JP2000273560A - Copper and copper base alloy excellent in wire bonding property and die bonding property and production thereof - Google Patents

Copper and copper base alloy excellent in wire bonding property and die bonding property and production thereof

Info

Publication number
JP2000273560A
JP2000273560A JP12469899A JP12469899A JP2000273560A JP 2000273560 A JP2000273560 A JP 2000273560A JP 12469899 A JP12469899 A JP 12469899A JP 12469899 A JP12469899 A JP 12469899A JP 2000273560 A JP2000273560 A JP 2000273560A
Authority
JP
Japan
Prior art keywords
copper
less
grain size
bonding property
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12469899A
Other languages
Japanese (ja)
Other versions
JP4345075B2 (en
Inventor
Masahiro Kataoka
正宏 片岡
Toshihiro Sato
敏洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP12469899A priority Critical patent/JP4345075B2/en
Publication of JP2000273560A publication Critical patent/JP2000273560A/en
Application granted granted Critical
Publication of JP4345075B2 publication Critical patent/JP4345075B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain good solderability in a die pat part without using flux by using an alloy in which crystal grain size lies in a specified range, and the center line average roughness (Ra) and the thickness of an oxidized film are controlled to the value equal to or below the specified one respectively. SOLUTION: By heat treatment, copper and copper base alloys having 10 to 150 μm crystal grain size, <=0.15 μm center line average roughness (Ra) and <=6 nm oxidized film thickness and excellent in wire bonding properties and die bonding properties are obtd. This copper and copper base alloys, which contain, by weight, 0.01 to 0.5% P or at least one kind from the group of Fe, Ni, Sn, Zn, Cr, Co, Si, Mg, Ti and Zr by 0.01 to 5.5% in total, and the balance Cu with inevitable impurities, are heat-treated at 300 to 900 deg.C for 0.01 to 72 hr in an atmosphere of <=5% oxygen concn. For stably joining a lead frame and a bonding wire, the surface roughness of the material is desirably controlled to 0.06 to 0.12 μm. By controlling the crystal grain size range to the above, solder uniformly spreads.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体機器のリー
ドフレーム材用銅及び銅基合金に、チップを搭載(ダイ
ボンディング)する際にフラックスを使わず直接チップ
をはんだ接合(ベアダイボンディング)し、かつワイア
ーボンディング用リード線を直接リードフレーム材に接
合(ベアワイアーボンディング)することを可能にする
ワイアーボンディング性およびダイボンディング性に優
れた銅及び銅基合金とその製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for directly bonding a chip (bare die bonding) without using flux when mounting (die bonding) the chip on copper and copper base alloy for a lead frame material of a semiconductor device. The present invention also relates to copper and a copper-based alloy having excellent wire bonding properties and die bonding properties that enable wire bonding lead wires to be directly bonded to a lead frame material (bare wire bonding), and a method for producing the same.

【0002】[0002]

【従来の技術】従来、半導体機器はまず銅または銅合金
のリードフレーム用素材を打抜き又はエッチングにより
所定の形状にし、次に半導体素子とリードフレーム材を
アルミまたは金線等でワイアーボンディングするため
に、リードフレーム材のダイパット部およびアウターリ
ード部分へのめっきを行なう。そして、めっきされたダ
イパット部へはんだ付け等により半導体素子を接合(ダ
イボンディング)し、さらにリードフレームと半導体素
子をワイアーで接合(ワイアーボンディング)し、封止
したのち、アウターリード部が基盤にはんだ付け等によ
って実装されていた。
2. Description of the Related Art Conventionally, in semiconductor devices, first, a lead frame material of copper or a copper alloy is punched or etched into a predetermined shape, and then a semiconductor element and a lead frame material are wire-bonded with aluminum or gold wire. Then, plating is performed on the die pad portion and the outer lead portion of the lead frame material. Then, the semiconductor element is bonded (die-bonded) to the plated die pad by soldering or the like, and further, the lead frame and the semiconductor element are bonded (wire-bonded) with a wire. After sealing, the outer lead is soldered to the base. It was implemented by attaching.

【0003】これから分るように、リードフレーム材と
ワイアー(ワイアーボンディング)あるいはリードフレ
ーム材と半導体素子(ダイボンディング)およびリード
フレーム材と基盤の接合のために、リードフレーム材に
はめっきは不可欠なものであった。
As can be seen, plating is indispensable for the lead frame material for bonding the lead frame material to the wire (wire bonding) or the lead frame material to the semiconductor element (die bonding) and the lead frame material to the substrate. Was something.

【0004】ところが、微少な個所へのスポットめっき
の場合は、非常に高い精度を必要とし、めっきの良否が
ダイボンディング及びワイアーボンディングに影響を与
え、場合により不良品が発生する場合があった。この問
題は、全面めっきを行うことで解消することが可能であ
るが、全面めっきの場合はコストがかかりすぎるという
欠点がある。
[0004] However, spot plating in a minute place requires extremely high precision, and the quality of plating affects die bonding and wire bonding, and in some cases, defective products may be generated. This problem can be solved by performing the plating on the entire surface. However, in the case of the plating on the entire surface, there is a disadvantage that the cost is too high.

【0005】このため、半導体素子のダイボンディング
時にペーストを用いて接合する技術が開発され、これに
よりめっきを省略する方法が開発されてはいるが、リー
ドフレーム部分には耐久性及び電気伝導性といった問題
のために、依然としてAuまたはAgといった高価な貴
金属めっきを必要としている。従って、総工程数は減少
せず、またコスト低減にも繋がっていない。特に、低コ
スト化の要求が厳しくなっているディスクリート用リー
ドフレームにおいては、この問題は大きな障害になって
おり、めっきレス化の要求が非常に強くなっている。
[0005] For this reason, a technique of bonding using a paste at the time of die bonding of a semiconductor element has been developed, and a method of omitting plating has been developed by this technique. Problems still require expensive noble metal plating such as Au or Ag. Therefore, the total number of steps is not reduced, and the cost is not reduced. In particular, in the case of a discrete lead frame for which the demand for cost reduction has become severe, this problem has become a major obstacle, and the demand for plating-less has become extremely strong.

