JP2000294539A - Surface treatment method - Google Patents

Surface treatment method

Info

Publication number
JP2000294539A
JP2000294539A JP11097283A JP9728399A JP2000294539A JP 2000294539 A JP2000294539 A JP 2000294539A JP 11097283 A JP11097283 A JP 11097283A JP 9728399 A JP9728399 A JP 9728399A JP 2000294539 A JP2000294539 A JP 2000294539A
Authority
JP
Japan
Prior art keywords
gas
plasma
sample
bias voltage
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11097283A
Other languages
Japanese (ja)
Inventor
Tetsuo Ono
哲郎 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11097283A priority Critical patent/JP2000294539A/en
Publication of JP2000294539A publication Critical patent/JP2000294539A/en
Pending legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

PROBLEM TO BE SOLVED: To set selection ratio of a semiconductor of Si, etc., and an insulation film of an oxide film, etc., at a specified value or more by introducing mixture gas of oxygen gas whose mixture ratio to halogen gas is specified into a vacuum container and turning on and off bias voltage repeatedly while plasma is generated. SOLUTION: Microwave is introduced from a microwave power supply 101 into a vacuum container 104 through a waveguide 102 and an introduction window 103. Material of the vacuum container 104 is metal, and insulation coating is applied to an inner surface. Material of the introduction window 103 is a material such as quartz and ceramic which transmit electromagnetic wave. Magnetic field strength of an electromagnet 105 is set to cause resonance with frequency of microwave; if frequency is 2.45 GHz, for example, magnetic field strength is 875 Gauss. Mixture gas of oxygen gas whose mixture ratio to halogen gas is 2.5 to 8.5% is introduced into the vacuum container 104 as treatment gas and a sample is treated by turning on and off bias voltage repeatedly while plasma of treatment gas is generated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は試料の表面処理方法
に係り、特にプラズマを用いて半導体素子等の試料の表
面をエッチング処理するのに好適な表面処理方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for surface treatment of a sample, and more particularly to a surface treatment method suitable for etching the surface of a sample such as a semiconductor device using plasma.

【0002】[0002]

【従来の技術】従来、半導体素子等の試料の表面処理方
法としては、プラズマを利用する方法が広く用いられて
いる。ここではそのうちの一つであるECR(電子サイ
クロトロン共鳴)方式と呼ばれているプラズマの発生方
法を用いた装置を例に取り従来技術を説明する。この方
式では、外部より磁場を印加した真空容器中でマイクロ
波によりプラズマを発生させる。磁場により電子はサイ
クロトロン運動をし、この周波数とマイクロ波の周波数
を共鳴させることで効率良くプラズマを発生できる。ま
た磁場によりプラズマの壁への拡散が抑えられ、高密度
のプラズマが発生できる。試料に入射するイオンを加速
するために試料にはバイアス電圧が印加される。プラズ
マとなるガスには、例えば、表面処理方法としてエッチ
ングを行なう場合に塩素やフッ素などのハロゲンガスが
用いられる。
2. Description of the Related Art Conventionally, as a surface treatment method for a sample such as a semiconductor device, a method utilizing plasma has been widely used. Here, the prior art will be described by taking an example of an apparatus using a plasma generation method called an ECR (Electron Cyclotron Resonance) method. In this method, plasma is generated by microwaves in a vacuum vessel to which a magnetic field is externally applied. Electrons perform cyclotron motion due to the magnetic field, and plasma can be efficiently generated by resonating this frequency with the frequency of the microwave. Further, the diffusion of the plasma to the wall is suppressed by the magnetic field, and high-density plasma can be generated. A bias voltage is applied to the sample to accelerate ions incident on the sample. For example, a halogen gas such as chlorine or fluorine is used as a plasma gas when etching is performed as a surface treatment method.

【0003】このようなエッチング処理方法において、
高選択化をはかる方法として特開平10−261620
号公報が知られている。この発明では、試料に印加する
バイアス電圧をオンオフ制御し、かつハロゲンと0.5
%から50%の混合率で堆積性のガスを混合する方法が
述べられている。
In such an etching method,
Japanese Patent Application Laid-Open No. H10-261620 discloses a method for achieving high selection.
A gazette is known. According to the present invention, the bias voltage applied to the sample is controlled on / off,
A method of mixing a deposition gas at a mixing ratio of 50% to 50% is described.

