JP2000281995A - Thermally conductive adhesive film and semiconductor device - Google Patents

Thermally conductive adhesive film and semiconductor device

Info

Publication number
JP2000281995A
JP2000281995A JP11087482A JP8748299A JP2000281995A JP 2000281995 A JP2000281995 A JP 2000281995A JP 11087482 A JP11087482 A JP 11087482A JP 8748299 A JP8748299 A JP 8748299A JP 2000281995 A JP2000281995 A JP 2000281995A
Authority
JP
Japan
Prior art keywords
conductive adhesive
filler
adhesive film
thermal conductivity
diamagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11087482A
Other languages
Japanese (ja)
Inventor
Masayuki Hida
雅之 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymatech Co Ltd
Original Assignee
Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Co Ltd filed Critical Polymatech Co Ltd
Priority to JP11087482A priority Critical patent/JP2000281995A/en
Publication of JP2000281995A publication Critical patent/JP2000281995A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

PROBLEM TO BE SOLVED: To obtain a thermally conductive adhesive film which is excellent in peeling strength, thermal conductivity, and heat radiation properties by orienting a diamagnetic filler having a specified thermal conductivity in a specified concentration in a certain direction in a solid adhesive. SOLUTION: This thermally conductive adhesive film contains a diamagnetic filler having a thermal conductivity of 20 W/m.K higher in a concentration of 5-80 vol.%. The filler is graphite of which the thermal conductivity of at least one direction is 200 W/m.K or higher. The solid adhesive is preferably an epoxy-, a potyimide-, an acrylic-, a urethane-, a silicone- or a thermoplastic elastomer-based one. A composition mainly comprising the filler and the adhesive is applied to a polyethylene terephthalate sheet or a fluororesin sheet to give a film, which is subjected to an outside magnetic field to orient the filler in a certain direction and then is thermally dried to a semicured state. When the film is still in an uncured state, the filler is oriented along the magnetic lines by applying an outside magnetic field.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高い熱伝導性が要求
される熱伝導性接着フィルムおよび半導体装置に関す
る。さらに詳しくは、電気製品に使用される半導体素子
や電源、光源などの部品から発生する熱を効果的に放散
させる熱伝導性接着フィルムおよび放熱性に優れる半導
体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat conductive adhesive film requiring high heat conductivity and a semiconductor device. More specifically, the present invention relates to a heat conductive adhesive film for effectively dissipating heat generated from components such as a semiconductor element, a power supply, and a light source used in an electric product, and a semiconductor device having excellent heat dissipation.

【0002】[0002]

【従来の技術】従来より、発熱する半導体素子や電子部
品と放熱させる伝熱部材あるいは絶縁性基板と金属箔や
電極などとを接合させる目的で各種の熱伝導性接着フィ
ルムが使用されている。これらの熱伝導性接着フィルム
には、熱伝導性を高めるために、銀、銅、金、アルミニ
ウム、ニッケルなどの熱伝導率の大きい金属や合金、化
合物、あるいは酸化アルミニウム、酸化マグネシウム、
酸化ケイ素、窒化ホウ素、窒化アルミニウム、窒化ケイ
素、炭化ケイ素などの電気絶縁性セラミックス製の粉末
状の充填材、カーボンブラックやダイヤモンドなどの粉
粒体形状や繊維形状の熱伝導性充填材が配合されてい
る。
2. Description of the Related Art Conventionally, various heat conductive adhesive films have been used for the purpose of bonding a semiconductor element or an electronic component that generates heat to a heat transfer member or an insulating substrate that dissipates heat to a metal foil or an electrode. These heat conductive adhesive films include, in order to increase the heat conductivity, silver, copper, gold, aluminum, nickel or other metals or alloys having a high heat conductivity, compounds, or aluminum oxide, magnesium oxide,
Powdered filler made of electrically insulating ceramics such as silicon oxide, boron nitride, aluminum nitride, silicon nitride, and silicon carbide, and thermally conductive filler in the form of powder or granules such as carbon black and diamond are mixed. ing.

【0003】熱伝導性充填材として炭素材料を接着性高
分子に配合する熱伝導性接着剤は公知である。たとえ
ば、特開昭63−305520号公報では、炭素系の微
粉末や炭素繊維を充填したダイボンド材料が提唱されて
いる。特開平6−212137号公報では、熱伝導特性
を改良する目的で、特定構造の炭素繊維、すなわちメソ
フェーズピッチを基材とした3次元構造の炭素繊維を充
填した接着性材料が開示されている。また、特開平9−
324127号公報には、特定の高分子材料を熱処理し
て得られるグラファイトを使用した半導体素子用ダイボ
ンド材が開示されている。
[0003] Thermal conductive adhesives in which a carbon material is blended with an adhesive polymer as a thermal conductive filler are known. For example, Japanese Patent Application Laid-Open No. 63-305520 proposes a die bond material filled with carbon-based fine powder or carbon fiber. JP-A-6-212137 discloses an adhesive material filled with carbon fibers having a specific structure, that is, carbon fibers having a three-dimensional structure using a mesophase pitch as a base material, for the purpose of improving the heat conduction characteristics. Further, Japanese Unexamined Patent Publication No.
JP-A-324127 discloses a die bonding material for a semiconductor element using graphite obtained by heat-treating a specific polymer material.

【0004】さらに、特開平5−209157号公報、
特開平6−299129号公報によれば、含有させる炭
素繊維や金属繊維の構造を、かたまり状や糸まり状、あ
るいは織布や不織布の形状に特定することによって放熱
特性を一層改善した電子デバイス用接着フィルムが提案
されている。一方、特開昭62−194653号公報、
特開昭63−62762号公報によれば、ニッケルなど
の強磁性体粉末を含む接着剤を磁場中で厚み方向に配向
させて熱伝導率を向上させる接着方法が開示されてい
る。
Further, Japanese Patent Application Laid-Open No. 5-209157,
According to Japanese Patent Application Laid-Open No. 6-299129, for an electronic device, the heat radiation characteristics are further improved by specifying the structure of the carbon fiber or metal fiber to be contained in a lump-like or thread-like shape, or a woven or non-woven fabric. Adhesive films have been proposed. On the other hand, JP-A-62-194653,
JP-A-63-62762 discloses a bonding method in which an adhesive containing a ferromagnetic powder such as nickel is oriented in a thickness direction in a magnetic field to improve thermal conductivity.

【0005】[0005]

【発明が解決しようとする課題】しかし、最近の半導体
素子をはじめとする電子部品、電気製品の高密度化、高
性能化に伴う発熱量は著しく増大する傾向にあり、上述
したように様々な熱伝導性充填剤を応用した従来の改善
方法によっても十分に高い熱伝導特性を有する接着フィ
ルムが得られなかった。また、強磁性体粉末を含む接着
剤を磁場中で厚み方向に配向させる接着方法は、通常の
粉末状あるいは針状のニッケル系や鉄系では、その素材
自体の熱伝導率が100W/mKにも満たないので、磁
場で配向させても接着剤として十分な高い熱伝導率を発
現することはできなかった。そして、接着時に磁場を与
える方法は必ずしも簡便ではなかった。
However, the amount of heat generated by recent high-density and high-performance electronic components such as semiconductor devices and electric appliances tends to increase remarkably. An adhesive film having sufficiently high thermal conductivity could not be obtained by the conventional improvement method using a thermal conductive filler. In addition, the bonding method for orienting an adhesive containing a ferromagnetic powder in the thickness direction in a magnetic field is such that the thermal conductivity of the material itself is 100 W / mK in the case of a powdery or needle-like nickel or iron material. Therefore, it was not possible to develop a sufficiently high thermal conductivity as an adhesive even when oriented by a magnetic field. And the method of giving a magnetic field at the time of adhesion was not always simple.

【0006】すなわち、より一層高度な熱伝導特性を有
する接着フィルムが開発されないために、半導体素子な
どの電子部品からの多大な発熱によって、電気化学的な
マイグレーションが加速されたり、配線やパッド部の腐
食が促進されたり、発生する熱応力によって構成材料に
クラックが生じたり、破壊したり、構成材料の接合部の
界面が剥離して電子部品の寿命を損なう様々なトラブル
が発生していた。
That is, since an adhesive film having even higher heat conduction properties has not been developed, electrochemical migration is accelerated due to a large amount of heat generated from electronic components such as semiconductor elements, and the formation of wiring and pad portions is accelerated. Corrosion has been promoted, and cracks have occurred or been broken in the constituent materials due to the generated thermal stress, and various troubles have occurred in which the interface of the joining portions of the constituent materials has separated and the life of the electronic component has been impaired.

【0007】[0007]

【課題を解決するための手段】本発明は、上述の課題を
解決する目的で、電気製品に使用される半導体素子や電
源、光源などの部品から発生する熱を効果的に放散させ
る熱伝導性接着フィルムおよび放熱特性に優れる半導体
装置を提供するものである。すなわち、本発明は、熱伝
導率が20W/m・K以上の反磁性充填材が固体状接着
剤中に一定方向に配向されていることを特徴とする熱伝
導性接着フィルムである。さらに本発明は、半導体素子
と伝熱部材間を、熱伝導率が20W/m・K以上の反磁
性充填材が一定方向に配向された熱伝導性接着フィルム
で接着したことを特徴とする半導体装置である。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a heat conductive material for effectively dissipating heat generated from components such as a semiconductor element, a power supply, and a light source used in electric appliances. An object of the present invention is to provide an adhesive film and a semiconductor device having excellent heat dissipation characteristics. That is, the present invention is a heat conductive adhesive film, wherein a diamagnetic filler having a heat conductivity of 20 W / m · K or more is oriented in a certain direction in a solid adhesive. Further, the present invention is characterized in that a semiconductor element and a heat transfer member are bonded with a heat conductive adhesive film in which a diamagnetic filler having a heat conductivity of 20 W / m · K or more is oriented in a certain direction. Device.

