JP2000316225A - Insulating spacer - Google Patents

Insulating spacer

Info

Publication number
JP2000316225A
JP2000316225A JP11120806A JP12080699A JP2000316225A JP 2000316225 A JP2000316225 A JP 2000316225A JP 11120806 A JP11120806 A JP 11120806A JP 12080699 A JP12080699 A JP 12080699A JP 2000316225 A JP2000316225 A JP 2000316225A
Authority
JP
Japan
Prior art keywords
insulating
spacer
insulating spacer
volume resistivity
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11120806A
Other languages
Japanese (ja)
Inventor
Takao Yamauchi
高雄 山内
Kenji Sasamori
健次 笹森
Yosuke Haneuma
洋介 羽馬
Hideki Miyata
秀樹 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11120806A priority Critical patent/JP2000316225A/en
Publication of JP2000316225A publication Critical patent/JP2000316225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Installation Of Bus-Bars (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an insulating spacer for gas-insulated electric equipment the insulating section of which has an appropriate and uniform resistance, by forming the insulating section of a material prepared by mixing an insulating filler and a fine granular conductive material in a cast insulating material by adjusting the mixing ratio of the conductive material, so that the volumetric resistivity of the spacer after molding may become a specific value. SOLUTION: Conductors 22 in the sealed container 21 of gasinsulated electric equipment are supported by an insulating spacer 23 having a conical insulating section 25 made of an insulating material and connected to the center electrode 24 of the spacer 23 with slide contactors 26. The insulating section 25 of the spacer 23 is formed by molding a material prepared by mixing an insulating filler made of alumina, silica, an insulating ceramic, etc., and a conductive material composed of fine carbon particles in a cast epoxy resin by adjusting the mixing ratio of the conductive material, so that the volumetric resistivity of the section 25 after molding may become 109-1014 Ω.cm. Therefore, the spacer 23 having a stable insulating property can be manufactured at a low cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は発電所または変電
所に設置されるガス絶縁開閉装置、ガス絶縁母線等のガ
ス絶縁電気機器の内部において導体等の充電部を絶縁距
離を保って絶縁支持する絶縁スペーサに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention insulates and supports a charged part such as a conductor in a gas-insulated switchgear or a gas-insulated electric device such as a gas-insulated bus installed in a power plant or a substation while maintaining an insulation distance. It relates to an insulating spacer.

【0002】[0002]

【従来の技術】従来のガス絶縁開閉装置、ガス絶縁母線
等のガス絶縁電気機器の例えば母線部分の構造を図5に
示す。図において、1は端部にフランジ1aが設けられ
た密閉容器、2は密閉容器1の内部に配置された導体、
3は中心部に中心電極4が配置され、絶縁材料で円錐状
の絶縁部5が形成された絶縁スペーサ、6は導体2と絶
縁スペーサ3の中心電極4を摺動自在に接続する摺動接
触子である。絶縁スペーサ3の絶縁部5の絶縁材料とし
ては、通常は高電圧における絶縁性能が優れたエポキシ
注型樹脂が使用される。
2. Description of the Related Art FIG. 5 shows the structure of a conventional gas-insulated switchgear, a gas-insulated electric device such as a gas-insulated bus, for example, a bus portion. In the drawing, reference numeral 1 denotes a sealed container having a flange 1a provided at an end, 2 denotes a conductor arranged inside the sealed container 1,
Reference numeral 3 denotes an insulating spacer in which a center electrode 4 is disposed at the center and a conical insulating portion 5 is formed of an insulating material. Reference numeral 6 denotes a sliding contact that slidably connects the conductor 2 and the center electrode 4 of the insulating spacer 3. I am a child. As an insulating material of the insulating portion 5 of the insulating spacer 3, an epoxy casting resin having excellent insulating performance at a high voltage is usually used.

【0003】図5のように構成された母線部分では、絶
縁部5の体積固有抵抗値が1015Ωcm以上の優れた絶
縁性能を有しているが、体積固有抵抗値の高い沿面に微
小な導電性異物が存在していると、絶縁部5の導電性異
物の周囲は電界分布が不均一となり、局部的に集中して
その部分に部分放電が発生し、絶縁部の沿面に電荷が蓄
積し、蓄積した電荷量が大きくなるにしたがって部分放
電が大きくなり、絶縁破壊に至ることがある。したがっ
て、ガス絶縁電気機器の組立作業中は塵埃等の異物が内
部に閉じこめられることがないように清浄化に注意が払
われ、清浄化対策が施された場所で組み立てられる。し
かし、微小な異物まで完全に除去することは不可能であ
り、実際のガス絶縁電気機器では、微小な異物が残され
ても絶縁耐力が得られるように絶縁距離に裕度を持たせ
た設計が行われ、ガス絶縁電気機器として寸法が大きく
なっている。
[0005] In the bus portion configured as shown in FIG. 5, the insulating portion 5 has excellent insulation performance with a volume resistivity of 10 15 Ωcm or more, but has a very small surface along the surface having a high volume resistivity. When conductive foreign matter is present, the electric field distribution around the conductive foreign matter in the insulating portion 5 becomes non-uniform, local concentration occurs, partial discharge occurs in that portion, and charges accumulate on the surface of the insulating portion. However, as the accumulated charge increases, the partial discharge increases, which may lead to dielectric breakdown. Therefore, during assembly work of the gas insulated electric equipment, attention is paid to cleaning so that foreign matter such as dust is not trapped inside, and the gas insulated electric equipment is assembled at a place where cleaning measures are taken. However, it is impossible to completely remove even minute foreign matter, and in actual gas-insulated electrical equipment, the insulation distance is designed to have a margin so that the dielectric strength can be obtained even if minute foreign matter remains. The size has been increased as a gas-insulated electrical device.

【0004】円錐状の絶縁スペーサの絶縁部表面に微小
な導電性異物が存在していても沿面の電界が乱れないよ
うにする対策として、絶縁スペーサの絶縁部の表面に抵
抗体層を形成した例が特開平9−37446号公報に示
されている。その構成を図6に示す。図において、7は
絶縁スペーサであり、中心部に中心電極8が配置され、
絶縁材料により円錐状に絶縁部9aが形成され、その両
面に中心電極8から接地タンクに向かう方向に微小単位
長さ当たりの抵抗値が一定の抵抗体層9bが設けられて
いる。
[0004] As a measure to prevent the electric field on the creeping surface from being disturbed even if minute conductive foreign matters exist on the surface of the insulating portion of the conical insulating spacer, a resistor layer is formed on the surface of the insulating portion of the insulating spacer. An example is shown in JP-A-9-37446. FIG. 6 shows the configuration. In the figure, reference numeral 7 denotes an insulating spacer, in which a center electrode 8 is arranged at the center,
An insulating portion 9a is formed in a conical shape by an insulating material, and on both surfaces thereof, a resistor layer 9b having a constant resistance value per minute unit length is provided in a direction from the center electrode 8 to the ground tank.

【0005】抵抗体層9bの抵抗値は、中心電極8の近
くは抵抗値が低く、外周になるにしたがって抵抗値を大
きくして電圧が印加されたときに各部の単位長さ当たり
の電圧降下が一定になるように厚さを調整して適正抵抗
値にしている。
The resistance value of the resistor layer 9b is such that the resistance value is low near the center electrode 8 and the resistance value increases toward the outer periphery, and the voltage drops per unit length of each part when a voltage is applied. The thickness is adjusted to make the resistance constant so as to obtain an appropriate resistance value.

