で構成したことが有効である。
In the above, it is effective that the conductive gas flow path plate is made of a metal material.

【0014】このとき、金属材料は、Feを主成分と
し、C、Cr、Ni、Mo、Ti、Wより選ばれる少な
くとも1つの元素を含むことが有効である。
At this time, it is effective that the metal material contains Fe as a main component and at least one element selected from C, Cr, Ni, Mo, Ti, and W.

【0015】また、金属材料は、Alを主成分とするこ
とを特徴とする請求項6記載の燃料電池。
7. The fuel cell according to claim 6, wherein the metal material is mainly composed of Al.

【0016】このとき、導電性接触ポイントは、導電性
ガス流路板を構成する金属元素を構成材料として有する
ことが望ましい。
At this time, it is desirable that the conductive contact point has a metal element constituting the conductive gas flow path plate as a constituent material.

【0017】以上では、金属表面の酸化被膜を除去した
のち、導電性接触ポイントを形成したことを特徴とする
製造法が望ましい。
In the above, a manufacturing method characterized by forming a conductive contact point after removing an oxide film on a metal surface is desirable.

【0018】[0018]

【発明の実施の形態】本発明の構成は、ガス拡散電極に
接触する前記導電性ガス流路板の少なくとも一部分に、
耐食性を有する導電性接触ポイントを配置したことを特
徴とする。これは、導電性接触ポイントを連続皮膜では
なく、不連続な島状に形成し、保護被膜を構成する材料
の節約と製膜時間の短縮、ひいてはコスト低減を図った
ものである。導電性接触ポイントの形状としては、導電
性接触ポイント全体の90%以上の直径がおおよそ2m
m以下であるとき、とくに有効であった。更に、このと
き、厚みを約100nm以下とすると、有効な効果を維
持しつつ、短い製膜時間で作成することができた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the present invention, at least a part of the conductive gas flow path plate which contacts a gas diffusion electrode is provided.
A conductive contact point having corrosion resistance is arranged. In this method, the conductive contact points are formed not in a continuous film but in a discontinuous island shape, so that the material constituting the protective film is saved, the film forming time is reduced, and the cost is reduced. As the shape of the conductive contact point, a diameter of 90% or more of the entire conductive contact point is approximately 2 m.
m or less was particularly effective. Further, at this time, when the thickness was set to about 100 nm or less, the film could be formed in a short film formation time while maintaining the effective effect.

【0019】具体的には保護被膜の導電性を確保すると
ともに保護被膜の耐久性を高めるために、通常の放置状
態で金属性の導電性ガス流路板の表面に形成される、酸
化被膜等の低導電性被膜を予め除去した後、保護被膜を
形成する方法を行った。製膜時間の調整や、パルス状の
製膜、あるいは製膜時に金属性の導電性ガス流路板の温
度を最適化することによって島状の保護被膜が形成でき
ることを見出し、適用した。
Specifically, in order to ensure the conductivity of the protective film and to enhance the durability of the protective film, an oxide film or the like formed on the surface of the metallic conductive gas flow path plate in a normal standing state. After previously removing the low conductive film, a method of forming a protective film was performed. The inventors have found that an island-shaped protective film can be formed by adjusting the film forming time, pulsating film forming, or optimizing the temperature of the metallic conductive gas flow path plate during film forming.

【0020】さらに、保護被膜に覆われていない金属性
の導電性ガス流路板表面の耐食性を保持・改善するため
に、その部分に有機物など別の保護被膜の形成や酸化処
理を行った。あるいはその表面に酸化物不働態などの耐
食被膜が自然形成されるステンレスなどの金属を導電性
ガス流路板に用いる構成が有効であった。
Further, in order to maintain and improve the corrosion resistance of the surface of the metallic conductive gas flow path plate not covered with the protective film, another protective film such as an organic substance was formed or oxidized on that portion. Alternatively, a configuration in which a metal such as stainless steel on which a corrosion-resistant coating such as an oxide passivation is naturally formed on its surface was used for the conductive gas flow path plate was effective.

【0021】また、金属性の導電性ガス流路板の表面に
形成する導電性と耐食性のある被膜の材料としては、
金、白金、炭素、チタン、導電性窒化物、導電性炭化
物、導電性酸化物が優れていた。さらに、金属性の導電
性ガス流路板の構成材料としては、導電性ガス流路板と
しての加工性の観点からアルミニウムを主成分とする金
属も大変有効であった。
The material of the conductive and corrosion-resistant coating formed on the surface of the metallic conductive gas flow path plate includes:
Gold, platinum, carbon, titanium, conductive nitride, conductive carbide, and conductive oxide were excellent. Further, as a constituent material of the metallic conductive gas flow path plate, a metal mainly composed of aluminum was also very effective from the viewpoint of workability as a conductive gas flow path plate.

【0022】導電性耐食材料を金属性の導電性ガス流路
板に高速で衝突させたり、プレスして機械的に押し込む
方法、あるいはメカニカルアロイングによって前記導電
性耐食材料を分散させた金属性の導電性ガス流路板表面
の、導電性耐食材料以外の部分を除去することによって
導電性で耐食性を有する材料が金属導電性ガス流路板表
面に一部分が嵌入した金属導電性ガス流路板についても
有用性を実証した。
The conductive corrosion-resistant material is caused to collide with a metallic conductive gas flow path plate at a high speed, or is pressed mechanically, or mechanically alloyed to disperse the conductive corrosion-resistant material. A metal conductive gas flow path plate in which a material having conductivity and corrosion resistance is removed by removing a portion of the surface of the conductive gas flow path plate other than the conductive corrosion-resistant material, and partially fitted into the surface of the metal conductive gas flow path plate. Has also proven useful.

【0023】また、以上のような導電性接触ポイントを
カーボン板で構成した導電性ガス流路板上に配置する
と、低い圧力の締結でも電池のインピーダンスを低く保
つことができた。
Further, when the above-mentioned conductive contact points are arranged on the conductive gas flow path plate made of a carbon plate, the impedance of the battery can be kept low even at a low pressure.

【0024】以下、本発明の好適な実施例を具体的に記
載する。
Hereinafter, preferred embodiments of the present invention will be specifically described.

【0025】[0025]

【実施例】本発明は、金属部材の電気接点を介して外部
に電力を取り出す発電装置に対して本質的に有効なもの
と考えられるが、接触面の電流密度が大きいことから、
ジュール損の発電効率へ及ぼす影響が大きい燃料電池、
特に固体高分子型燃料電池へ適用した例で具体的に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is considered to be essentially effective for a power generator for extracting electric power to the outside through an electric contact of a metal member.
Fuel cells that have a large effect on power generation efficiency due to Joule loss,
In particular, an example in which the present invention is applied to a polymer electrolyte fuel cell will be specifically described.

【0026】(実施例1)まず、電池の構成方法につい
て記載する。
Example 1 First, a method of forming a battery will be described.

