JP2000277063A - Sealed battery - Google Patents

Sealed battery

Info

Publication number
JP2000277063A
JP2000277063A JP11085732A JP8573299A JP2000277063A JP 2000277063 A JP2000277063 A JP 2000277063A JP 11085732 A JP11085732 A JP 11085732A JP 8573299 A JP8573299 A JP 8573299A JP 2000277063 A JP2000277063 A JP 2000277063A
Authority
JP
Japan
Prior art keywords
battery
sealing plate
sealing
sealed battery
external gasket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11085732A
Other languages
Japanese (ja)
Inventor
Takuma Morishita
拓磨 森下
Masamune Oki
雅統 大木
Shuichi Yamashita
修一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11085732A priority Critical patent/JP2000277063A/en
Publication of JP2000277063A publication Critical patent/JP2000277063A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a sealed battery capable of preventing the breakage of a protective circuit existing on the outside of the battery by suppressing the reduction of the sealing performance between a sealing plate and an outer gasket or between the outer gasket and an exterior can, and suppressing the discharge of an electrolyte to the outside of the battery even if the storage temperature is largely changed or the battery is dropped. SOLUTION: This sealed battery is provided with a bottomed tubular exterior can 5 storing a power generating element 4 in it, and a sealing body 6 having a sealing plate 9 folded with a peripheral edge section into a nearly U-shape is fixed to the opening section of the exterior can 5 by caulking via an outer gasket 25. A recess 9a is formed on the sealing plate 9 at the contact portion between the sealing plate 9 and the outer gasket 25.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内部に発電要素が
収納された有底筒状の外装缶を有し、この外装缶の開口
部には、外部ガスケットを介して、周縁部が略U字状に
折り曲げられた封止板を備えた封口体がかしめ固定され
る構造の密閉型電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a bottomed cylindrical outer can in which a power generating element is housed, and the outer edge of the outer can is substantially U-shaped through an external gasket. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed battery having a structure in which a sealing body provided with a sealing plate bent in a letter shape is fixed by caulking.

【0002】[0002]

【従来の技術】近年、LiCoO2 等のリチウム含有複
合酸化物を正極材料とする一方、金属リチウム又はリチ
ウムイオンを吸蔵、放出し得る合金又は炭素材料を負極
材料とするリチウムイオン電池が、高容量化が可能な電
池として注目されている。このようにリチウムイオン電
池は優れた性能を有するということから、円筒型形状の
密閉型電池等に用いられている。
2. Description of the Related Art In recent years, lithium ion batteries using a lithium-containing composite oxide such as LiCoO 2 as a positive electrode material and an alloy or a carbon material capable of occluding and releasing lithium metal or lithium ions as a negative electrode material have been developed to have a high capacity. It is attracting attention as a battery that can be converted. As described above, the lithium ion battery has excellent performance, and thus is used for a cylindrical sealed battery and the like.

【0003】ここで、上記リチウムイオン電池の具体的
な構造は、図5に示すように、内部に発電要素30が収
納された有底筒状の外装缶31を有し、この外装缶31
の開口部には、外部ガスケット33を介して、周縁部が
略U字状に折り曲げられた封止板34を有する封口体3
2がかしめ固定される構造となっている。ところが、上
記封止板34の周縁部を略U字状に折り曲げる際、全て
の封止板34の形状が同一形状にするような加工は困難
であった。このため、封止板34と外部ガスケット33
との間或いは外部ガスケット33と外装缶31との間の
シール性能にバラツキが生じることがある。したがっ
て、シール性能が低い場合、封止板34と外部ガスケッ
ト33との間或いは外部ガスケット33と外装缶31と
の間を通って電解液が電池外に大量に排出され、電池外
に存在する保護回路等を破損するおそれがあった。この
ような不都合は、電池の保存温度が大きく変化するよう
な場合に、特に生じやすくなる。なぜなら、低温では外
部ガスケット33は収縮し、高温では外部ガスケット3
3は膨張するため、このようなことを繰り返すと、外部
ガスケット33が徐々に劣化してシール性能が一層低下
するからである。更に、電池が落下した場合には、その
衝撃により封止板34が変形することがあるが、このよ
うな変形が生じると、やはり封止板34と外部ガスケッ
ト33との間或いは外部ガスケット33と外装缶31と
の間のシール性能が低下して、電解液が電池外に大量に
排出されることになっていた。
Here, a specific structure of the above-mentioned lithium ion battery has a bottomed cylindrical outer can 31 in which a power generating element 30 is housed, as shown in FIG.
A sealing body 3 having a sealing plate 34 whose peripheral portion is bent in a substantially U-shape through an external gasket 33
2 has a structure that is fixed by caulking. However, when the peripheral portion of the sealing plate 34 is bent into a substantially U-shape, it is difficult to make all the sealing plates 34 have the same shape. Therefore, the sealing plate 34 and the external gasket 33
Or the sealing performance between the external gasket 33 and the outer can 31 may vary. Therefore, when the sealing performance is low, a large amount of the electrolyte is discharged out of the battery through the space between the sealing plate 34 and the external gasket 33 or between the external gasket 33 and the outer can 31, and the protection existing outside the battery is prevented. There was a risk of damaging circuits and the like. Such inconvenience is particularly likely to occur when the storage temperature of the battery changes significantly. This is because the external gasket 33 contracts at low temperatures and the external gasket 3 at high temperatures.
3 is expanded, and when such a process is repeated, the external gasket 33 is gradually deteriorated, and the sealing performance is further reduced. Further, when the battery falls, the sealing plate 34 may be deformed due to the impact. When such deformation occurs, the sealing plate 34 and the external gasket 33 or the external gasket 33 may be deformed. The sealing performance with the outer can 31 deteriorated, and a large amount of the electrolyte was discharged outside the battery.