【0004】[0004]

【発明が解決しようとする課題】近年の半導体素子で
は、その微細化に伴い加工の高精度化がこれまで以上に
要求されている。具体的には、MOS(metal oxide sem
iconductor)トランジスタのゲート酸化膜の厚さは25
6M以降のメモリ素子では約5nmになる。このような
薄いゲート酸化膜を有する素子の加工にはこれまで以上
の高い選択比が要求されて、具体的には、poly S
iの酸化膜にたいする選択比100以上が必要となる。
In recent years, semiconductor devices have been required to have higher processing accuracy as they have been miniaturized. Specifically, MOS (metal oxide sem
The thickness of the gate oxide film of the transistor is 25
For a memory element of 6M or later, the thickness is about 5 nm. Processing of an element having such a thin gate oxide film requires a higher selectivity than ever, and specifically, poly S
A selectivity of 100 or more for the oxide film of i is required.

【0005】本発明の目的は、Siなどの半導体と酸化
膜などの絶縁物とのエッチング速度について選択比10
0以上を得ることのできる表面処理方法を提供すること
にある。
An object of the present invention is to provide a selective ratio of 10 for the etching rate between a semiconductor such as Si and an insulator such as an oxide film.
An object of the present invention is to provide a surface treatment method capable of obtaining 0 or more.

【0006】[0006]

【課題を解決するための手段】上記目的は、減圧排気さ
れた真空容器内に処理ガスのプラズマを発生させるとと
もに、真空容器内に試料を配置する試料台にバイアス電
圧を印加して試料をエッチング処理する表面処理方法に
おいて、処理ガスとしてハロゲンガスと混合率が2.5
%以上で8.5%以下の酸素ガスの混合ガスを真空容器
内に導入し、該処理ガスのプラズマを発生させた状態で
バイアス電圧を繰返しオンオフして試料を処理すること
により、達成される。
The object of the present invention is to generate a plasma of a processing gas in a vacuum chamber evacuated and evacuated, and to apply a bias voltage to a sample table on which the sample is placed in the vacuum chamber to etch the sample. In the surface treatment method to be treated, the mixing ratio with the halogen gas is 2.5.
% By using a mixed gas of oxygen gas of not less than 8.5% and not more than 8.5% and processing the sample by repeatedly turning on and off a bias voltage in a state where plasma of the processing gas is generated. .

【0007】[0007]

【発明の実施の形態】以下、本発明の一実施例を図1な
いし図3により説明する。図1は本発明を実施するため
のプラズマ処理装置を示し、この場合、有磁場マイクロ
波プラズマ装置を例に示す。なお、本発明の表面処理方
法を実施する装置としては本装置に限定されるものでは
なく、プラズマの生成とプラズマ中のイオンの入射エネ
ルギの制御とを独立に制御可能な装置であればよく、容
量結合,誘導結合等のプラズマ発生方法を用いた装置で
もよい。図1(a)はプラズマエッチング装置の全体構成
図である。マイクロ波電源101から導波管102と導
入窓103を介して真空容器104内にマイクロ波が導
入される。真空容器104の材質は金属で内面に絶縁コ
ーティングしてある。導入窓103の材質は石英、セラ
ミックなど電磁波を透過する物質である。電磁石105
の磁場強度はマイクロ波の周波数と共鳴を起こすように
設定されて、例えば周波数が2.45GHzならば磁場
強度は875Gaussである。この磁場強度でエッチ
ングガスのプラズマ106中の電子のサイクロトロン運
動が電磁波の周波数と共鳴するために、効率よく電磁波
のエネルギーがプラズマに供給され高密度のプラズマが
できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a plasma processing apparatus for carrying out the present invention. In this case, a magnetic field microwave plasma apparatus is shown as an example. The apparatus for performing the surface treatment method of the present invention is not limited to the present apparatus, and may be any apparatus that can independently control the generation of plasma and the control of the incident energy of ions in plasma. An apparatus using a plasma generation method such as capacitive coupling or inductive coupling may be used. FIG. 1A is an overall configuration diagram of a plasma etching apparatus. Microwaves are introduced from a microwave power supply 101 into a vacuum vessel 104 through a waveguide 102 and an introduction window 103. The inner surface of the vacuum vessel 104 is made of metal and insulatingly coated. The material of the introduction window 103 is a material that transmits electromagnetic waves, such as quartz or ceramic. Electromagnet 105
Is set to cause resonance with the microwave frequency. For example, if the frequency is 2.45 GHz, the magnetic field intensity is 875 Gauss. Since the cyclotron motion of the electrons in the plasma 106 of the etching gas resonates with the frequency of the electromagnetic wave at this magnetic field intensity, the energy of the electromagnetic wave is efficiently supplied to the plasma, and a high-density plasma is generated.

