JP2000284097A - Radiation image conversion panel - Google Patents

Radiation image conversion panel

Info

Publication number
JP2000284097A
JP2000284097A JP9028799A JP9028799A JP2000284097A JP 2000284097 A JP2000284097 A JP 2000284097A JP 9028799 A JP9028799 A JP 9028799A JP 9028799 A JP9028799 A JP 9028799A JP 2000284097 A JP2000284097 A JP 2000284097A
Authority
JP
Japan
Prior art keywords
phosphor particles
phosphor
particle size
particles
radiation image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9028799A
Other languages
Japanese (ja)
Inventor
Masato Funahashi
真人 舟橋
Harunobu Kuriyama
春宣 栗山
Yuji Isoda
勇治 礒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP9028799A priority Critical patent/JP2000284097A/en
Publication of JP2000284097A publication Critical patent/JP2000284097A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conversion Of X-Rays Into Visible Images (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To heighten the filling density of a stimulable phosphor layer and obtain radiation images of high picture quality by using a tetradecahedral phosphor particles of a family of halides of a rare-earth activation alkaline earth metal and setting the average diameter and the distribution of particle diameters at a specific values. SOLUTION: A phosphor layer of this panel is formed by containing a bonding agent with stimulable phosphor particles in a condition of the distribution of specific particles and supporting them. Tetradecahedral phosphors of a family of halogen fluorides of a rare- earth activation alkaline earth metal are used for stimulable phosphors, and the average diameter D is litnited to the range between 3. 5 and 7. 5 μm. and the particle-diameter distribution Q is limited to that between 0.500 and 0.800. In this case, the average diameter Dm is the median diameter and represents the particle diameter which, when a cumulative distribution is 50% of the number of all particles, is obtained if the distribution of particle diameters and a distribution curve based on frequency is obtained. The particle-diameter distribution Q signifies the width of a particle diameter determined by an equation Q=(D90-D10)/(D90+D 10) (D10 and D90 are the particle diameters respectively obtained when the cumulative distributions are 10% and 90% of the number of all particles). In this way, the filling density of the phosphors is heightened and the picture quality of radiation images is improved by controlling the distribution appropriately.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、輝尽性蛍光体を利
用する放射線像記録再生方法に用いられる放射線像変換
パネルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation image conversion panel used for a radiation image recording / reproducing method using a stimulable phosphor.

【0002】[0002]

【従来の技術】従来の放射線写真法に代わる方法とし
て、輝尽性蛍光体を用いる放射線像記録再生方法が知ら
れている。この方法は、輝尽性蛍光体を含有する放射線
像変換パネル(蓄積性蛍光体シート)を利用するもの
で、被写体を透過した、あるいは被検体から発せられた
放射線を該パネルの輝尽性蛍光体に吸収させ、その後に
輝尽性蛍光体を可視光線、赤外線などの電磁波(励起
光)で時系列的に励起することにより、該輝尽性蛍光体
中に蓄積されている放射線エネルギーを蛍光(輝尽発光
光)として放出させ、この蛍光を光電的に読み取って電
気信号を得て、得られた電気信号に基づいて被写体ある
いは被検体の放射線画像を可視像として再生するもので
ある。読み取りを終えた該パネルは、残存する画像の消
去が行われた後、次の撮影のために備えられる。すなわ
ち、放射線像変換パネルは繰り返し使用される。
2. Description of the Related Art A radiation image recording / reproducing method using a stimulable phosphor is known as an alternative to the conventional radiographic method. This method uses a radiation image conversion panel (a stimulable phosphor sheet) containing a stimulable phosphor, and transmits radiation transmitted through a subject or emitted from a subject to the stimulable phosphor of the panel. The radiation energy stored in the stimulable phosphor is absorbed by the body in a time-series manner by exciting the stimulable phosphor with electromagnetic waves (excitation light) such as visible light and infrared rays. The fluorescent light is emitted as (stimulated emission light), the fluorescence is read photoelectrically to obtain an electric signal, and a radiation image of a subject or a subject is reproduced as a visible image based on the obtained electric signal. After the reading, the panel is prepared for the next photographing after the remaining image is erased. That is, the radiation image conversion panel is used repeatedly.

【0003】この放射線像記録再生方法では、放射線写
真フィルムと増感紙との組合せを用いる従来の放射線写
真法の場合に比べて、はるかに少ない被曝線量で情報量
の豊富な放射線画像を得ることができるという利点があ
る。さらに、従来の放射線写真法では一回の撮影ごとに
放射線写真フィルムを消費するのに対して、この放射線
像記録再生方法では放射線像変換パネルを繰り返し使用
するので、資源保護、経済効率の面からも有利である。
According to this radiographic image recording / reproducing method, a radiographic image having a large amount of information can be obtained with a much smaller exposure dose than the conventional radiographic method using a combination of a radiographic film and an intensifying screen. There is an advantage that can be. Furthermore, in contrast to the conventional radiographic method, which consumes a radiographic film for each photographing operation, the radiographic image recording / reproducing method uses a radiographic image conversion panel repeatedly, so that resource conservation and economic efficiency are reduced. Is also advantageous.

【0004】放射線像記録再生方法に用いられる放射線
像変換パネルは、基本構造として、支持体とその上に設
けられた輝尽性蛍光体層とからなるものである。ただ
し、輝尽性蛍光体層が自己支持性である場合には必ずし
も支持体を必要としない。また、輝尽性蛍光体層の上面
(支持体に面していない側の面)には通常、保護膜が設
けられていて、蛍光体層を化学的な変質あるいは物理的
な衝撃から保護している。
The radiation image conversion panel used in the radiation image recording / reproducing method has, as a basic structure, a support and a stimulable phosphor layer provided thereon. However, when the stimulable phosphor layer is self-supporting, a support is not necessarily required. In addition, a protective film is usually provided on the upper surface of the stimulable phosphor layer (the surface not facing the support) to protect the phosphor layer from chemical deterioration or physical impact. ing.

【0005】輝尽性蛍光体層は、通常は輝尽性蛍光体と
これを分散状態で含有支持する結合剤とからなる。ただ
し、輝尽性蛍光体層としては、蒸着法や焼結法によって
形成される結合剤を含まないで輝尽性蛍光体の凝集体の
みから構成されるものも知られている。また、輝尽性蛍
光体の凝集体の間隙に高分子物質が含浸されている輝尽
性蛍光体層を有する放射線像変換パネルも知られてい
る。これらのいずれの蛍光体層でも、輝尽性蛍光体はX
線などの放射線を吸収したのち励起光の照射を受けると
輝尽発光を示す性質を有するものであるから、被写体を
透過したあるいは被検体から発せられた放射線は、その
放射線量に比例して放射線像変換パネルの輝尽性蛍光体
層に吸収され、パネルには被写体あるいは被検体の放射
線像が放射線エネルギーの蓄積像として形成される。こ
の蓄積像は、上記励起光を照射することにより輝尽発光
光として放出させることができ、この輝尽発光光を光電
的に読み取って電気信号に変換することにより、放射線
エネルギーの蓄積像を画像化することが可能となる。
The stimulable phosphor layer usually comprises a stimulable phosphor and a binder containing and supporting the stimulable phosphor in a dispersed state. However, there is also known a stimulable phosphor layer which does not include a binder formed by a vapor deposition method or a sintering method and is composed of only an aggregate of the stimulable phosphor. Further, there is known a radiation image conversion panel having a stimulable phosphor layer in which a polymer substance is impregnated in a gap between stimulable phosphor aggregates. In any of these phosphor layers, the stimulable phosphor is X
When irradiated with excitation light after absorbing radiation such as radiation, it has the property of stimulating luminescence, so radiation transmitted through a subject or emitted from a subject is proportional to the amount of radiation. Absorbed by the stimulable phosphor layer of the image conversion panel, a radiation image of the subject or the subject is formed on the panel as an accumulated image of radiation energy. This accumulated image can be emitted as stimulated emission light by irradiating the excitation light, and the accumulated image of radiation energy is imaged by photoelectrically reading the stimulated emission light and converting it into an electric signal. Can be realized.

【0006】放射線像記録再生方法は上述したように数
々の優れた利点を有する方法であるが、この方法に用い
られる放射線像変換パネルにあっても、できる限り高感
度であってかつ画質(鮮鋭度、粒状性など)の良好な画
像を与えるものであることが望まれている。
Although the radiation image recording / reproducing method has many excellent advantages as described above, the radiation image conversion panel used in this method has the highest sensitivity and the highest image quality (sharpness). It is desired to provide an image having good image quality (degree, graininess, etc.).

【0007】上記輝尽性蛍光体層中に分散含有される輝
尽性蛍光体粒子の粒径については、たとえば特開昭58
−182600号公報および同59−138999号公
報に、蛍光体粒子の粒径分布を制御することにより、粒
子サイズの比較的大きい蛍光体粒子の存在によって感度
の向上を図り、同時に比較的小さい蛍光体粒子の存在に
よって画像特性の向上を図ることが記載されている。
The particle size of the stimulable phosphor particles dispersed and contained in the stimulable phosphor layer is described in, for example,
JP-A-182600 and JP-A-59-138999 teach that by controlling the particle size distribution of the phosphor particles, the sensitivity is improved by the presence of the phosphor particles having a relatively large particle size, and at the same time, the phosphor particles having a relatively small particle size are controlled. It is described that the image characteristics are improved by the presence of particles.