【0006】また、ダイボンディング時およびリード部
のはんだ接合時には通常フラックスが使用されるが、こ
の残渣の洗浄もまた問題となってきている。すなわち、
通常洗浄剤として使用されてきたフロン類がオゾン層破
壊の問題から使用が禁止されて、代わりの洗浄剤(代替
フロン、塩素系洗浄剤)も規制が厳しくなって来てい
る。こういった中で、半導体製品は近年ますます高密度
化実装が進み、部品間の間隔が狭くなっており、そこに
存在するわずかなフラックスの残渣でさえ、マイグレー
ションなどの短絡を引き起こす原因となっている。この
フラックス除去のための有効な洗浄方法は少なく、有効
な洗浄剤の開発が待たれる一方で、洗浄を行わない即ち
フラックスを使用しなくとも実装可能な材料(ノンフラ
ックスでのダイボンディング及びはんだ付けが可能な材
料)の開発が要求されている。
[0006] Further, flux is usually used at the time of die bonding and solder bonding of the lead portion, but cleaning of this residue has also become a problem. That is,
The use of fluorocarbons, which have been used as ordinary cleaning agents, has been banned due to the problem of depletion of the ozone layer, and regulations on alternative cleaning agents (alternative fluorocarbons and chlorine-based cleaning agents) have become stricter. In these circumstances, semiconductor products have been increasingly mounted in higher density in recent years, and the spacing between components has become narrower, so even the slightest flux residue present may cause short circuits such as migration. ing. There are few effective cleaning methods to remove this flux, and while development of an effective cleaning agent is awaited, materials that can be mounted without cleaning, that is, without using flux (die bonding and soldering without flux) Development of materials that can be used).

【0007】[0007]

【発明が解決しようとする課題】このような現状に対
し、めっきを省略してリードフレームとボンディングワ
イアーを直接接合する方法、すなわちベアワイアーボン
ディングについての多くの研究が行われてきている。ベ
アワイアーボンディング性を改善させるべく、過去にリ
ードフレーム材料の観点から行われた検討には、例えば
特公昭62−46071号公報があり、ここでは材料の
表面粗さを最大表面粗さ(Rmax)で0.5μm以下
とすること、あるいはさらに析出物、介在物等の単一面
積を3×10−6mm以下にすることで、ベアボンデ
ィング性が改善されることが開示されている。
Under such circumstances, much research has been conducted on a method of directly joining a lead frame and a bonding wire without plating, that is, bare wire bonding. For example, Japanese Patent Publication No. Sho 62-46071 discloses a study conducted in the past from the viewpoint of lead frame material in order to improve the bare wire bonding property. In this case, the surface roughness of the material is defined as the maximum surface roughness (Rmax). It is disclosed that the bare bonding property is improved by setting the surface area to 0.5 μm or less, or by further reducing the single area of the precipitates and inclusions to 3 × 10 −6 mm 2 or less.

【0008】しかしながら、実際に最大表面粗さ(Rm
ax)を0.5μm以下とするためには、圧延ロールを
極度なまでに平滑に研磨する必要があり、このためには
膨大なコストおよび時間がかかる。また、析出物、介在
物等の単一面積が3×10−6mm以下にするために
は、厳しい熱処理条件の制御を必要とし、量産工程とし
ては対応が難しい。
However, actually, the maximum surface roughness (Rm
In order to make ax) 0.5 μm or less, it is necessary to extremely sharpen the rolling rolls, which requires enormous cost and time. In addition, in order to reduce the single area of precipitates, inclusions, and the like to 3 × 10 −6 mm 2 or less, strict control of heat treatment conditions is required, which is difficult to cope with in a mass production process.

【0009】また、フラックスなしでのベアはんだ付け
性を実施するため、例えば特開平11−12714号公
報には、酸洗浄することでフレーム表面の酸化皮膜厚さ
を低減する技術が開示されている。しかしながら、ダイ
パット部のチップ接合(ダイボンディング)では、はん
だを薄く均一に広げることが要求されており、このため
通常フレームを加熱したのちに糸はんだ等を供給し、さ
らにコテ、ダイス等を使用した機械的加工によりはんだ
を均一にする処理が行われるが、この場合酸化皮膜厚さ
を制御しただけでははんだの表面張力が大きく、ダイパ
ット部で均一なはんだの広がりが得られない。
Further, in order to perform bare solderability without flux, for example, Japanese Patent Application Laid-Open No. 11-12714 discloses a technique for reducing the thickness of an oxide film on the surface of a frame by performing acid cleaning. . However, in the chip bonding (die bonding) of the die pad portion, it is required to spread the solder thinly and uniformly. Therefore, usually, the frame is heated, and then the thread solder or the like is supplied, and further, the iron, the die, and the like are used. A process for making the solder uniform by mechanical processing is performed. In this case, however, simply controlling the thickness of the oxide film results in a large surface tension of the solder, so that a uniform spread of the solder cannot be obtained at the die pad portion.

【0010】本発明はかかる問題点に鑑みなされたもの
であって、優れたワイアーボンディング性を有するとと
もに、ダイパット部でのはんだが均一に広がるダイボン
ディング性に優れた銅及び銅合金とその製造方法を提案
するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the foregoing problems, and has excellent wire bonding properties and copper and copper alloys having excellent die bonding properties in which solder in a die pad portion is uniformly spread, and a method for producing the same. Is proposed.

【0011】[0011]

【課題を解決するための手段】本発明者は、ダイボンデ
ィング時のはんだ付け性に及ぼす種々の材料因子につい
て鋭意検討を行ったところ、フレーム表面の酸化皮膜厚
さおよび表面粗さ(大きさ)と共にフレーム素材の結晶
粒径、さらには表面粗さの形状を制御することが重要で
あることを見いだした。すなわち、結晶粒径の大きさが
適切でないと、材料の表面粗さが充分小さくかつ酸化皮
膜厚さも充分小さいにもかかわらず、フラックスなしで
のはんだ付けの際、ダイパット部ではんだが均一に広が
らず、ダイボンディング不良を起こす場合があることが
分った。
The inventor of the present invention has made intensive studies on various material factors affecting the solderability at the time of die bonding. As a result, the thickness of the oxide film on the surface of the frame and the surface roughness (size) were determined. It was also found that it was important to control the crystal grain size of the frame material and the shape of the surface roughness. That is, if the crystal grain size is not appropriate, the solder spreads evenly at the die pad when soldering without flux, despite the surface roughness of the material being sufficiently small and the thickness of the oxide film being sufficiently small. However, it was found that a die bonding failure might occur.