【0008】反磁性充填材とは、比磁化率が負である、
すなわち磁場を加えると磁場と反対方向に磁化される磁
性を有する充填材を意味する。具体的にはビスマス、
銅、金、銀、水銀、石英およびこれらの合金や化合物、
水、グラファイト、炭素繊維、塩類、多数の有機化合物
などが存在する。金属のなかではビスマスの反磁性が最
大であることが知られているけれども、ビスマスの熱伝
導率は20W/m・K未満なので本発明で使用する反磁
性充填材としては好ましくない。水や塩類、有機化合物
も適さない。反磁性充填材の反磁性は、強磁性体の磁性
と比較すると非常に弱いけれども、本発明の熱伝導性接
着フィルムおよび半導体装置では、熱伝導率が20W/
m・K以上の反磁性充填材が接着性高分子中に一定方向
に配向されてなることを特徴とする。熱伝導率が20W
/m・K以上の反磁性充填材としては、特に銅、金、
銀、グラファイトが好適である。なかでも、少なくとも
一定方向の熱伝導率が200W/m・K以上の反磁性を
有するグラファイトを用いると特に熱伝導率の大きい優
れた熱伝導性接着フィルムおよび半導体装置を得ること
ができる。
[0008] The diamagnetic filler has a negative specific susceptibility.
That is, it means a filler having magnetism that is magnetized in a direction opposite to the magnetic field when a magnetic field is applied. Specifically, bismuth,
Copper, gold, silver, mercury, quartz and their alloys and compounds,
There are water, graphite, carbon fibers, salts, numerous organic compounds, and the like. Although it is known that bismuth has the largest diamagnetic property among metals, the thermal conductivity of bismuth is less than 20 W / m · K, which is not preferable as the diamagnetic filler used in the present invention. Water, salts and organic compounds are also unsuitable. Although the diamagnetism of the diamagnetic filler is very weak as compared with the magnetism of the ferromagnetic material, the thermal conductivity of the heat conductive adhesive film and the semiconductor device of the present invention is 20 W /
It is characterized in that a diamagnetic filler of m · K or more is oriented in a fixed direction in the adhesive polymer. Thermal conductivity is 20W
/ M · K or more diamagnetic fillers include copper, gold,
Silver and graphite are preferred. Above all, when using a diamagnetic graphite having a thermal conductivity of at least 200 W / m · K in a certain direction, an excellent heat conductive adhesive film and a semiconductor device having particularly high thermal conductivity can be obtained.

【0009】熱伝導率が20W/m・K以上の反磁性充
填材は、固体状接着剤に多量に充填するほど接着剤の熱
伝導率が大きくなるけれども、実際には多量に充填する
と接着フィルムとしての粘度が高くなりすぎたり混入し
た気泡が除去しにくいなどの不具合を生じる場合があ
る。従って、使用する熱伝導率が20W/m・K以上の
反磁性充填材および固体状接着剤や配合剤の種類、目的
とする最終製品の特性によって任意に決定することがで
きるけれども、熱伝導性接着フィルム中の熱伝導率が2
0W/m・K以上の反磁性充填材の濃度は、5〜80体
積%が好ましい。5体積%よりも少ないと熱伝導率が小
さく、80体積%を越える高濃度に充填するのは非常に
困難である。さらに好ましくは10〜60体積%、さら
に好ましくは15〜50体積%の範囲が実用的である。
A diamagnetic filler having a thermal conductivity of 20 W / m · K or more increases the thermal conductivity of the adhesive as the solid adhesive is filled in a larger amount. In some cases, the viscosity may be too high, or the mixed air bubbles may not be easily removed. Therefore, although the thermal conductivity to be used can be determined arbitrarily according to the type of the diamagnetic filler and the solid adhesive or the compounding agent having a thermal conductivity of 20 W / m · K or more, and the characteristics of the intended final product, Thermal conductivity in the adhesive film is 2
The concentration of the diamagnetic filler of 0 W / m · K or more is preferably 5 to 80% by volume. If the content is less than 5% by volume, the thermal conductivity is small, and it is very difficult to fill a high concentration exceeding 80% by volume. More preferably, the range of 10 to 60% by volume, more preferably, the range of 15 to 50% by volume is practical.

【0010】反磁性体として使用するグラファイトの結
晶構造は六方晶系であり、結晶方位に依存して磁化率が
大きくなる。基底面(c面)の法線方向をc軸、それに
垂直にa軸、b軸をとると、常温での磁化率は結晶方位
によって約70倍の差異がある。この反磁性磁化率の異
方性を利用して固体状接着剤中にグラファイトを一定方
向に配向することができる。たとえば、繊維状のグラフ
ァイトの場合には、この異方性反磁性磁化率の効果とし
て繊維の長さ方向と外部の磁力線とが平行に整列して配
向する。
The crystal structure of graphite used as a diamagnetic material is hexagonal, and the magnetic susceptibility increases depending on the crystal orientation. If the normal direction of the basal plane (c-plane) is the c-axis and the a-axis and the b-axis are perpendicular to the c-axis, the susceptibility at room temperature differs about 70 times depending on the crystal orientation. By utilizing the anisotropy of the diamagnetic susceptibility, graphite can be oriented in a certain direction in the solid adhesive. For example, in the case of fibrous graphite, as a result of the anisotropic diamagnetic susceptibility, the length direction of the fiber and the lines of external magnetic force are aligned and oriented in parallel.

【0011】グラファイトの形状や大きさなどについて
は特定するものではない。原料についてはピッチ系やメ
ソフェーズピッチ系を主原料として溶融紡糸、不融化、
炭化などの処理工程後に2000〜3000℃あるいは
3000℃を越える高温で熱処理したグラファイト構造
の発達した炭素繊維の方が繊維長さ方向の熱伝導率が大
きくて好ましい。さらに気相成長法によって得られるグ
ラファイト化した炭素繊維や、膨張性黒鉛やポリイミド
などの高分子フィルムなどを2400℃以上の高温で熱
処理して得られるグラファイトフィルムあるいはグラフ
ァイトフィルムを粉砕した粉粒体形状のグラファイト、
球状やウィスカー形状のグラファイトなどを使用するこ
ともできる。
The shape and size of the graphite are not specified. As for raw materials, pitch spinning and infusible,
A carbon fiber having a developed graphite structure, which is heat-treated at a high temperature exceeding 2000 to 3000 ° C. or 3000 ° C. after a treatment step such as carbonization, is preferred because it has a higher thermal conductivity in the fiber length direction. Furthermore, a graphite film obtained by heat-treating a graphitized carbon fiber obtained by a vapor phase growth method, a polymer film such as expandable graphite or polyimide at a high temperature of 2400 ° C. or more, or a powdery and granular material obtained by pulverizing the graphite film Of graphite,
Spherical or whisker-shaped graphite can also be used.

【0012】使用するグラファイトの熱伝導率は、少な
くとも1方向の熱伝導率が200W/m・K以上である
ことが好ましい。200W/m・K未満であると、得ら
れる熱伝導性接着剤の放熱特性が劣るので好ましくな
い。グラファイト化炭素繊維の場合は、通常は繊維長さ
方向の熱伝導率の方が大きくて垂直方向の熱伝導率はそ
の数10分の1と小さい。繊維長さ方向の熱伝導率は2
00W/m・K以上が好適で、好ましくは400W/m
・K以上、さらに好ましくは800W/m・K以上であ
る。
The thermal conductivity of the graphite used is preferably such that the thermal conductivity in at least one direction is 200 W / m · K or more. If it is less than 200 W / m · K, the resulting heat conductive adhesive has poor heat radiation properties, which is not preferable. In the case of graphitized carbon fiber, the thermal conductivity in the fiber length direction is generally higher and the thermal conductivity in the vertical direction is as small as several tenths. Thermal conductivity in the fiber length direction is 2
00 W / m · K or more is suitable, and preferably 400 W / m
K or more, more preferably 800 W / m · K or more.

【0013】グラファイト化炭素繊維の場合の平均直径
としては5〜20μm、平均長さは5〜800μmの範
囲が固体状接着剤へ容易に充填でき、得られる熱伝導性
接着フィルムの熱伝導率が大きくなるので好ましい。平
均直径が5μmよりも小さい場合や、平均長さが800
μmよりも長い場合は、固体状接着剤に高濃度で配合す
ることが困難になる。また、平均直径が20μmを越え
るグラファイト化炭素繊維は、その生産性が低下するの
で好ましくない。平均長さが5μmよりも短いとかさ比
重が小さくなり、生産性をはじめ製造工程中の取扱い性
や作業性に問題が生じることがあり好ましくない。な
お、これらのグラファイトは、あらかじめ電解酸化など
による公知の酸化処理を施して差し支えない。
The average diameter of the graphitized carbon fiber is in the range of 5 to 20 μm, and the average length is in the range of 5 to 800 μm. The solid adhesive can be easily filled, and the heat conductivity of the resulting heat conductive adhesive film is low. It is preferable because it becomes large. When the average diameter is smaller than 5 μm or when the average length is 800
If it is longer than μm, it will be difficult to mix the solid adhesive with a high concentration. Graphitized carbon fibers having an average diameter of more than 20 μm are not preferred because their productivity is reduced. If the average length is shorter than 5 μm, the bulk specific gravity becomes small, and problems such as productivity and handling and workability during the manufacturing process may occur, which is not preferable. Note that these graphites may be subjected to a known oxidation treatment such as electrolytic oxidation in advance.