【0004】[0004]

【発明が解決しようとする課題】本発明は、以上の事情
に鑑みなされたものであって、例え電池の保存温度が大
きく変化したり、電池が落下した場合であっても、封止
板と外部ガスケットとの間或いは外部ガスケットと外装
缶との間のシール性能が低下するのを抑制して、電解液
が電池外に排出されるのを抑えることにより、電池外に
存在する保護回路等の破損を防止することができる密閉
型電池の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and even if the storage temperature of a battery changes greatly or the battery falls, the sealing plate can be used. By suppressing the deterioration of the sealing performance between the external gasket or between the external gasket and the outer can, and suppressing the discharge of the electrolyte out of the battery, the protection circuit and the like existing outside the battery can be prevented. An object of the present invention is to provide a sealed battery capable of preventing breakage.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明のうちで請求項1記載の発明は、内部に発電
要素が収納された有底筒状の外装缶を有し、この外装缶
の開口部には、外部ガスケットを介して、周縁部が略U
字状に折り曲げられた封止板を備えた封口体がかしめ固
定される構造の密閉型電池において、上記封止板と上記
外部ガスケットとの接触部位における封止板には、凹部
及び/又は凸部が形成されていることを特徴とする。こ
のように、封止板に凹部及び/又は凸部が形成されてい
れば、当該部位において他の部位に比べて外部ガスケッ
トの付勢力が十分に発揮されると共に外部ガスケットが
十分に保持されるので、シール性能の向上が図られるこ
とになる。したがって、例え電池の保存温度が大きく変
化したり、電池が落下した場合であっても、電解液が電
池外に排出されるのを抑えることができるので、電池外
に存在する保護回路等の破損を防止することが可能とな
る。
Means for Solving the Problems In order to achieve the above object, the invention according to claim 1 of the present invention has a bottomed cylindrical outer can in which a power generating element is housed. At the opening of the outer can, the outer edge is substantially U
In a sealed battery having a structure in which a sealing body provided with a sealing plate bent in a letter shape is fixed by caulking, a sealing plate at a contact portion between the sealing plate and the external gasket has a concave portion and / or a convex portion. A part is formed. As described above, when the concave portion and / or the convex portion are formed in the sealing plate, the urging force of the external gasket is sufficiently exerted in the portion compared to other portions, and the external gasket is sufficiently held. Therefore, the sealing performance is improved. Therefore, even if the storage temperature of the battery greatly changes or the battery falls, the electrolyte can be prevented from being discharged to the outside of the battery. Can be prevented.

【0006】また、請求項2記載の発明は、請求項1記
載の発明において、上記凹部及び/又は凸部が、かしめ
代内に形成されていることを特徴とする。このように規
制するのは、凹部及び/又は凸部が、かしめ代内にない
ような場合には、外部ガスケットの付勢力が十分に発揮
されず、シール性能を飛躍的に向上することができない
おそれがあるからである。
According to a second aspect of the present invention, in the first aspect of the present invention, the concave portion and / or the convex portion are formed in a swaging margin. The reason for this restriction is that when the concave portion and / or the convex portion are not within the caulking allowance, the urging force of the external gasket is not sufficiently exerted, and the sealing performance cannot be significantly improved. This is because there is a fear.