【0008】一方、放射線像変換パネルにおいては輝尽
性蛍光体層中の蛍光体充填率が高いほど、X線等の放射
線の吸収が多くなってより沢山の放射線画像情報を記録
できるので、粒状性など放射線画像の画質が向上する。
On the other hand, in a radiation image conversion panel, the higher the filling factor of the phosphor in the stimulable phosphor layer, the greater the absorption of radiation such as X-rays, so that more radiation image information can be recorded. The image quality of the radiation image such as the property is improved.

【0009】[0009]

【発明が解決しようとする課題】本発明は、輝尽性蛍光
体層の充填密度が高く、高画質の放射線画像を与える放
射線像変換パネルを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a radiation image conversion panel which has a high packing density of a stimulable phosphor layer and provides a high quality radiation image.

【0010】[0010]

【課題を解決するための手段】本発明者は、輝尽性蛍光
体粒子の粒径について検討した結果、蛍光体粒子の粒径
が一様でかつ蛍光体粒子を単独で用いる場合にはある空
間における蛍光体の充填率は粒径に依存しないけれど
も、蛍光体粒子が粒径分布を有する場合、また結合剤な
ど他の物質と一緒に空間を占める場合には、その粒径分
布と空間充填率との間には一定の相関関係があることを
見い出した。従って、粒子サイズの異なる複数種の蛍光
体粒子を混合して蛍光体粒子の粒径分布を好適に制御す
ることにより、輝尽性蛍光体層中における蛍光体充填率
を従来よりも高めて、得られる放射線画像の画質をより
一層向上させることができることを見い出し、本発明に
到達したものである。特に、輝尽発光特性など諸特性に
おいて優れた14面体型の希土類付活アルカリ土類金属
ハロゲン化物系蛍光体粒子は、従来の板状の蛍光体粒子
に比べて粒径分布が小さくなる傾向にあるため、この蛍
光体粒子を用いて粒径分布制御を行うことにより蛍光体
充填率の顕著な増加を達成することができる。
The present inventor has studied the particle size of the stimulable phosphor particles. As a result, in some cases, the particle size of the phosphor particles is uniform and the phosphor particles are used alone. Although the filling rate of the phosphor in the space does not depend on the particle size, when the phosphor particles have a particle size distribution or occupy the space together with other substances such as a binder, the particle size distribution and the space filling. We found that there was a certain correlation with the rate. Therefore, by mixing a plurality of types of phosphor particles having different particle sizes and appropriately controlling the particle size distribution of the phosphor particles, the phosphor filling rate in the stimulable phosphor layer is increased as compared with the related art, The inventors have found that the quality of the obtained radiation image can be further improved, and have reached the present invention. In particular, the tetradecahedral rare earth activated alkaline earth metal halide-based phosphor particles, which are excellent in various properties such as the stimulated emission properties, tend to have a smaller particle size distribution than conventional plate-shaped phosphor particles. Therefore, by controlling the particle size distribution using the phosphor particles, a remarkable increase in the phosphor filling rate can be achieved.

【0011】本発明は、輝尽性蛍光体粒子と結合剤とか
らなる蛍光体層を有する放射線像変換パネルにおいて、
該輝尽性蛍光体粒子が14面体型の希土類付活アルカリ
土類金属ハロゲン化物系蛍光体粒子であって、その平均
粒径Dmが3.5乃至7.5μmの範囲にあり、そして
粒径分布Qが0.500乃至0.800の範囲にあるこ
とを特徴とする放射線像変換パネルにある。
The present invention provides a radiation image conversion panel having a phosphor layer comprising stimulable phosphor particles and a binder.
The stimulable phosphor particles are tetrahedral rare earth activated alkaline earth metal halide-based phosphor particles, the average particle diameter Dm of which is in the range of 3.5 to 7.5 μm, and The radiation image conversion panel is characterized in that the distribution Q is in the range of 0.500 to 0.800.

【0012】ここで、蛍光体粒子の平均粒径Dmとはメ
ジアン径であって、粒径と頻度とからなる分布曲線を得
たときに累積分布が全体粒子数の50%のときの粒子径
を表す。また、粒径分布Qは粒径幅であって、下記式よ
り決定される粒子分布幅を表す。
Here, the average particle diameter Dm of the phosphor particles is a median diameter, and the particle diameter when the cumulative distribution is 50% of the total number of particles when a distribution curve composed of the particle diameter and the frequency is obtained. Represents The particle size distribution Q is a particle size width and represents a particle distribution width determined by the following equation.

【0013】[0013]

【数1】Q=(D90−D10)/(D90+D10)## EQU1 ## Q = (D90-D10) / (D90 + D10)

【0014】ただし、D10は累積分布が全体粒子数の1
0%のときの粒子径であり、D90は累積分布が全体粒子
数の90%のときの粒子径である。
Here, D10 is the cumulative distribution of 1 of the total number of particles.
The particle size is 0%, and D90 is the particle size when the cumulative distribution is 90% of the total number of particles.

【0015】[0015]

【発明の実施の形態】以下に、本発明の放射線像変換パ
ネルの好ましい態様を挙げる。 (1)輝尽性蛍光体粒子の平均粒径Dmが4.5乃至
6.5μmの範囲にあって、そして粒径分布Qが0.6
20乃至0.750の範囲にある放射線像変換パネル。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the radiation image storage panel of the present invention will be described below. (1) The average particle size Dm of the stimulable phosphor particles is in the range of 4.5 to 6.5 μm, and the particle size distribution Q is 0.6.
A radiation image conversion panel in the range of 20 to 0.750.

【0016】(2)輝尽性蛍光体粒子が粒子サイズの異
なる二種類以上の蛍光体粒子の混合物である放射線像変
換パネル。 (3)輝尽性蛍光体粒子が二種類の蛍光体粒子の混合物
であって、大きい蛍光体粒子の粒子サイズが5.0乃至
8.0μmの範囲にあり、小さい蛍光体粒子の粒子サイ
ズが2.0乃至4.0μmの範囲にある放射線像変換パ
ネル。 (4)輝尽性蛍光体粒子が二種類の蛍光体粒子の混合物
であって、大きい蛍光体粒子と小さい蛍光体粒子との混
合比率が重量比(前者:後者)で95:5乃至50:5
0の範囲にある放射線像変換パネル。
(2) A radiation image conversion panel wherein the stimulable phosphor particles are a mixture of two or more phosphor particles having different particle sizes. (3) The stimulable phosphor particles are a mixture of two types of phosphor particles, and the particle size of the large phosphor particles is in the range of 5.0 to 8.0 μm, and the particle size of the small phosphor particles is A radiation image conversion panel in the range of 2.0 to 4.0 μm. (4) The stimulable phosphor particles are a mixture of two types of phosphor particles, and the mixing ratio between the large phosphor particles and the small phosphor particles is 95: 5 to 50: by weight ratio (the former: the latter). 5
Radiation image conversion panel in the range of 0.

【0017】(5)輝尽性蛍光体層の充填密度が2.6
乃至4.0g/cm3の範囲にある放射線像変換パネ
ル。 (6)輝尽性蛍光体粒子が基本組成式(I): Ba1-xMIIxFBr1-yIy:aEu …(I) [ただし、MIIはCa及び/又はSrを表し;x、y、
及びaはそれぞれ、0≦x≦0.03、0≦y<1.
0、そして0.0001≦a≦0.01の範囲にある数
値である。]で表される14面体型のユーロピウム付活
アルカリ土類金属弗化ハロゲン化物系蛍光体粒子である
放射線像変換パネル。
(5) The packing density of the stimulable phosphor layer is 2.6.
A radiation image conversion panel in the range of 1 to 4.0 g / cm 3 . (6) stimulable phosphor particles basic composition formula (I): Ba1-xM II xFBr1-yIy: aEu ... (I) [ However, M II represents Ca and / or Sr; x, y,
And a are respectively 0 ≦ x ≦ 0.03, 0 ≦ y <1.
0 and numerical values in the range of 0.0001 ≦ a ≦ 0.01. ] A radiation image conversion panel which is a tetrahedral europium-activated alkaline earth metal fluorohalide-based phosphor particle represented by the formula:

【0018】次に、本発明の放射線像変換パネルを製造
する方法について詳細に述べる。支持体は、従来の放射
線像変換パネルの支持体として公知の材料から任意に選
ぶことができる。公知の放射線像変換パネルにおいて、
支持体と輝尽性蛍光体層の結合を強化するため、あるい
は放射線像変換パネルとしての感度もしくは画質(鮮鋭
度、粒状性)を向上させるために、蛍光体層が設けられ
る側の支持体表面にゼラチンなどの高分子物質を塗布し
て接着性付与層としたり、あるいは二酸化チタンなどの
光反射性物質からなる光反射層、もしくはカーボンブラ
ックなどの光吸収性物質からなる光吸収層などを設ける
ことが知られている。本発明で用いられる支持体につい
ても、これらの各種の層を設けることができ、それらの
構成は所望の放射線像変換パネルの目的、用途などに応
じて任意に選択することができる。さらに特開昭58−
200200号公報に記載されているように、得られる
画像の鮮鋭度を向上させる目的で、支持体の蛍光体層側
の表面(支持体の蛍光体層側の表面に下塗層(接着性付
与層)、光反射層あるいは光吸収層などの補助層が設け
られている場合には、それらの補助層の表面であっても
よい)には微小な凹凸が形成されていてもよい。なお、
輝尽性蛍光体層が自己支持性である場合には必ずしも支
持体を用いる必要はない。
Next, a method for manufacturing the radiation image storage panel of the present invention will be described in detail. The support can be arbitrarily selected from materials known as supports for conventional radiation image storage panels. In a known radiation image conversion panel,
In order to strengthen the bond between the support and the stimulable phosphor layer or to improve the sensitivity or image quality (sharpness, granularity) of the radiation image conversion panel, the surface of the support on which the phosphor layer is provided A polymer material such as gelatin is applied to the surface to form an adhesion-imparting layer, or a light-reflective layer made of a light-reflective material such as titanium dioxide or a light-absorbing layer made of a light-absorbing material such as carbon black It is known. The support used in the present invention can also be provided with these various layers, and the configuration thereof can be arbitrarily selected according to the desired purpose and application of the radiation image storage panel. Further, JP-A-58-
As described in JP-A-200200, in order to improve the sharpness of the obtained image, the surface of the support on the side of the phosphor layer (the surface of the support on the side of the phosphor layer is provided with an undercoat layer (adhesiveness imparting). (Layers), an auxiliary layer such as a light reflecting layer or a light absorbing layer may be provided on the surface of the auxiliary layer). In addition,
When the stimulable phosphor layer is self-supporting, it is not always necessary to use a support.