【0014】反磁性充填材を配合する固体状接着剤とし
ては、常温で固体状、あるいは加熱して半硬化状態で固
体状になるエポキシ系、ポリイミド系、アクリル系、ポ
リ酢酸ビニルなどのビニル系、ウレタン系、シリコーン
系、オレフィン系、ポリアミド系、ポリアミドイミド
系、フェノール系、アミノ系、ビスマレイミド系、ポリ
イミドシリコーン系、飽和および不飽和ポリエステル
系、ジアリルフタレート系、尿素系、メラミン系、アル
キッド系、ベンゾシクロブテン系、ポリブタジエンやク
ロロプレンゴム、ニトリルゴムなどの合成ゴム系、天然
ゴム系、スチレン系熱可塑性エラストマーなどの公知の
樹脂やゴムからなる材料が好ましい。
Examples of the solid adhesive containing a diamagnetic filler include a vinyl adhesive such as an epoxy, polyimide, acrylic, or polyvinyl acetate which becomes solid at room temperature or becomes solid in a semi-cured state when heated. , Urethane, silicone, olefin, polyamide, polyamideimide, phenol, amino, bismaleimide, polyimidesilicone, saturated and unsaturated polyester, diallyl phthalate, urea, melamine, alkyd Materials made of known resins and rubbers such as benzocyclobutene, synthetic rubbers such as polybutadiene, chloroprene rubber, and nitrile rubber, natural rubbers, and styrene-based thermoplastic elastomers are preferred.

【0015】硬化形態については、熱硬化性、熱可塑
性、紫外線や可視光硬化性、常温硬化性、湿気硬化性な
ど公知のあらゆる硬化形態の接着性高分子を使用でき
る。なかでも、電子部品を構成する材料の各種金属やセ
ラミックス、プラスチックやゴム、エラストマーとの接
着性が良好なエポキシ系、ポリイミド系、アクリル系、
ウレタン系、シリコーン系より選ばれる少なくとも1種
の熱硬化性の固体状接着剤が好適である。さらに、固体
状接着剤が熱硬化性の場合には、反磁性充填材を充填し
て一定方向に配向させてからBステージなどの半硬化状
態にした熱伝導性接着フィルムが接着強度や信頼性の点
で好ましい。また、反磁性充填材の表面処理を目的とし
て、反磁性充填材の表面を公知のカップリング剤やサイ
ジング剤で処理することによって固体状接着剤との濡れ
性を向上させたり充填性を改良した熱伝導性接着フィル
ムを得ることが可能である。
As for the curing form, any of known adhesive curing polymers such as thermosetting, thermoplastic, ultraviolet or visible light curable, room temperature curable, and moisture curable can be used. Among them, epoxy, polyimide, acrylic, etc., which have good adhesion to various metals and ceramics, plastics, rubber, and elastomers of materials that make up electronic components,
At least one thermosetting solid adhesive selected from urethane and silicone is preferred. Furthermore, when the solid adhesive is thermosetting, a thermally conductive adhesive film filled with a diamagnetic filler and oriented in a certain direction, and then into a semi-cured state such as a B-stage is used for the adhesive strength and reliability. It is preferred in terms of. Also, for the purpose of surface treatment of the diamagnetic filler, the surface of the diamagnetic filler was treated with a known coupling agent or sizing agent to improve the wettability with the solid adhesive or to improve the filling property. It is possible to obtain a thermally conductive adhesive film.

【0016】本発明の熱伝導性接着フィルムには、溶
剤、チキソトロピー性付与剤、分散剤、硬化剤、硬化促
進剤、遅延剤、粘着付与剤、可塑剤、難燃剤、酸化防止
剤、安定剤、着色剤など公知の添加剤を配合することが
できる。特に固体状接着剤と反磁性充填材を配合した際
の組成物の粘度が大きい場合には、溶剤を添加して組成
物の粘度を低減させることによって、反磁性充填材の磁
場配向を促進させることができる。さらに、粉末形状や
繊維形状の金属やセラミックス、具体的には、銀、銅、
金、酸化アルミニウム、酸化マグネシウム、窒化アルミ
ニウム、炭化ケイ素などや金属被覆樹脂などの従来の熱
伝導性接着剤に使用されている充填剤などを併用するこ
とも可能である。フィルムの膜厚については特定するも
のではないけれども、10μm〜2mmの範囲が好まし
い。配合する反磁性充填材を厚み方向に配向させる場合
には、膜厚は用いる反磁性充填材の配向した最大長さよ
りも厚くした方がフィルムが平坦になり好適である。
The heat conductive adhesive film of the present invention contains a solvent, a thixotropic agent, a dispersant, a curing agent, a curing accelerator, a retarder, a tackifier, a plasticizer, a flame retardant, an antioxidant, and a stabilizer. A known additive such as a coloring agent can be blended. Especially when the viscosity of the composition when the solid adhesive and the diamagnetic filler are blended is large, the magnetic field orientation of the diamagnetic filler is promoted by adding a solvent to reduce the viscosity of the composition. be able to. Furthermore, powdered or fiber shaped metals and ceramics, specifically, silver, copper,
Fillers used in conventional heat conductive adhesives such as gold, aluminum oxide, magnesium oxide, aluminum nitride, silicon carbide, and metal-coated resins can also be used in combination. The thickness of the film is not specified, but is preferably in the range of 10 μm to 2 mm. When the diamagnetic filler to be blended is oriented in the thickness direction, it is preferable that the film thickness be larger than the oriented maximum length of the diamagnetic filler to be used because the film becomes flat.

【0017】[0017]

【発明の実施の形態】本発明の熱伝導性接着フィルムを
製造する方法としては、反磁性充填材と固体状接着剤を
主成分として調製した組成物をポリエチレンテレフタレ
ートシートやフッ素系シート上にバーコーターやブレー
ド、ロールなどでフィルム状に塗布し、外部磁場によっ
てフィルム組成物中の反磁性充填材を一定方向に配向さ
せ、半硬化状態まで加熱し乾燥させる方法が好ましい。
反磁性充填材と接着剤組成物が未硬化時には液状であっ
ても、加熱乾燥して半硬化状態で固体状にすることによ
ってフィルム化することができる。
BEST MODE FOR CARRYING OUT THE INVENTION As a method for producing a heat conductive adhesive film of the present invention, a composition prepared mainly with a diamagnetic filler and a solid adhesive is coated on a polyethylene terephthalate sheet or a fluorine-based sheet with a bar. It is preferable to coat the film composition with a coater, a blade, a roll, or the like, form a film, orient the diamagnetic filler in the film composition in a certain direction by an external magnetic field, heat the film to a semi-cured state, and dry it.
Even if the diamagnetic filler and the adhesive composition are liquid when uncured, they can be formed into a film by heating and drying to form a solid in a semi-cured state.

【0018】次いで、未硬化時に外部磁場を与え接着フ
ィルム中の反磁性充填材を磁力線に沿って配向させるこ
とによって、反磁性充填材の配向方向に対応するフィル
ムの熱伝導性を向上させることができる。被着体の間隙
方向すなわち接着フィルムの厚み方向に反磁性充填材を
立てるように揃えて配向させるには、厚み方向に永久磁
石や電磁石のN極とS極を対向させ磁力線の向きが所望
の反磁性充填材の配向方向に対応するように設置する。
Next, by applying an external magnetic field when not cured to orient the diamagnetic filler in the adhesive film along the lines of magnetic force, the thermal conductivity of the film corresponding to the orientation direction of the diamagnetic filler can be improved. it can. In order to align and orient the diamagnetic filler in the gap direction of the adherend, that is, in the thickness direction of the adhesive film, the N and S poles of the permanent magnet or the electromagnet are opposed in the thickness direction, and the direction of the magnetic field lines is desired. It is installed so as to correspond to the orientation direction of the diamagnetic filler.

【0019】一方、接着フィルムの面内方向の熱伝導性
を向上させる場合には、厚み方向に対して垂直の方向に
磁石のN極とS極を対向させれば反磁性充填材を面内方
向に揃えて配向させることができる。あるいは、磁石の
N極とN極、またはS極とS極を厚み方向に対向させて
も反磁性充填材を面内方向に揃えることができる。ま
た、磁石については必ずしも両側に対向させる必要はな
く、片側のみに配置した磁石によっても接着フィルム中
の反磁性充填材を配向させることが可能である。外部磁
場として使用する磁場発生手段としては永久磁石でも電
磁石でも差し支えないけれども、磁束密度としては0.
05テスラ〜30テスラの範囲が実用的で良好な配向が
達成できる。
On the other hand, when the thermal conductivity in the in-plane direction of the adhesive film is to be improved, the diamagnetic filler can be in-plane by making the N and S poles of the magnet face in a direction perpendicular to the thickness direction. It can be aligned in the same direction. Alternatively, the diamagnetic filler can be aligned in the in-plane direction even if the N and N poles or the S and S poles of the magnet are opposed in the thickness direction. Further, the magnets do not necessarily need to be opposed to both sides, and the diamagnetic filler in the adhesive film can be oriented by the magnets arranged only on one side. The magnetic field generating means used as an external magnetic field may be a permanent magnet or an electromagnet.
The range of 05 Tesla to 30 Tesla is practical and good orientation can be achieved.