【0007】また、請求項3記載の発明は、請求項1又
は2記載の発明において、上記凹部及び/又は凸部が複
数形成されていることを特徴とする。このような構成で
あれば、上記の効果が一層発揮される。
According to a third aspect of the present invention, in the first or second aspect, a plurality of the concave portions and / or the convex portions are formed. With such a configuration, the above-described effects are further exhibited.

【0008】[0008]

【発明の実施の形態】本発明の実施の形態を、図1〜図
4に基づいて、以下に説明する。図1は本発明の一例に
係るリチウムイオン電池の分解斜視図、図2は本発明電
池に用いる封口体の拡大半断面図、図3は本発明電池に
用いる他の例に係る封口体の拡大半断面図、図4は本発
明電池に用いる更に他の例に係る封口体の拡大半断面図
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is an exploded perspective view of a lithium ion battery according to an example of the present invention, FIG. 2 is an enlarged half cross-sectional view of a sealing body used in the battery of the present invention, and FIG. 3 is an enlarged view of a sealing body according to another example used in the battery of the present invention. FIG. 4 is a half sectional view showing an enlarged half sectional view of a sealing body according to still another example used in the battery of the present invention.

【0009】図1に示すように、本発明の一例に係るリ
チウムイオン電池は、有底円筒状の外装缶5を有してお
り、この外装缶5内には、アルミニウムから成る芯体に
LiCoO2 を主体とする活物質層が形成された正極1
と、銅から成る芯体に黒鉛を主体とする活物質層が形成
された負極2と、これら両電極1・2を離間するセパレ
ータ3とから成る渦巻き状の発電要素4が収納されてい
る。また、上記外装缶5内には、エチレンカーボネート
(EC)とジメチルカーボネート(DMC)とが体積比
で4:6の割合で混合された混合溶媒に、LiPF6
1M(モル/リットル)の割合で溶解された電解液が注
入されている。更に、上記外装缶5の開口部には、ポリ
プロピレン(PP)から成る絶縁性の外部ガスケット2
5を介して、封口体6がかしめ固定されており、これに
よって電池が封口される。
As shown in FIG. 1, a lithium ion battery according to an embodiment of the present invention has a cylindrical outer can 5 having a bottom. In the outer can 5, a core made of aluminum is provided with LiCoO 2. Positive electrode 1 on which active material layer mainly composed of 2 is formed
A spiral power generating element 4 including a negative electrode 2 in which an active material layer mainly composed of graphite is formed on a core made of copper, and a separator 3 that separates the electrodes 1 and 2 are housed. In the outer can 5, a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) mixed at a volume ratio of 4: 6 and LiPF 6 at a ratio of 1M (mol / liter) is used. The electrolyte dissolved in is injected. Furthermore, an insulating outer gasket 2 made of polypropylene (PP) is provided in the opening of the outer can 5.
A sealing body 6 is fixed by caulking through 5, thereby closing the battery.

【0010】ここで、上記封口体6は、図2に示すよう
に、アルミニウム合金から成り且つガス抜き穴23を有
する封止板9(厚みL1 =0.40mm)を有してい
る。この封止板9におけるかしめ代14内には、電池外
部方向に出っ張る凹部9a(深さ0.1mm)が形成さ
れており、この凹部9a内には上記外部ガスケット25
が入り込んでいる。
Here, as shown in FIG. 2, the sealing body 6 has a sealing plate 9 (thickness L 1 = 0.40 mm) made of an aluminum alloy and having a vent hole 23. A recess 9a (0.1 mm in depth) projecting toward the outside of the battery is formed in the swaging margin 14 of the sealing plate 9, and the external gasket 25 is formed in the recess 9a.
Is penetrating.