【0012】一方、結晶粒径が適切であっても、酸化皮
膜厚さと表面粗さの両者について満足しなければ、優れ
たワイアーボンディング性が得られない。また、同じ表
面粗さであっても、はんだの均一性が表面粗さの形状で
異なることが分った。このことより、フレーム表面の酸
化皮膜厚さ、表面粗さとともに、結晶粒径さらには表面
粗さの形状を制御することで、はじめてフラックスなし
でのダイパット部でのはんだ付け性が良好である材料が
実現できることが判明した。
On the other hand, even if the crystal grain size is appropriate, if both the oxide film thickness and the surface roughness are not satisfied, excellent wire bonding properties cannot be obtained. It was also found that even with the same surface roughness, the uniformity of the solder differs depending on the shape of the surface roughness. For this reason, by controlling the crystal grain size and the shape of the surface roughness as well as the thickness and surface roughness of the oxide film on the surface of the frame, a material that has good solderability at the die pad without flux for the first time It turned out that can be realized.

【0013】すなわち、本発明は、 1.結晶粒径が10μm以上150μm以下であり、中
心線平均粗さ(Ra)が0.15μm以下であり、さら
に酸化皮膜厚さが6nm以下であることを特徴とするワ
イアーボンディング性およびダイボンディング性に優れ
た銅及び銅基合金。
That is, the present invention provides: The wire bonding property and the die bonding property are characterized in that the crystal grain size is 10 μm or more and 150 μm or less, the center line average roughness (Ra) is 0.15 μm or less, and the oxide film thickness is 6 nm or less. Excellent copper and copper-based alloy.

【0014】2.重量%においてP0.01〜0.5
%、またはFe,Ni,Sn,Zn,Cr,Co,S
i,Mg,Ti,Zrの群のうちから選ばれる少なくと
も1種を総量0.01〜5.5%含有し、残部がCuお
よび不可避的不純物からなり、結晶粒径が10μm以上
150μm以下であり、中心線平均粗さ(Ra)が0.
15μm以下であり、さらに酸化皮膜厚さが6nm以下
であることを特徴とするワイアーボンディング性および
ダイボンディング性に優れた銅及び銅基合金。
2. 0.01% to 0.5% by weight
%, Or Fe, Ni, Sn, Zn, Cr, Co, S
It contains at least one selected from the group consisting of i, Mg, Ti, and Zr in a total amount of 0.01 to 5.5%, with the balance being Cu and unavoidable impurities, and having a crystal grain size of 10 μm to 150 μm. , The center line average roughness (Ra) is 0.
Copper and a copper-based alloy excellent in wire bonding property and die bonding property, having a thickness of 15 μm or less and an oxide film thickness of 6 nm or less.

【0015】3.重量%においてP0.01〜0.5
%、またはFe,Ni,Sn,Zn,Cr,Co,S
i,Mg,Ti,Zrの群から選ばれる1種または2種
以上を総量0.01〜5.5%含有し、さらに必要に応
じてMn,Cd,Al,Pb,Be,Te,ln,A
g,B,Y,La,Ce,Au,Caの群から選ばれる
1種または2種以上を総量で0.01〜2.0%含有
し、残部がCuおよび不可避的不純物からなり、結晶粒
径が10μm以上150μm以下であり、中心線平均粗
さ(Ra)が0.15μm以下であり、さらに酸化皮膜
厚さが6nm以下であることを特徴とするワイアーボン
ディング性およびダイボンディング性に優れた銅及び銅
基合金。
[0015] 3. 0.01% to 0.5% by weight
%, Or Fe, Ni, Sn, Zn, Cr, Co, S
One or more selected from the group consisting of i, Mg, Ti, and Zr are contained in a total amount of 0.01 to 5.5%, and if necessary, Mn, Cd, Al, Pb, Be, Te, ln, A
one or more selected from the group consisting of g, B, Y, La, Ce, Au, and Ca, in a total amount of 0.01 to 2.0%, with the balance being Cu and unavoidable impurities; Excellent in wire bonding property and die bonding property, characterized in that the diameter is 10 μm or more and 150 μm or less, the center line average roughness (Ra) is 0.15 μm or less, and the oxide film thickness is 6 nm or less. Copper and copper-based alloys.

【0016】4.酸素濃度5%以下の雰囲気で熱処理す
ることにより、結晶粒径が10μm上150μm以下と
することを特徴とする上記1〜3に記載のワイアーボン
ディング性およびダイボンディング性に優れた銅及び銅
基合金の製造方法。
4. The copper and copper-based alloys having excellent wire bonding properties and die bonding properties according to any one of the above 1 to 3, wherein the heat treatment is carried out in an atmosphere having an oxygen concentration of 5% or less so that the crystal grain size is 10 μm to 150 μm. Manufacturing method.

【0017】5.前記結晶粒径を10μm以上150μ
m以下にする熱処理温度が300℃以上900℃以下
で、熱処理時間が0.01から72時間までであること
を特徴とする上記1〜3に記載のワイアーボンディング
性およびダイボンディング性に優れた銅及び銅基合金の
製造方法。である。
5. The crystal grain size is 10 μm or more and 150 μm or more.
m, the heat treatment temperature is 300 ° C. or more and 900 ° C. or less, and the heat treatment time is 0.01 to 72 hours. And a method for producing a copper-based alloy. It is.

【0018】[0018]

【作用】以下、本発明について、その範囲の限定理由を
詳細に説明する。結晶粒径を10μm以上150μm以
下とした理由としては、ダイボンディング時にはんだと
チップの間には安定した強い接合力が必要なためであ
る。特に、はんだをコテ、ダイス等の機械的な加工法を
薄く均一化させようとするとき、はんだが粒界に侵入す
ることで毛細管現象が起こり、はんだが均一に広がりや
すくなる。この場合、結晶粒径は10μm未満の場合、
上記毛細管現象によるはんだの広がりの効果が小さく、
均一なはんだの広がりが期待できない。従って、結晶粒
径は10μm以上とする。また、150μmより大きい
粗大な結晶粒径はリードフレームの加工性を阻害するた
め好ましくない。なお、他の特性とのバランスから結晶
粒径は20μm以上50μmまでが好ましい。
The reasons for limiting the scope of the present invention will be described in detail below. The reason why the crystal grain size is set to 10 μm or more and 150 μm or less is that a stable and strong bonding force is required between the solder and the chip during die bonding. In particular, when trying to thin and uniform a mechanical processing method such as a soldering iron, a die, or the like, the solder penetrates into grain boundaries to cause a capillary phenomenon, which makes it easier to spread the solder uniformly. In this case, when the crystal grain size is less than 10 μm,
The effect of the spread of the solder by the above-mentioned capillary phenomenon is small,
Uniform spread of solder cannot be expected. Therefore, the crystal grain size is set to 10 μm or more. Further, a coarse crystal grain size larger than 150 μm is not preferable because it impairs the workability of the lead frame. The crystal grain size is preferably 20 μm or more and 50 μm from the balance with other characteristics.

