JPH1112714A - Copper and copper base alloy excellent in direct bonding property and soldering property and production thereof - Google Patents

Copper and copper base alloy excellent in direct bonding property and soldering property and production thereof

Info

Publication number
JPH1112714A
JPH1112714A JP20516197A JP20516197A JPH1112714A JP H1112714 A JPH1112714 A JP H1112714A JP 20516197 A JP20516197 A JP 20516197A JP 20516197 A JP20516197 A JP 20516197A JP H1112714 A JPH1112714 A JP H1112714A
Authority
JP
Japan
Prior art keywords
copper
less
surface roughness
oxide film
final rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20516197A
Other languages
Japanese (ja)
Inventor
Masahiro Kataoka
正宏 片岡
Akira Sugawara
章 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP20516197A priority Critical patent/JPH1112714A/en
Publication of JPH1112714A publication Critical patent/JPH1112714A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a copper and a copper base alloy enabling soldering and excellent in direct bonding property without using flux by regulating surface roughness and oxide film thickness to in specific range. SOLUTION: The surface roughness of the copper and the copper base alloy is regulated to <=0.10 μm average roughness (Ra) in the center line and <=1.0 μm the max surface roughness (Rmax). By this method, in the joining of a lead and a bonding wire, the stable and intensive joined force can be obtd. The thickness of the oxide film is regulated to <=6 nm. This thickness is thin enough to execute the soldering without using the flux. In the case of exceeding this value, the joined strength and the soldering property between the lead and the wire are lowered. Further, it is desirable to incorporate 0.01-0.30 wt.% P and if necessary, 0.01-3.0 wt.% one or more kinds of Fe, Ni and Sn in the copper base alloy. The productivity at the time of melting and casting, heat resistance, further the bonding property and the soldering property can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体機器のリー
ド材用の銅および銅基合金にワイヤーボンディング用リ
ード線を直接接合(ダイレクトボンディング)すること
を可能にするダイレクトボンディング性およびノンフラ
ックスでのはんだ付け性の良好な銅および銅基合金とそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct bonding property and a non-fluxing method capable of directly bonding (direct bonding) a lead wire for wire bonding to copper and a copper-based alloy for a lead material of a semiconductor device. The present invention relates to copper and a copper-based alloy having good solderability and a method for producing the same.

【0002】[0002]

【従来の技術】従来、半導体機器はまず銅または銅合金
のリード材用素材を打抜き、またはエッチングにより所
定の形状にし、次に半導体素子とリード材を金線等でワ
イヤーボンディングするためにリード材の所定部分およ
び半導体素子のパット部分へのめっきを行なう。
2. Description of the Related Art Conventionally, in semiconductor equipment, first, a lead material of copper or a copper alloy is punched or etched into a predetermined shape, and then a lead material for wire bonding a semiconductor element and a lead material with a gold wire or the like. Is plated on a predetermined portion of the semiconductor device and a pad portion of the semiconductor element.

【0003】そして、めっきされたパット部分へはんだ
付け等により半導体素子をダイボンディングし、さらに
リードと半導体素子をワイヤーボンディングして封止し
た後、めっきされたリード材を基盤にはんだ付けによっ
て実装していた。
Then, the semiconductor element is die-bonded to the plated pad portion by soldering or the like, and the lead and the semiconductor element are wire-bonded and sealed. Then, the plated lead material is mounted on the base by soldering. I was

【0004】これから分かるように、リード材とワイヤ
ー(ワイヤーボンディング)あるいはリード材と半導体
素子(ダイボンディング)およびリード材と基盤の接合
のため、必ずリード材にめっきを必要としていた。
As can be seen from the above, the lead material must be plated for joining the lead material to the wire (wire bonding), the lead material to the semiconductor element (die bonding), and the lead material to the substrate.

【0005】ところが、めっき操作自体は微小な個所へ
のスポットめっきの場合は非常に高い精度を必要とし、
めっきの良否がダイボンドおよびワイヤーボンドに直接
影響を与え、場合により不良品が発生した。この問題は
全面めっきを行うことで解消することが可能であるが、
全面めっきの場合はコストがかかり過ぎるという欠点が
ある。
[0005] However, the plating operation itself requires very high precision in the case of spot plating on a minute part,
The quality of the plating directly affected the die bond and the wire bond, and in some cases, defective products occurred. This problem can be solved by plating the entire surface,
In the case of full surface plating, there is a disadvantage that the cost is too high.

【0006】これに対して、半導体素子とリードフレー
ムのダイボンドにペーストを用いて接合する技術が開発
され、半導体素子のダイボンドの際のめっきを省略する
方法が開発されているが、リード部分には耐久性及び電
導性といった問題のために、依然として金または銀とい
った高価な貴金属めっきを必要としている。従って、総
工程数は減少せず、またコスト低減にもつながっていな
い。特に、低コスト化の要求が厳しくなっているディス
クリート用リードフレームにおいてはこの問題は大きな
障害となっており、めっきレス化の要求が非常に強くな
っている。
On the other hand, a technique has been developed in which a paste is bonded to a die bond between a semiconductor element and a lead frame using a paste, and a method of omitting plating at the time of die bonding of a semiconductor element has been developed. Problems such as durability and electrical conductivity still require expensive noble metal platings such as gold or silver. Therefore, the total number of steps is not reduced, and the cost is not reduced. In particular, this problem is a major obstacle in a discrete lead frame in which demand for cost reduction has become severe, and the demand for plating-less has become very strong.

【0007】また はんだ接合に関わる最近の問題とし
て、特定フロン規制の問題がある。即ち、近年益々高密
度化実装が行われるにつれて部品間の間隔が狭まり、そ
こに存在するわずかなフラックスの残渣でさえ、マイグ
レーションなどの短絡を引き起こす原因となっている。
このフラックス除去のため、従来は特定フロン類が塩素
系洗浄剤に代わる有効な洗浄剤として多量に使用されて
きたが、フロン類の使用規制に伴い、フラックスを使用
しなくとも実装可能な材料、即ちノンフラックスでのダ
イボンド及びはんだ付けが可能な材料の開発が要求され
ている。
[0007] As a recent problem related to solder bonding, there is a problem of regulation of specific CFCs. In other words, in recent years, as the mounting density has been increased more and more, the space between components has been narrowed, and even a small amount of flux residue existing there has caused a short circuit such as migration.
In order to remove this flux, specific fluorocarbons have been used in large quantities as effective cleaning agents in place of chlorine-based cleaning agents.However, due to restrictions on the use of fluorocarbons, materials that can be mounted without using flux, That is, there is a demand for the development of a material that can be die-bonded and soldered without a flux.