【0011】また、封止板9には、PPから成る絶縁性
の内部ガスケット15を介して、アルミニウム合金から
成ると共に中央部が略半円球状を成す防爆弁8と、PT
C素子12と、ガス抜き穴24が設けられた端子キャッ
プ7とがかしめ固定されている。上記防爆弁8は、封口
体内部20と電池本体部26(発電要素4が収納されて
いる部位)とを区切るものであり、通常状態では、封止
板9と電気的に接続される一方(図中、実線で示す)、
過充電時等の異常時に電池内部の圧力が所定値(10〜
20kgf/cm2 )以上になった場合には、封止板9
から剥がれて、これにより充電が中止される(図中、二
点鎖線で示す)。
An explosion-proof valve 8 made of an aluminum alloy and having a substantially semi-spherical central portion is provided on the sealing plate 9 via an insulating internal gasket 15 made of PP.
The C element 12 and the terminal cap 7 having the gas vent hole 24 are caulked and fixed. The explosion-proof valve 8 separates the inside of the sealing body 20 from the battery main body 26 (the portion where the power generation element 4 is housed), and is electrically connected to the sealing plate 9 in a normal state ( (Indicated by solid lines in the figure),
When an abnormality such as overcharging occurs, the pressure inside the battery is increased to a predetermined value (10 to 10).
20 kgf / cm 2 ) or more.
, Thereby stopping charging (indicated by a two-dot chain line in the figure).

【0012】尚、前記外装缶5には、負極2と電気的に
接続された負極集電タブ13が接続される一方、前記封
口体6の封止板9には正極集電タブ10が接続され、こ
れにより、電池内で生じる化学的エネルギーを電気的エ
ネルギーに変換することができる。更に前記発電要素4
の上下両端部近傍には、電池内でのショートを防止する
ための絶縁板16・17が配置されている。
A negative current collecting tab 13 electrically connected to the negative electrode 2 is connected to the outer can 5, while a positive current collecting tab 10 is connected to the sealing plate 9 of the sealing body 6. As a result, chemical energy generated in the battery can be converted to electrical energy. Further, the power generation element 4
Insulating plates 16 and 17 for preventing a short circuit in the battery are disposed near both upper and lower ends of the battery.

【0013】ここで、上記構造の非水電解質電池を、以
下のようにして作製した。先ず、正極活物質としてのL
iCoO2 を90重量%と、導電剤としてのカーボンブ
ラックを5重量%と、結着剤としてのポリフッ化ビニリ
デンを5重量%と、溶剤としてのN−メチル−2−ピロ
リドン(NMP)溶液とを混合してスラリーを調製した
後、正極集電タブ10の溶接部位を除き、上記スラリー
を正極集電体としてのアルミニウム箔(厚み:20μ
m)の両面に塗布した。その後、溶剤を乾燥し、ローラ
ーで所定の厚みにまで圧縮した後、所定の幅及び長さに
なるように切断し、更にアルミニウム製の正極集電タブ
10(幅:3mm)を溶接した。
Here, the non-aqueous electrolyte battery having the above structure was manufactured as follows. First, L as a positive electrode active material
90% by weight of iCoO 2 , 5% by weight of carbon black as a conductive agent, 5% by weight of polyvinylidene fluoride as a binder, and N-methyl-2-pyrrolidone (NMP) solution as a solvent After mixing to prepare a slurry, the above-mentioned slurry was removed from an aluminum foil (thickness: 20 μm) as a positive electrode current collector except for a welding portion of the positive electrode current collector tab 10.
m). Thereafter, the solvent was dried, compressed to a predetermined thickness by a roller, cut into a predetermined width and length, and then a positive electrode current collector tab 10 (width: 3 mm) made of aluminum was welded.

【0014】これと並行して、負極活物質としての黒鉛
粉末を95重量%と、結着剤としてのポリフッ化ビニリ
デンを5重量%と、溶剤としてのNMP溶液とを混合し
てスラリーを調製した後、負極集電タブ13の溶接部位
を除き、上記スラリーを負極集電体としての銅箔(厚
み:16μm)の両面に塗布した。その後、溶剤を乾燥
し、ローラーで所定の厚みにまで圧縮した後、所定の幅
及び長さになるように切断し、更にニッケル製の負極集
電タブ13(幅:3mm)を溶接した。
At the same time, a slurry was prepared by mixing 95% by weight of graphite powder as a negative electrode active material, 5% by weight of polyvinylidene fluoride as a binder, and an NMP solution as a solvent. Thereafter, the slurry was applied to both surfaces of a copper foil (thickness: 16 μm) as a negative electrode current collector, except for a welding portion of the negative electrode current collector tab 13. Thereafter, the solvent was dried, compressed to a predetermined thickness by a roller, cut into a predetermined width and length, and a nickel negative electrode current collecting tab 13 (width: 3 mm) was welded.