【0027】アセチレンブラック系カ−ボン粉末に、平
均粒径約30Åの白金粒子を25重量%担持したものを
電極の触媒とした。この触媒粉末をイソプロパノ−ルに
分散した溶液に、高分子電解質であるパーフルオロカー
ボンスルホン酸の粉末をエチルアルコールに分散したデ
ィスパージョン溶液を混合し、ペースト状にした。一
方、電極のベースとなる厚さ400μmのカーボンペー
パーをフッ素樹脂の水性ディスパージョン(ダイキン工
業(株)製のネオフロンND1)に含浸して乾燥後、4
00℃で30分熱処理して撥水性を付与した。
An electrode catalyst was prepared by supporting 25% by weight of platinum particles having an average particle size of about 30 ° on acetylene black carbon powder. A dispersion solution in which a powder of perfluorocarbon sulfonic acid, which is a polymer electrolyte, was dispersed in ethyl alcohol was mixed with a solution in which this catalyst powder was dispersed in isopropanol to form a paste. On the other hand, a 400 μm-thick carbon paper serving as a base of the electrode is impregnated with an aqueous dispersion of a fluororesin (NEOFLON ND1 manufactured by Daikin Industries, Ltd.) and dried.
Heat treatment was performed at 00 ° C. for 30 minutes to impart water repellency.

【0028】撥水処理を施したカーボンペーパーの片面
に、前記の触媒ペーストを均一に塗布して触媒層を形成
した。形成後の反応電極中に含まれる白金量は0.5m
g/cm2、パーフルオロカーボンスルホン酸の量は
1.2mg/cm2となるよう調整した。触媒層を形成
した2枚のカーボンペーパー電極によって水素イオン伝
導性を有するパーフルオロカーボンスルホン酸の高分子
電解質膜(デュポン社製、ナフィオン膜、膜厚25μ
m)を挟んで重ね合わせた後、これを乾燥してガス拡散
電極とした。
The catalyst paste was uniformly applied to one side of the water-repellent carbon paper to form a catalyst layer. The amount of platinum contained in the reaction electrode after formation is 0.5 m
g / cm 2 and the amount of perfluorocarbon sulfonic acid were adjusted to 1.2 mg / cm 2 . A polymer electrolyte membrane of perfluorocarbon sulfonic acid having hydrogen ion conductivity (DuPont, Nafion membrane, film thickness of 25 μm) formed by two carbon paper electrodes each having a catalyst layer formed thereon.
m) and then superposed, and then dried to form a gas diffusion electrode.

【0029】ガス拡散層としては前述のカーボンペーパ
ーの他にも、可撓性を有する素材としてカーボン繊維を
織ったカーボンクロス、さらにはカーボン繊維とカーボ
ン粉末を混合し有機バインダーを加えて成型したカーボ
ンフェルトを用いてもよい。
As the gas diffusion layer, in addition to the above-mentioned carbon paper, a carbon cloth woven from carbon fibers as a flexible material, or a carbon cloth formed by mixing carbon fibers and carbon powder and adding an organic binder thereto. Felt may be used.

【0030】次に、ガス拡散電極に活物質となる水素ガ
スと空気を供給し、生成した水蒸気やドレインガスを排
出するための導電性ガス流路溝を、ステンレス(SUS
316)製の金属板を切削加工することで形成した。前
述のガス拡散電極を2枚の導電性ガス流路板によって挟
持し、導電性ガス流路板の背面から15kg重/cm 2
の締結圧力で締結した。ガス拡散電極の周囲はブタジエ
ンゴムシートによってシール用ガスケットを構成し、ケ
ージ圧として2kg重/cm2のガス圧にもシール性が
確保できるようにした。
Next, hydrogen gas serving as an active material is applied to the gas diffusion electrode.
Supply air and water to exhaust generated water vapor and drain gas.
Stainless steel (SUS)
316) is formed by cutting a metal plate. Previous
The gas diffusion electrode described above is sandwiched between two conductive gas passage plates.
15 kgf / cm from the back of the conductive gas channel plate Two
The fastening pressure was as follows. Butadier around the gas diffusion electrode
The rubber gasket forms a sealing gasket.
2 kgf / cmTwoSealing properties for gas pressure
Secured.

【0031】次に、導電性接触ポイントの作成方法につ
いて記載する。
Next, a method of forming a conductive contact point will be described.

【0032】作成方法の検討:耐食性を有する導電性
材料としては、まず金を用いた。4インチの金ターゲッ
トを用い、rfマグネトロンスパッタ法によってステン
レス製の導電性ガス流路板上に金保護被膜を形成した。
スパッタリングは10-3TorrのArガス雰囲気で行
い、rf電力は300〜600W、スパッタリング時間
は5秒〜2000秒、基板すなわち導電性ガス流路板の
温度は室温〜600℃度とした。
Examination of preparation method: First, gold was used as a conductive material having corrosion resistance. Using a 4 inch gold target, a gold protective film was formed on a stainless steel conductive gas flow path plate by rf magnetron sputtering.
The sputtering was performed in an Ar gas atmosphere of 10 −3 Torr, the rf power was 300 to 600 W, the sputtering time was 5 seconds to 2000 seconds, and the temperature of the substrate, that is, the conductive gas channel plate was room temperature to 600 ° C.

【0033】電池に組んでの試験に先立って、ガス拡散
層として用いているカーボンペーパーと、金の保護皮膜
を表面に形成した金属導電性ガス流路板との接触電気抵
抗を測定した。その結果、スパッタリング時間が増える
につれて600秒までは接触電気抵抗が急激に低下し、
スパッタリング時間3600秒でほぼ一定の値まで低下
して安定することがわかった。表面元素定量分析の結
果、燃料電池の導電性ガス流路板材料として使用するに
十分に低い接触抵抗(〜10mΩ・cm2)となるスパ
ッタリング時間600秒では約100nmの金皮膜が形
成されていることがわかった。そこで低コスト性を追求
し、より少ない金の量と製膜時間で同様な低い接触抵抗
を得るために次のような製膜条件で製膜を行った。
Prior to the test for assembling the battery, the contact electric resistance between the carbon paper used as the gas diffusion layer and the metal conductive gas flow path plate having the gold protective film formed on the surface was measured. As a result, as the sputtering time increases, the contact electric resistance sharply decreases until 600 seconds,
It was found that the sputtering time was 3,600 seconds and the value was reduced to a substantially constant value and stabilized. As a result of the surface element quantitative analysis, a gold film of about 100 nm was formed at a sputtering time of 600 seconds at which the contact resistance was sufficiently low (〜1010 mΩ · cm 2 ) to be used as a conductive gas channel plate material for a fuel cell. I understand. Therefore, in pursuit of low cost, a film was formed under the following film forming conditions in order to obtain a similar low contact resistance with a smaller amount of gold and a shorter film forming time.