【0020】反磁性充填材は、接着フィルム中に多量に
充填するほど接着フィルムの熱伝導率が大きくなる。け
れども、実際には多量に充填すると混入した気泡が除去
しにくく、磁場による反磁性配向も困難になるなどの不
具合を生じる場合がある。従って、使用する反磁性充填
材および固体状接着剤や溶剤、配合剤の種類、目的とす
る最終製品の特性によって任意に決定することができる
けれども、熱伝導性接着フィルム中の反磁性充填材の濃
度は、5〜80体積%、さらに好ましくは10〜60体
積%さらに好ましくは15〜50体積%の範囲が実用的
である。
The more the diamagnetic filler is filled in the adhesive film, the higher the thermal conductivity of the adhesive film. However, in actuality, if a large amount is filled, it may be difficult to remove mixed air bubbles, and there may be problems such as difficulty in diamagnetic orientation by a magnetic field. Therefore, although it can be arbitrarily determined according to the type of the diamagnetic filler and the solid adhesive or the solvent to be used, the type of the compounding agent, and the properties of the intended final product, the diamagnetic filler in the thermally conductive adhesive film can be determined. The practical concentration ranges from 5 to 80% by volume, more preferably from 10 to 60% by volume, and even more preferably from 15 to 50% by volume.

【0021】電気絶縁性が要求される用途の場合には、
フィルムの少なくとも片面を電気絶縁性処理することに
よって対応できる。電気絶縁性処理の方法としては、導
電性がある反磁性充填材を含まない組成物から構成され
る1〜500μmの電気絶縁性接着剤層を積層する方法
が好ましい。
For applications requiring electrical insulation,
This can be achieved by subjecting at least one surface of the film to an electrical insulating treatment. As a method of the electric insulating treatment, a method of laminating an electric insulating adhesive layer of 1 to 500 μm made of a composition containing no conductive diamagnetic filler is preferable.

【0022】さらに、その電気絶縁性接着剤層には、酸
化ケイ素や窒化ケイ素、酸化アルミニウム、窒化アルミ
ニウム、炭化ケイ素などの熱伝導率が大きくて電気絶縁
性の充填剤を配合し、接着層全体の熱伝導率を大きく維
持する方が望ましい。一方、導電性がある反磁性充填材
の最表面を電気絶縁性のセラミックスや高分子からなる
被覆した反磁性充填材を使用することによっても電気絶
縁性を保持できる。
The electrically insulating adhesive layer further contains an electrically insulating filler having a high thermal conductivity such as silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, silicon carbide, etc. It is desirable to maintain a large thermal conductivity. On the other hand, the use of a diamagnetic filler in which the outermost surface of a conductive diamagnetic filler is coated with an electrically insulating ceramic or polymer can also maintain electrical insulation.

【0023】半導体素子と伝熱部材間に、本発明の熱伝
導率が20W/m・K以上の反磁性充填材が一定方向に
配向した熱伝導性接着フィルムを挟んで接着させること
によって図1〜図4のような本発明の半導体装置を製造
することができる。本発明の熱伝導性接着フィルムは、
フィルム中で反磁性充填材がすでに一定方向に配向して
いるので、基本的には接着時に外部磁場を与える必要は
ない。けれども、反磁性充填材の配向を維持させる目的
で加圧加熱などの接着時に外部磁場を与えても良い。
FIG. 1 shows that a diamagnetic filler having a thermal conductivity of 20 W / m · K or more according to the present invention is sandwiched between a semiconductor element and a heat transfer member by sandwiching a thermally conductive adhesive film oriented in a certain direction. 4 to FIG. 4 can be manufactured. The heat conductive adhesive film of the present invention,
Since the diamagnetic filler is already oriented in a certain direction in the film, there is basically no need to apply an external magnetic field during bonding. However, in order to maintain the orientation of the diamagnetic filler, an external magnetic field may be applied at the time of bonding such as pressurizing and heating.

【0024】半導体装置と伝熱部材間を、熱伝導率が2
0W/m・K以上の反磁性充填材が一定方向に配向した
熱伝導性接着フィルムで接着することによって本発明の
半導体装置を製造することができる。ここで、伝熱部材
としては、通常の放熱器や冷却器、ヒートシンク、ヒー
トスプレッダー、ダイパッド、プリント基板、冷却ファ
ン、ヒートパイプ、筐体などが挙げられる。
The heat conductivity between the semiconductor device and the heat transfer member is 2
The semiconductor device of the present invention can be manufactured by bonding a diamagnetic filler of 0 W / m · K or more with a thermally conductive adhesive film oriented in a certain direction. Here, examples of the heat transfer member include a usual radiator and cooler, a heat sink, a heat spreader, a die pad, a printed board, a cooling fan, a heat pipe, a housing, and the like.

【0025】以下、実施例をあげて本発明をさらに詳細
に説明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【実施例1】ビスフェノールA型エポキシ樹脂(油化シ
ェルエポキシ株式会社製:エピコート828)45重量
部、クレゾールノボラック型エポキシ樹脂(住友化学工
業株式会社製:ESCN001)15重量部、硬化剤と
してビスフェノールA型ノボラック樹脂(大日本インキ
化学工業株式会社製:LF2882)40重量部、硬化
促進剤として1−シアノエチル−2−メチルイミダゾー
ル(四国化成工業株式会社製:キュアゾール2PN−C
N)1重量部からなる接着剤の組成物(これをエポキシ
系固体接着剤とする)80体積%に同一重量部のメチル
エチルケトンを添加し、次いで反磁性充填材として繊維
長さ方向の熱伝導率が1000W/m・Kの短繊維状の
グラファイト(株式会社ペトカ製 メルブロンミルド:
直径9μm、長さ100μm)20体積%を混合し3本
ロールで混練してから真空脱泡した。
Example 1 45 parts by weight of a bisphenol A type epoxy resin (Epicoat 828 manufactured by Yuka Shell Epoxy), 15 parts by weight of a cresol novolak type epoxy resin (ESCN001 manufactured by Sumitomo Chemical Co., Ltd.), and bisphenol A as a curing agent 40 parts by weight of a novolak resin (manufactured by Dainippon Ink and Chemicals, Inc .: LF2882), 1-cyanoethyl-2-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd .: Cureazole 2PN-C) as a curing accelerator
N) The same weight part of methyl ethyl ketone was added to 80% by volume of an adhesive composition (hereinafter referred to as an epoxy-based solid adhesive) consisting of 1 part by weight, and then the thermal conductivity in the fiber length direction as a diamagnetic filler Is a short fibrous graphite of 1000 W / m · K (Metal Bronmill manufactured by Petka Co., Ltd.)
20% by volume (diameter 9 μm, length 100 μm) were mixed and kneaded with three rolls, followed by vacuum defoaming.

【0026】得られた組成物を厚さ100μmの片面離
型処理したポリエチレンテレフタレートシート上にドク
ターブレード法で塗布し、図5(3)のように厚み方向
に磁束密度0.6テスラのN極とS極が対向する磁場雰
囲気で110℃で15分間加熱乾燥し、厚みが80μm
のBステージ状態の熱伝導性接着フィルムを作製した。
得られた熱伝導性接着フィルムの厚み方向の熱伝導率お
よび90度引き剥がし強度を測定して結果を表1に記し
た。熱伝導率はレーザーフラッシュ法で測定した。90
度引き剥がし強度は、JISC6471に準じて厚さ3
5μmの銅箔と厚さ1.5mmのアルミニウム板との間
に挟み、圧力2MPa、170℃、30分間加圧加熱し
て接着した試料で測定した。
The resulting composition was applied on a 100 μm-thick single-sided release-treated polyethylene terephthalate sheet by a doctor blade method, and an N-pole having a magnetic flux density of 0.6 Tesla in the thickness direction as shown in FIG. And dried at 110 ° C. for 15 minutes in a magnetic field atmosphere in which
Was produced in the B-stage state.
The thermal conductivity and the peel strength at 90 degrees in the thickness direction of the obtained thermal conductive adhesive film were measured, and the results are shown in Table 1. Thermal conductivity was measured by the laser flash method. 90
The peel strength is 3 mm in thickness according to JISC6471.
The measurement was performed on a sample which was sandwiched between a 5 μm copper foil and an aluminum plate having a thickness of 1.5 mm, and was bonded by applying pressure and heating at 170 ° C. for 30 minutes at a pressure of 2 MPa.

【0027】[0027]

【実施例2】メチルメタクリレート30重量部、2−ヒ
ドロキシエチルメタクリレート40重量部、スチレン系
熱可塑性エラストマー(シェル化学株式会社製:クレイ
トンG1650)30重量部、硬化剤としてパーヘキサ
3M(日本油脂株式会社製)3重量部からなる固体状接
着剤の組成物(これをアクリル系固体接着剤とする)8
0体積%に同一重量部のトルエンとメチルエチルケトン
の混合溶媒を添加し、次いで反磁性充填材として繊維長
さ方向の熱伝導率が1000W/m・Kの短繊維状のグ
ラファイト(株式会社ペトカ製 メルブロンミルド:直
径9μm、長さ100μm)20体積%を混合し3本ロ
ールで混練し真空脱泡した。
Example 2 30 parts by weight of methyl methacrylate, 40 parts by weight of 2-hydroxyethyl methacrylate, 30 parts by weight of a styrene-based thermoplastic elastomer (Clayton G1650, manufactured by Shell Chemical Co., Ltd.), and Perhexa 3M (manufactured by NOF Corporation) as a curing agent ) A solid adhesive composition comprising 3 parts by weight (this is referred to as an acrylic solid adhesive) 8
To 0% by volume, a mixed solvent of the same parts by weight of toluene and methyl ethyl ketone is added. Then, as a diamagnetic filler, short-fiber graphite having a thermal conductivity in the fiber length direction of 1000 W / m · K (Metal manufactured by Petka Corporation) (Bron mill: 9 μm in diameter, 100 μm in length), 20% by volume were mixed, kneaded with three rolls, and vacuum defoamed.