【0015】次に、上記正極1と負極2とをポリエチレ
ン製微多孔膜から成るセパレータ3(厚み:25μm)
を介して巻回して発電要素4を作製した後、この発電要
素4を絶縁板16と共に外装缶5内に挿入し、更に負極
集電タブ13を外装缶5の缶底に溶接した。
Next, the positive electrode 1 and the negative electrode 2 are separated by a separator 3 (thickness: 25 μm) made of a microporous polyethylene film.
Then, the power generating element 4 was fabricated by inserting the power generating element 4 together with the insulating plate 16 into the outer can 5, and the negative electrode current collecting tab 13 was welded to the bottom of the outer can 5.

【0016】その後、防爆弁8、PTC素子12、及び
端子キャップ7を、内部ガスケット15を介して封止板
9にかしめ固定して、封口体内部20を封止した。しか
る後、正極集電タブ10を封口板6に溶接すると共に、
ECとDMCとが体積比で4:6の割合で混合された混
合溶媒に、LiPF6 が1M(モル/リットル)の割合
で溶解された電解液を外装缶5内に注入した後、外部ガ
スケット25を介して、封口板6を外装缶5の開口端部
にかしめ固定することにより、円筒形の電池を作製し
た。
Thereafter, the explosion-proof valve 8, the PTC element 12, and the terminal cap 7 were caulked and fixed to the sealing plate 9 via the internal gasket 15, thereby sealing the inside 20 of the sealing body. Thereafter, the positive electrode current collecting tab 10 is welded to the sealing plate 6 and
An electrolytic solution in which LiPF 6 is dissolved at a ratio of 1 M (mol / liter) is injected into a mixed solvent in which EC and DMC are mixed at a volume ratio of 4: 6 into an outer can 5, and then an external gasket is formed. The cylindrical battery was manufactured by caulking and fixing the sealing plate 6 to the opening end of the outer can 5 through the intermediate battery 25.

【0017】尚、封止板9の凹部9aは、上記実施の形
態に示すように電池内部側に形成するような構造に限定
するものではなく、例えば、図3に示すように、電池外
部側に形成するような構造であっても良い。但し、この
場合においても、外部ガスケット25の付勢力を十分発
揮させるには、凹部9aをかしめ代14内に形成するの
が望ましい。
The concave portion 9a of the sealing plate 9 is not limited to the structure formed inside the battery as shown in the above-described embodiment. For example, as shown in FIG. The structure may be such that it is formed at However, even in this case, in order to sufficiently exert the urging force of the external gasket 25, it is desirable to form the concave portion 9a in the crimping allowance 14.

【0018】また、封止板9に形成するのは凹部に限定
するものではなく、例えば、図4に示すように、凸部9
bを形成しても良い。但し、この場合においても、外部
ガスケット25の付勢力を十分発揮させるには、凸部9
bをかしめ代14内に形成するのが望ましい。更に、凹
部9a又は凸部9bは1つに限定するものではなく、2
つ以上設けても良い。加えて、封止板9の材質としては
上記アルミニウム合金に限定するものではなく、金属ア
ルミニウム、鉄、ステンレス等を用いることも可能であ
る。
Further, what is formed on the sealing plate 9 is not limited to the concave portion. For example, as shown in FIG.
b may be formed. However, even in this case, in order to sufficiently exert the urging force of the external gasket 25, the protrusion 9
It is desirable to form b in the crimping allowance 14. Further, the number of the concave portions 9a or the convex portions 9b is not limited to one.
More than one may be provided. In addition, the material of the sealing plate 9 is not limited to the above-described aluminum alloy, and metal aluminum, iron, stainless steel, or the like can be used.

