JP2000261710A - Device for correcting image movement - Google Patents

Device for correcting image movement

Info

Publication number
JP2000261710A
JP2000261710A JP11058213A JP5821399A JP2000261710A JP 2000261710 A JP2000261710 A JP 2000261710A JP 11058213 A JP11058213 A JP 11058213A JP 5821399 A JP5821399 A JP 5821399A JP 2000261710 A JP2000261710 A JP 2000261710A
Authority
JP
Japan
Prior art keywords
motion
image
focal length
image pickup
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11058213A
Other languages
Japanese (ja)
Other versions
JP4195950B2 (en
Inventor
Yukitaka Tsuchida
幸孝 土田
Yoshiaki Sugitani
芳明 杉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP05821399A priority Critical patent/JP4195950B2/en
Publication of JP2000261710A publication Critical patent/JP2000261710A/en
Application granted granted Critical
Publication of JP4195950B2 publication Critical patent/JP4195950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Studio Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent deterioration of peripheral light quantity in correcting blurring when a photographed signal is in low contrast by controlling a movement correcting means on the basis of equality degree discriminated results from a luminance signal discriminating means and movement information from a movement detecting means. SOLUTION: The correcting lens 1 of an image movement correcting device corrects the movement of a photographed image caused by the shaking device by varying an optical axis. A blurring correction signal generating part 2 controls the lens 1 according to decided results from a luminance quality degree discriminating part 7 and a movement detection signal from a movement detecting part 8. Photographing lenses 3 are image pickup optical systems arranged plurally in the neighborhood of the lens 1 and perform optical zooming and focusing. A focal distance detecting part 4 detects a focal distance from the positions of the lenses 3 and obtains focal distance information from this movement. An image pickup device 5 is arranged at an optical axis direction end part of the lenses 3 and performs photoelectric conversion of video made incident through the lenses 1 and 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は撮像装置の手振れ補
正等に用いる画像動き補正装置に関し、特にその性能改
善に関し提案するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image motion compensator used for correcting camera shake of an image pickup apparatus, and more particularly, to an improvement in its performance.

【0002】[0002]

【従来の技術】近年、民生用ビデオカメラ(以下、ビデ
オム−ビ−と称す)の小型化、軽量化、光学ズ−ムの高
倍率化が進み、その使い勝手が格段に向上した結果、一
般消費者にとってビデオム−ビ−はごく普通の家電製品
の一つとなっている。しかしその反面、小型化、軽量
化、光学ズ−ムの高倍率化、及び撮影に習熟していない
消費者へのビデオム−ビ−の普及は、撮影時の手振れに
よる画面の不安定化という問題も発生させた。よって、
この問題を解決するため、画像動き補正装置を搭載する
ビデオム−ビ−が今や多く開発、商品化されている。
2. Description of the Related Art In recent years, consumer video cameras (hereinafter referred to as "video movies") have been reduced in size and weight, and optical zooms have been increased in magnification. For the consumer, video movies have become one of the most common home appliances. However, on the other hand, the miniaturization, weight reduction, high magnification of optical zoom, and the spread of video movies to consumers who are not familiar with shooting have caused problems such as instability of the screen due to camera shake during shooting. Also generated. Therefore,
In order to solve this problem, many video movies equipped with an image motion compensator have been developed and commercialized.

【0003】撮像装置の画像動き補正装置としては、例
えば、ジンバル機構により撮像光学系及び固体撮像素子
を備えた撮像ユニットを支持し、これを角速度センサー
から得られる撮像装置自体の動き情報に基づき駆動制御
することで画像の動きを補正する方式(”ビデオカメラ
の画振れ防止技術の開発”テレビジョン学会技術報告Vo
l.11,No.28,pp19〜24(1987))がある。
As an image motion compensating device of an image pickup apparatus, for example, an image pickup unit having an image pickup optical system and a solid-state image pickup device is supported by a gimbal mechanism, and this is driven based on motion information of the image pickup apparatus itself obtained from an angular velocity sensor. A method of correcting image motion by controlling ("Development of image blur prevention technology for video cameras" Television Society Technical Report Vo
l.11, No.28, pp19-24 (1987)).