【0008】このような現状に対し、めっきを省略して
リードとボンディングワイヤーを直接接合する方法、即
ちダイレクトボンディングについての多くの研究が行わ
れてきている。
[0008] Under such circumstances, much research has been conducted on a method of directly joining a lead and a bonding wire without plating, that is, direct bonding.

【0009】ダイレクトボンディング性を改善させるべ
く、過去にリードフレーム材料の観点から行われた検討
には、例えば特公昭62−46071号公報があり、こ
こでは材料の表面粗さを最大表面粗さ(Rmax)で
0.5μm以下とすること、あるいはさらに析出物や介
在物等の単一面積を3×10−6mm以下にすること
でダイレクトボンディング性が改善されることが開示さ
れている。
A study conducted in the past from the viewpoint of lead frame materials in order to improve the direct bonding property is disclosed in, for example, Japanese Patent Publication No. Sho 62-46071, in which the surface roughness of the material is defined as the maximum surface roughness ( It is disclosed that the direct bonding property can be improved by setting Rmax) to 0.5 μm or less, or further reducing the single area of precipitates and inclusions to 3 × 10 −6 mm 2 or less.

【0010】しかしながら、実際に最大表面粗さRma
xを0.5μm以下とするためには、圧延ロールを極度
なまでに平滑に研磨する必要があり、このために膨大な
コストと時間がかかる。また、析出物や介在物等の単一
面積を3×10−6mm以下にするためには厳しい熱
処理条件の制御を必要とし、量産工程としては対応が厳
しい。
However, actually, the maximum surface roughness Rma
In order for x to be 0.5 μm or less, it is necessary to extremely sharpen the rolling rolls, which requires enormous cost and time. Further, in order to reduce the single area of the precipitates and inclusions to 3 × 10 −6 mm 2 or less, strict control of the heat treatment conditions is required, which is strictly required for mass production.

【0011】また、ノンフラックスでのはんだ付け性を
実施した場合、これまで知られている公知技術では材料
表面に生成している厚い酸化皮膜のため、効果的なはん
だ付けは達成できない。
[0011] Further, when soldering is performed with a non-flux, effective soldering cannot be achieved due to a thick oxide film formed on the surface of the material by the conventionally known technology.

【0012】[0012]

【発明が解決しようとする課題】本発明は、かかる問題
点に鑑みてなされたものであって、優れたダイレクトボ
ンディング性を有すると同時に、ノンフラックスでのは
んだ付けを可能にする銅および銅合金とその製造方法を
提案するものである。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above problems, and is intended to provide copper and a copper alloy having excellent direct bonding properties and at the same time enabling soldering without flux. And a method of manufacturing the same.

【0013】[0013]

【課題を解決するための手段】本発明者は、ダイレクト
ボンディング性およびノンフラックスでのはんだ付け性
に及ぼす種々の材料因子について鋭意検討を行ったとこ
ろ、材料表面の酸化皮膜厚さおよび表面粗さを共に制御
することが重要であることを見い出した。
The inventor of the present invention has conducted intensive studies on various material factors affecting the direct bonding property and the solderability with no flux, and found that the thickness of the oxide film on the surface of the material and the surface roughness were high. Has been found to be important to control together.

【0014】特に、ノンフラックスでのはんだ付け性に
対しては、材料表面の酸化皮膜厚さが大きく影響を及ぼ
すこと、即ち材料の表面粗さが充分小さく、ダイレクト
ボンディング性が良好にもかかわらずノンフラックスで
のはんだ付け性は良好でない場合があることが分かっ
た。また逆に、酸化皮膜厚さが充分に薄く、表面粗さが
粗い場合、ノンフラックスでのはんだ付け性は良好であ
るものの、ダイレクトボンディング性が劣ることが分か
った。
In particular, the thickness of the oxide film on the surface of the material greatly affects the solderability with no flux, that is, the surface roughness of the material is sufficiently small and the direct bonding property is good. It was found that the solderability with no flux may not be good. Conversely, when the thickness of the oxide film was sufficiently small and the surface roughness was rough, it was found that the solderability with no flux was good, but the direct bonding property was poor.

【0015】即ち、酸化皮膜厚さと表面粗さの両者につ
いて共に制御することで、優れたダイレクトボンディン
グ性およびノンフラックスでのはんだ付け性が良好であ
る材料が実現できることが判明したのである。
That is, it has been found that by controlling both the thickness of the oxide film and the surface roughness, a material having excellent direct bonding properties and good solderability with no flux can be realized.

【0016】即ち、本発明は、 1) 表面粗さが中心線平均粗さ(Ra)で0.10μ
m以下でかつ最大表面粗さ(Rmax)が1.0μm以
下であり、さらに酸化皮膜厚さが6nm以下であること
を特徴とするダイレクトボンディング性及びはんだ付け
性に優れた銅および銅基合金。
That is, according to the present invention, 1) the surface roughness is 0.10 μm in center line average roughness (Ra);
m and a maximum surface roughness (Rmax) of 1.0 μm or less, and an oxide film thickness of 6 nm or less. Copper and a copper-based alloy excellent in direct bonding property and solderability.

【0017】2) 重量%においてP:0.01〜0.
30%を含有し、残部がCuおよび不可避的不純物から
なり、表面粗さが中心線平均粗さ(Ra)で0.10μ
m以下であり、かつ最大表面粗さ(Rmax)が1.0
μm以下であり、さらに酸化皮膜厚さが6nm以下であ
ることを特徴とするダイレクトボンディング性及びはん
だ付け性に優れた銅基合金。
2) P: 0.01 to 0.
30%, the balance being Cu and unavoidable impurities, and having a surface roughness of 0.10 μm in center line average roughness (Ra).
m and a maximum surface roughness (Rmax) of 1.0
A copper-based alloy having excellent direct bonding properties and solderability, wherein the thickness is 6 μm or less and the oxide film thickness is 6 nm or less.

【0018】3) 重量%においてP:0.01〜0.
30%、さらに必要に応じFe,Ni,Snのうち少な
くとも1種以上を総量で0.01〜3.0%含有し、残
部がCuおよび不可避的不純物からなり、表面粗さが中
心線平均粗さ(Ra)で0.10μm以下であり、かつ
最大表面粗さ(Rmax)が1.0μm以下であり、さ
らに酸化皮膜厚さが6nm以下であることを特徴とする
ダイレクトボンディング性及びはんだ付け性に優れた銅
基合金。
3) P: 0.01 to 0.
30%, and if necessary, at least one of Fe, Ni, and Sn in a total amount of 0.01 to 3.0%, with the balance being Cu and unavoidable impurities, and the surface roughness being the center line average roughness. Direct bondability and solderability, characterized in that the surface roughness (Ra) is 0.10 μm or less, the maximum surface roughness (Rmax) is 1.0 μm or less, and the oxide film thickness is 6 nm or less. Excellent copper-based alloy.