【0006】このように構成したことにより、絶縁スペ
ーサ8の表面の電界分布は抵抗体層9aに流れる電流に
比例した電圧分布となり、表面に微小な導電性異物が付
着していても、沿面電界が乱されることが少なく、絶縁
スペーサの沿面絶縁性能の低下を防止することができ、
耐電圧性能が向上し、ガス絶縁電気機器の小形化が容易
に実現することができるというものである。
With this configuration, the electric field distribution on the surface of the insulating spacer 8 is a voltage distribution proportional to the current flowing through the resistor layer 9a, and even if minute conductive foreign matter adheres to the surface, the creeping electric field Is less disturbed, and it is possible to prevent a decrease in the creepage insulation performance of the insulating spacer,
The withstand voltage performance is improved, and downsizing of the gas-insulated electric device can be easily realized.

【0007】また、ガス絶縁開閉装置の柱状の絶縁スペ
ーサの例として、断路器部分の固定電極部を支持する構
成は、特開平6−22436号公報に示されたものがあ
る。その構成を図7に示す。図において、11は密閉容
器、12は密閉容器11の内部に配置された導体、13
は導体12を密閉容器11の中心部に絶縁支持する平板
状の絶縁スペーサ、14は断路器の固定電極、15は断
路器の固定電極を絶縁支持する柱状の絶縁スペーサ、1
6は可動電極、17は可動電極支持導体、18は絶縁操
作棒、19は可動電極を動作させる操作部である。
[0007] As an example of a columnar insulating spacer of a gas insulated switchgear, a configuration for supporting a fixed electrode portion in a disconnector portion is disclosed in JP-A-6-22436. FIG. 7 shows the configuration. In the figure, 11 is a closed container, 12 is a conductor arranged inside the closed container 11, 13
Is a flat insulating spacer for insulatingly supporting the conductor 12 at the center of the closed casing 11, 14 is a fixed electrode of the disconnector, 15 is a columnar insulating spacer for insulatingly supporting the fixed electrode of the disconnector, 1
Reference numeral 6 denotes a movable electrode, reference numeral 17 denotes a movable electrode support conductor, reference numeral 18 denotes an insulating operation rod, and reference numeral 19 denotes an operation unit for operating the movable electrode.

【0008】この構成の断路器の固定電極14を絶縁支
持する柱状の絶縁スペーサ15は図8のように構成され
ている。図において、15aは両端部の埋込金具、15
bは絶縁部分、15cは絶縁部表面に、銅、クロム、ア
ルミニウム、鉄などの酸化物の半導電性材料をスパッタ
リングした薄膜状の抵抗体層である。
A columnar insulating spacer 15 that insulates and supports the fixed electrode 14 of the disconnector of this configuration is configured as shown in FIG. In the figure, 15a is an embedding metal fitting at both ends,
b is an insulating portion, and 15c is a thin-film resistor layer formed by sputtering a semiconductive material such as copper, chromium, aluminum, or iron on the surface of the insulating portion.

【0009】この場合においても、上記図6に示す場合
と同様に、絶縁スペーサ15の表面の電界分布は抵抗体
層の電流に比例した電圧分布となり、表面に微小な導電
性異物が付着していても、導電性異物に左右されること
なく分布するので絶縁スペーサの沿面絶縁性能の低下が
防止されて耐電圧性能が向上し、ガス絶縁電気機器の小
形化を実現することができるというものである。
Also in this case, similarly to the case shown in FIG. 6, the electric field distribution on the surface of the insulating spacer 15 is a voltage distribution proportional to the current of the resistor layer, and fine conductive foreign matter adheres to the surface. However, since it is distributed without being influenced by conductive foreign matter, the insulation insulation performance along the creepage of the insulating spacer is prevented from being lowered, the withstand voltage performance is improved, and the size of the gas-insulated electric device can be reduced. is there.

【0010】[0010]

【発明が解決しようとする課題】以上のように構成され
た従来の絶縁スペーサは、沿面の電圧分布が抵抗体層に
流れる電流に比例した電圧分布となり、沿面に微小な導
電性異物が付着していても沿面の電界分布は均一になり
絶縁耐力が向上するものであるが、抵抗体層の形成は半
導電性材料をスパッタリングにより薄膜状に形成した構
成であり、ガス絶縁電気機器に組み込むまでの運搬、組
立中の取り扱いには、欠け、割れなどが生じないように
細心の注意が必要であり、欠陥が生じたままで使用した
場合には、その部分において、局部的に電圧分担が大き
くなって、部分放電が発生する問題点があった。また、
図6の場合では、外周部になるにしたがって抵抗値が大
きくなるように細かく管理することが必要であり、製作
コストが高くなる問題点があった。
In the conventional insulating spacer constructed as described above, the voltage distribution on the creeping surface becomes a voltage distribution proportional to the current flowing through the resistor layer, and minute conductive foreign matter adheres to the creeping surface. Even though the electric field distribution along the creeping surface is uniform and the dielectric strength is improved, the formation of the resistor layer is a configuration in which a semiconductive material is formed in a thin film shape by sputtering, and until it is incorporated into gas-insulated electrical equipment. Care must be taken during transportation and handling during assembly to avoid chipping, cracking, and the like.If the product is used with defects, local voltage sharing will increase in that area. Thus, there is a problem that partial discharge occurs. Also,
In the case of FIG. 6, it is necessary to finely control the resistance value so as to become larger toward the outer peripheral portion, and there is a problem that the manufacturing cost is increased.

【0011】この発明は上記問題点を解消するためにな
されたものであり、絶縁部の抵抗値が適正かつ均一な抵
抗値であり、取扱も容易なガス絶縁電気機器用の絶縁ス
ペーサを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and provides an insulating spacer for a gas-insulated electric device in which the resistance of the insulating portion is appropriate and uniform, and which is easy to handle. The purpose is to:

【0012】[0012]

【課題を解決するための手段】この発明の請求項1に係
る絶縁スペーサは、平板状または円錐状に形成された絶
縁部を注型絶縁材料に絶縁性の充填材と成形後の体積固
有抵抗値が109〜1014Ωcmになる割合の微粒子状
の導電性材料とを混合した材料により成形したものであ
る。
According to a first aspect of the present invention, there is provided an insulating spacer in which an insulating portion formed in a flat or conical shape is formed by casting an insulating filler into an insulating material and a volume resistivity after molding. It is formed from a material obtained by mixing a particulate conductive material with a ratio of 10 9 to 10 14 Ωcm.

【0013】この発明の請求項2に係る絶縁スペーサ
は、両端部に支持金具が埋設され、柱状に形成された絶
縁部を注型絶縁材料に絶縁性の充填材と成形後の体積固
有抵抗値が109〜1014Ωcmになる割合の微粒子状
の導電性材料を混合した材料により成形したものであ
る。
According to a second aspect of the present invention, there is provided an insulating spacer in which support fittings are buried at both ends, and an insulating portion formed in a column shape is formed by casting an insulating filler into an insulating material and a volume resistivity value after molding. Is formed by mixing a particulate conductive material at a ratio of 10 9 to 10 14 Ωcm.