【0034】すなわち、rf電力を400W程度に低く
抑え、金属導電性ガス流路板の温度を400℃と高くし
た。スパッタリング時間も連続ではなく5秒間隔のパル
ス状とした。同様に接触電気抵抗を測定すると、スパッ
タリング時間120秒で、燃料電池として用いるに十分
な接触抵抗(〜10mΩ・cm2)となることがわかっ
た。TEM観察によってこの金属導電性ガス流路板の表
面性状を解析すると、図1−aに示したように、スパッ
タリング蒸着した、不連続な島状の金1がステンレス製
の導電性ガス流路板2の上に形成されていることがわか
った。
That is, the rf power was suppressed to about 400 W, and the temperature of the metal conductive gas flow path plate was increased to 400 ° C. The sputtering time was not continuous but pulsed at intervals of 5 seconds. Similarly, when the contact electric resistance was measured, it was found that the contact resistance was sufficient for use as a fuel cell (〜1010 mΩ · cm 2 ) in a sputtering time of 120 seconds. When the surface properties of the metal conductive gas flow path plate were analyzed by TEM observation, as shown in FIG. 1A, the discontinuous island-shaped gold 1 formed by sputtering was formed of a stainless steel conductive gas flow path plate. 2 was found to be formed.

【0035】また、図1−bに示した平面状連続皮膜の
金3をステンレス導電性ガス流路板2上に形成した場合
には、実際の燃料電池で使用可能な接触抵抗である10
mΩ・cm2以下の低い値を得るためには、その厚みを
100nm程度必要であった。これに対し、本発明のポ
イントである導電性接触ポイントを不連続な島状に形成
した場合は、10分の1の量の金の量で十分であった。
これは、島状の形状による接触抵抗に対する極圧性の効
果(スパイク効果)と、金の量の節約効果とが相乗され
たものと考える。
When the flat continuous gold film 3 shown in FIG. 1B is formed on the stainless steel conductive gas flow path plate 2, the contact resistance which can be used in an actual fuel cell is 10%.
In order to obtain a low value of mΩ · cm 2 or less, its thickness was required to be about 100 nm. On the other hand, when the conductive contact point, which is the point of the present invention, was formed in a discontinuous island shape, a 1/10 amount of gold was sufficient.
This is considered to be a synergistic effect between the effect of extreme pressure on the contact resistance due to the island shape (spike effect) and the effect of saving the amount of gold.

【0036】形態と接触抵抗の検討:つぎに、蒸着す
る金の量を変化させ、TEM観察による被覆率から島状
の金の厚みを算出した。この場合、100nmまでは不
連続な島状にした効果が大きく、同じ量の金を均一な平
面状連続皮膜に形成した場合よりも明らかに接触抵抗が
低かった。保護皮膜を不連続な島状に形成する有効な手
段としては、被蒸着材料の温度を高くすることがあげら
れる。温度を高くすると、蒸着面内での原子の移動が容
易になるので、固体の表面張力を駆動力として島状に形
成されやすくなる。
Examination of form and contact resistance: Next, the amount of gold to be deposited was changed, and the thickness of the island-shaped gold was calculated from the coverage by TEM observation. In this case, up to 100 nm, the effect of forming a discontinuous island was great, and the contact resistance was clearly lower than when the same amount of gold was formed into a uniform planar continuous film. An effective means for forming the protective film in a discontinuous island shape is to raise the temperature of the material to be deposited. When the temperature is increased, the movement of atoms within the deposition surface is facilitated, so that the solid is easily formed into an island shape using the surface tension of the solid as a driving force.

【0037】同様に製膜条件を穏やかにし、蒸着量を抑
制することも非常に有効である。スパッタリング以外、
真空蒸着法やイオンプレーティング法など他の製膜方法
でもこのような考え方に沿って製膜条件や表面処理条件
を整えることによって、製膜時間を短縮できたり、必要
な蒸着量を抑制できるものと考えられる。例えば、後述
する窒化チタンの表面被膜形成にはイオンプレーティン
グ法を用いると、比較的短時間に不連続な島状被膜を形
成することができた。
Similarly, it is very effective to moderate the film formation conditions and to suppress the amount of deposition. Other than sputtering
Other film forming methods such as vacuum evaporation and ion plating can also shorten film formation time or reduce the required amount of deposition by adjusting film forming conditions and surface treatment conditions in accordance with this concept. it is conceivable that. For example, when an ion plating method was used to form a surface film of titanium nitride described later, a discontinuous island-like film could be formed in a relatively short time.

【0038】不連続な島状の金の厚みとしては100n
m程度まで有効であったのに対し、1個の島状の金が覆
う面積の最適性についても検討を加えた。スパッタリン
グにて金の皮膜を形成する場合、通常の方法では島状部
分の直径が100〜200nmに達すると連続的にな
り、本発明のような表面状態にすることができなかっ
た。そこで電子銃を用いた局所加熱によるアブレーショ
ン蒸着や、金属メッシュや微細孔を開けたマスク板を用
いて200nm〜10mmの直径の金皮膜を島状に形成
し、製膜した金の量と接触抵抗の低減効果を調べた。そ
の結果、いずれの場合も有効であったが、直径が5mm
以上では金の節約量は極めて少なかった。電池を構成し
たときの電流密度の均一性を考慮すると直径3mm以下
が望ましいことがわかった。この場合もすべての島状皮
膜が3mm以下であることは必要でなく、実質的に90
%程度の島状皮膜の直径が3mm程度であれば十分であ
ることは言うまでもない。
The thickness of the discontinuous island-shaped gold is 100 n
Although it was effective up to about m, an examination was also made on the optimality of the area covered by one island-shaped gold. In the case of forming a gold film by sputtering, when the diameter of the island portion reaches 100 to 200 nm in a usual method, it becomes continuous, and the surface state as in the present invention could not be obtained. Therefore, ablation vapor deposition by local heating using an electron gun or a gold film with a diameter of 200 nm to 10 mm is formed in an island shape using a metal mesh or a mask plate with fine holes, and the amount of gold formed and the contact resistance The effect of the reduction was investigated. As a result, all the cases were effective, but the diameter was 5 mm.
The savings on gold have been extremely small. It has been found that the diameter is preferably 3 mm or less in consideration of the uniformity of the current density when the battery is configured. Also in this case, it is not necessary that all the island-like films are 3 mm or less, and substantially 90
Needless to say, it is sufficient if the diameter of the island-shaped film of about 3% is about 3 mm.

【0039】材質の検討:保護皮膜を構成する導電性
材料としては、上述した金の他にも、ニッケル、鉄、白
金、炭素、アルミニウム、チタン、窒化チタン、炭化珪
素、酸化スズ、酸化鉛について実験を行った。
Examination of material: As conductive materials constituting the protective film, nickel, iron, platinum, carbon, aluminum, titanium, titanium nitride, silicon carbide, tin oxide and lead oxide other than the above-mentioned gold are used. An experiment was performed.