【0019】また、本発明は上記リチウムイオン電池に
限定するものではなく、電解液の漏れを確実に防止する
必要性のある電池であれば適用しうることは勿論であ
る。但し、本発明を上記リチウムイオン電池に適用する
場合には、正極材料としては上記LiCoO2 の他、例
えば、LiNiO2 、LiMn2 4 或いはこれらの複
合体等が好適に用いられ、また負極材料としては上記炭
素材料の他、リチウム金属、リチウム合金、或いは金属
酸化物(スズ酸化物等)等が好適に用いられる。更に、
電解液の溶媒としては上記のものに限らず、プロピレン
カーボネート、ビニレンカーボネート、γ−ブチロラク
トンなどの比較的比誘電率が高い溶液と、ジエチルカー
ボネート、メチルエチルカーボネート、テトラヒドロフ
ラン、1,2−ジメトキシエタン、1,3−ジオキソラ
ン、2−メトキシテトラヒドロフラン、ジエチルエーテ
ル等の低粘度低沸点溶媒とを適度な比率で混合した溶媒
を用いることができる。また、電解液の電解質として
は、上記LiPF6 の他、LiAsF6 、LiCl
4 、LiBF4 、LiCF3 SO3 等を用いることが
できる。
Further, the present invention is not limited to the above-mentioned lithium ion battery, and it is needless to say that the present invention can be applied to any battery that needs to reliably prevent leakage of the electrolyte. However, when the present invention is applied to the lithium ion battery, as the positive electrode material, in addition to the above LiCoO 2 , for example, LiNiO 2 , LiMn 2 O 4 or a composite thereof is preferably used. In addition to the above carbon materials, lithium metal, lithium alloys, metal oxides (such as tin oxide), and the like are preferably used. Furthermore,
The solvent of the electrolytic solution is not limited to the above, propylene carbonate, vinylene carbonate, a solution having a relatively high relative dielectric constant such as γ-butyrolactone, diethyl carbonate, methyl ethyl carbonate, tetrahydrofuran, 1,2-dimethoxyethane, A solvent obtained by mixing a low-viscosity, low-boiling solvent such as 1,3-dioxolan, 2-methoxytetrahydrofuran, diethyl ether or the like at an appropriate ratio can be used. As the electrolyte of the electrolytic solution, in addition to the above-mentioned LiPF 6 , LiAsF 6 , LiCl
O 4 , LiBF 4 , LiCF 3 SO 3 and the like can be used.

【0020】[0020]

【実施例】〔実施例〕実施例としては、上記発明の実施
の形態に示す方法と同様の方法にて作製した電池を用い
た。このようにして作製した電池を、以下、本発明電池
Aと称する。
EXAMPLES [Examples] As examples, batteries manufactured by a method similar to the method described in the embodiment of the present invention were used. The battery fabricated in this manner is hereinafter referred to as Battery A of the invention.

【0021】〔比較例〕封止板9に凹部9aを形成しな
い他は、上記実施例と同様にして電池を作製した。この
ようにして作製した電池を、以下、比較電池Xと称す
る。
Comparative Example A battery was manufactured in the same manner as in the above example, except that the recess 9a was not formed in the sealing plate 9. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X.

【0022】〔実験1〕上記本発明電池A及び比較電池
Xについて、ヒートショック環境試験機にて100サイ
クル保存した後、かしめ部からの電解液リーク数を調べ
たので、その結果を表1に示す。尚、ヒートショック環
境試験は、1時間毎に1サイクル、高温側70℃、低温
側−30℃という条件で、各電池を保存することにより
行った。また、試料数は、各電池50個とした。
[Experiment 1] The battery A of the present invention and the comparative battery X were stored for 100 cycles in a heat shock environment tester, and the number of electrolyte leaks from the caulked portion was examined. The results are shown in Table 1. Show. The heat shock environment test was performed by storing each battery under the conditions of 70 ° C. on the high temperature side and −30 ° C. on the low temperature side for one cycle every hour. The number of samples was 50 for each battery.

【0023】[0023]

【表1】 [Table 1]

【0024】上記表1から明らかなように、比較電池X
ではかしめ部からの電解液リーク数が極めて多いのに対
して、本発明電池Aではかしめ部からの電解液リークが
全く生じていないことが認められた。 〔実験2〕上記本発明電池A及び比較電池Xについて電
池落下試験を行ったので、その結果を表2に示す。尚、
電池落下試験は、1.5mの高さより硬質プラスチック
上に各電池を落下させ、かしめ部からの電解液リークが
発生する落下回数を調べるというものであり、また、試
料数は各電池50個とした。
As apparent from Table 1 above, the comparative battery X
Although the number of electrolyte leaks from the swaged portion was extremely large, it was recognized that no electrolyte leak occurred from the swaged portion in Battery A of the present invention. [Experiment 2] The battery A and the comparative battery X were subjected to a battery drop test, and the results are shown in Table 2. still,
In the battery drop test, each battery is dropped on a hard plastic from a height of 1.5 m, and the number of drops at which electrolyte leaks from the caulked portion is examined. The number of samples is 50 for each battery. did.