【0019】表面粗さについて、中心線平均粗さ(R
a)を0.15μm以下としたのは、リードフレームと
ボンディングワイアーとの接合において安定して強い接
合力を得ることが必要なためある。Ra:0.15μm
以上では、リードフレームにめっきを施した材料ほど、
安定で強い接合力が得られなかった。また、Ra:0.
06μm以下の表面粗さでは、はんだの均一性が低下す
る上、ロール研磨にコストがかかるため好ましくない。
従って、材料の表面粗さはRaで0.06〜0.15μ
mの範囲とし、さらに好ましくはRaで0.06〜0.
12μm以下とする。
Regarding the surface roughness, the center line average roughness (R
The reason why a) is set to 0.15 μm or less is that it is necessary to stably obtain a strong joining force in joining the lead frame and the bonding wire. Ra: 0.15 μm
In the above, the material plated on the lead frame,
A stable and strong bonding force could not be obtained. In addition, Ra: 0.
A surface roughness of less than or equal to 06 μm is not preferred because the uniformity of the solder is reduced and the roll polishing is costly.
Therefore, the surface roughness of the material is 0.06-0.15 μm in Ra.
m, more preferably 0.06 to 0.1 in Ra.
It is 12 μm or less.

【0020】また、はんだが均一で広がるためには表面
粗さの形状が下向きに凹であることが好ましく、中心線
から凸側の高さと凹側の高さの比が1:2以上、好まし
くは1:5以上がよい。
In order to spread the solder uniformly, it is preferable that the shape of the surface roughness is concave downward, and the ratio of the height of the convex side to the concave side from the center line is 1: 2 or more, preferably Is preferably 1: 5 or more.

【0021】酸化皮膜厚さを6nm以下とした理由は、
ノンフラックスでのはんだ付け性を行うために、表面の
酸化皮膜が充分薄いことが必要なためである。すなわ
ち、表面酸化皮膜厚さが6nmを越えるとリードフレー
ムとワイアーの接合強度やはんだ付け性が低下する。従
って、材料の表面酸化皮膜厚さは6nm以下、好ましく
は5nm以下とする。なお、ここでは、酸化皮膜厚さの
定義として、定電流電解法による酸化物の還元電気量を
CuO+CuO換算した値を用いた。
The reason why the thickness of the oxide film is set to 6 nm or less is as follows.
This is because the oxide film on the surface needs to be sufficiently thin in order to perform solderability with no flux. That is, when the thickness of the surface oxide film exceeds 6 nm, the bonding strength between the lead frame and the wire and the solderability are reduced. Therefore, the thickness of the surface oxide film of the material is set to 6 nm or less, preferably 5 nm or less. Here, as the definition of the thickness of the oxide film, a value obtained by converting the amount of reduction electricity of the oxide by the constant current electrolysis method into CuO + Cu 2 O was used.

【0022】次に、本発明に係わる銅基合金の添加元素
の選択と、その含有量の範囲の限定理由について述べ
る。 (1)P Pは脱酸効果を持ち、溶解・鋳造時の製造性を向上す
る。また、Pの含有及びりん化物の形成により、耐熱性
を向上させる働きがある。さらに、ボンディング性およ
びはんだ付け性を向上させる効果がある。しかし、P含
有量が0.01重量%未満ではこれらの効果が不充分で
あり、また他の添加元素と化合物を形成して分散析出す
る効果も充分に引き出せない。また、0.5重量%を越
えると電気伝導性、はんだ耐候性が低下するほか、ボン
ディング性およびはんだ付け性も低下する。従って、P
の含有量は0.01〜0.50重量%とする。
Next, the selection of the additive element of the copper-based alloy according to the present invention and the reason for limiting the range of the content will be described. (1) PP has a deoxidizing effect and improves the productivity in melting and casting. Further, P has an effect of improving heat resistance by containing P and forming phosphide. Further, there is an effect of improving the bonding property and the solderability. However, if the P content is less than 0.01% by weight, these effects are insufficient, and the effect of forming a compound with another additive element and dispersing and precipitating cannot be sufficiently obtained. On the other hand, if the content exceeds 0.5% by weight, the electrical conductivity and the solder weather resistance are reduced, and the bonding property and the solderability are also reduced. Therefore, P
Is 0.01 to 0.50% by weight.

【0023】(2)Fe,Ni,Sn,Zn,Cr,C
o,Si,Mg,Ti,Zr Fe,Ni,Sn,Zn,Cr,Co,Si,Mg,T
i,Zrは、結晶粒径を均一化する働きがあり、強度、
弾性を向上させる効果も併せ持つ。また、Fe,Ni,
CoはPと化合物を形成して耐熱性をも向上させる。さ
らに、適度の含有は、ボンディング性はんだ付け性を向
上させる効果を持つ。この効果を発揮させるためには、
0.01重量%以上の含有が必要であるが、5.5重量
%を越えて含有すると、電気伝導性の低下が顕著にな
る。また、ボンディング性やはんだ付け性が低下し、さ
らには経済的にも不利になる。従って、これらの含有量
の総量は0.01〜5.5重量%の範囲とする。
(2) Fe, Ni, Sn, Zn, Cr, C
o, Si, Mg, Ti, ZrFe, Ni, Sn, Zn, Cr, Co, Si, Mg, T
i and Zr have the function of making the crystal grain size uniform, and the strength,
It also has the effect of improving elasticity. Also, Fe, Ni,
Co forms a compound with P to improve heat resistance. Furthermore, proper content has the effect of improving the bonding and soldering properties. To achieve this effect,
A content of 0.01% by weight or more is required, but if the content exceeds 5.5% by weight, the decrease in electric conductivity becomes remarkable. In addition, the bonding property and the soldering property are reduced, and furthermore, it is economically disadvantageous. Therefore, the total amount of these contents should be in the range of 0.01 to 5.5% by weight.