【0028】得られた組成物を厚さ100μmの片面離
型処理したポリエチレンテレフタレートシート上にバー
コーター法で塗布し、厚み方向に磁束密度0.6テスラ
のN極とS極が対向する磁場雰囲気で120℃で20分
間加熱乾燥し、厚みが80μmのBステージ状態の熱伝
導性接着フィルムを作製した。得られた熱伝導性接着フ
ィルムの熱伝導率および90度引き剥がし強度を測定し
て結果を表1に記した。熱伝導率と90度引き剥がし強
度は実施例1と同様に評価した。
The obtained composition was applied on a 100 μm-thick single-sided release-treated polyethylene terephthalate sheet by a bar coater method, and a magnetic field atmosphere in which the N pole and the S pole having a magnetic flux density of 0.6 Tesla were opposed in the thickness direction. At 120 ° C. for 20 minutes to prepare a heat conductive adhesive film in a B-stage state having a thickness of 80 μm. The thermal conductivity and peel strength at 90 degrees of the obtained thermal conductive adhesive film were measured, and the results are shown in Table 1. The thermal conductivity and the 90-degree peel strength were evaluated in the same manner as in Example 1.

【0029】[0029]

【実施例3〜12】実施例1と同様に、表1に記す配合
組成の実施例1と同様のエポキシ系固体状接着剤あるい
は実施例2と同様のアクリル系固体接着剤と、反磁性充
填材からなる組成物を使用し、表1に記す磁束密度の条
件下で熱伝導性接着フィルムを作製した。なお、表1に
記載した固体接着剤のポリイミドはポリイミド系接着
剤、ウレタンはウレタン系接着剤、シリコーンは付加型
シリコーンゴム系接着剤、反磁性充填材である銅は熱伝
導率が398W/m・K、直径50μm、長さ200μ
mの短繊維状のものを使用した。熱伝導率と90度引き
剥がし強度は実施例1と同様に評価した。
Examples 3 to 12 Similarly to Example 1, an epoxy solid adhesive similar to Example 1 or an acrylic solid adhesive similar to Example 2 having the composition shown in Table 1 and diamagnetic filling A heat conductive adhesive film was produced using the composition composed of the materials under the conditions of the magnetic flux density shown in Table 1. In addition, polyimide of the solid adhesive described in Table 1 is a polyimide adhesive, urethane is a urethane adhesive, silicone is an addition-type silicone rubber adhesive, and copper, which is a diamagnetic filler, has a thermal conductivity of 398 W / m.・ K, diameter 50μm, length 200μ
m in the form of short fibers. The thermal conductivity and the 90-degree peel strength were evaluated in the same manner as in Example 1.

【0030】[0030]

【比較例1】ビスフェノールA型エポキシ樹脂(油化シ
ェルエポキシ株式会社製:エピコート828)45重量
部、クレゾールノボラック型エポキシ樹脂(住友化学工
業株式会社製:ESCN001)15重量部、硬化剤と
してビスフェノールA型ノボラック樹脂(大日本インキ
化学工業株式会社製:LF2882)40重量部、硬化
促進剤として1−シアノエチル−2−メチルイミダゾー
ル(四国化成工業株式会社製:キュアゾール2PN−C
N)1重量部からなる接着剤の組成物(これをエポキシ
系固体接着剤とする)80体積%に同一重量部のメチル
エチルケトンを添加し、次いで反磁性充填材として繊維
長さ方向の熱伝導率が1000W/m・Kの短繊維状の
グラファイト(株式会社ペトカ製 メルブロンミルド:
直径9μm、長さ100μm)20体積%を混合し3本
ロールで混練してから真空脱泡した。
Comparative Example 1 45 parts by weight of a bisphenol A type epoxy resin (Epicoat 828 manufactured by Yuka Shell Epoxy Co., Ltd.), 15 parts by weight of a cresol novolak type epoxy resin (ESCN001 manufactured by Sumitomo Chemical Co., Ltd.), and bisphenol A as a curing agent 40 parts by weight of a novolak resin (manufactured by Dainippon Ink and Chemicals, Inc .: LF2882), 1-cyanoethyl-2-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd .: Cureazole 2PN-C) as a curing accelerator
N) The same weight part of methyl ethyl ketone is added to 80% by volume of an adhesive composition (this is referred to as an epoxy-based solid adhesive) consisting of 1 part by weight, and then the thermal conductivity in the fiber length direction as a diamagnetic filler Is a short fibrous graphite of 1000 W / m · K (Metal Bronmill manufactured by Petka Co., Ltd.)
20% by volume (diameter 9 μm, length 100 μm) were mixed and kneaded with three rolls, followed by vacuum defoaming.

【0031】得られた組成物を厚さ100μmの片面離
型処理したポリエチレンテレフタレートシート上にドク
ターブレード法で塗布し、磁場を印加しないで110℃
で15分間加熱乾燥し、厚みが80μmのBステージ状
態の熱伝導性接着フィルムを作製した。熱伝導率と90
度引き剥がし強度は実施例1と同様に評価した。
The obtained composition was applied to a 100 μm-thick single-sided release-treated polyethylene terephthalate sheet by a doctor blade method, and was applied at 110 ° C. without applying a magnetic field.
For 15 minutes to produce a B-stage thermally conductive adhesive film having a thickness of 80 μm. Thermal conductivity and 90
The peel strength was evaluated in the same manner as in Example 1.

【0032】[0032]

【比較例2】反磁性充填材として繊維長さ方向の熱伝導
率が7W/m・Kの炭素繊維(三菱レイヨン株式会社製
パイロフィルTR:直径7μm、長さ100μm)を
20体積%、実施例1と同様のエポキシ系固体状接着剤
80体積%からなる組成物を使用し、実施例1と同様に
厚み方向に磁束密度0.6テスラのN極とS極が対向す
る磁場雰囲気で110℃で15分間加熱乾燥し、厚みが
80μmのBステージ状態の熱伝導性接着フィルムを作
製した。熱伝導率と90度引き剥がし強度は実施例1と
同様に評価した。
Comparative Example 2 As a diamagnetic filler, 20% by volume of carbon fiber having a thermal conductivity of 7 W / m · K in the fiber length direction (Pyrofil TR manufactured by Mitsubishi Rayon Co., Ltd .: diameter 7 μm, length 100 μm), Example Using a composition consisting of 80% by volume of an epoxy solid adhesive similar to that of Example 1 and 110 ° C. in a magnetic field atmosphere in which the N pole and the S pole having a magnetic flux density of 0.6 Tesla face each other in the thickness direction as in Example 1. For 15 minutes to produce a B-stage thermally conductive adhesive film having a thickness of 80 μm. The thermal conductivity and the 90-degree peel strength were evaluated in the same manner as in Example 1.

【0033】[0033]

【比較例3、4】比較例1と同様に、表1に記す配合組
成の固体状接着剤と反磁性充填材からなる組成物を調製
し、比較例1と同様に磁場を与えずに熱伝導性接着フィ
ルムを作製した。熱伝導率と90度引き剥がし強度は実
施例1と同様に評価した。
Comparative Examples 3 and 4 In the same manner as in Comparative Example 1, a composition comprising a solid adhesive having the composition shown in Table 1 and a diamagnetic filler was prepared. A conductive adhesive film was produced. The thermal conductivity and the 90-degree peel strength were evaluated in the same manner as in Example 1.

【0034】[0034]

【実施例13】図6(1)に記すプリント基板1に実装
したボールグリッドアレイ型の半導体パッケージ2上に
本発明の実施例5のシリコーン系熱伝導性接着フィルム
3を使用し(図6(2)、図6(3))のように上部に
放熱器4を配置して加圧加熱して半導体装置(図6
(4)、図6(5))を作製した。この装置に通電して
10分後の熱抵抗値を測定したところ、0.25℃/W
であった。
Embodiment 13 A silicone-based thermally conductive adhesive film 3 of Embodiment 5 of the present invention is used on a ball grid array type semiconductor package 2 mounted on a printed circuit board 1 shown in FIG. 2), the radiator 4 is arranged on the upper part as shown in FIG.
(4) and FIG. 6 (5)). When the thermal resistance value was measured 10 minutes after the power was supplied to this device, it was found to be 0.25 ° C./W
Met.

【0035】[0035]

【比較例5】実施例13と同様に、プリント基板に実装
したボールグリッドアレイ型の半導体パッケージ上に表
2の比較例3のシリコーン系熱伝導性接着フィルム3を
使用し上部に放熱器4を配置して加圧加熱して半導体装
置(図7)を作製した。実施例13と同様に、この装置
に通電して10分後の熱抵抗値を測定したところ、0.
41℃/Wであった。
COMPARATIVE EXAMPLE 5 In the same manner as in Example 13, a silicone-based heat conductive adhesive film 3 of Comparative Example 3 in Table 2 was used on a ball grid array type semiconductor package mounted on a printed circuit board, and a radiator 4 was provided on the upper part. The semiconductor device (FIG. 7) was placed and heated under pressure to produce a semiconductor device (FIG. 7). In the same manner as in Example 13, when a current was passed through this device and the thermal resistance value was measured 10 minutes later, it was found that the thermal resistance was 0.1.
41 ° C./W.