【0040】形成方法は、PbO2とSnO2とは、スパ
ッタ法を用いて、基板温度40℃、スパッタガスは酸素
で3×10-4Torr、成膜速度2μm/時間で、膜厚80
nmとした。
The formation method is such that PbO 2 and SnO 2 are formed by sputtering at a substrate temperature of 40 ° C., a sputtering gas of 3 × 10 -4 Torr with oxygen, a film formation rate of 2 μm / hour, and a film thickness of 80 μm.
nm.

【0041】また、TiNは、RF−プレナマグネトロ
ンを用いたスパッタ法により、TiN層を80nmの厚
さで形成した。このとき、ターゲットは、TiN(99
%)を用い、基板温度は200℃とした。スパッタ雰囲
気は、4×10-2TorrのAr(99.9999%)と
し、スパッタ電力は400Wとし、形成速度が1.5μ
m/時間で、膜厚80nmとした。
The TiN was formed in a thickness of 80 nm by a sputtering method using an RF-plana magnetron. At this time, the target is TiN (99
%) And the substrate temperature was 200 ° C. The sputtering atmosphere was 4 × 10 −2 Torr Ar (99.9999%), the sputtering power was 400 W, and the formation rate was 1.5 μm.
The film thickness was 80 nm in m / hour.

【0042】また、TiCは、RF−プレナマグネトロ
ンを用いたスパッタ法により、TiC層を80nmの厚
さで形成した。このとき、ターゲットは、TiC(99
%)を用い、基板温度は300℃とした。スパッタ雰囲
気は、2×10-2TorrのAr(99.9999%)と
し、スパッタ電力は400Wとし、形成速度が1μm/
時間で、膜厚80nmとした。
In the case of TiC, an 80 nm-thick TiC layer was formed by a sputtering method using an RF-plana magnetron. At this time, the target is TiC (99
%) And the substrate temperature was 300 ° C. The sputtering atmosphere was 2 × 10 −2 Torr of Ar (99.9999%), the sputtering power was 400 W, and the formation rate was 1 μm /
Over time, the film thickness was 80 nm.

【0043】その他の金属は、上述の金のスパッタ成膜
と同じ方法により形成した。
Other metals were formed by the same method as the above-described gold film formation by sputtering.

【0044】また、炭素は真空加熱蒸着法により、1×
10-6TorrのAr雰囲気で、基板温度を300℃とし、
加熱条件を制御することで、膜厚80nmとした。
Further, carbon is deposited in a 1 × by a vacuum heating evaporation method.
In an Ar atmosphere of 10 −6 Torr, the substrate temperature is set to 300 ° C.
By controlling the heating conditions, the film thickness was set to 80 nm.

【0045】以上では、接触抵抗の低減効果に差はある
もののいずれの材料においても、均一な平面状連続に製
膜した場合より、製膜時間と製膜材料の量とを少なくす
ることができた。
In the above, although there is a difference in the effect of reducing the contact resistance, it is possible to reduce the film forming time and the amount of the film forming material in any of the materials as compared with the case where the film is formed into a uniform and continuous film. Was.

【0046】次に、このようにして表面に種々の導電材
料の皮膜処理を施した金属導電性ガス流路板を実際の燃
料電池に組み込んで電池試験を行った。電池試験の条件
は、75℃に設定した冷却水を20L/min流し、U
f(燃料ガス中の水素の消費率)=80%、Uo(酸化
剤ガス中の酸素の消費率)=20%に設定し、0.7A
/cm2の電流密度で電池を連続運転したときの電圧の
変化を測定した。その結果を図2に示した。
Next, a battery test was conducted by incorporating the metal conductive gas flow path plate whose surface was coated with various conductive materials as described above into an actual fuel cell. The conditions of the battery test were as follows: cooling water set at 75 ° C. was flowed at 20 L / min;
f (consumption rate of hydrogen in fuel gas) = 80%, Uo (consumption rate of oxygen in oxidizing gas) = 20%, 0.7 A
The change in voltage when the battery was continuously operated at a current density of / cm 2 was measured. The result is shown in FIG.

【0047】図2に於いて、例えばアルミニウムでは電
池運転開始後30分程度で電池性能が低下した。この電
池を解体し、金属導電性ガス流路板の表面を観察すると
島状のアルミニウムが溶出し、一部はなくなっているこ
とがわかった。アルミニウムの他にもニッケル、鉄、酸
化スズにも同様な傾向がみられた。
In FIG. 2, for example, in the case of aluminum, the battery performance was reduced about 30 minutes after the start of battery operation. When this battery was disassembled and the surface of the metal conductive gas flow channel plate was observed, it was found that aluminum in the form of islands was eluted and part of the aluminum was lost. Similar trends were observed for nickel, iron and tin oxide in addition to aluminum.

【0048】ここでは導電性窒化物の代表例として窒化
チタンを、また炭化物と酸化物の代表例としてそれぞれ
炭化珪素と酸化鉛を実験して有用性を見出したが、いわ
いる導電性でかつ耐食性材料であることが重要であり、
この条件を満たす窒化物、炭化物、酸化物、さらには他
の化合物も有効であることは言うまでもない。
Here, titanium nitride was used as a typical example of a conductive nitride, and silicon carbide and lead oxide were used as a typical example of a carbide and an oxide, respectively, to find usefulness. It is important that it is a material,
Needless to say, nitrides, carbides, oxides and other compounds satisfying this condition are also effective.

【0049】(実施例2)さらに別な本発明の実施例と
して、微細な耐食性導電粒子を金属製の導電性ガス流路
板の表面に形成する方法を検討した。まず、遊星ボール
ミルを用いて粒径が1μm内外のガラス状カーボン粒子
を調整した。ステンレス(SUS316)製の導電性ガ
ス流路板表面にガラス状カーボン粒子を0.1mmの厚
みに薄く堆積させた後、ローラープレスを通してガラス
状カーボン粒子を圧入した。堆積させたガラス状カーボ
ン粒子の一部が、ステンレス素材の中に嵌入している状
態が顕微鏡観察から確認できた。
Example 2 As yet another example of the present invention, a method of forming fine corrosion-resistant conductive particles on the surface of a metal conductive gas flow path plate was studied. First, using a planetary ball mill, glassy carbon particles having a particle diameter of about 1 μm were prepared. After thinly depositing glassy carbon particles to a thickness of 0.1 mm on the surface of a conductive gas flow path plate made of stainless steel (SUS316), the glassy carbon particles were pressed in through a roller press. A state in which a part of the deposited glassy carbon particles were fitted in the stainless steel material could be confirmed by microscopic observation.