【0024】(3)副成分について 副成分として、ln,Cd,Al,Pb,Be,Te,
ln,Ag,B,Y,La,Ce,Au,Caの群から
選ばれる1種または2種以上を総量で0.01〜2.0
%含有させると、上記諸特性をより向上させる。すなわ
ち、これらの元素の添加により、本発明に係わる銅基合
金の電気伝導性を低下させることなく、強度、耐熱性お
よびプレス加工性を向上させる。しかしながら、2.0
%以上の含有は、ボンディング性およびはんだ付け性、
またはんだの均一広がり性を低下させる。従って、これ
らの含有量の総量は0.01〜2.0重量%の範囲とす
る。
(3) Subcomponents As subcomponents, ln, Cd, Al, Pb, Be, Te,
One, two or more selected from the group consisting of In, Ag, B, Y, La, Ce, Au, and Ca in a total amount of 0.01 to 2.0.
%, The above properties are further improved. That is, the addition of these elements improves the strength, heat resistance, and press workability without lowering the electrical conductivity of the copper-based alloy according to the present invention. However, 2.0
% Or more contains bonding and soldering properties,
Also, the uniform spreadability of the solder is reduced. Therefore, the total amount of these contents is in the range of 0.01 to 2.0% by weight.

【0025】次に、熱処理条件の範囲限定理由を述べ
る。酸素濃度を5%以下としたのは、300℃以上の温
度で5%以上の酸素濃度雰囲気中で熱処理すると、表面
に生成した酸化皮膜が厚くなり、次工程以降で酸化皮膜
厚さを所定の厚さに制御することが困難になるためであ
る。なお、均一で薄い酸化皮膜に制御するため好ましく
は酸素濃度1%以下が望ましい。
Next, the reasons for limiting the range of the heat treatment conditions will be described. The reason why the oxygen concentration is set to 5% or less is that when heat treatment is performed at a temperature of 300 ° C. or more in an oxygen concentration atmosphere of 5% or more, the oxide film formed on the surface becomes thick, and the thickness of the oxide film is set to a predetermined value in the subsequent steps. This is because it is difficult to control the thickness. In order to control a uniform and thin oxide film, the oxygen concentration is preferably 1% or less.

【0026】焼鈍温度を300〜900℃、焼鈍時間を
0.01から72時間としたのは、上記に示した結晶粒
径を得るためである。この場合、300℃以下の温度で
は熱処理により所定の結晶粒径を得るためにあまりにも
時間がかかり過ぎ、経済的にも不利となる。また、90
0℃以上の温度では結晶粒径を均一に制御することが難
しい。従って、熱処理温度は300から900℃とす
る。なお、結晶粒径を均一に制御するために、熱処理温
度は400℃以上750℃以下にすることが望ましい。
次に、本発明の実施の形態を実施例により説明する。
The reason for setting the annealing temperature to 300 to 900 ° C. and the annealing time to 0.01 to 72 hours is to obtain the crystal grain size shown above. In this case, at a temperature of 300 ° C. or less, it takes too much time to obtain a predetermined crystal grain size by heat treatment, which is economically disadvantageous. Also, 90
At a temperature of 0 ° C. or higher, it is difficult to control the crystal grain size uniformly. Therefore, the heat treatment temperature is set to 300 to 900 ° C. In order to uniformly control the crystal grain size, the heat treatment temperature is desirably set to 400 ° C. or more and 750 ° C. or less.
Next, embodiments of the present invention will be described with reference to examples.

【0027】[0027]

【発明の実施の形態】実施例 表1に示す組成の合金を高周波溶解炉を用いて溶製し、
850℃に加熱した後、厚さ5.0mmまで熱間圧延し
た。次に、表面の面削により厚さ4.8mmとし、冷間
圧延と熱処理を繰り返し、板厚0.25mmの板材を得
た。この際、途中工程で適宜所定の熱処理を実施し、さ
らには最終圧延加工時圧延ロールの粗さを調整した。こ
のようにして得られた板材に酸洗浄を行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An alloy having the composition shown in Table 1 was melted using a high-frequency melting furnace.
After heating to 850 ° C., it was hot-rolled to a thickness of 5.0 mm. Next, the surface was polished to a thickness of 4.8 mm, and cold rolling and heat treatment were repeated to obtain a sheet material having a sheet thickness of 0.25 mm. At this time, a predetermined heat treatment was appropriately performed in the middle of the process, and the roughness of the roll during final rolling was adjusted. The plate material thus obtained was washed with an acid.

【0028】次に、上記材料について結晶粒径、酸化皮
膜厚さ、中心線平均粗さ(Ra)、90°W曲げ加工
性、ボンディング性およびはんだ付け性とはんだの厚さ
の均一性を調査した。結晶粒径の測定には、塩化鉄によ
るエッチング法を採用した。5%塩化鉄により試験片表
面をエッチングし、150倍の光学顕微鏡で観察し、結
晶粒径を求めた。このときの結晶組織の顕微鏡写真(×
75)を図1に示す。中心線平均粗さ(Ra)は、JI
S B0601に従い、万能表面粗さ測定器を用い、最
小単位0.01μmまで測定を行った。また、中心線か
ら凸方向の高さの平均と凹方向の高さの平均を算出して
この比率求めた。
Next, the above materials were examined for crystal grain size, oxide film thickness, center line average roughness (Ra), 90 ° W bending workability, bonding property, solderability and uniformity of solder thickness. did. For the measurement of the crystal grain size, an etching method using iron chloride was employed. The test piece surface was etched with 5% iron chloride, and observed with a 150-fold optical microscope to determine the crystal grain size. A micrograph of the crystal structure at this time (×
75) is shown in FIG. The center line average roughness (Ra) is determined by JI
According to SB0601, measurement was performed to a minimum unit of 0.01 μm using a universal surface roughness measuring instrument. The average of the height in the convex direction and the average of the height in the concave direction from the center line were calculated to obtain this ratio.

【0029】はんだ付け性は、垂直式試験法で270±
5℃のはんだ浴(Sn:63重量%、Pb:37重量
%)に9±1s浸漬した。フラックスは使用しなかっ
た。はんだ付け性の評価は、ぬれ面積を測定することで
行い、濡れ面積が99%以上であるものを最良(◎)、
95%以上であるものを良好(○)、それ以下を不可
(×)とした。
The solderability was determined to be 270 ± by the vertical test method.
It was immersed in a solder bath at 5 ° C. (Sn: 63% by weight, Pb: 37% by weight) for 9 ± 1 s. No flux was used. The evaluation of solderability is performed by measuring the wet area, and the one with a wet area of 99% or more is best (最 良),
Those with 95% or more were evaluated as good (○), and those with less than 95% were evaluated as unacceptable (x).