【0019】この支持体の上には輝尽性蛍光体層が設け
られる。本発明において特徴的な要件である輝尽性蛍光
体層は、特定の粒径分布を有する輝尽性蛍光体粒子とそ
れを分散状態で含有支持する結合剤とからなるものであ
る。
On this support, a stimulable phosphor layer is provided. The stimulable phosphor layer, which is a characteristic requirement of the present invention, is composed of stimulable phosphor particles having a specific particle size distribution and a binder containing and supporting the particles in a dispersed state.

【0020】輝尽性蛍光体としては、特開平7−233
369号公報や特願平8−260203号明細書などに
記載されている14面体型の希土類付活アルカリ土類金
属弗化ハロゲン化物系蛍光体が用いられる。この14面
体型の輝尽性蛍光体は粒子の粒径分布が小さい(粒径幅
が狭い)ため、混合して粒径分布制御を行うのに適して
いる。
The stimulable phosphor is disclosed in JP-A-7-233.
For example, a tetrahedral rare earth activated alkaline earth metal fluoride halide-based phosphor described in JP-A-369-369 and Japanese Patent Application No. 8-260203 is used. Since the tetradecahedral stimulable phosphor has a small particle size distribution (narrow particle size width), it is suitable for mixing and controlling the particle size distribution.

【0021】その具体例としては、基本組成式(I): Ba1-xMIIxFBr1-yIy:aEu …(I) [ただし、MIIはCa及び/又はSrを表し;x、y、
及びaはそれぞれ、0≦x≦0.03、0≦y<1.
0、そして0.0001≦a≦0.01の範囲にある数
値である。]で表される14面体型のユーロピウム付活
アルカリ土類金属弗化ハロゲン化物系蛍光体を挙げるこ
とができる。なお、この基本組成式(I)で表される蛍
光体には更に公知の各種の添加物が含有されていてもよ
い。たとえば、輝尽発光特性を高める目的でNa、K、
Cs等のアルカリ金属が0.05モル以下の量で含有さ
れていてもよいし、あるいは焼成時における焼結を防止
する目的でAl2O3、SiO2等の酸化物が0.05モ
ル以下の量で含有されていてもよい。
[0021] As a specific example, the basic formula (I): Ba1-xM II xFBr1-yIy: aEu ... (I) [ However, M II represents Ca and / or Sr; x, y,
And a are respectively 0 ≦ x ≦ 0.03, 0 ≦ y <1.
0 and numerical values in the range of 0.0001 ≦ a ≦ 0.01. And a tetrahedral europium-activated alkaline earth metal fluorohalide-based phosphor represented by the following formula: The phosphor represented by the basic composition formula (I) may further contain various known additives. For example, Na, K,
An alkali metal such as Cs may be contained in an amount of 0.05 mol or less, or an oxide such as Al 2 O 3 or SiO 2 may be contained in an amount of 0.05 mol or less for the purpose of preventing sintering during firing. It may be.

【0022】本発明において特定の粒径分布を有する輝
尽性蛍光体粒子は、たとえば、粒子サイズの異なる単一
の蛍光体粒子を少なくとも二種類以上用意し、それらを
混合することにより得ることができる。二種類の蛍光体
粒子を用いる場合には一般に、大きい方の蛍光体粒子の
粒子サイズは5.0乃至8.0μmの範囲にあり、小さ
い方の蛍光体粒子の粒子サイズは2.0乃至4.0μm
の範囲にある。ここで、粒子サイズとは平均粒径(D
m)であって、通常の製造方法によって得られる単一の
蛍光体が示す平均粒径を意味する。大きい蛍光体粒子と
小さい蛍光体粒子の混合比率は、各蛍光体粒子の粒子サ
イズなどによっても異なるが、一般には重量比で95:
5乃至50:50の範囲にあり、特に好ましくは7:3
もしくはその近傍である。
In the present invention, the stimulable phosphor particles having a specific particle size distribution can be obtained, for example, by preparing at least two kinds of single phosphor particles having different particle sizes and mixing them. it can. When two types of phosphor particles are used, the particle size of the larger phosphor particles is generally in the range of 5.0 to 8.0 μm, and the particle size of the smaller phosphor particles is generally 2.0 to 4 μm. 0.0 μm
In the range. Here, the particle size is an average particle size (D
m), which means the average particle size of a single phosphor obtained by an ordinary manufacturing method. The mixing ratio between the large phosphor particles and the small phosphor particles varies depending on the particle size of each phosphor particle, but generally, the weight ratio is 95:
It is in the range of 5 to 50:50, particularly preferably 7: 3.
Or it is near.

【0023】得られた輝尽性蛍光体粒子の混合物は、輝
尽性蛍光体層を形成したときの充填密度の点から、その
平均粒径Dmが3.5乃至7.5μmの範囲にあり、そ
して粒径分布Qが0.500乃至0.800の範囲にあ
るようにする。好ましくは、平均粒径Dmは4.5乃至
6.5μmの範囲にあり、そして粒径分布Qは0.62
0乃至0.750の範囲にある。
The obtained mixture of stimulable phosphor particles has an average particle diameter Dm in the range of 3.5 to 7.5 μm from the viewpoint of the packing density when the stimulable phosphor layer is formed. And the particle size distribution Q is in the range of 0.500 to 0.800. Preferably, the average particle size Dm is in the range of 4.5 to 6.5 μm and the particle size distribution Q is 0.62
It is in the range of 0 to 0.750.

【0024】結合剤としては、たとえばゼラチン等の蛋
白質、デキストラン等のポリサッカライド、またはアラ
ビアゴムのような天然高分子物質;および、ポリビニル
ブチラール、ポリ酢酸ビニル、ニトロセルロース、エチ
ルセルロース、塩化ビニリデン・塩化ビニルコポリマ
ー、ポリアルキル(メタ)アクリレート、塩化ビニル・
酢酸ビニルコポリマー、ポリウレタン、セルロースアセ
テートブチレート、ポリビニルアルコール、線状ポリエ
ステル、熱可塑性エラストマーなどのような合成高分子
物質を挙げることができる。なお、これらの結合剤は架
橋剤によって架橋されたものであってもよい。
Examples of the binder include proteins such as gelatin, polysaccharides such as dextran, and natural high molecular substances such as gum arabic; and polyvinyl butyral, polyvinyl acetate, nitrocellulose, ethyl cellulose, vinylidene chloride and vinyl chloride. Copolymer, polyalkyl (meth) acrylate, vinyl chloride
Synthetic polymeric substances such as vinyl acetate copolymers, polyurethanes, cellulose acetate butyrate, polyvinyl alcohol, linear polyesters, thermoplastic elastomers and the like can be mentioned. In addition, these binders may be cross-linked by a cross-linking agent.

【0025】輝尽性蛍光体層は、例えば下記方法により
支持体上に形成することができる。まず、上記の輝尽性
蛍光体粒子混合物および結合剤を溶剤に加え、これを充
分に混合して、結合剤溶液中に輝尽性蛍光体粒子が均一
に分散した塗布液を調製する。塗布液調製用の溶剤の例
としては、メタノール、エタノール、n−プロパノー
ル、n−ブタノール等の低級アルコール;メチレンクロ
ライド、エチレンクロライドなどの塩素原子含有炭化水
素;アセトン、メチルエチルケトン、メチルイソブチル
ケトンなどのケトン;酢酸メチル、酢酸エチル、酢酸ブ
チルなどの低級脂肪酸と低級アルコールとのエステル;
ジオキサン、エチレングリコールモノエチルエーテル、
エチレングリコールモノメチルエーテル、テトラヒドロ
フランなどのエーテル;そして、それらの混合物を挙げ
ることができる。
The stimulable phosphor layer can be formed on a support by, for example, the following method. First, the stimulable phosphor particle mixture and the binder are added to a solvent and mixed well to prepare a coating solution in which the stimulable phosphor particles are uniformly dispersed in the binder solution. Examples of the solvent for preparing the coating liquid include lower alcohols such as methanol, ethanol, n-propanol and n-butanol; hydrocarbons containing chlorine atoms such as methylene chloride and ethylene chloride; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone. Esters of lower fatty acids such as methyl acetate, ethyl acetate and butyl acetate with lower alcohols;
Dioxane, ethylene glycol monoethyl ether,
Ethers such as ethylene glycol monomethyl ether and tetrahydrofuran; and mixtures thereof.