【0008】試料107は試料台108の上に設置され
る。試料に入射するイオンを加速するために、この場
合、周波数800KHzのバイアス電源109が試料台
108に接続されている。試料に印加するバイアス電源
の周波数は100KHzから100MHzの間だがよ
い。これ以上の周波数でもイオンエネルギーの狭帯域化
はできるが、バイアス電源によりプラズマが発生しやす
くなるという問題が生じる。なお、通常バイアス電源の
周波数は200KHzから20MHzの範囲が実用的で
ある。
The sample 107 is set on a sample stage 108. In this case, a bias power supply 109 having a frequency of 800 KHz is connected to the sample stage 108 in order to accelerate ions incident on the sample. The frequency of the bias power supply applied to the sample may be between 100 KHz and 100 MHz. Although the band of the ion energy can be narrowed even at a frequency higher than this, there is a problem that the plasma is easily generated by the bias power supply. It is practical that the frequency of the bias power supply is usually in the range of 200 KHz to 20 MHz.

【0009】図1(b)はバイアス電源109の電圧波形
110を示す。バイアス電圧はある適当な間隔でオンオ
フされる。オンオフされるバイアス電圧の変調周波数は
100Hz〜10KHzが好ましい。バイアス電圧のオ
ンオフの繰返し周波数は100Hz以下では、オンオフ
の時間が長すぎて、エッチング側壁が滑らかでなくな
る。また、現状では繰返し周波数が高いと電源の製作が
難しいので10KHz以下が適している。なお、将来こ
の点が解消されればこの限りではない。
FIG. 1B shows a voltage waveform 110 of the bias power supply 109. The bias voltage is turned on and off at some suitable intervals. The modulation frequency of the bias voltage to be turned on / off is preferably 100 Hz to 10 KHz. If the repetition frequency of on / off of the bias voltage is 100 Hz or less, the on / off time is too long, and the etching side wall is not smooth. Further, at present, if the repetition frequency is high, it is difficult to manufacture a power supply, so that a frequency of 10 KHz or less is suitable. This is not the case if this point is resolved in the future.

【0010】図2は、上述の装置を用いて処理したpo
ly Siと酸化膜のエッチング速度を示す。エッチン
グガスはCl2と酸素の混合ガスで、合計流量200s
ccm(standard cubic centimeter per minute)で圧力
を0.8Paとし、酸素の混合率を変えて連続バイアス
とオンオフバイアスとにおいてそれぞれ図示してある。
また、図3は、図2のデータを基にpoly Siの酸
化膜に対する選択比を計算した結果を示す。ここで、マ
イクロ波電源101の出力は400Wとした。バイアス
電源109のピーク出力は60Wでデューティー比(オ
ンオフの1周期にしめるオンの割合)は15%である。
オンオフの繰り返し周波数は1KHzである。また、図
2および図3には比較のために連続バイアス30Wの場
合のエッチング速度と選択比も示してある。
FIG. 2 shows a po processed using the apparatus described above.
The etching rate of ly Si and an oxide film is shown. The etching gas is a mixed gas of Cl2 and oxygen, and the total flow rate is 200 s.
The pressure is set to 0.8 Pa in ccm (standard cubic centimeter per minute), the mixing ratio of oxygen is changed, and the continuous bias and the on / off bias are shown.
FIG. 3 shows the result of calculating the selectivity of poly Si to the oxide film based on the data of FIG. Here, the output of the microwave power supply 101 was 400 W. The peak output of the bias power supply 109 is 60 W, and the duty ratio (the ON ratio for one ON / OFF cycle) is 15%.
The on / off repetition frequency is 1 KHz. 2 and 3 also show the etching rate and the selectivity in the case of a continuous bias of 30 W for comparison.