【0019】4) 重量%においてP:0.01〜0.
30%、さらに必要に応じFe,Ni,Snのうち少な
くとも1種以上を総量で0.01〜3.0%含有し、さ
らにZn,Co,Ti,Mg,Zr,Ca,Si,M
n,Cd,Al,Pb,Be,Te,In,Ag,B,
Y,La,Cr,Ce,Auの群から選ばれる少なくと
も1種以上を総量で0.01〜2.0%含有し、残部が
Cuおよび不可避的不純物からなり、表面粗さが中心線
平均粗さ(Ra)で0.10μm以下であり、かつ最大
表面粗さ(Rmax)が1.0μm以下であり、さらに
酸化皮膜厚さが6nm以下であることを特徴とするダイ
レクトボンディング性及びはんだ付け性優れた銅基合
金。
4) P: 0.01 to 0.
30%, and if necessary, at least one of Fe, Ni, and Sn in a total amount of 0.01 to 3.0%, and Zn, Co, Ti, Mg, Zr, Ca, Si, M
n, Cd, Al, Pb, Be, Te, In, Ag, B,
At least one selected from the group consisting of Y, La, Cr, Ce, and Au is contained in a total amount of 0.01 to 2.0%, the balance is made of Cu and unavoidable impurities, and the surface roughness is center line average roughness. Direct bondability and solderability, characterized in that the surface roughness (Ra) is 0.10 μm or less, the maximum surface roughness (Rmax) is 1.0 μm or less, and the oxide film thickness is 6 nm or less. Excellent copper-based alloy.

【0020】5) 最終圧延時において使用する圧延ロ
ール表面の中心線平均粗さ(Ra)が0.10μm以下
であり、かつ圧延加工率を10%以上とすることを特徴
とする前記1〜4に記載の銅および銅基合金の製造方
法。
5) The rolling roll used in the final rolling has a center line average roughness (Ra) of 0.10 μm or less and a rolling reduction of 10% or more. 3. The method for producing copper and a copper-based alloy according to 1.

【0021】6) 最終圧延後の最終洗浄に使用する洗
浄液を重量%において1〜10%の硫酸、硝酸、塩酸の
うち少なくとも1種以上を使用することを特徴とする前
記1〜5に記載の銅および銅基合金の製造方法。
6) The cleaning liquid according to 1 to 5 above, wherein at least one of sulfuric acid, nitric acid and hydrochloric acid of 1 to 10% by weight is used as a cleaning liquid used for final cleaning after final rolling. A method for producing copper and copper-based alloys.

【0022】7) 重量%において1〜10%までの過
酸化水素水を加えた混酸を使用することを特徴とする前
記6に記載の銅及び銅基合金の製造方法。
7) The method for producing copper and a copper-based alloy as described in 6 above, wherein a mixed acid to which 1% to 10% by weight of hydrogen peroxide is added in terms of% by weight is used.

【0023】8) 前記最終酸洗浄は イ)最終圧延→焼鈍 ロ)最終圧延→脱脂 ハ)最終圧延→焼鈍→酸洗浄→切断→プレス加工→脱脂 ニ)最終圧延→脱脂→酸洗浄→切断→プレス加工→脱脂 の工程うちのいずれかを経たものに対して行われる前記
6又は7記載の銅及び銅基合金の製造方法。を提供する
ものである。
8) Final acid washing a) Final rolling → annealing b) Final rolling → degreasing c) Final rolling → annealing → acid cleaning → cutting → pressing → degreasing d) Final rolling → degreasing → acid cleaning → cutting → 8. The method for producing copper and a copper-based alloy according to the above item 6 or 7, wherein the method is carried out on any of the steps of pressing → degreasing. Is provided.

【0024】[0024]

【作用】以下、本発明について、前記の如くその範囲を
限定した理由を詳細に述べる。 (a)表面粗さについて:中心線平均粗さRaが0.1
0μmまたは最大表面粗さRmaxが1.0μmを越え
ると、リードとボンディングワイヤーとの接合において
安定して強い接合力を得ることができなくなる。この場
合、Raで0.10μm以下もしくはRmaxを1.0
μm以下であっても、どちらか一方のみではリードにめ
っきを施した材料ほど安定で強い接合力が得られなかっ
た。
The reasons for limiting the scope of the present invention as described above will now be described in detail. (A) Surface roughness: center line average roughness Ra is 0.1
If 0 μm or the maximum surface roughness Rmax exceeds 1.0 μm, it becomes impossible to stably obtain a strong bonding force in bonding the lead and the bonding wire. In this case, Ra is 0.10 μm or less or Rmax is 1.0.
Even when the thickness was not more than μm, only one of them could not obtain a stable and strong bonding force as compared with the material in which the lead was plated.

【0025】従って、材料の表面粗さはRaで0.10
μm以下でかつRmaxは1.0以下とし、好ましくは
Raで0.08μm以下かつRmaxで0.8μm以下
とする。
Therefore, the surface roughness of the material is 0.10 in Ra.
μm or less and Rmax is 1.0 or less, preferably Ra is 0.08 μm or less and Rmax is 0.8 μm or less.

【0026】(b)酸化皮膜厚さを6nm以下とした理
由:ノンフラックスでのはんだ付け性を行うためには、
表面の酸化皮膜が充分薄いことが必要なためである。即
ち、表面酸化皮膜厚さが6nmを越えるとリードとワイ
ヤーの接合強度やはんだ付け性が低下した。
(B) The reason why the thickness of the oxide film is set to 6 nm or less: In order to perform solderability with no flux,
This is because the oxide film on the surface needs to be sufficiently thin. That is, when the thickness of the surface oxide film exceeded 6 nm, the bonding strength between the lead and the wire and the solderability decreased.

【0027】従って、材料の表面酸化皮膜厚さは6nm
以下、好ましくは5nm以下とする。なお、ここでは、
酸化皮膜厚さの定義として、定電流電解法による酸化物
の還元電気量をCuOに換算した値を用いた。
Therefore, the surface oxide film thickness of the material is 6 nm.
Or less, preferably 5 nm or less. Here,
As the definition of the oxide film thickness, a value obtained by converting the amount of reduction electricity of an oxide by a constant current electrolytic method into CuO was used.