【0050】ガラス状カーボン粒子の他にもチタンの微
細粉を用いて実験を行った。チタンはガラス状カーボン
より硬度が低いためかガラス状カーボン粒子ほど深く金
属素材の中に嵌入してしなかったが、導電性ガス流路板
表面に不連続な島状に構成することができた。ローラー
プレスによる方法以外にも耐食性導電粒子ほ金属導電性
ガス流路板に高速で衝突させ、嵌入させる方法も考えら
れる。また、金属導電性ガス流路板の素材が柔らかい金
属の場合は、構成金属を耐食性導電粒子とメカニカルア
ロイングを用いて混合し、構成金属の中に耐食性導電粒
子が形成されている素材から切削やプレス成形によって
導電性ガス流路板を作製する方法もある。
An experiment was conducted using fine powder of titanium in addition to the glassy carbon particles. Titanium did not fit into the metal material as deeply as glassy carbon particles because of its lower hardness than glassy carbon, but it could be formed as a discontinuous island on the surface of the conductive gas flow channel plate . In addition to the method using a roller press, a method is also conceivable in which the corrosion-resistant conductive particles are made to collide with the metal conductive gas flow path plate at a high speed and fitted. When the material of the metal conductive gas flow path plate is a soft metal, the constituent metal is mixed with the corrosion-resistant conductive particles using mechanical alloying, and cut from a material in which the corrosion-resistant conductive particles are formed in the constituent metal. Also, there is a method of producing a conductive gas flow path plate by press molding.

【0051】これまで行ってきた実験はSUS316で
できた金属導電性ガス流路板表面に直接、金や窒化チタ
ンの保護膜を形成したが、金や白金などの貴金属を除い
て通常の金属はその表面に酸化被膜が形成されている。
本実施例で用いたステンレスもその表面には酸化クロム
を主成分とする不働態被膜が形成されており、この存在
がステンレスの耐食性発現の要因であるが一方で接触の
電気抵抗増大の一因となっている。そこで金や窒化チタ
ン、炭化珪素などの耐食性導電性材料を島状に形成する
前に逆スパッタリング法や、水酸化カリウム水溶液、王
水などを用いた化学的なエッチング法によって表面の不
働態被膜を除去した。その結果、いずれの場合も同じ条
件で測定した接触抵抗が10%程度改善されていること
がわかった。
In the experiments conducted so far, a protective film of gold or titanium nitride was formed directly on the surface of the metal conductive gas flow path plate made of SUS316. However, except for noble metals such as gold and platinum, ordinary metals were not used. An oxide film is formed on the surface.
The stainless steel used in this example also had a passivation film mainly composed of chromium oxide formed on its surface, and although its existence was a factor in the development of corrosion resistance of the stainless steel, it was also a factor in the increase in electrical resistance of contact. It has become. Therefore, before forming a corrosion-resistant conductive material such as gold, titanium nitride, or silicon carbide in an island shape, the passive film on the surface is formed by a reverse sputtering method or a chemical etching method using an aqueous potassium hydroxide solution or aqua regia. Removed. As a result, it was found that the contact resistance measured under the same conditions was improved by about 10% in each case.

【0052】また、金属導電性ガス流路板の素材金属と
してFeをベースにしてCr,Niが添加されたSUS
316を主として用いてきたが、Cr,Niの組成比を
変えたり、C,Mo,Ti,Wを構成添加金属として加
えた金属についても実験を行ったがいずれの場合も本発
明による高分子電解質型燃料電池の導電性ガス流路板を
構成する金属材料としては十分な材料であることが確認
できた。
Further, SUS containing Fe and Cr and Ni as a base metal for the metal conductive gas flow path plate is used.
Although 316 has been mainly used, experiments were also conducted on metals in which the composition ratio of Cr and Ni was changed and C, Mo, Ti, and W were added as constituent metals. In any case, the polymer electrolyte according to the present invention was used. It was confirmed that it was a sufficient material as a metal material constituting the conductive gas flow path plate of the fuel cell.

【0053】これらの結果から本発明の金属導電性ガス
流路板の素材としての条件は、表面被膜の電気抵抗よ
り、電池運転条件での耐食性が高い素材が優先されるこ
とがわかった。表面にどんなに電気抵抗の高い被膜が形
成されても、まず一旦エッチングによって取り除き不連
続な島状の高耐食性導電材料を構成した後、島状に被覆
されていない部分には再び耐食性が高い表面被膜が形成
される構成が重要であると考えられる。
From these results, it has been found that as a material for the metal conductive gas flow path plate of the present invention, a material having high corrosion resistance under battery operating conditions is prioritized over the electric resistance of the surface coating. Even if a film with high electrical resistance is formed on the surface, it is first removed by etching to form a discontinuous island-like high-corrosion-resistant conductive material. Is considered to be important.

【0054】また、金属製の導電性ガス流路板の構成材
料としては、低コスト性の観点からはFeを主成分にし
た合金材料を用いることができる。また、導電性ガス流
路板の加工性も含めて低コスト性を追求するため、アル
ミニウムを主成分にした材料についても実験を行った。
アルミニウム導電性ガス流路板の場合はガス流路の形成
を切削で行わずにプレス成形で行うことができた。表面
の酸化アルミニウム被膜を逆スパッタリングによって除
去し、その後、本発明の構成となるように金を島状に形
成した。ステンレス系素材を用いたときと同様に接触電
気抵抗の測定や電池試験を実施した。いずれの結果もス
テンレス系素材と同様に良好であったが、長期間の電池
試験では若干性能が低下した。詳細な分析は行っていな
いが表面酸化被膜を除去した状態で用いたので、アルミ
ニウムイオンが溶出し、電極反応や水素イオンの伝導を
阻害したものと推察できる。ただ、アルミニウムは素材
の軽量性、加工容易性など優れた特徴を有するので有用
性は非常に高い。
As a constituent material of the conductive gas flow path plate made of metal, an alloy material containing Fe as a main component can be used from the viewpoint of low cost. In addition, in order to pursue low cost including workability of the conductive gas flow path plate, an experiment was also performed on a material containing aluminum as a main component.
In the case of the aluminum conductive gas flow channel plate, the gas flow channel could be formed by press molding without cutting. The aluminum oxide film on the surface was removed by reverse sputtering, and then gold was formed into islands so as to have the structure of the present invention. The measurement of the contact electric resistance and the battery test were performed in the same manner as when the stainless steel material was used. Each result was as good as the stainless steel material, but the performance was slightly lowered in the long-term battery test. Although detailed analysis was not performed, since it was used with the surface oxide film removed, it can be inferred that aluminum ions eluted and inhibited the electrode reaction and the conduction of hydrogen ions. However, aluminum is very useful because it has excellent features such as light weight and easy processing of the material.