【0014】この発明の請求項3に係る絶縁スペーサ
は、絶縁部が円板状または円錐状に形成された絶縁部の
中心電極近傍および密閉容器に支持される外縁部の内径
側近傍の材料は、注型絶縁材料に絶縁性の充填材と、成
形後の体積固有抵抗値が109〜1014Ωcmになる割
合の微粒子状の導電性材料を混合した材料とし、絶縁部
の中間部は注型絶縁材料に絶縁性の充填材を混合した成
形後の固有抵抗値が10 15Ωcm以上になる材料により
成形したものである。
An insulating spacer according to claim 3 of the present invention.
Is the insulation part formed in the shape of a disk or a cone.
Inner diameter of the outer edge supported near the center electrode and in a sealed container
The material near the side is made of cast insulating material with insulating filler
Volume resistivity after shaping is 109-1014Ωcm
Mixed material of fine particles of conductive material
The middle part is made of a mixture of cast insulating material and insulating filler.
The specific resistance after forming is 10 15Ωcm or more depending on the material
It is molded.

【0015】この発明の請求項4に係る絶縁スペーサ
は、柱状に形成された絶縁部の両端部に支持金具が埋設
され、埋設された支持金具の近傍は注型絶縁材料に絶縁
性の充填材と成形後の体積固有抵抗値が109〜1014
Ωcmになる割合の微粒子状の導電性材料を混合した材
料とし、絶縁部の中間部は注型絶縁材料に絶縁性の充填
材を混合した成形後の体積固有抵抗値が1015Ωcm以
上になる材料により成形したものである。
According to a fourth aspect of the present invention, there is provided an insulating spacer, wherein a supporting metal is buried at both ends of an insulating portion formed in a columnar shape, and an insulating filler is used in the vicinity of the buried supporting metal. And the volume resistivity after molding is 10 9 to 10 14
A material obtained by mixing a conductive material in the form of fine particles at a ratio of Ωcm, and the intermediate portion of the insulating portion is formed by mixing an insulating filler with an insulating material having a volume resistivity of 10 15 Ωcm or more after molding. It is formed by material.

【0016】この発明の請求項5に係る絶縁スペーサ
は、請求項1〜請求項4の構成の絶縁部を形成する注型
絶縁材料に混合する導電性材料をカーボン微粒子とした
ものである。
According to a fifth aspect of the present invention, there is provided an insulating spacer in which a conductive material mixed with a cast insulating material forming an insulating portion according to the first to fourth aspects is made of carbon fine particles.

【0017】[0017]

【発明の実施の形態】実施の形態1.実施の形態1はガ
ス絶縁開閉装置またはガス母線等のガス絶縁電気機器の
母線部の導体を支持する絶縁スペーサの表面の電圧分担
が均一になるように構成したものであり、ガス絶縁電気
機器の母線部の絶縁スペーサが組み込まれた部分の構成
の断面を図1に示す。図において、21は端部にフラン
ジ21aが設けられた密閉容器、22は密閉容器21の
内部に配置された導体、23は中心部に中心電極24が
配置され、絶縁材料で円錐状の絶縁部25が形成された
絶縁スペーサ、26は導体22と絶縁スペーサ23の中
心電極24を摺動自在に接続する摺動接触子である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 The first embodiment is configured such that the voltage sharing on the surface of an insulating spacer that supports a conductor of a bus portion of a gas-insulated electrical device such as a gas-insulated switchgear or a gas bus is uniform. FIG. 1 shows a cross section of the configuration of the bus bar in which the insulating spacer is incorporated. In the figure, reference numeral 21 denotes a sealed container provided with a flange 21a at an end, 22 denotes a conductor disposed inside the sealed container 21, 23 denotes a center electrode 24 disposed at a central portion, and a conical insulating portion made of an insulating material. Insulating spacers 25 are formed, and 26 are sliding contacts for slidably connecting the conductor 22 and the center electrode 24 of the insulating spacer 23.

【0018】絶縁スペーサ23は、絶縁部25の材料を
注型用エポキシ樹脂にアルミナ、シリカ、絶縁性セラミ
ックスなどの絶縁性の充填材と導電性材料としてカーボ
ン微粒子を成形後の体積固有抵抗値が109〜1014Ω
cmになる割合で混合して成形される。
The insulating spacer 23 is made of a material such as alumina, silica, insulating ceramics or the like, and a volume specific resistance value after molding carbon fine particles as a conductive material. 10 9 -10 14 Ω
cm and molded.

【0019】注型用エポキシ樹脂に絶縁性の充填材とと
もに混合する導電性材料としては、カーボンブラック、
グラファイト、金属酸化物等の微粒子が適用できる。混
合する導電性材料の粒子径としては1μm以下にすると
混合状態が均一になり安定した抵抗値が得られる。注型
用エポキシ樹脂に絶縁性の充填材とともにカーボン微粒
子を混合した場合のカーボン微粒子の含有量と体積固有
抵抗値との関係は図2に示すとおりである。図2から絶
縁部の体積固有抵抗値を109〜1014Ωcmにするに
はカーボン微粒子含有率を10%前後とすることによ
り、所定の体積固有抵抗値の絶縁スペーサが得られる。
The conductive material to be mixed with the casting epoxy resin together with the insulating filler material includes carbon black,
Fine particles such as graphite and metal oxide can be used. When the particle size of the conductive material to be mixed is 1 μm or less, the mixing state becomes uniform and a stable resistance value is obtained. FIG. 2 shows the relationship between the content of the carbon fine particles and the volume resistivity when the carbon fine particles are mixed together with the insulating filler in the epoxy resin for casting. From FIG. 2, in order to make the volume resistivity of the insulating portion 10 9 to 10 14 Ωcm, the insulating spacer having a predetermined volume resistivity can be obtained by setting the content of carbon fine particles to about 10%.

【0020】図1のように組み立てられた円錐状の絶縁
スペーサ23の中心電極24と密閉容器21の間の絶縁
抵抗値Rは、大きさにより多少の差はあるが108〜1
13Ωの範囲であり、このような絶縁抵抗値Rの絶縁ス
ペーサ23の表面に導電性異物が付着して部分放電が発
生すると、部分放電による電荷は蓄積しても短時間で放
電し、蓄積電荷による絶縁耐力への影響が小さくなる。
円錐状の絶縁スペーサの表面に蓄積した電荷の放電の時
定数τは、電荷が蓄積されている部分の静電容量をCと
すると、τ=CRとなり、Cは数pF程度であり、時定
数τは10-4〜1秒程度となり、蓄積電荷は短時間で放
電するので絶縁性能への影響は少ない。実際のガス絶縁
電気機器の母線部分は長く、絶縁スペーサ23は複数個
が並列になった状態であり、時定数τは個数に逆比例し
て短くなる。絶縁スペーサ23の1箇所に部分放電が発
生しても複数の絶縁スペーサ23から放電することとな
り条件はよくなる。円錐状の絶縁スペーサ23の絶縁抵
抗値Rが1013Ωcm(体積固有抵抗値では1014Ωc
m)より1桁以上高くなると、時定数τも1桁以上大き
くなり、蓄積電荷による絶縁性能への影響が懸念される
ようになる。
The insulation resistance value R between the center electrode 24 of the cone-shaped insulating spacer 23 which is assembled as in Figure 1 and the closed container 21, there are some differences depending on the size, but 10 8-1
0 13 Ω, and when conductive foreign matter adheres to the surface of the insulating spacer 23 having such an insulation resistance value R and a partial discharge occurs, even if the electric charge due to the partial discharge accumulates, it is discharged in a short time, The effect of the accumulated charge on the dielectric strength is reduced.
The time constant τ of the discharge of the charge accumulated on the surface of the conical insulating spacer is τ = CR, where C is the capacitance of the portion where the charge is accumulated, C is about several pF, and the time constant is τ is about 10 −4 to 1 second, and the accumulated charge is discharged in a short time, so that the influence on the insulation performance is small. The bus portion of an actual gas insulated electric device is long, and a plurality of insulating spacers 23 are arranged in parallel, and the time constant τ decreases in inverse proportion to the number. Even if a partial discharge occurs at one location of the insulating spacer 23, the discharge occurs from the plurality of insulating spacers 23, and the condition is improved. The insulation resistance R of the conical insulation spacer 23 is 10 13 Ωcm (10 14 Ωc in volume resistivity).
When the value is higher than m) by one digit or more, the time constant τ is also increased by one digit or more, and there is a concern that the accumulated charge may affect the insulation performance.