【0028】次に、本発明に係わる銅基合金の添加元素
の選択と、その含有量の範囲の限定理由について述べ
る。 (1)P Pは脱酸効果を持ち、溶解・鋳造時の製造性を向上させ
る。また、Pの含有及びりん化物の形成により、耐熱性
を向上させる働きがある。更に、ボンディング性および
はんだ付け性を向上させる効果がある。しかし、P含有
量が0.01重量%未満ではこれらの効果が不充分であ
り、また他の添加元素と化合物を形成して分散析出する
効果も充分に引き出せない。また、0.30重量%を越
えるとFe、Ni共存下でも電気伝導性やはんだ耐候性
が低下するほか、ボンディング性およびはんだ付け性も
低下する。従って、Pの含有量は0.01〜0.30重
量%とする。
Next, the selection of the additive element of the copper-based alloy according to the present invention and the reason for limiting the range of the content will be described. (1) PP has a deoxidizing effect and improves the productivity in melting and casting. Further, P has an effect of improving heat resistance by containing P and forming phosphide. Further, there is an effect of improving the bonding property and the solderability. However, if the P content is less than 0.01% by weight, these effects are insufficient, and the effect of forming a compound with another additive element and dispersing and precipitating cannot be sufficiently obtained. On the other hand, if it exceeds 0.30% by weight, the electrical conductivity and the solder weather resistance are reduced even in the presence of Fe and Ni, and the bonding and soldering properties are also reduced. Therefore, the content of P is set to 0.01 to 0.30% by weight.

【0029】(2)Fe、Ni、Sn Fe、Ni、Snは、結晶粒を微細化することにより強
度と弾性を向上させる効果を持つ。また、Fe,Niは
Pと化合物を形成して耐熱性を向上させる。更に、適度
の含有はボンディング性とはんだ付け性を向上させる効
果を持つ。この効果を発揮させるためには、0.01重
量%以上の含有が必要であるが、3.0重量%を越えて
含有すると、電気伝導性の低下が顕著になる。また、ボ
ンディング性やはんだ付け性が低下し、さらには経済的
にも不利になる。従って、これらの含有量の総量は0.
01〜3.0重量%の範囲とする。
(2) Fe, Ni, Sn Fe, Ni, and Sn have an effect of improving strength and elasticity by making crystal grains fine. Further, Fe and Ni form a compound with P to improve heat resistance. Further, an appropriate content has an effect of improving the bonding property and the solderability. In order to exhibit this effect, the content of 0.01% by weight or more is necessary. However, if the content exceeds 3.0% by weight, the decrease in electric conductivity becomes remarkable. In addition, the bonding property and the soldering property are reduced, and furthermore, it is economically disadvantageous. Therefore, the total amount of these contents is 0.1.
The range is from 01 to 3.0% by weight.

【0030】(3)副成分について 更に、副成分としてZn、Co、Ti、Mg、Zr、C
a、Si、Mn、Cd、Al、Pb、Be、Te、I
n、Ag、B、Y、La、Cr、Ce、Auの群から選
ばれる1種または2種以上を総量で0.01〜2.0重
量%含有させると、上記諸特性をより向上させる。即
ち、これらの元素の添加により本発明にかかわる銅基合
金の電気伝導性を低下させることなく、強度,耐熱性お
よびプレス加工性を向上させる。しかしながら、2.0
重量%以上の含有は、ボンディング性およびはんだ付け
性を低下させる。従って、これらの含有量の総量は0.
01〜2.0重量%の範囲とする。
(3) Subcomponents Further, Zn, Co, Ti, Mg, Zr, C
a, Si, Mn, Cd, Al, Pb, Be, Te, I
When one or more selected from the group consisting of n, Ag, B, Y, La, Cr, Ce, and Au are contained in a total amount of 0.01 to 2.0% by weight, the above-mentioned various properties are further improved. That is, the addition of these elements improves the strength, heat resistance and press workability without lowering the electrical conductivity of the copper-based alloy according to the present invention. However, 2.0
When the content is more than the weight percentage, the bonding property and the solderability are reduced. Therefore, the total amount of these contents is 0.1.
The range is from 01 to 2.0% by weight.

【0031】さらに、本発明法について、その範囲限定
理由を述べる。材料表面の粗さを制御するには、最終圧
延ロールの中心線表面粗さの制御と最終圧延加工率(最
終焼鈍時の板厚から仕上げ板厚までの板厚減少率)を限
定する必要がある。即ち、最終圧延ロールの中心線表面
粗さが0.10μmを越えるか最終圧延加工率が10%
を下回ると、最終圧延後の素材の中心線表面粗さ(R
a)0.10μm以下が達成できず、ダイレクトボンデ
ィング性が低下する。従って、最終圧延ロールの中心線
平均粗さRaは0.10μm以下好ましくは0.08μ
m以下とし、最終圧延加工率は10%以上好ましくは2
5%以上とする。
Further, the reason for limiting the scope of the method of the present invention will be described. In order to control the material surface roughness, it is necessary to control the center line surface roughness of the final rolling roll and limit the final rolling rate (rate of reduction in thickness from the final annealing thickness to the finished thickness). is there. That is, the center line surface roughness of the final rolling roll exceeds 0.10 μm or the final rolling reduction rate is 10%.
Below, the center line surface roughness (R
a) 0.10 μm or less cannot be achieved, and the direct bonding property is reduced. Therefore, the center line average roughness Ra of the final rolling roll is 0.10 μm or less, preferably 0.08 μm.
m and the final rolling rate is 10% or more, preferably 2%.
5% or more.

【0032】また、材料表面の酸化皮膜厚さを低減する
には、素材表面を酸洗浄する方法が有効である。しか
し、酸濃度が10重量%を越えると反応が急激になり、
素材表面の酸化皮膜厚さにムラが生じやすくなると共
に、酸化皮膜除去におけるこれ以上の効果は認められな
い。その上、高濃度の酸を使用すると、付帯設備への悪
影響も無視できなくなる。一方、酸濃度が1重量%を下
回ると、効果的な酸化皮膜の除去ができない。従って、
酸濃度は1〜10重量%、好ましくは2〜7重量%とす
る。
In order to reduce the thickness of the oxide film on the surface of the material, a method of acid cleaning the surface of the material is effective. However, when the acid concentration exceeds 10% by weight, the reaction becomes sharp,
The thickness of the oxide film on the material surface tends to be uneven, and no further effect in removing the oxide film is recognized. Moreover, the use of a high concentration of acid will not neglect the adverse effects on incidental equipment. On the other hand, when the acid concentration is less than 1% by weight, the oxide film cannot be effectively removed. Therefore,
The acid concentration is 1 to 10% by weight, preferably 2 to 7% by weight.