【0026】塗布液における結合剤と輝尽性蛍光体粒子
との混合比は、目的とする放射線像変換パネルの特性、
蛍光体の種類などによって異なるが、一般には結合剤と
蛍光体粒子との混合比は、1:1乃至1:100(重量
比)の範囲から選ばれ、そして特に1:8乃至1:40
(重量比)の範囲から選ぶのが好ましい。なお、塗布液
には、該塗布液中における蛍光体の分散性を向上させる
ための分散剤、また、形成後の蛍光体層中における結合
剤と蛍光体との間の結合力を向上させるための可塑剤な
どの種々の添加剤が混合されていてもよい。
The mixing ratio of the binder and the stimulable phosphor particles in the coating solution depends on the characteristics of the target radiation image conversion panel,
In general, the mixing ratio of the binder and the phosphor particles is selected from the range of 1: 1 to 1: 100 (weight ratio), and particularly from 1: 8 to 1:40, although it depends on the kind of the phosphor.
It is preferable to select from the range of (weight ratio). The coating solution has a dispersant for improving the dispersibility of the phosphor in the coating solution, and also for improving the binding force between the binder and the phosphor in the formed phosphor layer. Various additives such as a plasticizer may be mixed.

【0027】このようにして調製された塗布液を次に、
ガラス板、金属板、プラスチックシートなどのシート
(仮支持体)上に均一に塗布することにより塗膜を形成
する。塗布操作は、通常の塗布手段、たとえばドクター
ブレード、ロールコータ、ナイフコータなどを用いる方
法により行うことができる。この塗膜を乾燥して蛍光体
シートを形成した後蛍光体シートを仮支持体から剥ぎ取
り、支持体の上に押圧するなどして支持体上への輝尽性
蛍光体層の形成を完了する。蛍光体層の層厚は、目的と
する放射線像変換パネルの特性、蛍光体の種類、結合剤
と蛍光体との混合比などによっても異なるが、通常は2
0μm〜1mmの範囲であり、好ましくは50〜500
μmの範囲である。なお、蛍光体層は、必ずしも上記の
ように別途形成した蛍光体シートを支持体上に接合する
必要はなく、支持体上に塗布液を直接塗布して形成して
もよい。
The coating solution thus prepared is then
A coating film is formed by uniformly applying a film (temporary support) such as a glass plate, a metal plate, and a plastic sheet. The coating operation can be performed by a method using ordinary coating means, for example, a doctor blade, a roll coater, a knife coater, or the like. After the coating film is dried to form a phosphor sheet, the phosphor sheet is peeled off from the temporary support, and pressed on the support to complete the formation of the stimulable phosphor layer on the support. I do. The thickness of the phosphor layer varies depending on the desired properties of the radiation image conversion panel, the type of phosphor, the mixing ratio of the binder and the phosphor, and the like.
0 μm to 1 mm, preferably 50 to 500
μm range. Note that the phosphor layer does not necessarily need to be joined to the phosphor sheet separately formed on the support as described above, and may be formed by directly applying a coating solution on the support.

【0028】本発明において、形成された輝尽性蛍光体
層の充填密度は、蛍光体粒子混合物や結合剤の種類、結
合剤と蛍光体との混合比、蛍光体層の形成方法などによ
っても異なるが、通常は2.5乃至4.0g/cm3
範囲にある。
In the present invention, the packing density of the formed stimulable phosphor layer depends on the kind of the phosphor particle mixture and the binder, the mixing ratio of the binder and the phosphor, the method of forming the phosphor layer, and the like. Although different, it is usually in the range of 2.5 to 4.0 g / cm 3 .

【0029】輝尽性蛍光体層の支持体に接する側とは反
対側の表面には、蛍光体層を物理的および化学的に保護
するために透明な保護膜を設けてもよい。保護膜として
は、セルロース誘導体、ポリメチルメタクリレート、有
機溶媒可溶性フッ素系樹脂などのような透明な有機高分
子物質を適当な溶媒に溶解して調製した溶液を蛍光体層
の上に塗布することで形成されたもの、あるいはポリエ
チレンテレフタレートなどの有機高分子フィルムや透明
なガラス板などの保護膜形成用シートを別に形成して蛍
光体層の表面に適当な接着剤を用いて設けたもの、ある
いは無機化合物を蒸着などによって蛍光体層上に成膜し
たものなどが用いられる。また、保護膜中には酸化マグ
ネシウム、酸化亜鉛、酸化チタン等の光散乱性微粒子、
パーフルオロオレフィン樹脂粉末、シリコーン樹脂粉末
等の滑り剤、およびポリイソシアネート等の架橋剤など
各種の添加剤が分散含有されていてもよい。保護膜の膜
厚は一般に約0.1〜20μmの範囲にある。
A transparent protective film may be provided on the surface of the stimulable phosphor layer on the side opposite to the side in contact with the support to physically and chemically protect the phosphor layer. As the protective film, a solution prepared by dissolving a transparent organic polymer material such as a cellulose derivative, polymethyl methacrylate, or an organic solvent-soluble fluororesin in an appropriate solvent is applied onto the phosphor layer. Formed, or an organic polymer film such as polyethylene terephthalate, or a protective film forming sheet such as a transparent glass plate, separately formed and provided on the surface of the phosphor layer using a suitable adhesive, or inorganic What formed the compound on the fluorescent substance layer by vapor deposition etc. is used. In the protective film, light scattering fine particles such as magnesium oxide, zinc oxide, and titanium oxide,
Various additives such as a slipping agent such as a perfluoroolefin resin powder and a silicone resin powder and a crosslinking agent such as a polyisocyanate may be dispersedly contained. The thickness of the protective film is generally in the range of about 0.1 to 20 μm.

【0030】上述のようにして本発明の放射線像変換パ
ネルが得られるが、本発明のパネルの構成は、公知の各
種のバリエーションを含むものであってもよい。たとえ
ば、得られる画像の鮮鋭度を向上させることを目的とし
て、上記の少なくともいずれかの層を、励起光を吸収し
輝尽発光光は吸収しないような着色剤によって着色して
もよい(特公昭59−23400号公報参照)。
Although the radiation image conversion panel of the present invention is obtained as described above, the configuration of the panel of the present invention may include various known variations. For example, for the purpose of improving the sharpness of the obtained image, at least one of the above-mentioned layers may be colored with a coloring agent that absorbs excitation light but does not absorb stimulating light (Japanese Patent Publication No. No. 59-23400).

【0031】[0031]

【実施例】[実施例1]14面体型Ba0.993Ca0.007
FBr0.85I0.15:0.004Eu,0.00006K,0.00002C
s蛍光体 1)1150mLのBaBr2水溶液(2.5モル/
L)、36mLのEuBr3水溶液(0.2モル/
L)、2.97gのKBr、3.40gのCaBr2・
2H2O、および1812mLの水を容積4000mL
の反応容器に入れた。この反応容器中の反応母液(Ba
Br2濃度:0.96モル/L)を60℃に保温し、直
径60mmのスクリュー型撹拌羽根を500rpmで回
転させて反応母液を撹拌した。
[Example 1] 14-sided Ba0.993Ca0.007
FBr0.85I0.15: 0.004Eu, 0.00006K, 0.00002C
s phosphor 1) 1150 mL of an aqueous solution of BaBr2 (2.5 mol /
L), 36 mL of EuBr3 aqueous solution (0.2 mol /
L) 2.97 g of KBr, 3.40 g of CaBr2.
2H 2 O and 1812 mL of water to a volume of 4000 mL
Into a reaction vessel. The reaction mother liquor (Ba in this reaction vessel)
(Br2 concentration: 0.96 mol / L) was kept at 60 ° C., and the reaction mother liquor was stirred by rotating a screw stirring blade having a diameter of 60 mm at 500 rpm.

【0032】288mLのNH4F水溶液(5モル/m
L)を、撹拌下に保温している上記の反応母液中にロー
ラーポンプを用いて4.8mL/分の送液速度で注入
し、沈殿物を生成させた。注入の完了後も、保温と撹拌
を2時間続けて沈殿物の熟成を行なった。次に沈殿物を
濾別し、メタノール2Lで洗浄した。次いで、洗浄した
沈殿物を取り出し、120℃で4時間真空乾燥させて、
320gの蛍光体前駆体結晶(以下、BFB結晶とい
う)を得た。得られた結晶は、走査型電子顕微鏡で観察
したところその大部分が14面体型の結晶であり、また
レーザー粒度分布測定装置(堀場製作所(株)製:LA−
500)で測定したところ平均結晶サイズは5.83μ
mであった。
288 mL of an aqueous NH 4 F solution (5 mol / m
L) was injected into the above-mentioned reaction mother liquor kept under stirring at a rate of 4.8 mL / min using a roller pump to produce a precipitate. After completion of the injection, the precipitate was ripened by keeping the temperature and stirring for 2 hours. Next, the precipitate was separated by filtration and washed with 2 L of methanol. Then, the washed precipitate is taken out and dried under vacuum at 120 ° C. for 4 hours.
320 g of a phosphor precursor crystal (hereinafter, referred to as a BFB crystal) was obtained. When the obtained crystal was observed with a scanning electron microscope, most of the crystal was a tetrahedral crystal, and a laser particle size distribution analyzer (manufactured by HORIBA, Ltd .: LA-
500), the average crystal size was 5.83 μm.
m.