【0021】円錐状の絶縁スペーサの場合、絶縁抵抗値
Rが108Ωより低くなると、絶縁スペーサは漏れ電流
による温度上昇が問題となる。漏れ電流による熱損失P
は系統電圧をVとすると、P=V2/Rであり、例え
ば、系統電圧V=100kVの場合、R=108Ωとす
ると、熱損失P=100Wとなる。この値は100kV
用の円錐状の絶縁スペーサ23として許容される熱損失
Pの限界であり、絶縁抵抗値Rは108Ω以下になるこ
とは許容できないこととなる。
In the case of a conical insulating spacer, if the insulation resistance value R is lower than 10 8 Ω, there is a problem in that the temperature of the insulating spacer increases due to leakage current. Heat loss P due to leakage current
Is P = V 2 / R when the system voltage is V. For example, when the system voltage V = 100 kV and R = 10 8 Ω, the heat loss P = 100 W. This value is 100 kV
Is the limit of the heat loss P allowed as the conical insulating spacer 23 for use, and the insulation resistance value R cannot be less than 10 8 Ω.

【0022】また、円錐状の絶縁スペーサ23の体積固
有抵抗値が109Ωcmより小さい状態で雷インパルス
電圧が印加されると絶縁スペーサに流れる電流が増加
し、絶縁スペーサ23の沿面の絶縁耐力が低下傾向が現
れるため円錐状の絶縁スペーサ23の体積固有抵抗値が
109Ωcm以下では小型化が難しくなる。
When a lightning impulse voltage is applied in a state where the volume resistivity of the conical insulating spacer 23 is smaller than 10 9 Ωcm, the current flowing through the insulating spacer increases, and the dielectric strength on the surface of the insulating spacer 23 increases. If the volume specific resistance of the conical insulating spacer 23 is 10 9 Ωcm or less, it is difficult to reduce the size.

【0023】以上のように形成された円錐状の絶縁スペ
ーサ23では、絶縁部25が一体に形成されているの
で、表面に抵抗体層を形成した従来の円錐状の絶縁スペ
ーサのように抵抗体層の割れ、欠けあるいは剥離等の欠
陥が生じる心配がなく、絶縁部は均一に形成されている
ので、体積固有抵抗値を所定の値に製作することによ
り、安定した絶縁性能が得られる。また、絶縁部25は
導電性材料の微粒子を混合して形成するので、通常の絶
縁スペーサと同じ成形型枠が使用でき、導電体層を形成
する作業が不要であり、安価に製作することができる。
In the conical insulating spacer 23 formed as described above, since the insulating portion 25 is integrally formed, the resistive element is formed like a conventional conical insulating spacer having a resistive layer formed on the surface. There is no concern that defects such as cracking, chipping or peeling of the layer occur, and the insulating portion is formed uniformly. Therefore, by manufacturing the volume resistivity to a predetermined value, stable insulating performance can be obtained. Further, since the insulating portion 25 is formed by mixing fine particles of a conductive material, the same molding frame as that of a normal insulating spacer can be used. it can.

【0024】絶縁部25の体積固有抵抗値を低くするこ
とにより、漏れ電流が大きくなるが、絶縁部25には黒
色のカーボン微粒子が混合されているので表面は黒色に
なり、通常の絶縁性の充填材のみを充填した絶縁スペー
サに比較して熱放散性がよくなり、温度上昇が抑制され
る。
The leakage current is increased by lowering the volume resistivity of the insulating portion 25. However, the surface of the insulating portion 25 becomes black since black carbon fine particles are mixed, and the insulating property of the insulating portion 25 is reduced. Compared to an insulating spacer filled only with a filler, heat dissipation is improved and a rise in temperature is suppressed.

【0025】以上は層分離型の円錐状の絶縁スペーサに
ついて説明したが、絶縁部の体積固有抵抗値を低くする
構成は、絶縁部が円板状であっても、三相一括形の場合
であっても同様の効果が得られることはいうまでもな
い。また、絶縁スペーサ23の沿面電圧は絶縁抵抗値の
分布により決定されるので、適用する電圧が交流の場合
であっても、直流の場合であっても同様に効果が得られ
る。
Although the above description has been given of the layer-separated conical insulating spacer, the configuration for lowering the volume resistivity of the insulating portion is not limited to the case where the insulating portion has a disk shape but is a three-phase package type. It goes without saying that the same effect can be obtained even if there is. Further, since the creeping voltage of the insulating spacer 23 is determined by the distribution of the insulation resistance value, the same effect can be obtained regardless of whether the applied voltage is AC or DC.

【0026】実施の形態2.実施の形態2の構成を図3
に示す。実施の形態2は、柱状の絶縁スペーサの絶縁部
の電圧分布を均一にする構成である。図において、31
は端部にフランジ31a、下方に柱状の絶縁スペーサの
支持部31bが設けられた密閉容器、32は密閉容器3
1の中心部に配置された導体、33は柱状の絶縁スペー
サであり、絶縁部35の両端部に支持金具34a、34
bが埋設され、柱状に形成されている。36は導体32
を接続し、絶縁スペーサ33に支持される接続電極であ
る。
Embodiment 2 FIG. FIG. 3 shows the configuration of the second embodiment.
Shown in Embodiment 2 is a configuration in which the voltage distribution of the insulating portion of the columnar insulating spacer is made uniform. In the figure, 31
Is a sealed container provided with a flange 31a at the end and a support 31b of a columnar insulating spacer below, and 32 is a sealed container 3
1, a conductor 33 disposed at the center of the column 1 is a columnar insulating spacer, and support brackets 34a, 34
b is buried and formed in a column shape. 36 is a conductor 32
Are connected and supported by the insulating spacer 33.