【0004】上記方式は、撮像装置の撮像ユニットをジ
ンバル機構によりその重心点において回動自在に支持
し、角速度センサーから得られる撮像装置のピッチン
グ、ヨ−イング2方向の動き情報に基づき、コイルとマ
グネットにより構成されたアクチエ−タによりこの撮像
ユニットの姿勢制御を行うことで、撮影画像を安定化さ
せるものである。
In the above method, the imaging unit of the imaging device is rotatably supported at the center of gravity of the imaging device by a gimbal mechanism, and based on movement information in two directions, pitching and yawing, of the imaging device obtained from an angular velocity sensor. The attitude of the imaging unit is controlled by an actuator constituted by a magnet, thereby stabilizing the captured image.

【0005】また、別の例としては、撮像光学系の前部
に可変頂角プリズムを備え、これを同じく角速度センサ
ーからの情報により駆動制御することで画像の動きを補
正する方式(”光学式手振れ補正システム”テレビジョ
ン学会技術報告Vol.17,No.5,pp15〜20(1993))があ
る。
[0005] As another example, a method of correcting a motion of an image by providing a variable apex angle prism in front of an image pickup optical system and similarly driving and controlling the same based on information from an angular velocity sensor ("optical type"). There is a camera shake correction system “Technical Report of the Institute of Television Engineers of Japan, Vol. 17, No. 5, pp. 15-20 (1993)).

【0006】上記方式は、2枚のガラス板を特殊なフィ
ルムで作られた蛇腹のようなもので接続し、中を高屈折
率の液体で満たした可変頂角プリズムを固体撮像素子の
前段に設け、角速度センサーから得られるピッチング、
ヨ−イング2方向の撮像装置の動きの情報に基づき、こ
の可変頂角プリズムの2枚のガラス板を水平・垂直方向
に各々傾けることにより、入射光の光軸を曲げ、撮影画
像の動きを安定化させるものである。
In the above method, two glass plates are connected by a bellows made of a special film, and a variable apex angle prism filled with a liquid having a high refractive index is provided in front of a solid-state image sensor. Pitching obtained from an angular velocity sensor,
By tilting the two glass plates of the variable apex angle prism in the horizontal and vertical directions based on information on the movement of the imaging device in the two directions of yawing, the optical axis of the incident light is bent, and the movement of the captured image is changed. It is to stabilize.

【0007】また、別の例としては、固体撮像素子上の
画像に対し、その一部分のみを出力画像として読み出す
ための枠を設け、固体撮像素子の駆動タイミングを変え
ることにより、この枠を移動させて画像の動きを補正す
る方式がある。上記方式は、放送方式に合致した標準の
固体撮像素子よりも画素数の多い固体撮像素子を用い、
角速度センサーから得られるピッチング、ヨ−イング2
方向の撮像装置の動きの情報を撮影レンズの焦点距離に
基づき、固体撮像素子上の画像の移動量に換算し、この
換算結果をもとに固体撮像素子の駆動タイミングを制御
し、撮影画像の動きに応じて固体撮像素子からの画像の
読み出し位置(枠)を変更することで、撮影画像の動き
を安定化させるものである。
As another example, a frame for reading only a part of the image on the solid-state image sensor as an output image is provided, and the frame is moved by changing the drive timing of the solid-state image sensor. There is a method of correcting the movement of an image by using the method. The above method uses a solid-state imaging device with a larger number of pixels than a standard solid-state imaging device that matches the broadcasting system,
Pitching and yawing obtained from angular velocity sensor 2
The information on the movement of the imaging device in the direction is converted into the amount of movement of the image on the solid-state imaging device based on the focal length of the imaging lens, and the drive timing of the solid-state imaging device is controlled based on the conversion result, and the By changing the reading position (frame) of the image from the solid-state imaging device in accordance with the movement, the movement of the captured image is stabilized.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、撮影画像の動きに応じて固体撮像素子から
の画像の読み出し位置(枠)を変更する際の周辺光量に
劣化が生じると、ズーム倍率可変のズームレンズを搭載
するビデオカメラでは撮影時の画像の光量変化により撮
影画像の見苦しさが増すという問題点があった。特にズ
ーム倍率の高倍率化が進んだビデオカメラにおいては、
ますます上記問題に対する解決が求められることにな
る。
However, in the above-described conventional configuration, if the peripheral light quantity at the time of changing the reading position (frame) of the image from the solid-state image sensor in accordance with the movement of the captured image is deteriorated, the zoom magnification In a video camera equipped with a variable zoom lens, there is a problem that a change in the amount of light in the image at the time of shooting increases the difficulty of viewing the shot image. Especially in a video camera with a higher zoom magnification,
Increasingly, solutions to the above problems will be required.