【0036】[0036]

【実施例14】図8(1)、図8(2)に示すようにリ
ードフレーム6のダイパッド7と半導体チップ8の間に
本発明の実施例1のエポキシ系熱伝導性接着フィルム3
を挟み図8(3)に記すように配置した磁石12で厚み
方向に磁束密度2000ガウスの磁場を与えながら加熱
硬化させた。さらにボンディングワイヤー9で半導体チ
ップ8の電極部とリードフレーム11のリード部を電気
的に接続し(図8(4))、エポキシ系封止剤10でト
ランスファーモールドして半導体装置(図8(5)、図
8(6))を製造した。この装置に通電して10分後の
熱抵抗値を測定したところ、0.25℃/Wであった。
Embodiment 14 As shown in FIGS. 8 (1) and 8 (2), between the die pad 7 of the lead frame 6 and the semiconductor chip 8, the epoxy-based heat conductive adhesive film 3 of Embodiment 1 of the present invention is used.
8 (3), and heat-cured while applying a magnetic field having a magnetic flux density of 2,000 gauss in the thickness direction with a magnet 12 arranged as shown in FIG. 8 (3). Further, the electrode portion of the semiconductor chip 8 and the lead portion of the lead frame 11 are electrically connected by the bonding wire 9 (FIG. 8D), and transfer-molded with the epoxy-based sealant 10 to form the semiconductor device (FIG. ) And FIG. 8 (6)). When a thermal resistance value was measured 10 minutes after energizing the device, it was 0.25 ° C./W.

【0037】[0037]

【比較例6】実施例14と同様に、リードフレーム6の
ダイパッド7と半導体チップ8を、比較例1のエポキシ
系熱伝導性接着フィルム3で加熱硬化させた。さらにボ
ンディングワイヤー9で半導体チップ8の電極部とリー
ドフレーム11のリード部を電気的に接続し、エポキシ
系封止剤10でトランスファーモールドして半導体装置
(図9)を製造した。実施例14と同様に、この装置に
通電して10分後の熱抵抗値を測定したところ、0.4
1℃/Wであった。
Comparative Example 6 As in Example 14, the die pad 7 of the lead frame 6 and the semiconductor chip 8 were cured by heating with the epoxy-based heat conductive adhesive film 3 of Comparative Example 1. Further, a semiconductor device (FIG. 9) was manufactured by electrically connecting an electrode portion of the semiconductor chip 8 and a lead portion of the lead frame 11 with a bonding wire 9 and transfer-molding with an epoxy-based sealant 10. As in Example 14, when the current was passed through this apparatus and the thermal resistance value was measured 10 minutes later, a value of 0.4 was obtained.
It was 1 ° C / W.

【0038】[0038]

【発明の効果】比較例1、比較例3、比較例4の従来の
熱伝導性接着フィルムは、高熱伝導率のグラファイトや
銅を配合しているけれども配向していないので熱伝導率
が小さくて放熱性が劣る。比較例2は、熱伝導率が20
W/m・Kに満たない炭素材料を配合しているので磁場
で一定方向に配向させても熱伝導率が小さいままであ
る。
The conventional heat conductive adhesive films of Comparative Example 1, Comparative Example 3 and Comparative Example 4 contain graphite or copper having high thermal conductivity, but are not oriented, and therefore have low thermal conductivity. Poor heat dissipation. Comparative Example 2 has a thermal conductivity of 20
Since a carbon material less than W / m · K is blended, the thermal conductivity remains small even if the material is oriented in a certain direction by a magnetic field.

【0039】実施例1〜12のように、本発明の熱伝導
性接着フィルムは特定の反磁性充填材が一定方向に配向
したものであり、引き剥がし強度が良好で熱伝導率が大
きく放熱性に優れている。また、実施例13、14で明
らかなように、本発明の反磁性充填材が一定方向に配向
した熱伝導性接着フィルムで接着した半導体装置は、発
熱量が大きい半導体パッケージとヒートシンクなどの放
熱器との接着、あるいは半導体チップとダイパッド部と
の接着に応用して熱抵抗が小さい放熱特性に優れる有用
な半導体装置を提供することができる。
As in Examples 1 to 12, the heat conductive adhesive film of the present invention has a specific diamagnetic filler oriented in a certain direction, has a good peeling strength, a high heat conductivity and a high heat dissipation property. Is excellent. Further, as is apparent from Examples 13 and 14, the semiconductor device in which the diamagnetic filler of the present invention is bonded by a thermally conductive adhesive film oriented in a certain direction is provided by a semiconductor package having a large calorific value and a radiator such as a heat sink. It is possible to provide a useful semiconductor device which is applied to bonding with a semiconductor chip or between a semiconductor chip and a die pad portion and has a small heat resistance and excellent heat radiation characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱伝導性接着フィルムを使用した半導
体装置の例(ボールグリッドアレイ型半導体パッケージ
2と放熱器4の接着に使用)
FIG. 1 shows an example of a semiconductor device using the heat conductive adhesive film of the present invention (used for bonding a ball grid array type semiconductor package 2 and a radiator 4).

【図2】本発明の熱伝導性接着フィルムを使用した半導
体装置の例(チップサイズ半導体パッケージ2とプリン
ト基板1の接着に使用)
FIG. 2 shows an example of a semiconductor device using the heat conductive adhesive film of the present invention (used for bonding a chip size semiconductor package 2 and a printed circuit board 1).

【図3】本発明の熱伝導性接着フィルムを使用した半導
体装置の例(ピングリッドアレイ型半導体パッケージ2
とヒートシンク5の接着に使用)
FIG. 3 shows an example of a semiconductor device using the thermally conductive adhesive film of the present invention (pin grid array type semiconductor package 2).
(Used for bonding heat sink 5)

【図4】本発明の熱伝導性接着フィルムを使用した半導
体装置の例(半導体チップ8とダイパッド7の接着に使
用)
FIG. 4 shows an example of a semiconductor device using the heat conductive adhesive film of the present invention (used for bonding a semiconductor chip 8 and a die pad 7).

【図5】本発明の熱伝導性接着フィルムを製造する方法
を示す概念図
FIG. 5 is a conceptual diagram showing a method for producing the heat conductive adhesive film of the present invention.

【図6】(1)〜(4)は図1の本発明の半導体装置を
製造する方法、(5)は(4)の熱伝導性接着フィルム
中の反磁性充填材の配向状態を示す概念図
6 (1) to 6 (4) show a method for manufacturing the semiconductor device of the present invention shown in FIG. 1, and FIG. 6 (5) shows a concept showing an orientation state of a diamagnetic filler in a heat conductive adhesive film of (4). Figure

【図7】従来の充填材を含む熱伝導性接着フィルムを使
用した半導体装置の例
FIG. 7 shows an example of a conventional semiconductor device using a thermally conductive adhesive film containing a filler.

【図8】(1)〜(5)は図4の本発明の半導体装置を
製造する方法、(6)は(5)の熱伝導性接着フィルム
中の反磁性充填材の配向状態を示す概念図
8 (1) to (5) show a method for manufacturing the semiconductor device of the present invention shown in FIG. 4, and FIG. 8 (6) shows a concept showing an orientation state of a diamagnetic filler in a thermally conductive adhesive film of (5). Figure

【図9】従来の充填材を含む熱伝導性接着フィルムを使
用した半導体装置の例
FIG. 9 shows an example of a conventional semiconductor device using a thermally conductive adhesive film containing a filler.

【符号の説明】[Explanation of symbols]

1 プリント基板 2 半導体パッケージ 3 熱伝導性接着フィルム 4 放熱器 5 ヒートシンク 6 リードフレーム 7 ダイパッド 8 半導体チップ 9 ボンディングワイヤー 10 封止剤 11 ポリエチレンテレフタレートシート 12 磁石 13 熱伝導率が20W/m・K以上の反磁性充填材 14 従来の充填材 DESCRIPTION OF SYMBOLS 1 Printed board 2 Semiconductor package 3 Heat conductive adhesive film 4 Heat sink 5 Heat sink 6 Lead frame 7 Die pad 8 Semiconductor chip 9 Bonding wire 10 Sealant 11 Polyethylene terephthalate sheet 12 Magnet 13 Heat conductivity of 20 W / m * K or more Diamagnetic fillers 14 Conventional fillers

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年7月26日(2000.7.2
6)
[Submission date] July 26, 2000 (2007.2
6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0037[Correction target item name] 0037

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0037】[0037]

【比較例6】実施例14と同様に、リードフレーム6の
ダイパッド7と半導体チップ8を、比較例1のエポキシ
系熱伝導性接着フィルム3で加熱硬化させた。さらにボ
ンディングワイヤー9で半導体チップ8の電極部とリー
ドフレーム11のリード部を電気的に接続し、エポキシ
系封止剤10でトランスファーモールドして半導体装置
(図9)を製造した。実施例14と同様に、この装置に
通電して10分後の熱抵抗値を測定したところ、0.4
1℃/Wであった。
Comparative Example 6 In the same manner as in Example 14, the die pad 7 and the semiconductor chip 8 of the lead frame 6 were cured by heating with the epoxy-based heat conductive adhesive film 3 of Comparative Example 1. Further, a semiconductor device (FIG. 9) was manufactured by electrically connecting an electrode portion of the semiconductor chip 8 and a lead portion of the lead frame 11 with a bonding wire 9 and transfer-molding with an epoxy-based sealant 10. As in Example 14, when the current was passed through this apparatus and the thermal resistance value was measured 10 minutes later, a value of 0.4 was obtained.
It was 1 ° C / W.