【0030】はんだ厚さについては、試験片を水素10
%−窒素90%の還元性雰囲気の下、あらかじめ380
℃に加熱したホットプレート上に置き、95Pb−5S
nの糸はんだ約1gを乗せ、溶融した後にダイス(超硬
材)で押し広げ、空冷した後に、SEMおよびEPMA
によりその厚さを確認した。ここで、厚さは任意の5個
所を測定し、10%以内のバラツキを○とした。10%
以上のバラツキがあるか、あるいは空隙等の異常がある
ものは×とした。
Regarding the solder thickness, the test piece was
%-Under a reducing atmosphere of 90% nitrogen, 380
Place on a hot plate heated to 95 ° C, 95Pb-5S
Approximately 1 g of the n-thick solder is placed, melted, spread with a die (super hard material), air-cooled, and then SEM and EPMA.
Confirms its thickness. Here, the thickness was measured at any five locations, and the variation within 10% was evaluated as ○. 10%
A sample having the above-mentioned variation or an abnormality such as a void was evaluated as x.

【0031】酸化皮膜厚測定には、電解液:0.1N−
KCl、電流密度0.25mA/cmの条件で定電流
電解を行い、その還元電気量をもって酸化皮膜厚さに換
算した。ここで酸化皮膜については、CuO+Cu
と仮定して計算した。また、合金の場合も添加元素を含
んだ酸化皮膜が形成されるが、添加元素量が少量であ
り、酸化皮膜の主体は銅を主体とした酸化物であると考
え、CuO+CuOとして酸化皮膜厚さを算出した。
For measuring the thickness of the oxide film, the electrolytic solution is 0.1 N-
Constant current electrolysis was performed under the conditions of KCl and a current density of 0.25 mA / cm 2 , and the amount of reduction electricity was converted into an oxide film thickness. Here, regarding the oxide film, CuO + Cu 2 O
It was calculated assuming that In the case of an alloy, an oxide film containing an additive element is also formed, but the amount of the additive element is small, and it is considered that the oxide film is mainly composed of an oxide mainly composed of copper, and the oxide film is formed as CuO + Cu 2 O. The thickness was calculated.

【0032】ボンディング性の評価方法としては、プル
テスタにより接合強度および次式のワイアー破断率を求
め評価した。 ワイアー破断率(%)=(ワイアー破断した本数/全試
験本数)×100 なお、ワイアーボンディングには超音波接合法を用い、
以下に示すボンディング条件で行った。
As a method of evaluating the bonding property, the bonding strength and the wire breaking ratio of the following equation were determined and evaluated by a pull tester. Wire breaking ratio (%) = (number of wires broken / total number of tests) × 100 The ultrasonic bonding method was used for wire bonding.
The bonding was performed under the following bonding conditions.

【0033】ボンディングワイアーの材質およびワイア
ー系:Al線25μmφ、 雰囲気:超音波出力:0.2W、 基盤温度:加圧力:0.25N、 時間:30ms、 ボンディング本数:20本/試料 90°W曲げ加工性はR=0.2の曲げ治具を用い、C
ES M0002に準拠し、曲げ試験を実施した。試験
後、両端を拘束されたW曲げ部中央を実体顕微鏡で24
倍に拡大観察し、割れが生じているかどうか確認した。
その結果を表1に示す。
Material and wire system of bonding wire: Al wire 25 μmφ, Atmosphere: Ultrasonic output: 0.2 W, Base temperature: Pressure: 0.25 N, Time: 30 ms, Number of bonding: 20 / sample 90 ° W bending The workability was measured using a bending jig with R = 0.2, and C
A bending test was performed in accordance with ES M0002. After the test, the center of the W-bent part whose both ends were constrained
It was magnified twice and it was confirmed whether cracks had occurred.
Table 1 shows the results.

【0034】[0034]

【表1】 [Table 1]

【0035】本発明合金1〜5においては、いずれも結
晶粒径を10μm以上150μm以下とし、最終圧延時
の圧延ロールの中心線平均粗さ(Ra)を0.15μm
以下に制御することで、材料の表面粗さをRaで0.1
5μm以下に制御した。また、試験片を5%の硫酸で洗
浄することで、酸化皮膜を6nm以下に制御した。この
結果、いずれも均一なはんだ厚さ及びはんだ濡れ性、ま
た良好なワイアーボンディング性が得られていることが
分る。
The alloys 1 to 5 of the present invention each have a crystal grain size of 10 μm or more and 150 μm or less, and have a center line average roughness (Ra) of 0.15 μm during the final rolling.
By controlling as follows, the surface roughness of the material is 0.1
It was controlled to 5 μm or less. The oxide film was controlled to 6 nm or less by washing the test piece with 5% sulfuric acid. As a result, it can be seen that uniform solder thickness and solder wettability, and good wire bonding properties were obtained.

【0036】一方、結晶粒径の小さい比較例No.6〜
8では、ワイアーボンディング性に優れていても、均一
なはんだ厚さが得られていない。特に、比較例8は粗さ
の比率も1/2超えていた。また、圧延ロールの中心線
平均粗さRaが大きく、酸洗浄を行っていない比較例N
o.9〜10は、材料の中心線中心線平均粗さRaが大
きく、また酸化皮膜厚さも厚かった。この場合、いずれ
もワイアー破断率が小さく、接合強度及びはんだ付け性
とも低下していた。
On the other hand, in Comparative Example No. 1 having a small crystal grain size. 6 ~
In No. 8, even though the wire bonding property was excellent, a uniform solder thickness was not obtained. In particular, in Comparative Example 8, the roughness ratio also exceeded 1/2. Comparative Example N in which the center line average roughness Ra of the rolling roll was large and acid cleaning was not performed
o. In Nos. 9 to 10, the center line center line average roughness Ra of the material was large, and the oxide film thickness was also large. In each case, the wire breakage rate was small, and both the bonding strength and the solderability were reduced.

【0037】比較例11,12は、圧延ロールの中心線
中心線平均粗さRaが大きい例である。この場合、結晶
粒径、酸化皮膜厚が本発明の範囲を満たしているもので
あっても、ワイアー破断率が低下していた。
Comparative Examples 11 and 12 are examples in which the center line center line average roughness Ra of the rolling roll is large. In this case, even if the crystal grain size and the oxide film thickness satisfied the range of the present invention, the wire breaking ratio was low.