【0009】本発明は以上の問題に鑑みてなされたもの
であり、周辺光量の劣化が目立つ被写体においては動き
補正性能を制限し、特にズーム倍率が高い場合には更に
補正性能を制限することで周辺光量の劣化に伴う見苦し
さを抑制した撮影ができる画像動き補正装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and restricts the motion correction performance for a subject in which the peripheral light amount is conspicuously degraded, and further restricts the correction performance particularly when the zoom magnification is high. It is an object of the present invention to provide an image motion compensator capable of performing photographing while suppressing unsightlyness due to deterioration of peripheral light amount.

【0010】[0010]

【課題を解決するための手段】この課題を解決するため
に本発明は、撮像装置の動きを検出する動き検出手段
と、複数のレンズ群から構成され焦点距離が可変可能な
撮像光学系と、前記撮像光学系の焦点距離を検出する焦
点距離検出手段と、前記撮像光学系の出力を光電変換す
るための撮像素子と、撮像装置の動きに起因して発生す
る撮影画像の動きを補正する動き補正手段と、前記撮像
素子からの輝度信号を複数の領域に分けて均一度合いを
判別する輝度信号判別手段と、前記輝度信号判別手段か
らの均一度合い判別結果と前記動き検出手段からの動き
情報に基づき前記動き補正手段を制御する振れ補正信号
発生手段とを備えたものである。
SUMMARY OF THE INVENTION In order to solve this problem, the present invention provides a motion detecting means for detecting a motion of an image pickup apparatus, an image pickup optical system comprising a plurality of lens groups and having a variable focal length, A focal length detecting means for detecting a focal length of the imaging optical system, an imaging element for photoelectrically converting an output of the imaging optical system, and a movement for correcting a movement of a captured image caused by a movement of the imaging device Correction means, a luminance signal discriminating means for dividing a luminance signal from the image sensor into a plurality of regions and discriminating a degree of uniformity, a uniformity discrimination result from the luminance signal discriminating means, and motion information from the motion detecting means. And a shake correction signal generating means for controlling the motion correcting means based on the vibration correction signal.

【0011】このような構成により、周辺光量の劣化が
目立つ被写体においては動き補正性能を制限し、特にズ
ーム倍率が高い場合には更に補正性能を制限することで
周辺光量の劣化に伴う見苦しさを抑制した撮影ができる
画像動き補正装置を提供することを目的とする。
With such a configuration, the motion compensation performance is limited for a subject in which deterioration of the peripheral light amount is conspicuous, and particularly when the zoom magnification is high, the correction performance is further limited to reduce the unsightlyness caused by the deterioration of the peripheral light amount. It is an object of the present invention to provide an image motion compensating device capable of performing a suppressed photographing.

【0012】[0012]

【発明の実施の形態】本発明の請求項1に記載の発明
は、撮像装置の動きを検出する動き検出手段と、複数の
レンズ群から構成され焦点距離が可変可能な撮像光学系
と、前記撮像光学系の焦点距離を検出する焦点距離検出
手段と、前記撮像光学系の出力を光電変換するための撮
像素子と、撮像装置の動きに起因して発生する撮影画像
の動きを補正する動き補正手段と、前記撮像素子からの
輝度信号を複数の領域に分けて均一度合いを判別する輝
度信号判別手段と、前記輝度信号判別手段からの均一度
合い判別結果と前記動き検出手段からの動き情報に基づ
き前記動き補正手段を制御する振れ補正信号発生手段と
を備えたものであり、周辺光量の劣化に伴う見苦しさを
抑制した撮影ができるという作用を有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention according to claim 1 of the present invention provides a motion detecting means for detecting the motion of an image pickup apparatus, an image pickup optical system comprising a plurality of lens groups and having a variable focal length, A focal length detecting means for detecting a focal length of the imaging optical system, an imaging element for photoelectrically converting an output of the imaging optical system, and a motion correction for correcting a motion of a captured image caused by a motion of the imaging device. Means, a luminance signal discriminating means for discriminating a degree of uniformity by dividing a luminance signal from the image sensor into a plurality of regions, and a uniformity discrimination result from the luminance signal discriminating means and motion information from the motion detecting means. A vibration correction signal generating means for controlling the motion correcting means, which has an effect that the photographing can be performed while suppressing the unsightlyness caused by the deterioration of the peripheral light amount.