【0033】2)2850mLのBaI2水溶液(4.
0モル/L)、90mLのEuI3水溶液(0.2モル
/L)、および60mLの水を容積4000mLの反応
容器に入れた。この反応容器中の反応母液(BaI2濃
度:3.80モル/L)を60℃に保温し、直径60m
mのスクリュー型撹拌羽根を500rpmで回転させて
反応母液を撹拌した。
2) 2850 mL of an aqueous solution of BaI2 (4.
0 mol / L), 90 mL of an aqueous EuI3 solution (0.2 mol / L), and 60 mL of water were placed in a 4000 mL reaction vessel. The reaction mother liquor (BaI2 concentration: 3.80 mol / L) in this reaction vessel was kept at 60 ° C.
The reaction mother liquor was stirred by rotating the screw-type stirring blade of m at 500 rpm.

【0034】720mLのHF水溶液(5モル/mL)
を、撹拌下に保温している上記の反応母液中にローラー
ポンプを用いて12mL/分の送液速度で注入し、沈殿
物を生成させた。注入の完了後も保温と撹拌とを2時間
続けて沈殿物の熟成を行なった。次に沈殿物を濾別し、
イソプロパノール2Lで洗浄した。次いで、洗浄した沈
殿物を取り出し、120℃で4時間真空乾燥させて、1
000gの蛍光体前駆体結晶(以下、BFI結晶とい
う)を得た。得られた結晶は、レーザー粒度分布測定装
置で測定したところ平均結晶サイズは5.80μmであ
った。
720 mL of HF aqueous solution (5 mol / mL)
Was injected into the above-mentioned reaction mother liquor kept under stirring at a liquid sending rate of 12 mL / min using a roller pump to produce a precipitate. After completion of the injection, the keeping and stirring were continued for 2 hours to ripen the precipitate. Then the precipitate is filtered off,
Washed with 2 L of isopropanol. Next, the washed precipitate was taken out and dried under vacuum at 120 ° C. for 4 hours to obtain 1
000 g of a phosphor precursor crystal (hereinafter, referred to as a BFI crystal) was obtained. The obtained crystals had an average crystal size of 5.80 μm as measured by a laser particle size distribution analyzer.

【0035】3)上記のBFB結晶を165g、そして
BFI結晶を35gとり、これに、CsBrを0.10
g、そして焼成時の焼結による粒子形状の変化や粒子間
融着による粒径分布の変化を防止するために、アルミナ
の超微粒子粉体を1.0g添加し、ミキサーで充分に混
合して、結晶表面にアルミナの超微粒子粉体を均一に付
着させた。これを100g取って石英ボートに充填し、
チューブ炉を用いて窒素ガス雰囲気中、820℃で3時
間焼成して、標記の組成式で表されるユーロピウム付活
弗化臭化バリウム系蛍光体粒子を得た。得られた蛍光体
粒子は、走査型電子顕微鏡で観察したところその大部分
が原料結晶と同じく14面体の形状にあり、またレーザ
ー粒度分布測定装置で測定したところ、その粒子サイズ
(平均粒径Dm)は5.98μm、粒径分布Qは0.4
80であった。
3) Take 165 g of the above-mentioned BFB crystal and 35 g of the BFI crystal, and add 0.10 CsBr to it.
g, and in order to prevent a change in particle shape due to sintering during firing and a change in particle size distribution due to fusion between particles, add 1.0 g of ultrafine alumina powder and mix thoroughly with a mixer. Then, ultrafine alumina powder was uniformly adhered to the crystal surface. Take 100 g of this and fill it into a quartz boat,
By baking at 820 ° C. for 3 hours in a nitrogen gas atmosphere using a tube furnace, europium-activated barium fluorobromide-based phosphor particles represented by the indicated composition formula were obtained. When the obtained phosphor particles were observed with a scanning electron microscope, most of them were in the shape of a tetradecahedron as in the case of the raw material crystals. When measured with a laser particle size distribution analyzer, the particle size (average particle size Dm ) Is 5.98 μm and the particle size distribution Q is 0.4
80.

【0036】[実施例2]実施例1の1)で、1680
mLのBaBr2水溶液(2.5モル/L)、52mL
のEuBr3水溶液(0.2モル/L)、2.97gの
KBr、4.96gのCaBr2・2H2O、および12
66mLの水を用いて反応母液(BaBr2濃度:1.
40モル/L)を調製し、これに420mLのNH4F
水溶液(5モル/mL)を注入したこと以外は実施例1
と同様な操作を行ない、14面体型のBa0.993Ca0.0
07FBr0.85I0.15:0.004Eu,0.00006K,0.00002
Cs蛍光体粒子(粒子サイズ:3.79μm、粒径分布
Q:0.470)を得た。さらに、反応母液濃度および
NH4F水溶液の量を変えること以外は実施例1と同様
にして、粒子サイズが2.97〜7.94μmの範囲で
異なる各種の蛍光体粒子を製造した。
[Embodiment 2] 1680 of Embodiment 1)
mL of an aqueous solution of BaBr2 (2.5 mol / L), 52 mL
Aqueous solution of EuBr3 (0.2 mol / L), 2.97 g of KBr, 4.96 g of CaBr2.2H2O, and 12
The reaction mother liquor (BaBr2 concentration: 1.
40 mol / L), and 420 mL of NH4F
Example 1 except that an aqueous solution (5 mol / mL) was injected.
Perform the same operation as described above to obtain a tetrahedral Ba0.993Ca0.0
07FBr0.85I0.15: 0.004Eu, 0.00006K, 0.00002
Cs phosphor particles (particle size: 3.79 μm, particle size distribution Q: 0.470) were obtained. Further, various phosphor particles having different particle sizes in the range of 2.97 to 7.94 μm were produced in the same manner as in Example 1 except that the reaction mother liquor concentration and the amount of the NH 4 F aqueous solution were changed.

【0037】 [実施例3]放射線像変換パネル (1)蛍光体シートの作製 蛍光体:実施例1及び2の輝尽性蛍光体粒子の7:3重量比混合物 [大粒子(5.98μm):小粒子(3.79μm)、 混合物の平均粒径Dm:5.16、粒径分布Q:0.590] 200g 結合剤:ポリウレタンエラストマー(T5265H、 大日本インキ化学工業(株)製) 7.4g 架橋剤:ポリイソシアネート(コロネートHX、 日本ポリウレタン(株)製) 0.6g 添加剤:エポキシ樹脂(EP1001、油化シェルエポキシ(株)製) 2.0gExample 3 Radiation Image Conversion Panel (1) Preparation of Phosphor Sheet Phosphor: 7: 3 weight ratio mixture of stimulable phosphor particles of Examples 1 and 2 [Large particles (5.98 μm)] 6. Small particles (3.79 μm), average particle size Dm of the mixture: 5.16, particle size distribution Q: 0.590] 200 g Binder: polyurethane elastomer (T5265H, manufactured by Dainippon Ink and Chemicals, Inc.) 4 g Crosslinking agent: polyisocyanate (Coronate HX, manufactured by Nippon Polyurethane Co., Ltd.) 0.6 g Additive: epoxy resin (EP1001, manufactured by Yuka Shell Epoxy Co., Ltd.) 2.0 g

【0038】上記組成の材料をメチルエチルケトンに加
え、プロペラミキサで分散させて粘度が30PS(25
℃)の塗布液を調製した(結合剤/蛍光体=1/20、
重量比)。これをシリコン系離型剤が塗布されているポ
リエチレンテレフタレートシート(仮支持体、厚み:1
80μm)上に塗布し、乾燥した後、仮支持体から剥ぎ
取って蛍光体シート(厚み:320μm)を形成した。
The material having the above composition was added to methyl ethyl ketone and dispersed with a propeller mixer to give a viscosity of 30 PS (25
C) (coating agent / phosphor = 1/20,
Weight ratio). A polyethylene terephthalate sheet coated with a silicone release agent (temporary support, thickness: 1)
80 μm), dried and then peeled off from the temporary support to form a phosphor sheet (thickness: 320 μm).

【0039】 (2)下塗層の形成 光反射性物質:酸化ガドリニウム微細粒子 (粒子径が1〜5μmの粒子を90重量%含む) 30g 結合剤:軟質アクリル樹脂(クリスコートP-1018GS [20%溶液]、大日本インキ化学工業(株)製) 150g フタル酸エステル 3.5g 導電剤:酸化亜鉛ウィスカー 10g 着色剤:群青 0.4g(2) Formation of Undercoat Layer Light-reflective substance: gadolinium oxide fine particles (containing 90% by weight of particles having a particle diameter of 1 to 5 μm) 30 g Binder: Soft acrylic resin (Chris Coat P-1018GS [20] % Solution], manufactured by Dainippon Ink and Chemicals, Inc.) 150 g Phthalate ester 3.5 g Conductive agent: zinc oxide whisker 10 g Colorant: ultramarine blue 0.4 g

【0040】上記組成の材料をメチルエチルケトン22
0gに加え、プロペラミキサを用いて混合して、粘度が
5〜10PS(25℃)の下塗層形成用塗布液を調製し
た。厚さ300μmのポリエチレンテレフタレートシー
ト(支持体)上に、この塗布液をドクターブレードを用
いて均一塗布した後、塗膜の乾燥を行い、支持体上に下
塗層(層厚:20μm)を形成した。
The material having the above composition was converted to methyl ethyl ketone 22
In addition to 0 g, the mixture was mixed using a propeller mixer to prepare a coating liquid for forming an undercoat layer having a viscosity of 5 to 10 PS (25 ° C.). This coating solution is uniformly applied on a 300 μm-thick polyethylene terephthalate sheet (support) using a doctor blade, and then the coating film is dried to form an undercoat layer (layer thickness: 20 μm) on the support. did.