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09J 7/02 C09J 7/02 Z 5E040 11/04 11/04 5F036 H01F 1/00 H01F 1/00 Z H01L 23/373 H01L 23/36 M Fターム(参考) 4F100 AD11A AK14A AK25A AK42 AK49A AK51A AK52A AK53A AL09A AT00 AT00B BA02 BA23 CA20 CA20A CA20H CA23 CA23A CA23H DG03 EH46 GB41 JB13A JB15A JB16A JG04B JG06A JJ01 JJ01A YY00A 4G046 EA05 EC03 EC06 4J002 AC011 AC031 AC071 AC091 BB001 BC021 BF021 BG001 CC031 CC131 CC161 CC181 CD001 CF001 CF281 CK021 CL001 CM041 CP031 DA026 FD016 FD206 GQ00 4J004 AA04 AA05 AA07 AA08 AA10 AA11 AA12 AA13 AA14 AA16 AA17 AA18 AA19 AB05 BA02 FA05 4J040 CA001 CA051 CA071 CA151 DA001 DE021 DE041 DF011 DF041 DF051 DF081 DM011 EB031 EB111 EB131 EC001 ED001 EF001 EG001 EH031 EK001 FA181 GA22 HA026 HA036 HA066 HA076 HA166 HA306 JA09 JB02 JB04 JB05 JB08 JB11 KA42 LA06 LA07 LA08 LA11 NA20 5E040 AA20 AB10 AC05 BB03 CA20 NN04 5F036 AA01 BB21 BC23 BD11 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C09J 7/02 C09J 7/02 Z 5E040 11/04 11/04 5F036 H01F 1/00 H01F 1/00 Z H01L 23/373 H01L 23/36 MF term (reference) 4F100 AD11A AK14A AK25A AK42 AK49A AK51A AK52A AK53A AL09A AT00 AT00B BA02 BA23 CA20 CA20A CA20H CA23 CA23A CA23H DG03 EH46 GB41 JB13A01 JB01A06 JB15A01 JB15A01 AC031 AC071 AC091 BB001 BC021 BF021 BG001 CC031 CC131 CC161 CC181 CD001 CF001 CF281 CK021 CL001 CM041 CP031 DA026 FD016 FD206 GQ00 4J004 AA04 AA05 AA07 AA08 AA10 AA1 CA01 A011A05 AA1 A011 DF081 DM011 EB031 EB111 EB131 EC001 ED001 EF001 EG001 EH031 EK 001 FA181 GA22 HA026 HA036 HA066 HA076 HA166 HA306 JA09 JB02 JB04 JB05 JB08 JB11 KA42 LA06 LA07 LA08 LA11 NA20 5E040 AA20 AB10 AC05 BB03 CA20 NN04 5F036 AA01 BB21 BC23 BD11

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】熱伝導率が、20W/m・K以上の反磁性
充填材が固体状接着剤中に一定方向に配向されているこ
とを特徴とする熱伝導性接着フィルム
1. A thermally conductive adhesive film, wherein a diamagnetic filler having a thermal conductivity of 20 W / m · K or more is oriented in a fixed direction in a solid adhesive.
【請求項2】熱伝導性接着フィルム中の反磁性充填材の
濃度が、5〜80体積%である請求項1に記載の熱伝導
性接着剤
2. The heat conductive adhesive according to claim 1, wherein the concentration of the diamagnetic filler in the heat conductive adhesive film is 5 to 80% by volume.
【請求項3】反磁性充填材が、少なくとも1方向の熱伝
導率が200W/m・K以上のグラファイトである請求
項1あるいは2に記載の熱伝導性接着フィルム
3. The heat conductive adhesive film according to claim 1, wherein the diamagnetic filler is a graphite having a thermal conductivity in at least one direction of 200 W / m · K or more.
【請求項4】固体状接着剤が、エポキシ系、ポリイミド
系、アクリル系、ウレタン系、ビニル系、シリコーン系
あるいは熱可塑性エラストマー系より選ばれる少なくと
も1種である請求項1、2あるいは3に記載の熱伝導性
接着フィルム
4. The solid adhesive according to claim 1, 2 or 3, wherein the solid adhesive is at least one selected from epoxy, polyimide, acrylic, urethane, vinyl, silicone and thermoplastic elastomers. Heat conductive adhesive film
【請求項5】固体状接着剤が、熱硬化性であり、かつ半
硬化状態である請求項1、2、3あるいは4に記載の熱
伝導性接着フィルム
5. The heat conductive adhesive film according to claim 1, wherein the solid adhesive is thermosetting and is in a semi-cured state.
【請求項6】少なくとも片面を電気絶縁性処理したこと
を特徴とする請求項1、2、3、4あるいは5に記載の
熱伝導性接着フィルム
6. The heat conductive adhesive film according to claim 1, wherein at least one surface is subjected to an electrical insulation treatment.
【請求項7】半導体素子と伝熱部材間を、熱伝導率が2
0W/m・K以上の反磁性充填材が一定方向に配向され
た熱伝導性接着フィルムで接着したことを特徴とする半
導体装置
7. The heat conductivity between the semiconductor element and the heat transfer member is 2
Semiconductor device characterized in that a diamagnetic filler of 0 W / m · K or more is adhered with a thermally conductive adhesive film oriented in a certain direction.
【請求項8】熱伝導性接着剤中の反磁性充填材の濃度
が、5〜80体積%である請求項7に記載の半導体装置
8. The semiconductor device according to claim 7, wherein the concentration of the diamagnetic filler in the heat conductive adhesive is 5 to 80% by volume.
【請求項9】反磁性充填材が、少なくとも1方向の熱伝
導率が200W/m・K以上のグラファイトである請求
項7あるいは8に記載の半導体装置
9. The semiconductor device according to claim 7, wherein the diamagnetic filler is graphite having a thermal conductivity of at least one direction of 200 W / m · K or more.
JP11087482A 1999-03-30 1999-03-30 Thermally conductive adhesive film and semiconductor device Pending JP2000281995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11087482A JP2000281995A (en) 1999-03-30 1999-03-30 Thermally conductive adhesive film and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11087482A JP2000281995A (en) 1999-03-30 1999-03-30 Thermally conductive adhesive film and semiconductor device

Publications (1)

Publication Number Publication Date
JP2000281995A true JP2000281995A (en) 2000-10-10

Family

ID=13916173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11087482A Pending JP2000281995A (en) 1999-03-30 1999-03-30 Thermally conductive adhesive film and semiconductor device

Country Status (1)