【0033】この場合、使用する酸は硫酸、塩酸、硝
酸、のいずれか1種または2種以上を使用することがで
きる。しかし、塩酸もしくは硝酸は反応性、腐食性が強
く、また排水処理に困難さを伴うため、コスト高につな
がる場合が多い。従って、好ましくは硫酸を使用するも
のとする。
In this case, one or more of sulfuric acid, hydrochloric acid and nitric acid can be used. However, hydrochloric acid or nitric acid has high reactivity and corrosiveness, and has difficulty in wastewater treatment, which often leads to an increase in cost. Accordingly, sulfuric acid is preferably used.

【0034】さらに、必要に応じてこれに過酸化水素水
を併用することもできる。この場合、10重量%を越え
ると反応が急激になり、素材表面の酸化皮膜厚さにムラ
が生じやすくなると共に、酸化皮膜除去におけるこれ以
上の効果は認められない。一方、酸濃度が1重量%を下
回ると、効果的な酸化皮膜の除去ができない。従って、
過酸化水素水の濃度は1〜10重量%、好ましくは2〜
7重量%とする。
Further, if necessary, a hydrogen peroxide solution can be used in combination. In this case, if the content exceeds 10% by weight, the reaction becomes sharp, the thickness of the oxide film on the material surface tends to be uneven, and no further effect in removing the oxide film is recognized. On the other hand, when the acid concentration is less than 1% by weight, the oxide film cannot be effectively removed. Therefore,
The concentration of the hydrogen peroxide solution is 1 to 10% by weight, preferably 2 to 10% by weight.
7% by weight.

【0035】[0035]

【発明の実施の形態】表1に示す組成の合金を高周波溶
解炉を用いて溶製し、850℃に加熱した後、厚さ5.
0mmまで熱間圧延した。次に、表面の面削により4.
8mmとし、冷間圧延と熱処理を繰り返して、板厚0.
25mmの板材を得た。この際、最終圧延加工率及び最
終圧延ロールの粗さを調整した。
BEST MODE FOR CARRYING OUT THE INVENTION An alloy having a composition shown in Table 1 was melted using a high-frequency melting furnace, heated to 850 ° C., and then thickened.
It was hot rolled to 0 mm. Next, the surface is beveled.
8 mm, cold rolling and heat treatment were repeated to obtain a sheet thickness of 0.1 mm.
A 25 mm plate was obtained. At this time, the final rolling rate and the roughness of the final rolling roll were adjusted.

【0036】このようにして得られた板材に、バフによ
って機械研摩するか、又はその後に酸洗浄を行った。こ
れらをまとめて表1に示す。
The plate thus obtained was mechanically polished with a buff, or was thereafter washed with an acid. These are summarized in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】次に、上記材料について酸化皮膜厚さ、中
心線平均粗さ(Ra)、最大表面粗さ(Rmax)、は
んだ付け性およびボンディング性を調査した。
Next, the thickness of the oxide film, the center line average roughness (Ra), the maximum surface roughness (Rmax), the solderability and the bonding property of the above materials were examined.

【0039】酸化皮膜厚の測定には、電解液0.1N−
KCl、電流密度0.25mA/cmの条件で定電流
電解を行い、その還元電気量をもって酸化皮膜厚さに換
算した。ここで、酸化皮膜については、ESCA(光電
子分光装置)分析の結果、CUOがほとんど観測され
なかったことより、全てCuOであるものと仮定し、計
算した。また、合金の場合も、添加元素を含んだ酸化皮
膜が形成されるが、添加元素量が少量であり、酸化皮膜
の主体はCuOと考え、酸化皮膜厚さを算出した。
For measuring the thickness of the oxide film, the electrolytic solution 0.1N-
Constant current electrolysis was performed under the conditions of KCl and a current density of 0.25 mA / cm 2 , and the amount of reduction electricity was converted into an oxide film thickness. Here, as for the oxide film, CU 2 O was hardly observed as a result of the ESCA (photoelectron spectroscopy) analysis. Also, in the case of an alloy, an oxide film containing an additional element is formed, but the amount of the additional element is small, and the thickness of the oxide film was calculated on the assumption that the main component of the oxide film was CuO.

【0040】中心線平均粗さRa,最大表面粗さRma
xは、万能表面粗さ測定器を用い、最小単位0.01μ
mまで測定を行った。
Center line average roughness Ra, maximum surface roughness Rma
x is the minimum unit 0.01μ using a universal surface roughness measuring instrument
m.

【0041】はんだ付け性は、垂直式試験法で270±
5℃のはんだ浴(Sn:63重量%、Pb:37重量
%)に9±1sec.浸漬した。なお、フラックスは使
用しなかった。はんだ付け性の評価は、濡れ面積を測定
することで行い、濡れ面積が99%以上であるものを最
良(◎)、95%以上であるものを良好(○)、それ以
下を不可(×)と判定した。
The solderability was determined to be 270 ± by the vertical test method.
9 ± 1 sec. In a 5 ° C. solder bath (Sn: 63% by weight, Pb: 37% by weight). Dipped. Note that no flux was used. The solderability was evaluated by measuring the wet area, and the best ones with a wet area of 99% or more were good (◎), those with a wet area of 95% or more were good (○), and those with less than 95% were not good (x). It was determined.

【0042】ボンディング性の評価方法としては、ブル
テスタにより接合強度および次式のワイヤー破断率を求
めて評価した。
As a method of evaluating the bonding property, the bonding strength and the wire breaking ratio of the following equation were determined by a bull tester and evaluated.

【0043】ワイヤー破断率(%)=(ワイヤー破断し
た本数/全試験本数)×100 なお、ワイヤーボンディングにはサーモソニック法を用
い、以下に示すボンディング条件で行った。 ボンディングワイヤーの材質及びワイヤー径:Au線2
5μmφ、 雰囲気:10vol%H−N、 超音波出力:0.2W、 基盤温度:250℃、 加圧力:0.5N、 時間:30m sec.、 ボンディング本数:20本/試料。 その結果を表2に示す。
Wire breaking ratio (%) = (number of broken wires / total number of tested wires) × 100 The bonding was performed by the thermosonic method under the following bonding conditions. Bonding wire material and wire diameter: Au wire 2
5 μmφ, atmosphere: 10 vol% H 2 —N 2 , ultrasonic power: 0.2 W, base temperature: 250 ° C., pressure: 0.5 N, time: 30 msec. Bonding number: 20 pieces / sample. Table 2 shows the results.