【0055】また、保護被膜を構成する耐食性導電材料
がカーボンの場合は金属製の導電性ガス流路板の素材と
してカーボンを含んだ方が耐久性が高く、耐食性導電材
料が窒化チタン、タングステンカーバイトの場合は、金
属導電性ガス流路板素材にそれぞれチタンやタングステ
ンを含んだものの耐久性が向上した。すなわち、耐食性
導電性材料を構成するいずれかの元素を成分として含む
金属導電性ガス流路板の方が界面において原子レベルで
の接合性が高く、耐久性も改善したと推察できる。
When the corrosion-resistant conductive material constituting the protective film is carbon, the material containing carbon as the material of the conductive gas flow path plate made of metal has higher durability, and the corrosion-resistant conductive material is titanium nitride or tungsten carbide. In the case of the bite, the durability of the metal conductive gas flow path plate material containing titanium and tungsten respectively was improved. In other words, it can be inferred that the metal conductive gas flow path plate containing any of the elements constituting the corrosion-resistant conductive material as components has higher bonding properties at the atomic level at the interface and improved durability.

【0056】(実施例3)本発明において、金属製の導
電性ガス流路板の構成素材としてアルミニウムを用いた
場合の電池耐久性をさらに改善するための種々の方法を
検討した。まず、上述したように逆スパッタリングによ
って表面の酸化被膜を除去した後、実施例1と同じ方法
で島状に金を形成した。その後、pH調整した硫酸浴で
陽極酸化法によってアルマイト処理を行い、膜厚1〜3
0μmの酸化被膜を金が形成された部分以外のところに
形成した。
(Example 3) In the present invention, various methods for further improving the battery durability when aluminum was used as a constituent material of the conductive gas flow path plate made of metal were studied. First, after removing the oxide film on the surface by reverse sputtering as described above, gold was formed in an island shape by the same method as in Example 1. Thereafter, anodizing is performed by anodizing in a pH adjusted sulfuric acid bath.
An oxide film of 0 μm was formed in a portion other than the portion where gold was formed.

【0057】実施例1で示した方法の電池に組み込んで
耐久試験を行った結果、アルマイト処理を施さない場合
には50時間の連続試験で電池電圧が10%低下したの
に対して、アルマイト処理を施すと4%の低下にとどま
った。
The battery was assembled into the battery of the method shown in Example 1 and subjected to a durability test. As a result, when the alumite treatment was not performed, the battery voltage was reduced by 10% in a continuous test for 50 hours. Applied, the decrease was only 4%.

【0058】次に、ステンレス系素材の導電性ガス流路
板についても、金などの耐食性導電材料をその表面に島
状に構成した後、クロム酸カリウム水溶液を電解質にし
て電位を調整し、ステンレス導電性ガス流路板表面の不
働態被膜を安定化した。このような処理の結果、電池耐
久性が改善されることがわかった。
Next, with respect to the conductive gas flow path plate made of stainless steel, a corrosion resistant conductive material such as gold is formed on the surface of the conductive gas flow path plate in an island shape, and the potential is adjusted by using a potassium chromate aqueous solution as an electrolyte. The passive film on the surface of the conductive gas channel plate was stabilized. As a result of such treatment, it was found that the battery durability was improved.

【0059】別の方法として、有機樹脂被膜を用いた方
法を検討した。ステンレス素材としてアルミニウムを用
い、その表面に塗工・焼き付け法を用いてエナメル被膜
層を20μmの厚みに形成した。その後、サンドブラス
トによってエナメル被膜層を部分的に破壊し、下地のア
ルミニウムが露出するようにした。引き続いて電解メッ
キによって金メッキを行い、アルミニウムが露出した部
分にのみ、耐食性導電材料である金が形成されるように
した。サンドブラストと金メッキの条件を調整すること
により、図3に示すように金メッキ部分1の厚みとして
5μm、金メッキ部の被覆率として30%程度、エナメ
ル被膜5の厚みとして3〜5μmのアルミニウム製導電
性ガス流路板4を得ることができた。
As another method, a method using an organic resin film was examined. Aluminum was used as a stainless steel material, and an enamel coating layer was formed to a thickness of 20 μm on the surface thereof using a coating and baking method. Thereafter, the enamel coating layer was partially broken by sandblasting so that the underlying aluminum was exposed. Subsequently, gold plating was performed by electrolytic plating, so that gold, which is a corrosion-resistant conductive material, was formed only on portions where aluminum was exposed. By adjusting the conditions of sandblasting and gold plating, as shown in FIG. 3, the thickness of the gold-plated portion 1 is 5 μm, the coverage of the gold-plated portion is about 30%, and the thickness of the enamel coating 5 is 3 to 5 μm. The flow path plate 4 was obtained.

【0060】上述と同じく、電池に組み込んで試験を行
った結果、ステンレスの切削加工によって得た導電性ガ
ス流路板と同等の性能であることが確認できた。エナメ
ル被膜層の他にもフッ素系樹脂被膜など、金属表面の耐
食性を向上させる樹脂が本発明にとって有効であるとい
える。
As described above, a test was conducted by incorporating the battery into a battery, and as a result, it was confirmed that the performance was equivalent to that of the conductive gas channel plate obtained by cutting stainless steel. In addition to the enamel coating layer, a resin that improves the corrosion resistance of the metal surface, such as a fluorine-based resin coating, can be said to be effective for the present invention.

【0061】(実施例4)本実施例では、グラッシーカ
ーボン製の導電性ガス流路板上に、導電性接触ポイント
として、島状のTiC薄膜を形成した。TiCは、RF
−プレナマグネトロンを用いたスパッタ法により、Ti
C層を500nmの厚さで形成した。このとき、ターゲ
ットは、TiC(99%)を用い、基板温度は300℃
とした。スパッタ雰囲気は、4×10-2TorrのAr(9
9.9999%)とし、スパッタ電力は400Wとし、
形成速度が1.5μm/時間で、膜厚80nmとした。
Example 4 In this example, an island-shaped TiC thin film was formed as a conductive contact point on a conductive gas channel plate made of glassy carbon. TiC is RF
-Ti by sputtering using a plena magnetron
The C layer was formed with a thickness of 500 nm. At this time, the target was TiC (99%), and the substrate temperature was 300 ° C.
And The sputtering atmosphere was 4 × 10 −2 Torr of Ar (9
9.9999%), the sputtering power is 400 W,
The formation speed was 1.5 μm / hour, and the film thickness was 80 nm.

【0062】これ以外の条件と、電池作成時の導電性ガ
ス流路板の背面から締結圧力を変えた以外は、実施例1
の電池作成条件と同一として、本実施例の電池を作成し
た。つぎに、実施例1と同一の条件で電池の性能試験を
行った。その結果を図4に示した。図4では、縦軸に電
池電圧、横軸に運転時間を示し、上記の締結圧力を1,
2,3kg重/cm2と変えたときの結果を示した。図
4より、このように構成した電池は、より低い締結圧力
でも電池のインピーダンスを低く保つことができた。
Example 1 was conducted under the same conditions except that the fastening pressure was changed from the back of the conductive gas channel plate at the time of battery production.
The battery of this example was prepared under the same conditions as those for preparing the battery. Next, a battery performance test was performed under the same conditions as in Example 1. The result is shown in FIG. In FIG. 4, the vertical axis shows the battery voltage and the horizontal axis shows the operation time.
The results when the weight was changed to 2.3 kg weight / cm 2 were shown. As shown in FIG. 4, the battery thus configured could keep the impedance of the battery low even at a lower fastening pressure.