【0011】図3によれば、連続バイアス時よりもバイ
アス電圧をオンオフ制御することによって選択比が上が
ることがわかる。さらに、選択比は酸素の混合率が約4
%のときにピーク値を持つことがわかる。以下、この理
由を考察する。塩素はpoly Siのエッチングを進
行させるガスで、一方、酸素はエッチングを阻害する。
特に酸化膜などのエッチ速度が小さい物質では、少しで
も堆積物があるとエッチング反応よりも堆積の方が勝る
のでエッチ速度は極端に落ち、poly Siの対酸化
膜選択比が上昇する。バイアス電圧をオンオフすると、
オフ期間ではイオンが加速されず、酸素の付着が効率的
に生じて選択比を高める効果が顕著になる。酸素の添加
量が多すぎるとpoly Si表面の酸化が生じて、p
oly Siのエッチング速度が低下するために選択比
は低下する。したがって、図2および図3より、酸素混
合率の値が2.5%から8.5%のこの範囲で選択比が
100を越え、薄い酸化膜を有する半導体素子の加工に
適することがわかる。よって、半導体であるSi系材料
と絶縁物である酸化膜との選択比を100以上に設定し
得る混合ガスの酸素混合率の最適値は2.5%から8.
5%がよい。なお、選択比が100未満で実質的に使用
可能な範囲であれば、酸素混合率もこのような最適値だ
けに限定されるものではなく、多少範囲を超えることも
本発明に含まれる。
FIG. 3 shows that the selection ratio is increased by controlling the bias voltage on / off as compared with the case of the continuous bias. Furthermore, the selectivity is such that the mixing ratio of oxygen is about 4
It can be seen that the sample has a peak value at%. Hereinafter, the reason will be considered. Chlorine is a gas that advances the etching of poly Si, while oxygen inhibits the etching.
Particularly, in the case of a substance having a low etch rate, such as an oxide film, if there is even a small amount of deposit, the deposition rate is superior to the etching reaction. When the bias voltage is turned on and off,
In the off period, the ions are not accelerated, and the adhesion of oxygen occurs efficiently, and the effect of increasing the selectivity becomes remarkable. If the amount of added oxygen is too large, oxidation of the poly Si surface occurs, and p
The selectivity decreases because the etching rate of the poly-Si decreases. Therefore, it can be understood from FIGS. 2 and 3 that the selectivity exceeds 100 in the range of the oxygen mixture ratio of 2.5% to 8.5%, which is suitable for processing a semiconductor element having a thin oxide film. Therefore, the optimal value of the oxygen mixture ratio of the mixed gas that can set the selectivity between the Si-based material as the semiconductor and the oxide film as the insulator to 100 or more is 2.5% to 8.8.
5% is good. Note that the oxygen mixing ratio is not limited to such an optimum value as long as the selectivity is less than 100 and is in a practically usable range.

【0012】オンオフのデューティー比は実験の結果5
%から30%で最も効果があった。また、ガスの圧力は
0.2Paから2Paの間で同様の効果を得られた。ハ
ロゲンガスとしては塩素の他にHBrでも同じ効果があ
る。さらに以上述べたガス系に濃度やプラズマ安定性を
変える目的でAr,Heなどの希ガスを混合しても効果
は変らない。
The on / off duty ratio was 5
% To 30% was most effective. Similar effects were obtained when the gas pressure was between 0.2 Pa and 2 Pa. As a halogen gas, HBr has the same effect as chlorine gas. Further, even if a rare gas such as Ar or He is mixed with the gas system described above for the purpose of changing the concentration or the plasma stability, the effect is not changed.

【0013】また、本実施例におけるバイアス電圧のオ
ンオフ制御において、バイアス電圧オフの値は完全にゼ
ロの値であってもよいし、処理に影響しない範囲であれ
ば、小さい値のバイアス電圧が印加されている状態であ
ってもよく、これらはバイアス電圧オフの制御範囲に含
まれる。さらに、オンオフされるバイアス電圧は正弦波
でもよく、矩形はでもよい。
In the on / off control of the bias voltage in this embodiment, the value of the bias voltage off may be a completely zero value, or a small value may be applied as long as the process does not affect the processing. And these are included in the control range for turning off the bias voltage. Further, the bias voltage to be turned on and off may be a sine wave or a rectangle.

【0014】[0014]

【発明の効果】以上本発明によれば、poly Siの
酸化膜に対する選択比を100以上にすることができる
という効果がある。
As described above, according to the present invention, there is an effect that the selectivity of poly Si to the oxide film can be made 100 or more.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の表面処理方法を実施するための装置の
一例を示す全体構成図である。
FIG. 1 is an overall configuration diagram showing an example of an apparatus for performing a surface treatment method of the present invention.

【図2】図1の装置により処理したときの酸素混合比と
poly Siおよび酸化膜のエッチング速度との関係
を示す図である。
FIG. 2 is a diagram showing a relationship between an oxygen mixture ratio and an etching rate of poly Si and an oxide film when processing is performed by the apparatus of FIG.

【図3】酸素混合比とpoly Siの酸化膜に対する
選択比の関係を示す図である。
FIG. 3 is a diagram showing a relationship between an oxygen mixture ratio and a selectivity of poly Si to an oxide film.