【0027】絶縁部35は実施の形態1の絶縁部と同様
に注型用エポキシ樹脂にアルミナ、シリカ、絶縁性セラ
ミックスなどの絶縁性の充填材と導電性材料の微粒子と
してカーボン微粒子とを混合した材料で成形され、導電
性材料は成形後の体積固有抵抗値が109〜1014Ωc
mになるように混合されている。導体32は接続電極部
36の部分で柱状の絶縁スペーサ33により密閉容器3
1の内部に保持されており、この状態で回路電圧が印加
されると、絶縁スペーサ33に漏れ電流が流れて、絶縁
部35の沿面電界強度が均一になって絶縁耐力が向上
し、絶縁部35の表面に導電性異物が存在した場合に部
分放電が発生しても電荷の蓄積はなく絶縁耐力が低下す
ることはない。
The insulating portion 35 is a mixture of an epoxy resin for casting, an insulating filler such as alumina, silica, and insulating ceramics and carbon fine particles as fine particles of a conductive material, similarly to the insulating portion of the first embodiment. The conductive material has a volume resistivity of 10 9 to 10 14 Ωc after molding.
m. The conductor 32 is formed in a closed container 3 by a columnar insulating spacer 33 at the connection electrode portion 36.
When a circuit voltage is applied in this state, a leakage current flows through the insulating spacer 33, the creeping electric field strength of the insulating portion 35 becomes uniform, and the dielectric strength is improved. Even if a partial discharge occurs when conductive foreign matter is present on the surface of 35, no electric charge is accumulated and the dielectric strength does not decrease.

【0028】このように構成された柱状の絶縁スペーサ
においても、実施の形態1と同様の効果が得られ、ガス
絶縁電気機器の小形化と、製作コストの低減を図ること
ができる。また、この柱状の絶縁スペーサの技術を二脚
形絶縁スペーサ、三脚形絶縁スペーサ、絶縁操作棒等に
適用しても同様の効果が得られる。
The same effect as that of the first embodiment can be obtained in the columnar insulating spacer having the above-described configuration, and the size of the gas-insulated electric device can be reduced and the manufacturing cost can be reduced. Also, the same effect can be obtained by applying this columnar insulating spacer technology to a bipod insulating spacer, a tripod insulating spacer, an insulating operating rod or the like.

【0029】この構成においても、絶縁部35の体積固
有抵抗値を低くすることにより、漏れ電流が大きくなる
が、絶縁部35には黒色のカーボン微粒子が混合されて
いるので表面は黒色であり、通常の絶縁性の充填材のみ
を充填した絶縁スペーサに比較して熱放散性がよくなっ
ており、温度上昇は抑制される。
Also in this configuration, the leakage current is increased by lowering the volume resistivity of the insulating portion 35, but the surface is black because the insulating portion 35 contains black carbon fine particles. Heat dissipation is better than that of an insulating spacer filled only with a normal insulating filler, and a rise in temperature is suppressed.

【0030】実施の形態3.実施の形態3の構成を図4
に示す。実施の形態3は、円錐状の絶縁スペーサの絶縁
部の導電性異物が付着しやすい中心電極近傍、密閉容器
に支持される外縁部の体積固有抵抗値を低く形成した構
成である。図4において、41は端部にフランジ41a
が設けられた密閉容器、42は密閉容器41の中心部に
配置された導体、43は絶縁スペーサであり、中心部に
配置された中心電極44、中心電極44の近傍の厚さt
1が数十mmの絶縁中央部45aと、密閉容器41のフ
ランジ41aに固定される部分を含む密閉容器41の内
径より内側のt2の部分の数十mm内側までの間の絶縁
外縁部45cと、絶縁中央部45aと絶縁外縁部45c
の間の絶縁中間部45bとを一体として円錐状に形成さ
れた絶縁部45で構成されている。46は摺動接触子で
ある。
Embodiment 3 FIG. 4 shows the configuration of the third embodiment.
Shown in Embodiment 3 has a configuration in which the volume specific resistance of the outer edge portion supported by the closed container is formed low near the center electrode to which the conductive foreign matter of the insulating portion of the conical insulating spacer is likely to adhere. In FIG. 4, 41 is a flange 41a at the end.
, A conductor 42 disposed at the center of the closed container 41, an insulating spacer 43, a center electrode 44 disposed at the center, and a thickness t near the center electrode 44.
1 is an insulating central portion 45a of several tens mm, and an insulating outer edge portion 45c between the inner portion of the closed container 41 and a portion of t2 inside the inner diameter of the sealed container 41 up to several tens mm inside including the portion fixed to the flange 41a of the closed container 41. , Insulating central portion 45a and insulating outer edge 45c
And an insulating intermediate portion 45b formed in a conical shape. 46 is a sliding contact.

【0031】絶縁スペーサ43の絶縁部45の絶縁中央
部45aおよび絶縁外縁部45cは注型用エポキシ樹脂
にアルミナ、シリカ、絶縁性セラミックスなどの絶縁性
の充填材と成形後の体積固有抵抗値が109〜1014Ω
cmなるように導電性材料のカーボン微粒子を混合した
材料で成形され、絶縁中間部45bはカーボン微粒子を
含まない注型用エポキシ樹脂に絶縁性の充填材を混合し
た成形後の体積固有抵抗値が1015Ωcm以上となる材
料で成形されている。
The insulating central portion 45a and the insulating outer edge 45c of the insulating portion 45 of the insulating spacer 43 are made of a casting epoxy resin and an insulating filler such as alumina, silica, or insulating ceramic, and have a specific volume resistivity after molding. 10 9 -10 14 Ω
cm, and the insulating intermediate portion 45b has a volume resistivity value after molding obtained by mixing an insulating filler with a casting epoxy resin containing no carbon fine particles. It is formed of a material having a resistivity of 10 15 Ωcm or more.

【0032】通常のカーボン微粒子を含まない絶縁スペ
ーサを使用して母線部分を組み立てた場合、絶縁スペー
サの密閉容器の内周の近傍、および中央部の導体近傍は
塵埃が付着し易く、絶縁スペーサと密閉容器のフランジ
部の接合部には微小空間ができ、この微小空間に局部的
な電界集中が生じて部分放電が発生し易い状態になる
が、絶縁中央部45a、絶縁外縁部45cの部分の体積
固有抵抗を低くした絶縁スペーサ43を使用すれば、ウ
イークポイントとなる密閉容器フランジ部の絶縁外縁部
45cおよび中心電極近傍の絶縁中央部45aの電界強
度が低くなり、絶縁スペーサとしての絶縁耐力が向上
し、体積固有抵抗値を低くした部分に導電性異物が付着
しても部分放電が発生せず導電性異物の存在による絶縁
耐力の低下が抑制できる。このためガス絶縁電気機器の
小形化と製作コストの低減が可能となる。
When the bus portion is assembled using an ordinary insulating spacer that does not contain carbon fine particles, dust easily adheres to the vicinity of the inner periphery of the closed space of the insulating spacer and the vicinity of the conductor at the center, and the insulating spacer and the insulating spacer are connected to each other. A minute space is formed at the junction of the flange portions of the sealed container, and local electric field concentration occurs in this minute space, so that partial discharge is likely to occur. However, a portion of the insulating central portion 45a and the insulating outer edge portion 45c is formed. If the insulating spacer 43 having a low volume specific resistance is used, the electric field strength of the insulating outer edge portion 45c of the sealed container flange portion serving as a weak point and the insulating central portion 45a near the center electrode is reduced, and the dielectric strength as the insulating spacer is reduced. Even if conductive foreign matter adheres to the area where the volume resistivity has been reduced, partial discharge does not occur and the decrease in dielectric strength due to the presence of the conductive foreign matter can be suppressed. . For this reason, it is possible to reduce the size of the gas insulated electric device and reduce the manufacturing cost.