【0025】[0025]

【表2】 [Table 2]

【0026】上記表2から明らかなように、比較電池X
では平均13回落下させるとかしめ部からの電解液リー
クが発生するのに対して、本発明電池Aでは平均32回
落下させないとかしめ部からの電解液リークが発生しな
いことが認められた。
As apparent from Table 2 above, the comparative battery X
In this case, it was confirmed that when the battery A of the present invention was not dropped on average 32 times, the electrolyte leak from the swaged portion did not occur while the battery A of the present invention did not fall on average 32 times when it was dropped 13 times on average.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
例え電池の保存温度が大きく変化したり、電池が落下し
た場合であっても、封止板と外部ガスケットとの間或い
は外部ガスケットと外装缶との間のシール性能が低下す
るのを抑制することができるので、電解液が電池外に排
出されるのを抑えることができ、この結果、電池外に存
在する保護回路等を破損するのを防止することができる
といった優れた効果を奏する。
As described above, according to the present invention,
Even if the storage temperature of the battery changes greatly or the battery falls, it is necessary to suppress the deterioration of the sealing performance between the sealing plate and the external gasket or between the external gasket and the outer can. Therefore, it is possible to prevent the electrolyte from being discharged out of the battery, and as a result, it is possible to prevent the protection circuit and the like existing outside the battery from being damaged.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例に係るリチウムイオン電池の分解
斜視図。
FIG. 1 is an exploded perspective view of a lithium ion battery according to an example of the present invention.

【図2】本発明電池に用いる封口体の拡大半断面図。FIG. 2 is an enlarged half sectional view of a sealing body used in the battery of the present invention.

【図3】本発明電池に用いる他の例に係る封口体の拡大
半断面図。
FIG. 3 is an enlarged half sectional view of a sealing body according to another example used for the battery of the present invention.

【図4】本発明電池に用いる更に他の例に係る封口体の
拡大半断面図。
FIG. 4 is an enlarged half sectional view of a sealing body according to still another example used in the battery of the present invention.

【図5】従来電池に用いる封口体の拡大半断面図。FIG. 5 is an enlarged half sectional view of a sealing body used for a conventional battery.

【符号の説明】[Explanation of symbols]

4:発電要素 5:外装缶 6:封口体 9:封止板 9a:凹部 9b:凸部 25:外部ガスケット 4: power generating element 5: outer can 6: sealing body 9: sealing plate 9a: concave portion 9b: convex portion 25: external gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 修一 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H011 AA13 AA17 CC02 CC06 CC08 DD05 DD06 DD15 FF03 GG02 HH02 KK01  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shuichi Yamashita 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. 5H011 AA13 AA17 CC02 CC06 CC08 DD05 DD06 DD15 FF03 GG02 HH02 KK01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内部に発電要素が収納された有底筒状の
外装缶を有し、この外装缶の開口部には、外部ガスケッ
トを介して、周縁部が略U字状に折り曲げられた封止板
を備えた封口体がかしめ固定される構造の密閉型電池に
おいて、 上記封止板と上記外部ガスケットとの接触部位における
封止板には、凹部及び/又は凸部が形成されていること
を特徴とする密閉型電池。
1. An outer can having a bottomed cylindrical shape in which a power generating element is housed, and an outer peripheral portion of the outer can is bent into a substantially U-shape via an external gasket. In a sealed battery having a structure in which a sealing body provided with a sealing plate is swaged and fixed, a concave portion and / or a convex portion are formed in a sealing plate at a contact portion between the sealing plate and the external gasket. A sealed battery comprising:
【請求項2】 上記凹部及び/又は凸部が、かしめ代内
に形成されている、請求項1記載の密閉型電池。
2. The sealed battery according to claim 1, wherein the concave portion and / or the convex portion are formed in a swaging margin.
【請求項3】 上記凹部及び/又は凸部が複数形成され
ている、請求項1又は2記載の密閉型電池。
3. The sealed battery according to claim 1, wherein a plurality of the concave portions and / or the convex portions are formed.
JP11085732A 1999-03-29 1999-03-29 Sealed battery Pending JP2000277063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11085732A JP2000277063A (en) 1999-03-29 1999-03-29 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11085732A JP2000277063A (en) 1999-03-29 1999-03-29 Sealed battery

Publications (1)

Publication Number Publication Date
JP2000277063A true JP2000277063A (en) 2000-10-06

Family

ID=13867025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11085732A Pending JP2000277063A (en) 1999-03-29 1999-03-29 Sealed battery

Country Status (1)