【0041】(3)輝尽性蛍光体層の付設 支持体上の下塗層表面に、先に作製した蛍光体シートを
載せて圧縮を行った。圧縮操作は、カレンダロールを用
いて500kgw/cm2 の圧力、上側ロール温度90
℃、下側ロール温度75℃、そして送り速度1.0m/
分の条件にて連続的に行った。この加熱圧縮により、支
持体に蛍光体シートを完全に融着させて輝尽性蛍光体層
(層厚:220μm)を付設した。
(3) Attaching the stimulable phosphor layer The phosphor sheet prepared above was placed on the surface of the undercoat layer on the support and compressed. The compression operation was performed using a calendar roll at a pressure of 500 kgw / cm 2 and an upper roll temperature of 90.
° C, lower roll temperature 75 ° C, feed rate 1.0m /
This was performed continuously under the conditions of minutes. By this heat compression, the phosphor sheet was completely fused to the support to provide a stimulable phosphor layer (layer thickness: 220 μm).

【0042】(4)保護膜の形成 上記の輝尽性蛍光体層の上に、透明なポリエチレンテレ
フタレートフィルム(厚み:9μm、ポリエステル系接
着剤が片面に備えられているもの)を接着剤を下側にし
て重ね合わせた後、加熱圧着して保護膜を形成した。以
上のようにして、支持体、下塗層、輝尽性蛍光体層、お
よび保護膜から構成された本発明の放射線像変換パネル
を製造した。
(4) Formation of Protective Film A transparent polyethylene terephthalate film (thickness: 9 μm, provided with a polyester-based adhesive on one side) was placed on the stimulable phosphor layer with an adhesive. After being overlapped on the side, they were heated and pressed to form a protective film. As described above, the radiation image storage panel of the present invention comprising the support, the undercoat layer, the stimulable phosphor layer, and the protective film was manufactured.

【0043】[実施例4]実施例3の(1)蛍光体シー
トの作製に際して、輝尽性蛍光体として、実施例2の蛍
光体粒子の7:3重量比混合物[大粒子(7.21μ
m):小粒子(3.43μm)、混合物の平均粒径D
m:5.89、粒径分布Q:0.600]200gを用
いたこと以外は実施例3と同様にして、本発明の放射線
像変換パネルを製造した。
Example 4 In preparing the (1) phosphor sheet of Example 3, a 7: 3 weight ratio mixture of the phosphor particles of Example 2 [large particles (7.21 μm) was used as the stimulable phosphor.
m): Small particles (3.43 μm), average particle size D of the mixture
m: 5.89, particle size distribution Q: 0.600] A radiation image storage panel of the invention was manufactured in the same manner as in Example 3, except that 200 g was used.

【0044】[実施例5]実施例3の(1)蛍光体シー
トの作製に際して、輝尽性蛍光体として、実施例2の蛍
光体粒子の7:3重量比混合物[大粒子(7.07μ
m):小粒子(3.85μm)、混合物の平均粒径D
m:6.39、粒径分布Q:0.600]200gを用
いたこと以外は実施例3と同様にして、本発明の放射線
像変換パネルを製造した。
Example 5 In the preparation of the phosphor sheet (1) of Example 3, a 7: 3 weight ratio mixture of the phosphor particles of Example 2 [large particles (7.07 μm) was used as the stimulable phosphor.
m): Small particles (3.85 μm), average particle size D of the mixture
m: 6.39, particle size distribution Q: 0.600] A radiation image storage panel of the invention was manufactured in the same manner as in Example 3, except that 200 g was used.

【0045】[実施例6]実施例3の(1)蛍光体シー
トの作製に際して、輝尽性蛍光体として、実施例2の蛍
光体粒子の7:3重量比混合物[大粒子(7.07μ
m):小粒子(3.79μm)、混合物の平均粒径D
m:6.23、粒径分布Q:0.629]200gを用
いたこと以外は実施例3と同様にして、本発明の放射線
像変換パネルを製造した。
Example 6 In the preparation of the phosphor sheet (1) of Example 3, a 7: 3 weight ratio mixture of the phosphor particles of Example 2 [large particles (7.07 μm) was used as the stimulable phosphor.
m): Small particles (3.79 μm), average particle size D of the mixture
m: 6.23, particle size distribution Q: 0.629] A radiation image storage panel of the invention was manufactured in the same manner as in Example 3, except that 200 g was used.

【0046】[実施例7]実施例3の(1)蛍光体シー
トの作製に際して、輝尽性蛍光体として、実施例2の蛍
光体粒子の7:3重量比混合物[大粒子(7.94μ
m):小粒子(2.97μm)、混合物の平均粒径D
m:6.27、粒径分布Q:0.691]200gを用
いたこと以外は実施例3と同様にして、本発明の放射線
像変換パネルを製造した。
Example 7 In the preparation of the phosphor sheet (1) of Example 3, a 7: 3 weight ratio mixture of the phosphor particles of Example 2 [large particles (7.94 μm) was used as the stimulable phosphor.
m): Small particles (2.97 μm), average particle size D of the mixture
m: 6.27, particle size distribution Q: 0.691] A radiation image storage panel of the invention was manufactured in the same manner as in Example 3 except that 200 g of the panel was used.

【0047】[比較例1]実施例3の(1)蛍光体シー
トの作製に際して、輝尽性蛍光体として、実施例2で調
製した蛍光体粒子[粒子サイズ(平均粒径Dm):7.
07μm、粒径分布Q:0.470]200gを用いた
こと以外は実施例3と同様にして、比較のための放射線
像変換パネルを製造した。
[Comparative Example 1] The phosphor particles prepared in Example 2 [particle size (average particle diameter Dm): 7.
A radiation image conversion panel for comparison was manufactured in the same manner as in Example 3, except that 200 g of a 0.7 μm particle size distribution Q: 0.470] was used.

【0048】[比較例2]実施例3において(1)蛍光
体シートの作製に際して、輝尽性蛍光体として、実施例
2の蛍光体粒子[粒子サイズ(平均粒径Dm):3.4
3μm、粒径分布Q:0.430]200gを用いたこ
と以外は実施例3と同様にして、比較のための放射線像
変換パネルを製造した。
[Comparative Example 2] In Example 3, (1) when producing a phosphor sheet, the phosphor particles of Example 2 [particle size (average particle diameter Dm): 3.4) were used as the stimulable phosphor.
A radiation image conversion panel for comparison was manufactured in the same manner as in Example 3 except that 200 g of 3 μm, particle size distribution Q: 0.430] was used.

【0049】[放射線像変換パネルの性能評価]得られ
た各放射線像変換パネルについて輝尽性蛍光体層の充填
密度をは、重量と体積(面積×高さ)から算出した。こ
の時、バインダと蛍光体との重量比に基づいてバインダ
を除く蛍光体だけの充填密度に換算した。充填密度が高
いほど、粒状性等の画質は高くなる。得られた結果をま
とめて表1に示す。また、各蛍光体粒子混合物の粒径分
布をグラフにして図1および2に示す。
[Evaluation of Performance of Radiation Image Conversion Panel] The packing density of the stimulable phosphor layer of each obtained radiation image conversion panel was calculated from the weight and volume (area × height). At this time, the packing density of only the phosphor excluding the binder was converted based on the weight ratio between the binder and the phosphor. The higher the packing density, the higher the image quality such as graininess. Table 1 summarizes the obtained results. 1 and 2 are graphs showing the particle size distribution of each phosphor particle mixture.

【0050】[0050]

【表1】 表1 ──────────────────────────────────── 大粒子 小粒子 平均粒径Dm 分布幅Q 蛍光体層密度 (μm) (μm) (μm) (g/cm3) ──────────────────────────────────── 実施例3 5.98 3.79 5.16 0.590 3.19 4 7.21 3.43 5.89 0.600 3.28 5 7.07 3.85 6.39 0.600 3.13 6 7.07 3.79 6.23 0.629 3.21 7 7.94 2.97 6.27 0.691 3.32 ──────────────────────────────────── 比較例1 7.07 − 7.07 0.470 3.00 2 − 3.43 3.43 0.430 3.00 ────────────────────────────────────[Table 1] Large particle Small particle Average particle diameter Dm Distribution width Q Phosphor layer density (μm) (μm) (μm) (g / cm 3 ) ──────────────────────────── ──────── Example 3 5.98 3.79 5.16 0.590 3.19 4 7.21 3.43 5.89 0.600 3.28 5 7.07 3.85 6 .39 0.600 3.13 6 7.07 3.79 6.23 0.629 3.21 7 7.94 2.97 6.27 0.691 3.32 ────────────────────────── Comparative Example 1 7.07-7.07 0.470 3.00 2- 3.43 3.43 0.430 3.00────── ─────────────────────────────

【0051】図1は、実施例3〜5で用いた蛍光体粒子
混合物の粒径分布を示すグラフである。曲線1(白四
角)は実施例3、曲線2(白丸)は実施例4、および曲
線3(白三角)は実施例5の蛍光体粒子混合物を表す。
図2は、実施例5〜7で用いた蛍光体粒子混合物の粒径
分布を示すグラフである。曲線4(白四角)は実施例
5、曲線5(白丸)は実施例6、および曲線6(白三
角)は実施例7の蛍光体粒子混合物を表す。
FIG. 1 is a graph showing the particle size distribution of the phosphor particle mixture used in Examples 3 to 5. Curve 1 (open square) represents the phosphor particle mixture of Example 3, curve 2 (open circle) represents the phosphor of Example 4, and curve 3 (open triangle) represents the phosphor particle mixture of Example 5.
FIG. 2 is a graph showing the particle size distribution of the phosphor particle mixture used in Examples 5 to 7. Curve 4 (open square) shows the phosphor particle mixture of Example 5, curve 5 (open circle) shows the phosphor particle mixture of Example 6, and curve 6 (open triangle) shows the phosphor particle mixture of Example 7.