【0033】絶縁部45の絶縁中央部45aおよび絶縁
外縁部45cの体積固有抵抗値を低くするために黒色の
カーボン微粒子が混合されているので表面は黒色にな
り、通常の絶縁性の充填材のみを充填した絶縁スペーサ
に比較して熱放散性がよくなり、絶縁部45の温度上昇
が抑制される。
Since the black carbon fine particles are mixed in order to lower the volume resistivity of the insulating central portion 45a and the insulating outer edge 45c of the insulating portion 45, the surface becomes black, and only the usual insulating filler is used. The heat dissipation is improved as compared with the insulating spacers filled with, and the temperature rise of the insulating portion 45 is suppressed.

【0034】実施の形態4.実施の形態4は、柱状の絶
縁スペーサの絶縁部の両端部の体積固有抵抗値を低くし
たものである。柱状の絶縁スペーサの形状は、実施の形
態2の図3に示した形状と同一形状である。図3の柱状
の絶縁スペーサ33の両端部に埋設された支持金具34
a、34bの近傍の数十mmの部分の端部を注型用エポ
キシ樹脂にアルミナ、シリカ、絶縁性セラミックスなど
の絶縁性の充填材と、カーボン微粒子を成形後の体積固
有抵抗値が109〜1014Ωcmになる割合で混合した
材料とし、絶縁中間部は注型用エポキシ樹脂に絶縁性の
充填材を混合した材料で成形したものである。
Embodiment 4 In the fourth embodiment, the volume specific resistance at both ends of the insulating portion of the columnar insulating spacer is reduced. The shape of the columnar insulating spacer is the same as the shape shown in FIG. 3 of the second embodiment. Support brackets 34 embedded at both ends of the columnar insulating spacer 33 of FIG.
The ends of several tens of mm in the vicinity of a and 34b are filled with an epoxy resin for casting, an insulating filler such as alumina, silica, and insulating ceramics, and a volume resistivity value of 10 9 after molding the carbon fine particles. A material mixed at a rate of 〜1010 14 Ωcm is used, and the insulating intermediate portion is formed of a material obtained by mixing an epoxy resin for casting with an insulating filler.

【0035】柱状の絶縁スペーサの場合は端部近傍の表
面に塵埃が付着し易いが、絶縁スペーサの端部の体積固
有抵抗値を中間部よりも低く構成することにより端部近
傍の電界強度は低くなり、絶縁スペーサの絶縁耐力が向
上する。実施の形態3と同様に、体積固有抵抗を低くし
た部分に導電性異物が付着しても部分放電が発生せず導
電性異物の存在による絶縁耐力の低下が抑制できる。こ
のためガス絶縁電気機器の小形化と製作コストの低減が
可能となる。
In the case of a columnar insulating spacer, dust easily adheres to the surface near the end, but the electric field strength near the end is reduced by configuring the volume resistivity of the end of the insulating spacer to be lower than that of the middle. And the dielectric strength of the insulating spacer is improved. As in the third embodiment, even when conductive foreign matter adheres to a portion where the volume resistivity is lowered, partial discharge does not occur and a decrease in dielectric strength due to the presence of the conductive foreign matter can be suppressed. For this reason, it is possible to reduce the size of the gas insulated electric device and reduce the manufacturing cost.

【0036】絶縁部の両端部の体積固有抵抗値を低くし
た部分は黒色のカーボン微粒子が混合されているので、
表面は黒色であり、通常の絶縁性の充填材のみを充填し
た絶縁スペーサに比較して熱放散性がよくなり、絶縁部
の温度上昇が抑制される。
The portions where the volume resistivity is low at both ends of the insulating portion are mixed with black carbon fine particles.
The surface is black, and the heat dissipation is better than that of an insulating spacer filled only with a normal insulating filler, thereby suppressing an increase in the temperature of the insulating portion.

【0037】[0037]

【発明の効果】この発明の請求項1に係る絶縁スペーサ
は、円板状または円錐状に形成された絶縁部を注型絶縁
材料に絶縁性の充填材と成形後の体積固有抵抗値が10
9〜1014Ωcmになる割合の微粒子状の導電性材料と
を混合した材料により一体に成形したので、表面に抵抗
体層を形成した構成のように、抵抗体層の割れ、欠け、
剥離等の欠陥が生じることがなく、絶縁部の沿面電界は
絶縁部の体積固有抵抗値に比例した分布するので微小な
導電性異物が存在しても沿面の電圧分布はあまり乱れず
安定した絶縁性能が得られる。
According to the insulating spacer of the first aspect of the present invention, a disk-shaped or conical-shaped insulating portion is cast into an insulating material with an insulating filler and having a volume resistivity of 10 after molding.
Since it is integrally molded from a material obtained by mixing a fine particle conductive material in a ratio of 9 to 10 14 Ωcm, cracks, chipping,
Defects such as peeling do not occur, and the creeping electric field of the insulating part is distributed in proportion to the volume resistivity of the insulating part, so even if there is minute conductive foreign matter, the voltage distribution on the creeping surface is not disturbed much and stable insulation Performance is obtained.

【0038】この発明の請求項2に係る絶縁スペーサ
は、両端部に支持金具が埋設され、柱状に形成された絶
縁部を注型絶縁材料に絶縁性の充填材と成形後の体積固
有抵抗値が109〜1014Ωcmになる割合の微粒子状
の導電性材料を混合した材料により成形したので、絶縁
部の沿面電界は絶縁部の体積固有抵抗値に比例した分布
するので微小な導電性異物が存在しても沿面の電圧分布
はあまり乱れず安定した絶縁性能が得られる。
The insulating spacer according to a second aspect of the present invention is such that support metal fittings are buried at both ends, and an insulating portion formed in a column shape is formed by casting an insulating filler into an insulating material and a volume resistivity value after molding. Is formed from a mixture of fine particles of a conductive material having a ratio of 10 9 to 10 14 Ωcm, and the creeping electric field of the insulating portion is distributed in proportion to the volume resistivity of the insulating portion. , The voltage distribution on the creeping surface is not disturbed so much that a stable insulation performance can be obtained.

【0039】この発明の請求項3に係る絶縁スペーサ
は、絶縁部が円板状または円錐状に形成された絶縁部の
中心電極近傍および密閉容器に支持される外縁部の内径
側近傍の材料は、注型絶縁材料に絶縁性の充填材と、成
形後の体積固有抵抗値が109〜1014Ωcmになる割
合の微粒子状の導電性材料を混合した材料とし、絶縁部
の中間部は注型絶縁材料に絶縁性の充填材を混合した成
形後の固有抵抗値が10 15Ωcm以上になる材料により
成形したので、塵埃が付着し易く、密閉容器の内周の近
傍および中央部の導体近傍の微小空間の局部的な電界集
中が生じるウイークポイントとなる部分の電界強度が低
くなって絶縁耐力が向上し、体積固有抵抗値を低くした
部分に導電性異物が付着しても部分放電が発生せず導電
性異物の存在による絶縁耐力の低下が抑制されて絶縁距
離の短縮が可能となり、ガス絶縁電気機器の小形化と製
作コストの低減が可能となる。
An insulating spacer according to claim 3 of the present invention.
Is the insulation part formed in the shape of a disk or a cone.
Inner diameter of the outer edge supported near the center electrode and in a sealed container
The material near the side is made of cast insulating material with insulating filler
Volume resistivity after shaping is 109-1014Ωcm
Mixed material of fine particles of conductive material
The middle part is made of a mixture of cast insulating material and insulating filler.
The specific resistance after forming is 10 15Ωcm or more depending on the material
Because it is molded, dust easily adheres to it
Local electric field collection in a small space near conductors near and in the middle
Low electric field strength at the weak point where the inside occurs
Increased dielectric strength and reduced volume resistivity
Conductive without partial discharge even if conductive foreign matter adheres to the part
The decrease in dielectric strength due to the presence of conductive
Separation can be shortened, and gas-insulated electrical equipment can be downsized and manufactured.
Operation costs can be reduced.