【0038】比較例13,14は、結晶粒径が本発明の
範囲を越えている例である。比較例13は酸化皮膜も厚
いため、はんだ付け性も劣り、またワイアー破断率も低
下していた。また、粗さの比率が1/2超えていた比較
例14では、はんだの均一性に劣っていた。比較例15
は、酸化皮膜厚さが厚い例である。この場合、はんだ付
け性に劣ることが分る。
Comparative Examples 13 and 14 are examples in which the crystal grain size exceeds the range of the present invention. In Comparative Example 13, since the oxide film was thick, the solderability was inferior, and the wire breaking ratio was also low. In Comparative Example 14 in which the roughness ratio exceeded 1/2, the uniformity of the solder was poor. Comparative Example 15
Is an example in which the thickness of the oxide film is large. In this case, it turns out that solderability is inferior.

【0039】比較例16は、結晶粒径および表面粗さが
本発明の範囲を越えている例である。この場合、はんだ
の均一性、ワイアー破断率の低下が観察された。また、
比較例16は粗さの比率も1/2超えていた。
Comparative Example 16 is an example in which the crystal grain size and the surface roughness are beyond the range of the present invention. In this case, the uniformity of the solder and the decrease in the wire breaking ratio were observed. Also,
In Comparative Example 16, the roughness ratio also exceeded 1 /.

【0040】すなわち、結晶粒径が10μm以上150
μm以下で、表面酸化皮膜が6nm以下で、中心線平均
粗さ(Ra)が0.10μmという条件を備えた本発明
のみ、はじめて従来のめっき材である従来品17〜20
並みのワイアーボンディング性、はんだ付け性及びはん
だの均一な広がり性が得られることが分る。ここで、従
来のNo.17〜20はNiめっき品であり、コスト面
で問題がある。従って、本発明は従来のNiめっき品に
相当するボンディング性、はんだ付け性及びはんだの均
一性による歩留まりの安定性を得たものであり、大幅な
コスト削減が可能である。
That is, the crystal grain size is 10 μm or more and 150
μm or less, the surface oxide film is 6 nm or less, and the center line average roughness (Ra) is only 0.10 μm.
It can be seen that the same level of wire bonding property, solderability, and uniform spreadability of the solder can be obtained. Here, the conventional No. 17 to 20 are Ni-plated products, which have a problem in cost. Therefore, the present invention obtains the stability of the yield by the bonding property, the soldering property and the uniformity of the solder equivalent to the conventional Ni-plated product, and it is possible to greatly reduce the cost.

【0041】[0041]

【発明の効果】本発明および本発明法は銅及び銅基合金
において、結晶粒径、表面酸化皮膜の厚さ及び表面粗さ
の大きさや形状を共に制御することによって、これまで
なし得なかったベア材でのワイアーボンディング性と同
時にダイボンディング性を可能としたものであり、信頼
性が要求されるリードフレーム材において、めっき工程
を省略することが可能となり、大幅なコスト低減を実現
できる極めて実用価値の高いものである。
The present invention and the method of the present invention could not be achieved by controlling both the crystal grain size, the thickness of the surface oxide film, and the size and shape of the surface roughness in copper and copper-based alloys. Die bonding is possible simultaneously with wire bonding with bare material, and it is possible to omit the plating process for lead frame materials that require reliability, making it extremely practical to achieve significant cost reduction. It is of high value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明合金の結晶組織の顕微鏡写真(×75)
である。
FIG. 1 is a micrograph (× 75) of the crystal structure of the alloy of the present invention.
It is.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 9/06 C22C 9/06 9/08 9/08 9/10 9/10 C22F 1/00 614 C22F 1/00 614 623 623 661 661A 691 691B 691C 1/08 1/08 B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 9/06 C22C 9/06 9/08 9/08 9/10 9/10 C22F 1/00 614 C22F 1 / 00 614 623 623 661 661A 691 691B 691C 1/08 1/08 B

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 結晶粒径が10μm以上150μm以下
であり、中心線平均粗さ(Ra)が0.15μm以下で
あり、さらに酸化皮膜厚さが6nm以下であることを特
徴とするワイアーボンディング性およびダイボンディン
グ性に優れた銅及び銅基合金。
1. A wire bonding property having a crystal grain size of 10 μm or more and 150 μm or less, a center line average roughness (Ra) of 0.15 μm or less, and an oxide film thickness of 6 nm or less. Copper and copper-based alloy with excellent die bonding properties.
【請求項2】 重量%においてP0.01〜0.5%、
またはFe,Ni,Sn,Zn,Cr,Co,Si,M
g,Ti,Zrの群のうちから選ばれる少なくとも1種
を総量で0.01〜5.5%含有し、残部がCuおよび
不可避的不純物からなり、結晶粒径が10μm以上15
0μm以下であり、中心線平均粗さ(Ra)が0.15
μm以下であり、さらに酸化皮膜厚さが6nm以下であ
ることを特徴とするワイアーボンディング性およびダイ
ボンディング性に優れた銅及び銅基合金。
2. 0.01% to 0.5% by weight of P;
Or Fe, Ni, Sn, Zn, Cr, Co, Si, M
At least one selected from the group consisting of g, Ti, and Zr is contained in a total amount of 0.01 to 5.5%, the balance being Cu and unavoidable impurities, and having a crystal grain size of 10 μm to 15%.
0 μm or less, and the center line average roughness (Ra) is 0.15
Copper and a copper-based alloy excellent in wire bonding property and die bonding property, wherein the thickness is not more than μm and the thickness of the oxide film is not more than 6 nm.
【請求項3】 重量%においてP0.01〜0.5%、
またはFe,Ni,Sn,Zn,Cr,Co,Si,M
g,Ti,Zrの群から選ばれる1種または2種以上を
総量0.01〜5.5%含有し、さらに必要に応じM
n,Cd,Al,Pb,Be,Te,ln,Ag,B,
Y,La,Ce,Au,Caの群から選ばれる1種また
は2種以上を総量で0.01〜2.0%含有し、残部が
Cuおよび不可避的不純物からなり、結晶粒径が10μ
m以上150μm以下であり、中心線平均粗さ(Ra)
が0.15μm以下であり、さらに酸化皮膜厚さが6n
m以下であることを特徴とするワイアーボンディング性
およびダイボンディング性に優れた銅及び銅基合金。
3. 0.01% to 0.5% of P by weight.
Or Fe, Ni, Sn, Zn, Cr, Co, Si, M
g, Ti, or Zr, one or more selected from the group consisting of 0.01 to 5.5% in total,
n, Cd, Al, Pb, Be, Te, ln, Ag, B,
One or more selected from the group consisting of Y, La, Ce, Au and Ca are contained in a total amount of 0.01 to 2.0%, the balance being Cu and unavoidable impurities, and having a crystal grain size of 10 μm.
m or more and 150 μm or less, and the center line average roughness (Ra)
Is 0.15 μm or less, and the oxide film thickness is 6 n
m or less, and copper and a copper-based alloy excellent in wire bonding property and die bonding property.
【請求項4】 酸素濃度5%以下の雰囲気で熱処理する
ことにより、結晶粒径が10μm以上150μm以下と
することを特徴とする請求項1,2又は3に記載のワイ
アーボンディング性およびダイボンディング性に優れた
銅及び銅基合金の製造方法。
4. A wire bonding property and a die bonding property according to claim 1, 2, or 3, wherein the crystal grain size is controlled to 10 μm or more and 150 μm or less by heat treatment in an atmosphere having an oxygen concentration of 5% or less. Method for producing copper and copper-based alloys with excellent properties.
【請求項5】 前記結晶粒径を10μm以上150μm
以下にする熱処理温度が300℃以上900℃以下で、
熱処理時間が0.01〜72時間であることを特徴とす
る請求項1,2又は3に記載のワイアーボンディング性
およびダイボンディング性に優れた銅及び銅基合金の製
造方法。
5. The method according to claim 1, wherein the crystal grain size is not less than 10 μm and not more than 150 μm.
The heat treatment temperature to be 300 ° C or more and 900 ° C or less,
The method for producing copper and a copper-based alloy excellent in wire bonding property and die bonding property according to claim 1, wherein the heat treatment time is 0.01 to 72 hours.
JP12469899A 1999-03-26 1999-03-26 Copper and copper-based alloy excellent in wire bonding property and die bonding property and manufacturing method thereof Expired - Lifetime JP4345075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12469899A JP4345075B2 (en) 1999-03-26 1999-03-26 Copper and copper-based alloy excellent in wire bonding property and die bonding property and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12469899A JP4345075B2 (en) 1999-03-26 1999-03-26 Copper and copper-based alloy excellent in wire bonding property and die bonding property and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000273560A true JP2000273560A (en) 2000-10-03
JP4345075B2 JP4345075B2 (en) 2009-10-14