【0052】表1の結果から、本発明に係る粒子サイズ
の異なる蛍光体粒子混合物(実施例3〜7)は、単一の
蛍光体粒子(比較例1、2)とは異なり明らかに粒径分
布(粒径幅)Qが大きくなっていることが分かる。そし
て、これらの蛍光体粒子混合物を含む本発明の放射線像
変換パネル(実施例3〜7)はいずれも、単一の蛍光体
粒子を含む従来の放射線像変換パネル(比較例1、2)
と比較して、輝尽性蛍光体層の充填密度が顕著に高くな
っていた。
From the results shown in Table 1, it is clear that the phosphor particle mixtures according to the present invention having different particle sizes (Examples 3 to 7) are clearly different from the single phosphor particles (Comparative Examples 1 and 2). It can be seen that the distribution (particle size width) Q is large. And, the radiation image conversion panels of the present invention containing these phosphor particle mixtures (Examples 3 to 7) are all conventional radiation image conversion panels containing single phosphor particles (Comparative Examples 1 and 2).
As compared with, the packing density of the stimulable phosphor layer was significantly higher.

【0053】また、図1には、本発明に係る蛍光体粒子
混合物のうち粒径分布Qがほぼ同じで平均粒径Dmが異
なる場合(実施例3〜5)の粒径分布をそれぞれ示した
が、放射線像変換パネルに用いたときに蛍光体層の充填
密度が最も高いのは、表1から平均粒径Dmが5.89
μmのパネル(実施例4)であった。このことから、平
均粒径Dmと蛍光体層の充填密度との間には一定の相関
関係があり、蛍光体層の充填密度が高い値となる最適な
平均粒径Dmが存在することが分かる。
FIG. 1 shows the particle size distributions of the phosphor particle mixture according to the present invention when the particle size distribution Q is substantially the same and the average particle size Dm is different (Examples 3 to 5). However, the highest packing density of the phosphor layer when used in the radiation image conversion panel is based on Table 1 because the average particle diameter Dm is 5.89.
The panel was a μm panel (Example 4). This shows that there is a certain correlation between the average particle diameter Dm and the packing density of the phosphor layer, and that there is an optimum average particle diameter Dm at which the packing density of the phosphor layer becomes a high value. .

【0054】図2には、本発明に係る蛍光体粒子混合物
のうち平均粒径Dmがほぼ同じで粒径分布Qが異なる場
合(実施例5〜7)の粒径分布をそれぞれ示したが、放
射線像変換パネルに用いたときに蛍光体層の充填密度が
最も高いのは、表1から粒径分布Qが0.691のパネ
ル(実施例7)であった。このことから、粒径分布Qが
大きいほど蛍光体層の充填密度が高くなる傾向にあるこ
とが分かる。
FIG. 2 shows the particle size distributions of the phosphor particle mixture according to the present invention when the average particle size Dm is substantially the same and the particle size distribution Q is different (Examples 5 to 7). From Table 1, the panel having a particle size distribution Q of 0.691 (Example 7) had the highest packing density of the phosphor layer when used in the radiation image conversion panel. This indicates that the larger the particle size distribution Q, the higher the packing density of the phosphor layer tends to be.

【0055】[実施例8]実施例3の(1)蛍光体シー
トの作製に際して、輝尽性蛍光体として、実施例2の蛍
光体粒子の7:3重量比混合物[大粒子(7.07μ
m):小粒子(3.85μm)、混合物の平均粒径D
m:6.39、粒径分布Q:0.600]200gを用
いたこと以外は実施例3と同様にして、本発明の放射線
像変換パネルを製造した。
Example 8 In the preparation of the phosphor sheet (1) of Example 3, a 7: 3 weight ratio mixture of the phosphor particles of Example 2 [large particles (7.07 μm) was used as the stimulable phosphor.
m): Small particles (3.85 μm), average particle size D of the mixture
m: 6.39, particle size distribution Q: 0.600] A radiation image storage panel of the invention was manufactured in the same manner as in Example 3, except that 200 g was used.

【0056】[実施例9]実施例3において(1)蛍光
体シートの作製に際して、輝尽性蛍光体として、実施例
2の蛍光体粒子の7:3重量比混合物[大粒子(7.0
7μm):小粒子(3.43μm)、混合物の平均粒径
Dm:6.08、粒径分布Q:0.620]200gを
用いたこと以外は実施例3と同様にして、本発明の放射
線像変換パネルを製造した。
Example 9 In Example 3, (1) In preparing a phosphor sheet, a 7: 3 weight ratio mixture of the phosphor particles of Example 2 [large particles (7.0) was used as the stimulable phosphor.
7 μm): Small particles (3.43 μm), average particle size Dm of the mixture: 6.08, particle size distribution Q: 0.620] Except for using 200 g, radiation of the present invention was used in the same manner as in Example 3. An image conversion panel was manufactured.

【0057】[放射線像変換パネルの性能評価]得られ
た各放射線像変換パネルについて輝尽性蛍光体層の充填
密度を前記の方法により測定した。さらに、放射線像変
換パネルに管電圧80kVpのX線を照射した(線量1
mR)のちHe−Neレーザ光(波長:633nm)で
走査してパネルよりの輝尽発光光を検出し、得られた画
像データから鮮鋭度が同一であるときの粒状値を算出
し、これにより画質を評価した。粒状値が小さいほど画
質が良いことを意味する。得られた結果をまとめて表2
に示す。
[Evaluation of Performance of Radiation Image Conversion Panel] The packing density of the stimulable phosphor layer of each of the obtained radiation image conversion panels was measured by the method described above. Further, the radiation image conversion panel was irradiated with X-rays having a tube voltage of 80 kVp (dose 1
mR) and then scan with He-Ne laser light (wavelength: 633 nm) to detect stimulated emission light from the panel, and calculate a granular value when the sharpness is the same from the obtained image data. The image quality was evaluated. The smaller the granularity value, the better the image quality. Table 2 summarizes the obtained results.
Shown in

【0058】[0058]

【表2】 表2 ──────────────────────────────────── 蛍光体層密度 粒状値 (g/cm3) (1mR) ──────────────────────────────────── 実施例8 3.12 0.838 9 3.23 0.804(−4.0%) ────────────────────────────────────Table 2 ──────────────────────────────────── Phosphor layer density Granular value (g / Cm 3 ) (1 mR) ──────────────────────────────────── Example 8 3.12 0 0.838 9 3.23 0.804 (-4.0%) ──

【0059】表2の結果から明らかなように、放射線像
変換パネルの輝尽性蛍光体層の充填密度が高いほど粒状
値が小さく、画質の優れた放射線画像が得られた。
As is evident from the results in Table 2, the higher the packing density of the stimulable phosphor layer of the radiation image storage panel, the smaller the granularity value and the higher the quality of the radiation image.

【0060】[0060]

【発明の効果】本発明によれば、輝尽発光特性等の諸特
性に優れ、そして粒径分布の比較的小さい14面体型の
希土類付活アルカリ土類金属ハロゲン化物系蛍光体粒子
を、粒子サイズを変えて複数種用いてその粒径分布を好
適に制御することにより、輝尽性蛍光体層の充填密度を
従来よりも顕著に高めることができる。従って、X線等
の放射線をより多く吸収することができ、粒状性など画
質の向上した放射線画像を得ることができる。
According to the present invention, a tetrahedral rare earth activated alkaline earth metal halide-based phosphor particle having excellent properties such as stimulated emission characteristics and having a relatively small particle size distribution is obtained. By appropriately controlling the particle size distribution by using a plurality of types with different sizes, the packing density of the stimulable phosphor layer can be significantly increased as compared with the related art. Therefore, more radiation such as X-rays can be absorbed, and a radiation image with improved image quality such as granularity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る蛍光体粒子混合物(実施例3〜
5)の粒径分布を示すグラフである。
FIG. 1 shows a phosphor particle mixture according to the present invention (Examples 3 to 3).
It is a graph which shows the particle size distribution of 5).