【0040】この発明の請求項4に係る絶縁スペーサ
は、柱状に形成された絶縁部の両端部に支持金具が埋設
され、埋設された支持金具の近傍は注型絶縁材料に絶縁
性の充填材と成形後の体積固有抵抗値が109〜1014
Ωcmになる割合の微粒子状の導電性材料を混合した材
料とし、絶縁部の中間部は注型絶縁材料に絶縁性の充填
材を混合した成形後の体積固有抵抗値が1015Ωcm以
上になる材料により成形したので、端部近傍の表面に塵
埃が付着し易い端部近傍の電界強度が低くなり、絶縁ス
ペーサとして絶縁耐力が向上し、体積固有抵抗を低くし
た部分に導電性異物が付着しても部分放電が発生せず導
電性異物の存在による絶縁耐力の低下が抑制でき、ガス
絶縁電気機器の小形化と製作コストの低減が可能とな
る。
According to a fourth aspect of the present invention, there is provided the insulating spacer, wherein a support metal is buried at both ends of the insulating portion formed in a columnar shape, and an insulating filler material is provided near the buried support metal in the cast insulating material. And the volume resistivity after molding is 10 9 to 10 14
A material obtained by mixing a conductive material in the form of fine particles at a ratio of Ωcm, and the intermediate portion of the insulating portion is formed by mixing an insulating filler with an insulating material having a volume resistivity of 10 15 Ωcm or more after molding. Because of the molding of the material, the electric field strength near the edge where dust easily adheres to the surface near the edge is reduced, the dielectric strength is improved as an insulating spacer, and conductive foreign matter adheres to the part where the volume resistivity is lowered. Even if a partial discharge does not occur, a decrease in the dielectric strength due to the presence of the conductive foreign matter can be suppressed, and the size of the gas-insulated electric device can be reduced and the manufacturing cost can be reduced.

【0041】この発明の請求項5に係る絶縁スペーサ
は、請求項1〜請求項4の絶縁部を形成する注型絶縁材
料に混合する導電性材料をカーボン微粒子としたので、
表面は黒色になり、通常の絶縁性の充填材のみを充填し
た絶縁スペーサに比較して熱放散性がよくなり、温度上
昇が抑制される。
In the insulating spacer according to a fifth aspect of the present invention, since the conductive material mixed with the cast insulating material forming the insulating portion of the first to fourth aspects is made of carbon fine particles,
The surface becomes black, the heat dissipation is improved and the temperature rise is suppressed as compared with an insulating spacer filled only with a normal insulating filler.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施の形態1の絶縁スペーサを使用したガス
絶縁電気機器の母線部分の部分断面図である。
FIG. 1 is a partial cross-sectional view of a bus portion of a gas-insulated electric device using an insulating spacer according to a first embodiment.

【図2】 絶縁部のカーボン微粒子の含有量と体積固有
抵抗の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the content of carbon fine particles in an insulating part and the volume resistivity.

【図3】 実施の形態2の絶縁スペーサを使用したガス
絶縁電気機器の母線部分の部分断面図である。
FIG. 3 is a partial cross-sectional view of a bus portion of a gas-insulated electric device using an insulating spacer according to a second embodiment.

【図4】 実施の形態3の絶縁スペーサを使用したガス
絶縁電気機器の母線部分の部分断面図である。
FIG. 4 is a partial cross-sectional view of a bus portion of a gas-insulated electric device using an insulating spacer according to a third embodiment.

【図5】 従来のガス絶縁電気機器の母線部分の部分断
面図である。
FIG. 5 is a partial cross-sectional view of a bus portion of a conventional gas-insulated electric device.

【図6】 従来の表面に抵抗体層を設けた円錐状の絶縁
スペーサの断面図である。
FIG. 6 is a cross-sectional view of a conventional conical insulating spacer provided with a resistor layer on its surface.

【図7】 従来のガス絶縁電気機器の断路器部分の柱状
の絶縁スペーサの使用状態を示す断面図である。
FIG. 7 is a cross-sectional view showing a usage state of a columnar insulating spacer in a disconnector portion of a conventional gas-insulated electric device.

【図8】 従来の表面に抵抗体層を設けた柱状の絶縁ス
ペーサの断面図である。
FIG. 8 is a cross-sectional view of a conventional columnar insulating spacer provided with a resistor layer on its surface.

【符号の説明】[Explanation of symbols]