【0063】[0063]

【発明の効果】本発明によると、電池などの電気発生装
置の金属接点における接触抵抗による出力低下を低コス
トで長期間にわたって抑制することができた。
According to the present invention, a decrease in output due to contact resistance at a metal contact of an electric generator such as a battery can be suppressed at low cost for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)本発明の第1の実施例で用いた金属製の
導電性ガス流路板の構造を示した図 (b)従来の耐食性被膜を施した金属製の導電性ガス流
路板の構造を示した図
FIG. 1A is a view showing the structure of a metal conductive gas flow path plate used in a first embodiment of the present invention. FIG. 1B is a conventional metal conductive gas flow provided with a corrosion-resistant coating. Diagram showing the structure of the road board

【図2】本発明の第1の実施例である燃料電池の耐久性
を表した図
FIG. 2 is a diagram showing the durability of the fuel cell according to the first embodiment of the present invention.

【図3】本発明の第2の実施例で用いた金属製の導電性
ガス流路板の構造を示した図
FIG. 3 is a view showing a structure of a metal conductive gas flow path plate used in a second embodiment of the present invention.

【図4】本発明の第4の実施例である燃料電池の特性を
示した図
FIG. 4 is a diagram showing characteristics of a fuel cell according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 不連続な島状の金 2 ステンレス導電性ガス流路板 3 均一な平面状連続皮膜の金 4 アルミニウム製導電性ガス流路板 5 エナメル被膜 DESCRIPTION OF SYMBOLS 1 Discontinuous island-shaped gold 2 Stainless steel conductive gas flow path plate 3 Gold of uniform planar continuous film 4 Aluminum conductive gas flow path plate 5 Enamel coating

───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽藤 一仁 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 新倉 順二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 神原 輝壽 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 松本 敏宏 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H026 AA06 BB00 BB04 EE02 EE08 EE11 EE12  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kazuhito Hato 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Teruhito Kamihara 1006 Kadoma, Kazuma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. AA06 BB00 BB04 EE02 EE08 EE11 EE12

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 水素イオン伝導性高分子電解質膜を挟ん
だ一対のガス拡散電極と、前記ガス拡散電極を挟んだ一
対の導電性ガス流路板とを具備した燃料電池において、
前記ガス拡散電極に接触する前記導電性ガス流路板の少
なくとも一部分に、耐食性を有する導電性接触ポイント
を配置したことを特徴とする燃料電池。
1. A fuel cell comprising: a pair of gas diffusion electrodes sandwiching a hydrogen ion conductive polymer electrolyte membrane; and a pair of conductive gas passage plates sandwiching the gas diffusion electrode.
A fuel cell, wherein a conductive contact point having corrosion resistance is arranged on at least a part of the conductive gas flow path plate that contacts the gas diffusion electrode.
【請求項2】 導電性接触ポイントを配置した以外の、
導電性ガス流路板の表面に、耐食性を有する被膜層を形
成したことを特徴とする請求項1記載の燃料電池。
2. The method according to claim 1, further comprising the step of arranging the conductive contact points.
2. The fuel cell according to claim 1, wherein a coating layer having corrosion resistance is formed on a surface of the conductive gas channel plate.
【請求項3】 導電性接触ポイントは、導電性ガス流路
板の表面で不連続な島状構造を有することを特徴とする
請求項1または2記載の燃料電池。
3. The fuel cell according to claim 1, wherein the conductive contact point has a discontinuous island structure on the surface of the conductive gas flow path plate.
【請求項4】 導電性接触ポイントの一部分が、導電性
ガス流路板の内部に嵌入していることを特徴とする請求
項1、2または3記載の燃料電池。
4. The fuel cell according to claim 1, wherein a part of the conductive contact point is fitted inside the conductive gas channel plate.
【請求項5】 導電性接触ポイントを、貴金属、チタ
ン、導電性窒化物、導電性炭化物、導電性酸化物より選
ばれる少なくとも1種の材料で構成したことを特徴とす
る請求項1、2、3または4記載の燃料電池。
5. The conductive contact point is made of at least one material selected from noble metals, titanium, conductive nitrides, conductive carbides, and conductive oxides. The fuel cell according to 3 or 4, wherein
【請求項6】 導電性ガス流路板を金属材料で構成した
ことを特徴とする請求項1、2、3、4または5記載の
燃料電池。
6. The fuel cell according to claim 1, wherein the conductive gas flow path plate is made of a metal material.
【請求項7】 金属材料は、Feを主成分とし、C、C
r、Ni、Mo、Ti、Wより選ばれる少なくとも1つ
の元素を含むことを特徴とする請求項6記載の燃料電
池。
7. The metal material contains Fe as a main component, and C, C
The fuel cell according to claim 6, comprising at least one element selected from r, Ni, Mo, Ti, and W.
【請求項8】 金属材料は、Alを主成分とすることを
特徴とする請求項6記載の燃料電池。
8. The fuel cell according to claim 6, wherein the metal material contains Al as a main component.
【請求項9】 導電性接触ポイントは、導電性ガス流路
板を構成する金属元素を構成材料として有することを特
徴とする請求項6、7または8記載の燃料電池。
9. The fuel cell according to claim 6, wherein the conductive contact point has a metal element constituting the conductive gas flow path plate as a constituent material.
【請求項10】 金属表面の酸化被膜を除去したのち、
導電性接触ポイントを形成したことを特徴とする請求項
7、8または9記載の燃料電池の製造法。
10. After removing the oxide film on the metal surface,
The method according to claim 7, 8 or 9, wherein conductive contact points are formed.
JP11130902A 1999-05-12 1999-05-12 Fuel cell and its manufacture Pending JP2000323151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11130902A JP2000323151A (en) 1999-05-12 1999-05-12 Fuel cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11130902A JP2000323151A (en) 1999-05-12 1999-05-12 Fuel cell and its manufacture

Publications (1)

Publication Number Publication Date
JP2000323151A true JP2000323151A (en) 2000-11-24

Family

ID=15045404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11130902A Pending JP2000323151A (en) 1999-05-12 1999-05-12 Fuel cell and its manufacture

Country Status (1)