Country Link
JP (1) JP2000277063A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687189B2 (en) 2004-04-28 2010-03-30 Eveready Battery Company, Inc. Housing for a sealed electrochemical battery cell
US7833647B2 (en) 2004-04-28 2010-11-16 Eveready Battery Company, Inc. Closure vent seal and assembly
US8147999B2 (en) 2008-06-11 2012-04-03 Eveready Battery Company, Inc. Closure assembly with low vapor transmission for electrochemical cell
WO2014049645A1 (en) * 2012-09-26 2014-04-03 三洋電機株式会社 Gasket for secondary cell, and secondary cell
CN107996005A (en) * 2015-08-21 2018-05-04 株式会社Lg化学 Cap assemblies
WO2020137547A1 (en) * 2018-12-28 2020-07-02 三洋電機株式会社 Gasket and cylindrical battery
CN117452246A (en) * 2023-11-23 2024-01-26 惠州精惠仪器设备有限公司 Charging and discharging testing device for lithium battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687189B2 (en) 2004-04-28 2010-03-30 Eveready Battery Company, Inc. Housing for a sealed electrochemical battery cell
US7824790B2 (en) 2004-04-28 2010-11-02 Eveready Battery Co., Inc. Housing for a sealed electrochemical battery cell
US7833647B2 (en) 2004-04-28 2010-11-16 Eveready Battery Company, Inc. Closure vent seal and assembly
US7923138B2 (en) 2004-04-28 2011-04-12 Eveready Battery Company, Inc. Housing for a sealed electrochemical battery cell
US8173284B2 (en) 2004-04-28 2012-05-08 Eveready Battery Company, Inc. Housing for a sealed electrochemical cell
US8147999B2 (en) 2008-06-11 2012-04-03 Eveready Battery Company, Inc. Closure assembly with low vapor transmission for electrochemical cell
WO2014049645A1 (en) * 2012-09-26 2014-04-03 三洋電機株式会社 Gasket for secondary cell, and secondary cell
JPWO2014049645A1 (en) * 2012-09-26 2016-08-18 三洋電機株式会社 Secondary battery gasket and secondary battery
CN107996005A (en) * 2015-08-21 2018-05-04 株式会社Lg化学 Cap assemblies
JP2018522388A (en) * 2015-08-21 2018-08-09 エルジー・ケム・リミテッド Cap assembly
US10388980B2 (en) 2015-08-21 2019-08-20 Lg Chem, Ltd. Cap assembly
CN107996005B (en) * 2015-08-21 2020-11-13 株式会社Lg化学 Cap assembly
WO2020137547A1 (en) * 2018-12-28 2020-07-02 三洋電機株式会社 Gasket and cylindrical battery
CN113261137A (en) * 2018-12-28 2021-08-13 三洋电机株式会社 Gasket and cylindrical battery
EP3905403A4 (en) * 2018-12-28 2022-03-16 SANYO Electric Co., Ltd. Gasket and cylindrical battery
JP7422680B2 (en) 2018-12-28 2024-01-26 パナソニックエナジー株式会社 Gasket and cylindrical battery
CN117452246A (en) * 2023-11-23 2024-01-26 惠州精惠仪器设备有限公司 Charging and discharging testing device for lithium battery

Similar Documents

Publication Publication Date Title
US10985400B2 (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
US20100233524A1 (en) Cylindrical non-aqueous electrolyte secondary battery
JP3732945B2 (en) Sealed battery
JP2000077061A (en) Lithium ion battery
JP4052537B2 (en) Non-aqueous secondary battery
JP2004014395A (en) Battery
CN115552684A (en) Secondary battery
JP2000277146A (en) Rectangular nonaqueous electrolyte secondary battery
KR100942906B1 (en) Electrochemical device ensuring a good safety
JP4798729B2 (en) Lithium ion secondary battery
JP2011187241A (en) Nonaqueous electrolyte secondary battery
JP4716538B2 (en) Battery safety valve and manufacturing method thereof
JP4984359B2 (en) Sealed battery and its sealing plate
JP4563002B2 (en) Flat non-aqueous electrolyte secondary battery
JP2019016482A (en) Nonaqueous electrolyte secondary battery
JP2000277063A (en) Sealed battery
JP2009259749A (en) Nonaqueous electrolyte secondary battery
JP2939468B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP2003331924A (en) Nonaqueous secondary cell
JP4420484B2 (en) Sealed battery
JP2000357505A (en) Nonaqueous electrolyte secondary battery
JP2003045494A (en) Flat non-aqueous electrolyte secondary battery
JP2001283793A (en) Battery
JP2009302019A (en) Sealed battery
JP2002100408A (en) Flat nonaqueous electrolyte secondary battery