【0044】[0044]

【表2】 [Table 2]

【0045】表1〜2中の本発明合金No.1〜10に
おいては、いずれも最終圧延時に加工率を10%以上と
り、かつ最終圧延ロールの表面粗さRaを0.10μm
以下に制御することで、材料の表面粗さをRaで0.1
0μm以下、かつRmaxを1.0μm以下に制御し
た。
The alloy No. of the present invention in Tables 1 and 2 In Examples 1 to 10, the working ratio was 10% or more at the time of final rolling, and the surface roughness Ra of the final rolling roll was 0.10 μm.
By controlling as follows, the surface roughness of the material is 0.1
0 μm or less and Rmax was controlled to 1.0 μm or less.

【0046】また、試験片を5重量%の硫酸、もしくは
5重量%の硫酸と5重量%塩酸(No.9)、硝酸(N
o.5)あるいは5重量%過酸化水素水との混酸で洗浄
(No.10)することで、酸化皮膜厚さを6nm以下
に制御した。この結果、いずれも従来のAgめっき品
(No.22〜25:めっき厚さ3μm)と同等のワイ
ヤー破断率と接合強度が得られており、しかもはんだ付
け性は良好であった。
Further, the test piece was made of 5% by weight of sulfuric acid, or 5% by weight of sulfuric acid and 5% by weight of hydrochloric acid (No. 9), nitric acid (N
o. 5) Alternatively, the thickness of the oxide film was controlled to 6 nm or less by washing with a mixed acid with 5% by weight of hydrogen peroxide (No. 10). As a result, in all cases, the same wire breaking ratio and bonding strength as those of the conventional Ag-plated products (No. 22 to 25: plating thickness 3 μm) were obtained, and the solderability was good.

【0047】一方、最終圧延ロールの中心線平均粗さR
aが大きく、酸洗浄を行っていない比較例No.11〜
14及びNo.17は、材料の中心線表面粗さRa、最
大表面粗さRmaxとも大きく、また酸化皮膜も厚かっ
た。この場合、いずれもワイヤー破断率が小さく、接合
強度、はんだ付け性とも低下していた。
On the other hand, the center line average roughness R of the final rolling roll
a of Comparative Example No. 11-
14 and No. In No. 17, both the center line surface roughness Ra and the maximum surface roughness Rmax of the material were large, and the oxide film was also thick. In each case, the wire breakage rate was small, and the joint strength and the solderability were all low.

【0048】比較例No.15及び18は、最終圧延加
工率が小さく、最終圧延ロールの中心線表面粗さRaが
大きい例である。この場合、酸化皮膜が薄く、はんだ付
け性は良好であるが、ワイヤー破断率が小さくて、接合
強度も低下していた。
Comparative Example No. Nos. 15 and 18 are examples in which the final rolling reduction ratio is small and the center line surface roughness Ra of the final rolling roll is large. In this case, the oxide film was thin and the solderability was good, but the wire breaking ratio was small and the bonding strength was low.

【0049】比較例No.16及び19は、最終圧延ロ
ールの中心線表面粗さRaが小さいが、最終で酸洗浄を
行っていない例である。この場合、ワイヤーの接合強
度、破断率は比較的良好であるが、はんだ付け性が劣っ
ていた。
Comparative Example No. Nos. 16 and 19 are examples in which the center line surface roughness Ra of the final rolling roll is small but acid cleaning is not performed at the end. In this case, the bonding strength and the breaking rate of the wire were relatively good, but the solderability was poor.

【0050】比較例No.20は、機械的研摩(#15
00バフ)によって表面粗さ調整したものの、酸洗浄を
行っていない例である。この場合も、比較例No.16
と同様にワイヤーの接合強度、破断率は比較的良好であ
るであるが、はんだ付け性が劣っていた。
Comparative Example No. 20 is mechanical polishing (# 15
This is an example in which the surface roughness is adjusted by (00 buff) but acid cleaning is not performed. Also in this case, Comparative Example No. 16
Similarly, the bonding strength and the breaking rate of the wire were relatively good, but the solderability was poor.

【0051】比較例No.21は、機械的研摩(#10
00バフ)によって表面粗さを調整し、かつ酸洗浄を行
った例である。この場合、酸化皮膜が薄く、はんだ付け
性は良好であるが、ワイヤー破断率が小さくて、接合強
度も低下していた。
Comparative Example No. 21 is mechanical polishing (# 10
(00 buff) to adjust the surface roughness and perform acid cleaning. In this case, the oxide film was thin and the solderability was good, but the wire breaking ratio was small and the bonding strength was low.

【0052】即ち、表面酸化皮膜が6nm以下で、中心
線平均粗さRaが0.10μm以下かつRmax1.0
μm以下という条件を備えた本発明品のみが、はじめて
従来のめっき材であるNo.22〜25と同等のボンデ
ィング性およびはんだ付け性が得られることが分かる。
ここで、No.22〜25はAgめっき品であり、コス
ト面で問題がある。
That is, when the surface oxide film is 6 nm or less, the center line average roughness Ra is 0.10 μm or less, and Rmax 1.0
For the first time, only the product of the present invention having the condition of not more than μm is the conventional plated material No. It can be seen that the same bonding property and soldering property as those of Nos. 22 to 25 can be obtained.
Here, No. 22 to 25 are Ag-plated products, which have a problem in cost.

【0053】従って、本発明は、従来Agめっき品に相
当するボンディング性およびはんだ付け性を得たもので
あり、大幅なコスト削減が可能となるのである。
Therefore, according to the present invention, the bonding property and the soldering property equivalent to those of the conventional Ag-plated product are obtained, and the cost can be greatly reduced.

【0054】[0054]