21 密閉容器、22 導体、23 絶縁スペーサ、2
4 中心電極、25 絶縁部、26 摺動接触子、31
密閉容器、32 導体、33 絶縁スペーサ、34
中心電極、35 絶縁部、36 接続電極、41 密閉
容器、42 導体、43 絶縁スペーサ、44 中心電
極、45 絶縁部、46 摺動接触子。
21 airtight container, 22 conductor, 23 insulating spacer, 2
4 center electrode, 25 insulating part, 26 sliding contact, 31
Sealed container, 32 conductors, 33 insulating spacer, 34
Center electrode, 35 insulating section, 36 connecting electrode, 41 closed container, 42 conductor, 43 insulating spacer, 44 center electrode, 45 insulating section, 46 sliding contact.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽馬 洋介 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 宮田 秀樹 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 5G017 FF07 5G365 DA10 DE02 DE03 DE06 DG06 DH11  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yosuke Hama 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Hideki Miyata 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F term in Mitsubishi Electric Corporation (reference) 5G017 FF07 5G365 DA10 DE02 DE03 DE06 DG06 DH11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガス絶縁電気機器の密閉容器の内部に配
置された導体を絶縁支持する中心部に中心電極が配置さ
れ、絶縁部が平板状または円錐状に形成された絶縁スペ
ーサにおいて、絶縁部は注型絶縁材料に絶縁性の充填材
と、成形後の体積固有抵抗値が109〜1014Ωcmに
なる割合の微粒子状の導電性材料とを混合した材料によ
り成形されていることを特徴とする絶縁スペーサ。
An insulating spacer in which a center electrode is disposed at a central portion for insulatingly supporting a conductor disposed inside a closed container of a gas-insulated electric device, and the insulating portion is formed in a flat plate shape or a conical shape. Is characterized by being formed by mixing a casting insulating material with an insulating filler and a particulate conductive material having a volume resistivity of 10 9 to 10 14 Ωcm after molding. The insulating spacer to be used.
【請求項2】 ガス絶縁電気機器の密閉容器の内部に配
置された導体または電極を絶縁支持する両端部に支持金
具が埋設され、絶縁部が柱状に形成された絶縁スペーサ
において、絶縁部は注型絶縁材料に絶縁性の充填材と、
成形後の体積固有抵抗値が109〜1014Ωcmになる
割合の微粒子状の導電性材料とを混合した材料により成
形されていることを特徴とする絶縁スペーサ。
2. An insulating spacer in which support metal fittings are buried at both ends of a gas-insulated electric device, which support and insulate a conductor or an electrode disposed inside a closed container, and the insulating portion is formed in a columnar shape. An insulating filler in the mold insulating material,
An insulating spacer characterized by being formed of a material obtained by mixing a particulate conductive material with a ratio of a volume resistivity value after forming of 10 9 to 10 14 Ωcm.
【請求項3】 ガス絶縁電気機器の密閉容器の内部に配
置された導体を絶縁支持する中心部に中心電極が配置さ
れ、絶縁部が円板状または円錐状に形成された絶縁スペ
ーサにおいて、絶縁部の中心電極の近傍および密閉容器
に支持される外縁部の密閉容器の内径側近傍の材料は注
型絶縁材料に絶縁性の充填材と、成形後の体積固有抵抗
値が109〜1014Ωcmになる割合の微粒子状の導電
性材料とを混合した材料とし、絶縁部の中間部は注型絶
縁材料に絶縁性の充填材を混合した成形後の体積固有抵
抗値が1015Ωcm以上になる材料として成形したこと
を特徴とする絶縁スペーサ。
3. An insulating spacer in which a center electrode is disposed at a central portion for insulatingly supporting a conductor disposed inside a closed container of a gas-insulated electric device, and an insulating portion is formed in a disk shape or a conical shape. The material in the vicinity of the center electrode of the part and in the vicinity of the inner diameter side of the closed vessel at the outer edge supported by the closed vessel is an insulating filler in the cast insulating material, and has a volume resistivity of 10 9 to 10 14 after molding. A material mixed with a fine particle conductive material having a ratio of Ωcm, and the intermediate portion of the insulating portion is formed by mixing an insulating filler with the casting insulating material to have a volume resistivity of 10 15 Ωcm or more after molding. An insulating spacer characterized by being formed as a material.
【請求項4】 ガス絶縁電気機器の密閉容器の内部に配
置された導体または電極を絶縁支持する両端部に支持金
具が埋設され、絶縁部が柱状に形成された絶縁スペーサ
において、絶縁部の両端部に埋設された支持金具の近傍
は、注型絶縁材料に絶縁性の充填材と成形後の体積固有
抵抗値が109〜1014Ωcmになる割合の微粒子状の
導電性材料とを混合した材料とし、絶縁部の中間部は注
型絶縁材料に絶縁性の充填材を混合した成形後の体積固
有抵抗値が1015Ωcm以上になる材料として成形した
ことを特徴とする絶縁スペーサ。
4. An insulating spacer in which support metal fittings are buried at both ends of a gas-insulated electric device that insulate and support a conductor or an electrode disposed inside a closed container, and the insulating portion is formed in a columnar shape. In the vicinity of the support fitting buried in the portion, an insulating filler was mixed with a cast insulating material and a particulate conductive material having a volume resistivity value of 10 9 to 10 14 Ωcm after molding was mixed. An insulating spacer, characterized in that an intermediate portion of the insulating portion is formed as a material having a volume resistivity of 10 15 Ωcm or more after molding by mixing an insulating filler with a cast insulating material.
【請求項5】 絶縁部を形成する注型絶縁材料に混合す
る導電性材料はカーボン微粒子であることを特徴とする
請求項1〜請求項4記載の絶縁スペーサ。
5. The insulating spacer according to claim 1, wherein the conductive material mixed with the cast insulating material forming the insulating portion is carbon fine particles.
JP11120806A 1999-04-28 1999-04-28 Insulating spacer Pending JP2000316225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11120806A JP2000316225A (en) 1999-04-28 1999-04-28 Insulating spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11120806A JP2000316225A (en) 1999-04-28 1999-04-28 Insulating spacer

Publications (1)

Publication Number Publication Date
JP2000316225A true JP2000316225A (en) 2000-11-14

Family

ID=14795450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11120806A Pending JP2000316225A (en) 1999-04-28 1999-04-28 Insulating spacer

Country Status (1)

Country Link
JP (1) JP2000316225A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7256979B2 (en) 2001-08-01 2007-08-14 Sharp Kabushiki Kaisha Ion generator, and electric apparatus and air conditioning apparatus incorporating the same
JP2013223366A (en) * 2012-04-18 2013-10-28 Toshiba Corp Gas-insulated switchgear
CN104538916A (en) * 2014-11-14 2015-04-22 北京电力设备总厂有限公司 Detachable bus unit and rigid gas insulation electric transmission line
JP2017060209A (en) * 2015-09-14 2017-03-23 株式会社東芝 Gas insulated equipment
CN112670040A (en) * 2020-11-20 2021-04-16 华北电力大学 Ceramic post insulator for gas-insulated high-voltage electrical equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7256979B2 (en) 2001-08-01 2007-08-14 Sharp Kabushiki Kaisha Ion generator, and electric apparatus and air conditioning apparatus incorporating the same
JP2013223366A (en) * 2012-04-18 2013-10-28 Toshiba Corp Gas-insulated switchgear
CN104538916A (en) * 2014-11-14 2015-04-22 北京电力设备总厂有限公司 Detachable bus unit and rigid gas insulation electric transmission line
JP2017060209A (en) * 2015-09-14 2017-03-23 株式会社東芝 Gas insulated equipment
CN112670040A (en) * 2020-11-20 2021-04-16 华北电力大学 Ceramic post insulator for gas-insulated high-voltage electrical equipment

Similar Documents

Publication Publication Date Title
CN106847430B (en) A kind of charge adaptively dissipates disc insulator
US4688142A (en) Current transmission system for HVDC including a solid insulator having a surface coating of resin containing chromium oxide or iron oxide
WO2016080018A1 (en) Gas-insulated switching device
US8456787B2 (en) Gas insulated switchgear
JP2000316225A (en) Insulating spacer
CN105331046B (en) A kind of direct-current ultra high voltage insulator, preparation method and its usage
CN101897021A (en) Semiconductor switching device with gate connection
US2374527A (en) Lightning arrester and method of manufacture
JP2005327580A (en) Insulating spacer and gas-insulation equipment
JP6415848B2 (en) Transformer for converter
JPH05146035A (en) Gas insulation equipment
JP6807276B2 (en) Insulation spacer and gas insulation switchgear using it
EP3125260B1 (en) Transformer for a modular, power electronic converter
JP7137486B2 (en) Gas-insulated switchgear and manufacturing method thereof
JP4846194B2 (en) Transformer
JP2017060209A (en) Gas insulated equipment
JPS58157350A (en) Insulated coil for rotary electric machine
JPH0591611A (en) Gas-insulated switchgear
Jia et al. Flashover characteristics along the epoxy resin insulator under DC voltage in SF6 gas
JPH0928010A (en) Gas insulated switchgear, gas insulated transmission line, and insulating spacer therefor
US5539607A (en) Tank-shape arrester
JPS6136938Y2 (en)
JP4130249B2 (en) DC surge arrester
JPH0732528B2 (en) Cast insulator
JP3119938B2 (en) Tank type surge arrester

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050628

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050629