Country Link
JP (1) JP2000323151A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323152A (en) * 1999-05-12 2000-11-24 Nisshin Steel Co Ltd Separator for stainless steel low-temperature type fuel cell and manufacture thereof
WO2001022513A1 (en) * 1999-09-17 2001-03-29 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
JP2001357862A (en) * 2000-06-15 2001-12-26 Sumitomo Metal Ind Ltd Bipolar plate and solid high-polymer type fuel cell
WO2004019437A1 (en) * 2002-08-20 2004-03-04 Daido Tokushuko Kabushiki Kaisha Metal member for fuel cell and its manufacturing method, austenitic stainless steel for solid polymer fuel cell and metal member for fuel cell using same, material for solid polymer fuel cell and its manufacturing method, corrosion-resistance conductive member and its manufacturing method, and fuel cell
US6852438B2 (en) 2000-05-26 2005-02-08 Kabushiki Kaisha Riken Embossed current collector separator for electrochemical fuel cell
JP2007146250A (en) * 2005-11-29 2007-06-14 Nikko Kinzoku Kk Titanium or titanium alloy material plated with noble metal
JP2007317600A (en) * 2006-05-29 2007-12-06 Toyota Motor Corp Metal member which has noble metal plating, and manufacturing method therefor
JP2008004498A (en) * 2006-06-26 2008-01-10 Mitsubishi Materials Corp Composite layer-covered metal plate with less ncreases in contact resistance even if exposed to oxidative environment for long period
WO2008023755A1 (en) * 2006-08-23 2008-02-28 Sumitomo Metal Industries, Ltd. Bipolar plate member, bipolar plate layered body, cell structure, and solid polymer fuel cell
JP2008098183A (en) * 1999-09-17 2008-04-24 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell
JP2008166129A (en) * 2006-12-28 2008-07-17 Hitachi Ltd Fuel cell separator

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4495796B2 (en) * 1999-05-12 2010-07-07 日新製鋼株式会社 Stainless steel separator for low-temperature fuel cell and method for producing the same
JP2000323152A (en) * 1999-05-12 2000-11-24 Nisshin Steel Co Ltd Separator for stainless steel low-temperature type fuel cell and manufacture thereof
JP2008098183A (en) * 1999-09-17 2008-04-24 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell
WO2001022513A1 (en) * 1999-09-17 2001-03-29 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US6893765B1 (en) 1999-09-17 2005-05-17 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US6852438B2 (en) 2000-05-26 2005-02-08 Kabushiki Kaisha Riken Embossed current collector separator for electrochemical fuel cell
JP2001357862A (en) * 2000-06-15 2001-12-26 Sumitomo Metal Ind Ltd Bipolar plate and solid high-polymer type fuel cell
WO2004019437A1 (en) * 2002-08-20 2004-03-04 Daido Tokushuko Kabushiki Kaisha Metal member for fuel cell and its manufacturing method, austenitic stainless steel for solid polymer fuel cell and metal member for fuel cell using same, material for solid polymer fuel cell and its manufacturing method, corrosion-resistance conductive member and its manufacturing method, and fuel cell
US8133632B2 (en) 2002-08-20 2012-03-13 Daido Tokushuko Kabushiki Kaisha Metal component for fuel cell and method of manufacturing the same, austenitic stainless steel for polymer electrolyte fuel cell and metal component for fuel cell using the same, polymer electrolyte fuel cell material and method of manufacturing the same, corrosion-resistant conductive component and method of manufacturing the same, and fuel cell
US7597987B2 (en) 2002-08-20 2009-10-06 Daido Tokushuko Kabushiki Kaisha Metal component for fuel cell and method of manufacturing the same, austenitic stainless steel for polymer electrolyte fuel cell and metal component for fuel cell material and method of manufacturing the same, corrosion-resistant conductive component and method of manufacturing the same, and fuel cell
JP2007146250A (en) * 2005-11-29 2007-06-14 Nikko Kinzoku Kk Titanium or titanium alloy material plated with noble metal
DE112007001205T5 (en) 2006-05-29 2009-04-23 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Metal member with noble metal plating and manufacturing method thereof
WO2007138436A3 (en) * 2006-05-29 2008-03-13 Toyota Motor Co Ltd Metal member having precious metal plating and manufacturing method of that metal member
WO2007138436A2 (en) * 2006-05-29 2007-12-06 Toyota Jidosha Kabushiki Kaisha Metal member having precious metal plating and manufacturing method of that metal member
US8043719B2 (en) 2006-05-29 2011-10-25 Toyota Jidosha Kabushiki Kaisha Metal member having precious metal plating
JP2007317600A (en) * 2006-05-29 2007-12-06 Toyota Motor Corp Metal member which has noble metal plating, and manufacturing method therefor
JP2008004498A (en) * 2006-06-26 2008-01-10 Mitsubishi Materials Corp Composite layer-covered metal plate with less ncreases in contact resistance even if exposed to oxidative environment for long period
JP2008078104A (en) * 2006-08-23 2008-04-03 Sumitomo Metal Ind Ltd Bipolar plate member, bipolar plate laminate, cell structural body and solid polymer type fuel cell
WO2008023755A1 (en) * 2006-08-23 2008-02-28 Sumitomo Metal Industries, Ltd. Bipolar plate member, bipolar plate layered body, cell structure, and solid polymer fuel cell
JP2008166129A (en) * 2006-12-28 2008-07-17 Hitachi Ltd Fuel cell separator

Similar Documents

Publication Publication Date Title
US6893765B1 (en) Polymer electrolyte fuel cell
Yu et al. Fabrication of miniature silicon wafer fuel cells with improved performance
KR100984382B1 (en) Conductive matrices for fuel cell electrodes
JP4656683B2 (en) Polymer electrolyte fuel cell
US7056613B2 (en) Fuel cell having metalized gas diffusion layer
EP2124278B1 (en) Fuel cell separator, fuel cell separator manufacturing method and fuel cell
JP2006156386A (en) Metal separator for fuel cell, manufacturing method of the same, and fuel cell stack including the same
US20080057371A1 (en) Separator for Fuel Cell and Method for Producing Same
JP4920137B2 (en) Operation method of polymer electrolyte fuel cell
JP4367062B2 (en) Fuel cell separator
JP2005093172A (en) Separator for fuel cell and fuel cell
JP2001297777A (en) Macromolecular electrolyte fuel cell
JP2013065573A (en) Fuel cell, and method of relieving electrode performance degradation during start and stop cycles
EP1253655B1 (en) Fuel cell
US6696194B1 (en) Polymer electrolytic fuel cell
JP2000323151A (en) Fuel cell and its manufacture
JPH11162478A (en) Separator for fuel cell
US7960071B2 (en) Separator for fuel cell using a metal plate coated with titanium nitride, method for manufacturing the same, and polymer electrolyte membrane fuel cell comprising the separator
US7741243B2 (en) Production method of catalyst layer
US20040038111A1 (en) Conductive coatings for PEM fuel cell electrodes
JP4366726B2 (en) Polymer electrolyte fuel cell
JP2006505897A (en) Electrode supported fuel cell
US20070015043A1 (en) Fuel cell having metalized gas diffusion layer
JP2000260441A (en) Polymer electrolyte fuel cell
US8507145B2 (en) Fuel cell and method of producing the fuel cell