【符号の説明】[Explanation of symbols]

101…マイクロ波電源、102…導波管、103…導
入窓、104…真空容器、105…磁石、106…プラ
ズマ、107…試料、108…試料台、109…バイア
ス電源、110…電圧波形。
101: microwave power supply, 102: waveguide, 103: introduction window, 104: vacuum vessel, 105: magnet, 106: plasma, 107: sample, 108: sample stage, 109: bias power supply, 110: voltage waveform.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】減圧排気された真空容器内に処理ガスのプ
ラズマを発生させるとともに、前記真空容器内に試料を
配置する試料台にバイアス電圧を印加して前記試料をエ
ッチング処理する表面処理方法において、前記処理ガス
としてハロゲンガスと混合率が2.5%以上で8.5%以
下の酸素ガスの混合ガスを前記真空容器内に導入し、該
処理ガスのプラズマを発生させた状態で前記バイアス電
圧を繰返しオンオフして前記試料を処理することを特徴
とする表面処理方法。
1. A surface treatment method for generating plasma of a processing gas in a vacuum vessel evacuated and evacuated and applying a bias voltage to a sample stage on which the sample is placed in the vacuum vessel to etch the sample. And introducing a mixed gas of a halogen gas and an oxygen gas having a mixing ratio of 2.5% or more and 8.5% or less as the processing gas into the vacuum vessel, and generating a plasma of the processing gas to form the bias gas. A surface treatment method, wherein the sample is treated by repeatedly turning on and off a voltage.
【請求項2】請求項1記載の表面処理方法において、前
記処理ガスの圧力が0.2Pa以上で2Pa以下であること
を特徴とする表面処理方法。
2. The surface treatment method according to claim 1, wherein the pressure of the treatment gas is not less than 0.2 Pa and not more than 2 Pa.
【請求項3】請求項1から2記載の表面処理方法におい
て、前記バイアス電圧のオンオフ変調を100Hz以上
の周波数で行い、前記バイアス電圧のオンとオフの1周
期にしめるオンの割合が5から30%であることを特徴
とする表面処理方法。
3. The surface treatment method according to claim 1, wherein the on / off modulation of the bias voltage is performed at a frequency of 100 Hz or more, and the ratio of on in which one cycle of on and off of the bias voltage is 5 to 30%. A surface treatment method, characterized in that:
JP11097283A 1999-04-05 1999-04-05 Surface treatment method Pending JP2000294539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11097283A JP2000294539A (en) 1999-04-05 1999-04-05 Surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11097283A JP2000294539A (en) 1999-04-05 1999-04-05 Surface treatment method

Publications (1)

Publication Number Publication Date
JP2000294539A true JP2000294539A (en) 2000-10-20

Family

ID=14188198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11097283A Pending JP2000294539A (en) 1999-04-05 1999-04-05 Surface treatment method

Country Status (1)

Country Link
JP (1) JP2000294539A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201643A (en) * 2014-04-04 2015-11-12 エスピーティーエス テクノロジーズ リミティド etching method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201643A (en) * 2014-04-04 2015-11-12 エスピーティーエス テクノロジーズ リミティド etching method

Similar Documents

Publication Publication Date Title
JPH10261620A (en) Surface treater
JP2918892B2 (en) Plasma etching method
KR100279091B1 (en) Etching Method and Etching Equipment
JP5261436B2 (en) Plasma processing apparatus and plasma processing method
US20020114897A1 (en) Plasma processing method and apparatus
JP2000038688A (en) Method and device for plasma treating
JP4974318B2 (en) Microwave plasma processing apparatus and processing method
JP2957403B2 (en) Plasma etching method and apparatus
JP3706027B2 (en) Plasma processing method
JPH01149965A (en) Plasma reactor
JPS61136229A (en) Dry etching device
JP2764575B2 (en) Radical control method
US20040259380A1 (en) Plasma surface treatment system and plasma surface treatment method
CN111048389A (en) Plasma processing method and plasma processing apparatus
JP3223692B2 (en) Dry etching method
JP4653395B2 (en) Plasma processing equipment
JP2000294539A (en) Surface treatment method
JPH03263827A (en) Digital etching apparatus
JP3550466B2 (en) Plasma processing method
JP2001313284A (en) Method and apparatus for plasma processing
JP2006286662A (en) Oxidation treatment method of silicon-based treatment object, oxidation treatment apparatus and method of manufacturing semiconductor apparatus
JP2000306894A (en) Method of plasma treatment of wafer
JP2005252031A (en) Plasma nitriding method
JP3445657B2 (en) ECR plasma etching method for diamond thin film
JP2001244250A (en) Method and apparatus for surface treatment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417