【図2】本発明に係る蛍光体粒子混合物(実施例5〜
7)の粒径分布を示すグラフである。
FIG. 2 shows a phosphor particle mixture according to the present invention (Examples 5 to 5).
It is a graph which shows the particle size distribution of 7).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 礒田 勇治 神奈川県足柄上郡開成町宮台798番地 富 士写真フイルム株式会社内 Fターム(参考) 2G083 AA03 CC02 DD02 DD11 DD12 DD17 EE02 4H001 CA08 XA09 XA20 XA35 XA38 XA53 XA56 XB21 XB71 YA00 YA21 YA39 YA63  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yuji Isoda 798, Miyadai, Kaisei-cho, Ashigara-gun, Kanagawa Prefecture F-Film Co., Ltd. F-term (reference) 2G083 AA03 CC02 DD02 DD11 DD12 DD17 EE02 4H001 CA08 XA09 XA20 XA35 XA38 XA53 XA56 XB21 XB71 YA00 YA21 YA39 YA63

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 輝尽性蛍光体粒子と結合剤とからなる蛍
光体層を有する放射線像変換パネルにおいて、該輝尽性
蛍光体粒子が14面体型の希土類付活アルカリ土類金属
ハロゲン化物系蛍光体粒子であって、その平均粒径Dm
が3.5乃至7.5μmの範囲にあり、そして粒径分布
Qが0.500乃至0.800の範囲にあることを特徴
とする放射線像変換パネル。
1. A radiation image conversion panel having a phosphor layer comprising stimulable phosphor particles and a binder, wherein the stimulable phosphor particles are a tetradecahedral rare earth activated alkaline earth metal halide. Phosphor particles having an average particle diameter Dm
Is in the range of 3.5 to 7.5 μm, and the particle size distribution Q is in the range of 0.500 to 0.800.
【請求項2】 輝尽性蛍光体粒子の平均粒径Dmが4.
5乃至6.5μmの範囲にあり、そして粒径分布Qが
0.620乃至0.750の範囲にある請求項1に記載
の放射線像変換パネル。
2. The stimulable phosphor particles having an average particle diameter Dm of 4.
The radiation image conversion panel according to claim 1, wherein the particle size distribution is in a range of 5 to 6.5 µm, and the particle size distribution Q is in a range of 0.620 to 0.750.
【請求項3】 輝尽性蛍光体粒子が粒子サイズの異なる
二種類以上の蛍光体粒子の混合物である請求項1もしく
は2に記載の放射線像変換パネル。
3. The radiation image conversion panel according to claim 1, wherein the stimulable phosphor particles are a mixture of two or more phosphor particles having different particle sizes.
【請求項4】 輝尽性蛍光体粒子が二種類の蛍光体粒子
の混合物であって、大きい蛍光体粒子の粒子サイズが
5.0乃至8.0μmの範囲にあり、小さい蛍光体粒子
の粒子サイズが2.0乃至4.0μmの範囲にある請求
項3に記載の放射線像変換パネル。
4. The stimulable phosphor particles are a mixture of two types of phosphor particles, the large phosphor particles have a particle size in the range of 5.0 to 8.0 μm, and the small phosphor particles have a particle size of 5.0 to 8.0 μm. The radiation image conversion panel according to claim 3, wherein the size is in a range of 2.0 to 4.0 µm.
【請求項5】 輝尽性蛍光体粒子が二種類の蛍光体粒子
の混合物であって、大きい蛍光体粒子と小さい蛍光体粒
子との混合比率が重量比で95:5乃至50:50の範
囲にある請求項3もしくは4に記載の放射線像変換パネ
ル。
5. The stimulable phosphor particles are a mixture of two types of phosphor particles, and the mixing ratio of the large phosphor particles to the small phosphor particles is in the range of 95: 5 to 50:50 by weight. The radiation image conversion panel according to claim 3 or 4, wherein
【請求項6】 輝尽性蛍光体粒子が基本組成式(I): Ba1-xMIIxFBr1-yIy:aEu …(I) [ただし、MIIはCa及び/又はSrを表し;x、y、
及びaはそれぞれ、0≦x≦0.03、0≦y<1.
0、そして0.0001≦a≦0.01の範囲にある数
値である。]で表される14面体型のユーロピウム付活
アルカリ土類金属弗化ハロゲン化物系蛍光体粒子であっ
て、かつ輝尽性蛍光体層の充填密度が2.6乃至4.0
g/cm3の範囲にある請求項1乃至5のうちのいずれ
かの項に記載の放射線像変換パネル。
6. A stimulable phosphor particles basic composition formula (I): Ba1-xM II xFBr1-yIy: aEu ... (I) [ However, M II represents Ca and / or Sr; x, y,
And a are respectively 0 ≦ x ≦ 0.03, 0 ≦ y <1.
0 and numerical values in the range of 0.0001 ≦ a ≦ 0.01. ] Europium-activated alkaline earth metal fluorohalide-based phosphor particles represented by the formula: wherein the packing density of the stimulable phosphor layer is 2.6 to 4.0.
The radiation image conversion panel according to claim 1, wherein the radiation image conversion panel is in a range of g / cm 3 .
JP9028799A 1999-03-30 1999-03-30 Radiation image conversion panel Pending JP2000284097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9028799A JP2000284097A (en) 1999-03-30 1999-03-30 Radiation image conversion panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9028799A JP2000284097A (en) 1999-03-30 1999-03-30 Radiation image conversion panel

Publications (1)

Publication Number Publication Date
JP2000284097A true JP2000284097A (en) 2000-10-13

Family

ID=13994324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9028799A Pending JP2000284097A (en) 1999-03-30 1999-03-30 Radiation image conversion panel

Country Status (1)

Country Link
JP (1) JP2000284097A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1566812A2 (en) * 2004-02-23 2005-08-24 Fuji Photo Film Co. Ltd. Radiation image storage panel
JP2006078471A (en) * 2004-08-10 2006-03-23 Canon Inc Radiation detection instrument, scintillator panel, their manufacturing methods, and radiation detection system
US7180079B2 (en) 2004-03-12 2007-02-20 Fuji Photo Film Co., Ltd. Radiation image storage panel
WO2009116355A1 (en) * 2008-03-19 2009-09-24 コニカミノルタエムジー株式会社 Process for producing rare earth activated alkaline earth metal fluoride halide-based photostimulable phosphor, rare earth activated alkaline earth metal fluoride halide-based photostimulable phosphor, and radiological image conversion panel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1566812A2 (en) * 2004-02-23 2005-08-24 Fuji Photo Film Co. Ltd. Radiation image storage panel
US7208744B2 (en) 2004-02-23 2007-04-24 Fujifilm Corporation Radiation image storage panel
EP1566812A3 (en) * 2004-02-23 2010-10-20 FUJIFILM Corporation Radiation image storage panel
US7180079B2 (en) 2004-03-12 2007-02-20 Fuji Photo Film Co., Ltd. Radiation image storage panel
JP2006078471A (en) * 2004-08-10 2006-03-23 Canon Inc Radiation detection instrument, scintillator panel, their manufacturing methods, and radiation detection system
JP4612876B2 (en) * 2004-08-10 2011-01-12 キヤノン株式会社 Radiation detection apparatus, scintillator panel, manufacturing method thereof, and radiation detection system
WO2009116355A1 (en) * 2008-03-19 2009-09-24 コニカミノルタエムジー株式会社 Process for producing rare earth activated alkaline earth metal fluoride halide-based photostimulable phosphor, rare earth activated alkaline earth metal fluoride halide-based photostimulable phosphor, and radiological image conversion panel

Similar Documents

Publication Publication Date Title
JP3258183B2 (en) Tetrahedral rare earth activated alkaline earth metal fluorohalide-based stimulable phosphor, method for producing the same, and radiation image conversion panel
JPS59224600A (en) Radiation image converting panel
JP2000284097A (en) Radiation image conversion panel
JP3707753B2 (en) Tetrahedral rare earth activated alkaline earth metal fluoride halide stimulable phosphor and radiation image conversion panel
JP2000241594A (en) Radiation image conversion panel for method for reading through light condensation on both side
JP2006105970A (en) Radiographic image conversion panel
JP2005106684A (en) Radiological image conversion panel and its manufacturing method
JP2003246980A (en) Rare earth activated alkaline earth metal halogen fluoride photostimulable phosphor, apparatus and method for producing the same and radioactive image converting panel using the same
JP4228550B2 (en) Method for producing rare earth activated alkaline earth metal fluoroiodide stimulable phosphor
JP2004198177A (en) Radiation image conversion panel and method for manufacturing such panel and phosphors used for it
JP2000249793A (en) Radiological image conversion panel
JPS61157573A (en) Fluorescent substance and radiation image conversion panel using same
JP2004238512A (en) Photostimulable phosphor, liquid-phase preparation method thereof and radiological image conversion panel
JP2000121797A (en) Radiation image conversion panel and its production method
JP2004239812A (en) Radiation image conversion panel
JP2003268364A (en) Rare earth activated alkaline earth metal fluorohalide stimulable phosphor, manufacturing method of the same and radiation image conversion panel for the same
JPH0359950B2 (en)
JPH10239499A (en) Radiation image converting panel and manufacture of stimulable phosphor used therefor
JPH0214397B2 (en)
JP2001011440A (en) Stimulable flluorescent substance and radiographic image-converting panel
JPH10130641A (en) Tetradecahedral rare-earth-activated alkaline earth metal fluoride halide-accelerated phosphor and radiation image conversion panel
JP2000329899A (en) Preparing method of phosphor layer coating liquid of radiological image conversion panel and manufacture of radiological image conversion panel
JPH10130640A (en) Tetradecahedral rare-earth-activated alkaline earth netal fluoride halide-accelerated phosphor and radiation image conversion panel
JPS59211900A (en) Radiation image conversion panel
JP2000249797A (en) Radiological image conversion panel for double-sided light convergent reading method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040824

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061208