Family

ID=14891889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12469899A Expired - Lifetime JP4345075B2 (en) 1999-03-26 1999-03-26 Copper and copper-based alloy excellent in wire bonding property and die bonding property and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4345075B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1245690A1 (en) * 2001-03-27 2002-10-02 Nippon Mining &amp; Metals Co., Ltd. Copper, copper alloy, and manufacturing method therefor
US8197649B2 (en) 2005-05-17 2012-06-12 Chlorine Engineers Corp., Ltd. Ion exchange membrane electrolytic cell
JP2014093425A (en) * 2012-11-02 2014-05-19 Sumitomo Metal Mining Co Ltd ELECTRONIC COMPONENT HAVING JUNCTION WITH SOLDER ALLOY MAINLY COMPOSED OF Zn
KR20190019948A (en) * 2016-06-20 2019-02-27 닛데쓰마이크로메탈가부시키가이샤 Copper alloy bonding wire for semiconductor devices

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1245690A1 (en) * 2001-03-27 2002-10-02 Nippon Mining &amp; Metals Co., Ltd. Copper, copper alloy, and manufacturing method therefor
US8197649B2 (en) 2005-05-17 2012-06-12 Chlorine Engineers Corp., Ltd. Ion exchange membrane electrolytic cell
JP2014093425A (en) * 2012-11-02 2014-05-19 Sumitomo Metal Mining Co Ltd ELECTRONIC COMPONENT HAVING JUNCTION WITH SOLDER ALLOY MAINLY COMPOSED OF Zn
KR20190019948A (en) * 2016-06-20 2019-02-27 닛데쓰마이크로메탈가부시키가이샤 Copper alloy bonding wire for semiconductor devices
KR20190126459A (en) * 2016-06-20 2019-11-11 닛데쓰마이크로메탈가부시키가이샤 Copper alloy bonding wire for semiconductor device
KR102042953B1 (en) * 2016-06-20 2019-11-27 닛데쓰마이크로메탈가부시키가이샤 Copper Alloy Bonding Wire for Semiconductor Devices
KR102155463B1 (en) * 2016-06-20 2020-09-11 닛데쓰마이크로메탈가부시키가이샤 Copper alloy bonding wire for semiconductor device
DE112017003058B4 (en) * 2016-06-20 2021-06-10 Nippon Micrometal Corporation Copper alloy bond wires for semiconductor components

Also Published As

Publication number Publication date
JP4345075B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
US20090188696A1 (en) Bonding wire for semiconductor device
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP5219316B1 (en) Copper platinum alloy wire for semiconductor device connection
WO2011013527A1 (en) Bonding wire for semiconductor
KR950004935B1 (en) Copper alloy for electronic instruments
JP4197718B2 (en) High strength copper alloy sheet with excellent oxide film adhesion
JP5213146B1 (en) Copper rhodium alloy wire for connecting semiconductor devices
JP2011077254A (en) Bonding wire for semiconductor
JP5343069B2 (en) Bonding wire bonding structure
JPH1112714A (en) Copper and copper base alloy excellent in direct bonding property and soldering property and production thereof
JP2000307051A (en) Copper and copper alloy and manufacture thereof
KR20200039714A (en) Cu alloy bonding wire for semiconductor devices
JP2000273560A (en) Copper and copper base alloy excellent in wire bonding property and die bonding property and production thereof
JP2003059964A (en) Bonding wire and manufacturing method therefor
JP3313006B2 (en) Copper alloy lead frame for bare bond
JP3014673B2 (en) Lead frame for semiconductor device
WO2023106241A1 (en) Copper-based wire rod, and semiconductor device
JP3716391B2 (en) Palladium-coated wire for bump formation
JP2003023030A (en) Bonding wire and manufacturing method therefor
JPS60131939A (en) Copper alloy for lead frame
JPS62238343A (en) Copper alloy for electronic equipment
JPH0674463B2 (en) Copper alloy for lead frame
JP2749773B2 (en) Reflow solder plating square wire and method of manufacturing the same
JPS63247325A (en) Fine copper wire and its production
JP3044384B2 (en) High strength and high conductivity copper-based alloy and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term