【0013】以下、本発明の実施の形態について、図面
を用いて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0014】(実施の形態1)図1は本発明の実施の形
態1における画像動き補正装置のブロック図を示すもの
である。同図において、1は動き補正手段である補正レ
ンズで、本装置の揺れにより生じる撮影画像の動きを、
光軸を可変することで補正する手段である。2は輝度均
一度合い判別部7からの判別結果と動き検出部8からの
動き検出信号により補正レンズ1を制御する振れ補正信
号発生手段である振れ補正信号発生部で、補正レンズ1
を駆動及び制御するための手段である。3は補正レンズ
1の近傍に複数配された撮像光学系である撮像レンズ
で、光学的ズ−ム動作及び合焦動作するレンズ系であ
る。4は撮像レンズ3の位置から焦点距離を検出する焦
点距離検出手段である焦点距離検出部であり、この動き
から焦点距離情報を得る。5は撮像レンズ3の光軸方向
端部に配された撮像素子で、補正レンズ1及び撮像レン
ズ3を介して入射する映像を光電変換するものであり、
一般的には固体撮像素子(CCD)などからなる。6は
信号処理手段である信号処理部で、撮像素子5により得
られた画像信号に対してガンマ処理等のアナログ信号処
理と、A/D変換処理と、ノイズ除去及び輪郭強調等の
デジタル信号処理とを行う。7は信号処理部6で得られ
た輝度信号データを複数の領域に分けて均一度合いを判
別する輝度信号判別手段である輝度均一度合い判別部、
8は本装置を備えた撮像装置の動き検出手段である動き
検出部で、動きを検出するためのセンサであり、静止状
態での出力を基準に撮像装置または信号の動き量を検出
して出力する。
(Embodiment 1) FIG. 1 is a block diagram showing an image motion correcting apparatus according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 1 denotes a correction lens serving as a motion correction unit, which controls the motion of a captured image caused by shaking of the apparatus.
This is a means for correcting by changing the optical axis. Reference numeral 2 denotes a shake correction signal generation unit which is a shake correction signal generation unit that controls the correction lens 1 based on a determination result from the luminance uniformity determination unit 7 and a motion detection signal from the motion detection unit 8.
Is a means for driving and controlling. Reference numeral 3 denotes an imaging lens which is a plurality of imaging optical systems arranged in the vicinity of the correction lens 1, and is a lens system which performs an optical zoom operation and a focusing operation. Reference numeral 4 denotes a focal length detecting unit which is a focal length detecting means for detecting a focal length from the position of the imaging lens 3, and obtains focal length information from the movement. Reference numeral 5 denotes an image sensor disposed at an end of the image pickup lens 3 in the optical axis direction, which photoelectrically converts an image incident through the correction lens 1 and the image pickup lens 3,
Generally, it is composed of a solid-state imaging device (CCD) or the like. Reference numeral 6 denotes a signal processing unit which is a signal processing unit, which performs analog signal processing such as gamma processing, A / D conversion processing, and digital signal processing such as noise removal and contour enhancement on an image signal obtained by the image sensor 5. And do. Reference numeral 7 denotes a luminance uniformity determination unit which is a luminance signal determination unit that divides the luminance signal data obtained by the signal processing unit 6 into a plurality of regions and determines the degree of uniformity.
Reference numeral 8 denotes a motion detecting unit which is a motion detecting means of the image pickup apparatus provided with the present apparatus, and is a sensor for detecting a motion, and detects and outputs a motion amount of the image pickup apparatus or a signal based on an output in a stationary state. I do.

【0015】図2は輝度均一度合い判別部7における輝
度均一度合い判別を説明するための模式図である。信号
処理部6の輝度データ出力から撮像信号のY0からYn
の画面全体平均Aを求め、個々のデータと差の絶対値の
和を求めることで、撮像信号の輝度信号均一度合いBを
求める。この輝度信号の均一度合いBを利用して、輝度
信号の均一度合いBが一定のしきい値以下であれば、撮
像信号全体のコントラストが低く周辺光量の劣化が目立
つと判断する。
FIG. 2 is a schematic diagram for explaining the brightness uniformity determination in the brightness uniformity determination section 7. From the luminance data output of the signal processing unit 6 to the imaging signals Y0 to Yn
By calculating the average A of the entire screen and calculating the sum of the absolute values of the individual data and the differences, the luminance signal uniformity B of the imaging signal is obtained. Utilizing the uniformity B of the luminance signal, if the uniformity B of the luminance signal is equal to or less than a certain threshold value, it is determined that the contrast of the entire image signal is low and the deterioration of the peripheral light amount is conspicuous.