Country Link
JP (1) JP2000281995A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281802A (en) * 1999-03-30 2000-10-10 Polymatech Co Ltd Thermoconductive formed shape, its production, and semiconductor device
JP2002363421A (en) * 2001-06-06 2002-12-18 Polymatech Co Ltd Thermally conductive molded material and method for producing the same
JP2003193021A (en) * 2001-12-27 2003-07-09 Hitachi Chem Co Ltd Adhesive film with high heat conductivity
JP2004136849A (en) * 2002-10-21 2004-05-13 Nissan Motor Co Ltd Vehicle body panel structure having outer panel back side of low emissivity
JP2005325346A (en) * 2004-04-15 2005-11-24 Showa Denko Kk Sliding material composition and its manufacturing method
JP2005325345A (en) * 2004-04-15 2005-11-24 Showa Denko Kk Composite material composition and its manufacturing method
JP2006332305A (en) * 2005-05-26 2006-12-07 Matsushita Electric Ind Co Ltd Method of manufacturing thermal conductive sheet
JP2006328213A (en) * 2005-05-26 2006-12-07 Matsushita Electric Ind Co Ltd Heat-conductive sheet
JP2007012911A (en) * 2005-06-30 2007-01-18 Polymatech Co Ltd Heat dissipation component and manufacturing method thereof
JP2007154003A (en) * 2005-12-02 2007-06-21 Polymatech Co Ltd Method for producing article formed by using epoxy resin composition
JP2009057277A (en) * 2008-10-08 2009-03-19 Polymatech Co Ltd Method for producing graphitized carbon powder, and method for producing thermally conductive molded body
JP2012506356A (en) * 2008-10-24 2012-03-15 ケイエムイー・ジャーマニー・アクチエンゲゼルシャフト・ウント・コンパニー・コマンディトゲゼルシャフト Metal / CNT- and / or fullerene composite coating on tape material
JP2013062486A (en) * 2011-08-24 2013-04-04 Panasonic Corp Resin-diamagnetic substance complex structure, manufacturing method of the same, and semiconductor device using the same
WO2013057889A1 (en) 2011-10-19 2013-04-25 日東電工株式会社 Thermal-conductive sheet, led mounting substrate, and led module
JP2013544895A (en) * 2010-03-26 2013-12-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Heat conduction device between two components and method for manufacturing the heat conduction device
CN104059555A (en) * 2012-12-18 2014-09-24 苏州斯迪克新材料科技股份有限公司 Manufacturing process of antistatic pressure-sensitive adhesive tape
CN104059557A (en) * 2012-12-18 2014-09-24 苏州斯迪克新材料科技股份有限公司 High-viscosity heat-resistant film
CN104059556A (en) * 2012-12-18 2014-09-24 苏州斯迪克新材料科技股份有限公司 Film for electronic components
CN104073183A (en) * 2012-12-18 2014-10-01 苏州斯迪克新材料科技股份有限公司 Manufacturing technology of membrane adhered to electronic component
JP5603858B2 (en) * 2009-04-10 2014-10-08 ポリマテック・ジャパン株式会社 Thermally conductive bulk adhesive, thermally conductive adhesive sheet, and production method thereof
CN104152073A (en) * 2012-12-18 2014-11-19 苏州斯迪克新材料科技股份有限公司 Preparation method for electronic product membrane
WO2015127179A1 (en) * 2014-02-24 2015-08-27 Henkel IP & Holding GmbH Thermally conductive pre-applied underfill formulations and uses thereof
JP2017171817A (en) * 2016-03-25 2017-09-28 日立化成株式会社 Adhesive for semiconductor, semiconductor device and method for manufacturing semiconductor device
CN111225514A (en) * 2020-01-19 2020-06-02 京东方科技集团股份有限公司 Pressure welding device and pressure welding method
CN111471292A (en) * 2019-12-16 2020-07-31 广东一纳科技有限公司 Preparation method of graphene heat dissipation film
CN113880595A (en) * 2021-11-16 2022-01-04 江西柔顺科技有限公司 Graphite film with high heat conductivity in vertical direction and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029939B2 (en) * 1972-07-05 1975-09-27
JPS62194653A (en) * 1986-02-21 1987-08-27 Hitachi Ltd Semiconductor device
JPH0565456A (en) * 1991-09-09 1993-03-19 Sumitomo Bakelite Co Ltd Resin paste for airtight sealing
JPH06212137A (en) * 1990-05-07 1994-08-02 E I Du Pont De Nemours & Co Thermally conductive adhesive material
JPH09324127A (en) * 1996-06-04 1997-12-16 Matsushita Electric Ind Co Ltd Die bonding material for semiconductor element and semiconductor device using the same
JPH10321219A (en) * 1997-05-20 1998-12-04 Mitsubishi Cable Ind Ltd Manufacture of negative electrode for battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029939B2 (en) * 1972-07-05 1975-09-27
JPS62194653A (en) * 1986-02-21 1987-08-27 Hitachi Ltd Semiconductor device
JPH06212137A (en) * 1990-05-07 1994-08-02 E I Du Pont De Nemours & Co Thermally conductive adhesive material
JPH0565456A (en) * 1991-09-09 1993-03-19 Sumitomo Bakelite Co Ltd Resin paste for airtight sealing
JPH09324127A (en) * 1996-06-04 1997-12-16 Matsushita Electric Ind Co Ltd Die bonding material for semiconductor element and semiconductor device using the same
JPH10321219A (en) * 1997-05-20 1998-12-04 Mitsubishi Cable Ind Ltd Manufacture of negative electrode for battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6009048230, 単位の辞典, 19920725, 改訂第4版第10刷, p.58,337, JP, ラテイス株式会社 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281802A (en) * 1999-03-30 2000-10-10 Polymatech Co Ltd Thermoconductive formed shape, its production, and semiconductor device
JP4714371B2 (en) * 2001-06-06 2011-06-29 ポリマテック株式会社 Thermally conductive molded body and method for producing the same
JP2002363421A (en) * 2001-06-06 2002-12-18 Polymatech Co Ltd Thermally conductive molded material and method for producing the same
JP2003193021A (en) * 2001-12-27 2003-07-09 Hitachi Chem Co Ltd Adhesive film with high heat conductivity
JP2004136849A (en) * 2002-10-21 2004-05-13 Nissan Motor Co Ltd Vehicle body panel structure having outer panel back side of low emissivity
JP2005325346A (en) * 2004-04-15 2005-11-24 Showa Denko Kk Sliding material composition and its manufacturing method
JP2005325345A (en) * 2004-04-15 2005-11-24 Showa Denko Kk Composite material composition and its manufacturing method
JP2006332305A (en) * 2005-05-26 2006-12-07 Matsushita Electric Ind Co Ltd Method of manufacturing thermal conductive sheet
JP2006328213A (en) * 2005-05-26 2006-12-07 Matsushita Electric Ind Co Ltd Heat-conductive sheet
JP2007012911A (en) * 2005-06-30 2007-01-18 Polymatech Co Ltd Heat dissipation component and manufacturing method thereof
JP4686274B2 (en) * 2005-06-30 2011-05-25 ポリマテック株式会社 Heat dissipation component and manufacturing method thereof
JP2007154003A (en) * 2005-12-02 2007-06-21 Polymatech Co Ltd Method for producing article formed by using epoxy resin composition
JP2009057277A (en) * 2008-10-08 2009-03-19 Polymatech Co Ltd Method for producing graphitized carbon powder, and method for producing thermally conductive molded body
JP2012506356A (en) * 2008-10-24 2012-03-15 ケイエムイー・ジャーマニー・アクチエンゲゼルシャフト・ウント・コンパニー・コマンディトゲゼルシャフト Metal / CNT- and / or fullerene composite coating on tape material
JP5603858B2 (en) * 2009-04-10 2014-10-08 ポリマテック・ジャパン株式会社 Thermally conductive bulk adhesive, thermally conductive adhesive sheet, and production method thereof
JP2013544895A (en) * 2010-03-26 2013-12-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Heat conduction device between two components and method for manufacturing the heat conduction device
JP2013062486A (en) * 2011-08-24 2013-04-04 Panasonic Corp Resin-diamagnetic substance complex structure, manufacturing method of the same, and semiconductor device using the same
WO2013057889A1 (en) 2011-10-19 2013-04-25 日東電工株式会社 Thermal-conductive sheet, led mounting substrate, and led module
US9153761B2 (en) 2011-10-19 2015-10-06 Nitto Denko Corporation Thermally-conductive sheet, LED mounting substrate, and LED module
CN104073183A (en) * 2012-12-18 2014-10-01 苏州斯迪克新材料科技股份有限公司 Manufacturing technology of membrane adhered to electronic component
CN104152073B (en) * 2012-12-18 2016-01-13 苏州斯迪克新材料科技股份有限公司 For the preparation method of electronic product pad pasting
CN104059557A (en) * 2012-12-18 2014-09-24 苏州斯迪克新材料科技股份有限公司 High-viscosity heat-resistant film
CN104152073A (en) * 2012-12-18 2014-11-19 苏州斯迪克新材料科技股份有限公司 Preparation method for electronic product membrane
CN104059556A (en) * 2012-12-18 2014-09-24 苏州斯迪克新材料科技股份有限公司 Film for electronic components
CN104059555A (en) * 2012-12-18 2014-09-24 苏州斯迪克新材料科技股份有限公司 Manufacturing process of antistatic pressure-sensitive adhesive tape
CN106029803A (en) * 2014-02-24 2016-10-12 汉高知识产权控股有限责任公司 Thermally conductive pre-applied underfill formulations and uses thereof
WO2015127179A1 (en) * 2014-02-24 2015-08-27 Henkel IP & Holding GmbH Thermally conductive pre-applied underfill formulations and uses thereof
US10913879B2 (en) 2014-02-24 2021-02-09 Henkel IP & Holding GmbH Thermally conductive pre-applied underfill formulations and uses thereof
TWI724986B (en) * 2014-02-24 2021-04-21 德商漢高智慧財產控股公司 Thermally conductive pre-applied underfill formulations and uses thereof
JP2017171817A (en) * 2016-03-25 2017-09-28 日立化成株式会社 Adhesive for semiconductor, semiconductor device and method for manufacturing semiconductor device
CN111471292A (en) * 2019-12-16 2020-07-31 广东一纳科技有限公司 Preparation method of graphene heat dissipation film
CN111225514A (en) * 2020-01-19 2020-06-02 京东方科技集团股份有限公司 Pressure welding device and pressure welding method
CN111225514B (en) * 2020-01-19 2022-04-15 京东方科技集团股份有限公司 Pressure welding device and pressure welding method
CN113880595A (en) * 2021-11-16 2022-01-04 江西柔顺科技有限公司 Graphite film with high heat conductivity in vertical direction and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2000281995A (en) Thermally conductive adhesive film and semiconductor device
JP2002069392A (en) Heat-conductive adhesive film, method for producing the same and electronic part
JP4528397B2 (en) Bonding method and electronic component
JP7053579B2 (en) Heat transfer member and heat dissipation structure including it
JP2000281802A (en) Thermoconductive formed shape, its production, and semiconductor device
JP2000195998A (en) Heat conductive sheet, its manufacture, and semiconductor device
JP2000191987A (en) Thermally conductive adhesive film and semiconductive device
US20070001292A1 (en) Heat radiation member and production method for the same
US7264869B2 (en) Thermally conductive molded article and method of making the same
JP2002088171A (en) Heat-conductive sheet and method for producing the same and heat radiation device
JP2002121404A (en) Heat-conductive polymer sheet
JP2002080617A (en) Thermoconductive sheet
JP2001172398A (en) Thermal conduction molded product and its production method
JP2002146672A (en) Heat conductive filler, heat conductive adhesive and semiconductor device
JP2000273426A (en) Thermal conductive adhesive, bonding and semiconductor device
JP2001081418A (en) Heat conductive adhesive film and its production and electronic part
JP2000191998A (en) Thermally conductive adhesive, method of adhesion and semiconductor device
JP4272767B2 (en) Thermally conductive molded body and method for producing the same, resin substrate for conductor circuit and method for producing the same
JP2000348538A (en) Anisotropically conducting film and manufacture thereof
JP2007084704A (en) Resin composition and circuit board and package using the same
JP4709339B2 (en) Thermally conductive adhesive, bonding method, and electronic component
TW202028316A (en) Resin sheet having controlled thermal conductivity distribution, and method for manufacturing the same
JP2000191812A (en) Thermally conductive sheet
JP2007084705A (en) Resin composition and circuit board and package using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100315