【発明の効果】本発明および本発明法は銅及び銅基合金
において、表面酸化皮膜厚さおよび表面粗さの両方を共
に制御することによって、これまでなし得なかったダイ
レクトボンディング性及びノンフラックスでのはんだ付
け性を可能としたものであり、信頼性が要求されるリー
ドフレーム材において、めっき工程を省略することが可
能となり、大幅なコスト低減を実現できる極めて実用価
値の高いものである。
According to the present invention and the method of the present invention, in copper and a copper-based alloy, by controlling both the surface oxide film thickness and the surface roughness, direct bonding properties and non-flux which could not be achieved so far can be obtained. In a lead frame material requiring reliability, the plating step can be omitted, and the cost can be significantly reduced.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 表面粗さが中心線平均粗さ(Ra)で
0.10μm以下でかつ最大表面粗さ(Rmax)が
1.0μm以下であり、さらに酸化皮膜厚さが6nm以
下であることを特徴とするダイレクトボンディング性及
びはんだ付け性に優れた銅および銅基合金。
1. A surface roughness having a center line average roughness (Ra) of 0.10 μm or less, a maximum surface roughness (Rmax) of 1.0 μm or less, and an oxide film thickness of 6 nm or less. Copper and copper-based alloys with excellent direct bonding and soldering characteristics.
【請求項2】 重量%においてP:0.01〜0.30
%を含有し、残部がCuおよび不可避的不純物からな
り、表面粗さが中心線平均粗さ(Ra)で0.10μm
以下であり、かつ最大表面粗さ(Rmax)が1.0μ
m以下であり、さらに酸化皮膜厚さが6nm以下である
ことを特徴とするダイレクトボンディング性及びはんだ
付け性に優れた銅基合金。
2. P: 0.01 to 0.30 by weight%
%, The balance being Cu and unavoidable impurities, and having a surface roughness of 0.10 μm in center line average roughness (Ra).
And the maximum surface roughness (Rmax) is 1.0 μm
m and an oxide film thickness of 6 nm or less. A copper-based alloy having excellent direct bonding properties and solderability.
【請求項3】 重量%においてP:0.01〜0.30
%、さらに必要に応じFe,Ni,Snのうち少なくと
も1種以上を総量で0.01〜3.0%含有し、残部が
Cuおよび不可避的不純物からなり、表面粗さが中心線
平均粗さ(Ra)で0.10μm以下であり、かつ最大
表面粗さ(Rmax)が1.0μm以下であり、さらに
酸化皮膜厚さが6nm以下であることを特徴とするダイ
レクトボンディング性及びはんだ付け性に優れた銅基合
金。
3. P in weight%: 0.01 to 0.30
%, And if necessary, at least one of Fe, Ni, and Sn in a total amount of 0.01 to 3.0%, with the balance being Cu and inevitable impurities, and the surface roughness being the center line average roughness. (Ra) is 0.10 μm or less, the maximum surface roughness (Rmax) is 1.0 μm or less, and the thickness of the oxide film is 6 nm or less. Excellent copper-based alloy.
【請求項4】 重量%においてP:0.01〜0.30
%、さらに必要に応じFe,Ni,Snのうち少なくと
も1種以上を総量で0.01〜3.0%含有し、さらに
Zn,Co,Ti,Mg,Zr,Ca,Si,Mn,C
d,Al,Pb,Be,Te,In,Ag,B,Y,L
a,Cr,Ce,Auの群から選ばれる少なくとも1種
以上を総量で0.01〜2.0%含有し、残部がCuお
よび不可避的不純物からなり、表面粗さが中心線平均粗
さ(Ra)で0.10μm以下であり、かつ最大表面粗
さ(Rmax)が1.0μm以下であり、さらに酸化皮
膜厚さが6nm以下であることを特徴とするダイレクト
ボンディング性及びはんだ付け性優れた銅基合金。
4. P in weight%: 0.01 to 0.30
%, And if necessary, at least one of Fe, Ni, and Sn in a total amount of 0.01 to 3.0%, and further Zn, Co, Ti, Mg, Zr, Ca, Si, Mn, and C.
d, Al, Pb, Be, Te, In, Ag, B, Y, L
a, Cr, Ce, Au, at least one or more selected from the group consisting of 0.01 to 2.0% in total, with the balance being Cu and unavoidable impurities, and the surface roughness having a center line average roughness ( Ra) is 0.10 μm or less, the maximum surface roughness (Rmax) is 1.0 μm or less, and the thickness of the oxide film is 6 nm or less. Copper-based alloy.
【請求項5】 最終圧延時において使用する圧延ロール
表面の中心線平均粗さ(Ra)が0.10μm以下であ
り、かつ最終圧延加工率を10%以上とすることを特徴
とする請求項1〜4に記載の銅および銅基合金の製造方
法。
5. The method according to claim 1, wherein a center line average roughness (Ra) of a roll surface used in the final rolling is 0.10 μm or less, and a final rolling reduction ratio is 10% or more. 5. The method for producing copper and a copper-based alloy according to items 4 to 4.
【請求項6】 最終圧延後の最終酸洗浄に使用する洗浄
液を重量%において1〜10%の硫酸、硝酸、塩酸のう
ち少なくとも1種以上を使用することを特徴とする請求
項1〜5に記載の銅および銅基合金の製造方法。
6. The cleaning solution according to claim 1, wherein at least one of sulfuric acid, nitric acid and hydrochloric acid in a weight percentage of 1 to 10% is used as a cleaning solution for final acid cleaning after the final rolling. The method for producing copper and a copper-based alloy according to the above.
【請求項7】 重量%において1〜10%までの過酸化
水素水を加えた混酸を使用することを特徴とする請求項
6に記載の銅及び銅基合金の製造方法。
7. The method for producing copper and a copper-based alloy according to claim 6, wherein a mixed acid containing 1 to 10% by weight of hydrogen peroxide solution is used.
【請求項8】 前記最終酸洗浄が イ)最終圧延→焼鈍 ロ)最終圧延→脱脂 ハ)最終圧延→焼鈍→酸洗浄→切断→プレス加工→脱脂 ニ)最終圧延→脱脂→酸洗浄→切断→プレス加工→脱脂 の工程うちのいずれかを経たものに対して行われる請求
項6又は7記載の銅及び銅基合金の製造方法。
(8) Final rolling → annealing b) Final rolling → degreasing c) Final rolling → annealing → acid cleaning → cutting → pressing → degreasing d) Final rolling → degreasing → acid cleaning → cutting → The method for producing copper and a copper-based alloy according to claim 6, wherein the method is performed on any of the steps of pressing → degreasing.
JP20516197A 1997-06-25 1997-06-25 Copper and copper base alloy excellent in direct bonding property and soldering property and production thereof Pending JPH1112714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20516197A JPH1112714A (en) 1997-06-25 1997-06-25 Copper and copper base alloy excellent in direct bonding property and soldering property and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20516197A JPH1112714A (en) 1997-06-25 1997-06-25 Copper and copper base alloy excellent in direct bonding property and soldering property and production thereof

Publications (1)

Publication Number Publication Date
JPH1112714A true JPH1112714A (en) 1999-01-19

Family

ID=16502444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20516197A Pending JPH1112714A (en) 1997-06-25 1997-06-25 Copper and copper base alloy excellent in direct bonding property and soldering property and production thereof

Country Status (1)

Country Link
JP (1) JPH1112714A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002989A (en) * 2002-03-29 2004-01-08 Nippon Mining & Metals Co Ltd Copper alloy stock having satisfactory press working property and its production method
WO2006095678A1 (en) * 2005-03-07 2006-09-14 The Furukawa Electric Co., Ltd. Metal material for wiring connection device
KR100688755B1 (en) 2005-03-21 2007-03-02 삼성전기주식회사 Method for forming solder ball pad in BGA printed circuit board and BGA printed circuit board manufactured therefrom
JP2009158537A (en) * 2007-12-25 2009-07-16 Sumitomo Metal Electronics Devices Inc Package for housing semiconductor element
WO2010013790A1 (en) * 2008-07-31 2010-02-04 古河電気工業株式会社 Copper alloy material for electrical and electronic components, and manufacturing method therefor
JP2010059543A (en) * 2008-08-05 2010-03-18 Furukawa Electric Co Ltd:The Copper alloy material
JP2011025284A (en) * 2009-07-27 2011-02-10 Hitachi Cable Ltd Copper or copper alloy material, method for manufacturing the same, and semiconductor package
JP2012122095A (en) * 2010-12-08 2012-06-28 Hitachi Cable Ltd Copper alloy material for electric and electronic component
JP2013139623A (en) * 2011-12-09 2013-07-18 Kobe Steel Ltd Copper alloy for lead frame excellent in bare bondability
JP2013153005A (en) * 2012-01-24 2013-08-08 Dainippon Printing Co Ltd Resin-sealed semiconductor device, lead frame, wiring substrate with semiconductor device, and method of manufacturing wiring substrate with semiconductor device
CN103429388A (en) * 2011-03-28 2013-12-04 Jx日矿日石金属株式会社 Co-Si-based copper alloy sheet
JP2014189856A (en) * 2013-03-27 2014-10-06 Kobe Steel Ltd Copper alloy strip for led lead frame
KR20190039386A (en) * 2017-10-03 2019-04-11 제이엑스금속주식회사 Cu-Ni-Sn-BASED COPPER ALLOY FOIL, WROUGHT COPPER, ELECTRIC PARTS AND AUTO FOCUS CAMERA MODULE
KR20190039387A (en) * 2017-10-03 2019-04-11 제이엑스금속주식회사 Cu-Ni-Sn-BASED COPPER ALLOY FOIL, WROUGHT COPPER, ELECTRIC PARTS AND AUTO FOCUS CAMERA MODULE

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002989A (en) * 2002-03-29 2004-01-08 Nippon Mining & Metals Co Ltd Copper alloy stock having satisfactory press working property and its production method
WO2006095678A1 (en) * 2005-03-07 2006-09-14 The Furukawa Electric Co., Ltd. Metal material for wiring connection device
KR100688755B1 (en) 2005-03-21 2007-03-02 삼성전기주식회사 Method for forming solder ball pad in BGA printed circuit board and BGA printed circuit board manufactured therefrom
JP2009158537A (en) * 2007-12-25 2009-07-16 Sumitomo Metal Electronics Devices Inc Package for housing semiconductor element
WO2010013790A1 (en) * 2008-07-31 2010-02-04 古河電気工業株式会社 Copper alloy material for electrical and electronic components, and manufacturing method therefor
JP2010059543A (en) * 2008-08-05 2010-03-18 Furukawa Electric Co Ltd:The Copper alloy material
JP2011025284A (en) * 2009-07-27 2011-02-10 Hitachi Cable Ltd Copper or copper alloy material, method for manufacturing the same, and semiconductor package
CN102560181A (en) * 2010-12-08 2012-07-11 日立电线株式会社 Copper alloy material for electrical and electronic component
JP2012122095A (en) * 2010-12-08 2012-06-28 Hitachi Cable Ltd Copper alloy material for electric and electronic component
CN103429388A (en) * 2011-03-28 2013-12-04 Jx日矿日石金属株式会社 Co-Si-based copper alloy sheet
EP2679341A1 (en) * 2011-03-28 2014-01-01 JX Nippon Mining & Metals Corporation Co-Si-BASED COPPER ALLOY SHEET
EP2679341A4 (en) * 2011-03-28 2014-12-24 Jx Nippon Mining & Metals Corp Co-Si-BASED COPPER ALLOY SHEET
JP2013139623A (en) * 2011-12-09 2013-07-18 Kobe Steel Ltd Copper alloy for lead frame excellent in bare bondability
JP2013153005A (en) * 2012-01-24 2013-08-08 Dainippon Printing Co Ltd Resin-sealed semiconductor device, lead frame, wiring substrate with semiconductor device, and method of manufacturing wiring substrate with semiconductor device
JP2014189856A (en) * 2013-03-27 2014-10-06 Kobe Steel Ltd Copper alloy strip for led lead frame
KR20190039386A (en) * 2017-10-03 2019-04-11 제이엑스금속주식회사 Cu-Ni-Sn-BASED COPPER ALLOY FOIL, WROUGHT COPPER, ELECTRIC PARTS AND AUTO FOCUS CAMERA MODULE
KR20190039387A (en) * 2017-10-03 2019-04-11 제이엑스금속주식회사 Cu-Ni-Sn-BASED COPPER ALLOY FOIL, WROUGHT COPPER, ELECTRIC PARTS AND AUTO FOCUS CAMERA MODULE

Similar Documents

Publication Publication Date Title
JP5219316B1 (en) Copper platinum alloy wire for semiconductor device connection
JPH1112714A (en) Copper and copper base alloy excellent in direct bonding property and soldering property and production thereof
TWI479581B (en) Copper-rhodium alloy wire used for connecting semiconductor equippments
JPS6252464B2 (en)
JP4197718B2 (en) High strength copper alloy sheet with excellent oxide film adhesion
JP3797786B2 (en) Copper alloy for electrical and electronic parts
JP2000307051A (en) Copper and copper alloy and manufacture thereof
JPH0674479B2 (en) Conductive rolled material for leadframes, connectors or switches
JPH11199954A (en) Copper alloy for electrical and electronic part
JPH02170937A (en) Copper alloy having superior direct bonding property
TW434324B (en) Copper alloy for electronic devices
JP4345075B2 (en) Copper and copper-based alloy excellent in wire bonding property and die bonding property and manufacturing method thereof
JP2003059964A (en) Bonding wire and manufacturing method therefor
JP3313006B2 (en) Copper alloy lead frame for bare bond
JPH0726167B2 (en) Au alloy extra fine wire for bonding wire of semiconductor device
JPH09172124A (en) Nickel-plated copper alloy lead frame for solder die bonding
JPS59177339A (en) Fine pd alloy wire for wire-bonding of semiconductor device
JPH0524216B2 (en)
JP3280686B2 (en) Consumer device and manufacturing method thereof
JPS6320906B2 (en)
JPH02170935A (en) Copper alloy having superior direct bonding property
JPH02170936A (en) Copper alloy having superior direct bonding property
JPH1136028A (en) Lead frame for semiconductor device
JPH02173228A (en) Copper alloy having good direct bonding properties
JP2003023030A (en) Bonding wire and manufacturing method therefor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040615