【0016】以上のように構成された本実施の形態の画
像動き補正装置について、以下手振れ補正の動きを制限
するための処理として動き検出部8の出力に対し、積分
処理を行うステップで積分定数を変更する処理に関し図
3を用いて説明する。
In the image motion compensating apparatus according to the present embodiment having the above-described configuration, the step of performing an integral process on the output of the motion detecting section 8 as a process for restricting the motion of the camera shake correction will be described below. Will be described with reference to FIG.

【0017】まず、ステップ201にて動き検出部8か
らのデータの取り込みを行い、ステップ202で積分定
数、ゲイン、クリップデータの初期化を行う。次に、ス
テップ203で、輝度信号のばらつき度合いがしきい値
以上であると判断された場合(高コントラスト判別)
は、ステップ202で設定された初期値に基づきステッ
プ206〜208の処理が行われる。ステップ206〜
208の動作については後述する。
First, in step 201, data is taken in from the motion detecting section 8, and in step 202, the integration constant, gain, and clip data are initialized. Next, when it is determined in step 203 that the degree of variation of the luminance signal is equal to or greater than the threshold value (high contrast determination)
Performs the processing of steps 206 to 208 based on the initial value set in step 202. Step 206-
The operation of 208 will be described later.

【0018】ステップ203でしきい値以下であると判
断された場合(低コントラスト判別)は、まずステップ
204において焦点距離検出部4からの焦点距離情報に
基づき検出した焦点距離情報を基に、撮像レンズ3のズ
ーム倍率を求めることができる。
If it is determined in step 203 that the value is equal to or less than the threshold value (low contrast determination), first, in step 204, the image pickup is performed based on the focal length information detected based on the focal length information from the focal length detector 4. The zoom magnification of the lens 3 can be obtained.

【0019】次のステップ205では、振れ補正信号発
生部2に取り込んだ動き検出部8の出力から、撮像装置
の移動量を求める際(ステップ206)の積分処理(積
分フィルタ)の周波数特性を規定する積分定数Kを、撮
像レンズ3の焦点距離により決定する。
In the next step 205, the frequency characteristic of the integration process (integration filter) when the amount of movement of the imaging device is determined (step 206) from the output of the motion detection unit 8 taken into the shake correction signal generation unit 2 is defined. Is determined by the focal length of the imaging lens 3.

【0020】本ステップは、内部に焦点距離から積分定
数Kを計算する関数、もしくは焦点距離と積分定数Kの
関係を規定するテーブルを有し、この関数またはテーブ
ルにより積分定数Kを決定し、ステップ202で初期値
に設定されていた積分定数Kの設定値を本ステップで決
定された値に決定する。これにより、後に続くステップ
206ではステップ202で設定された積分定数の初期
値ではなく、ステップ205で再設定された積分定数に
より積分処理を行うこととなる。
This step has a function for calculating the integral constant K from the focal length or a table for defining the relationship between the focal length and the integral constant K. The function or the table determines the integral constant K. In step 202, the set value of the integration constant K set to the initial value is determined to the value determined in this step. Thus, in the subsequent step 206, the integration process is performed using the integration constant reset in step 205 instead of the initial value of the integration constant set in step 202.

【0021】このように、輝度信号の均一度合いがしき
い値以下の時、つまり低コントラストの時には、積分処
理(ステップ206)の積分定数を通常の手振れ補正時
の積分定数の設定値に比べ小さく設定し、且つ焦点距離
に応じて更に小さく設定すると、積分処理の時定数を短
く設定でき、よって積分処理の低周波成分に対するゲイ
ンを小さくできる。
As described above, when the degree of uniformity of the luminance signal is equal to or less than the threshold value, that is, when the contrast is low, the integration constant of the integration processing (step 206) is smaller than the set value of the integration constant at the time of normal camera shake correction. If it is set and set smaller according to the focal length, the time constant of the integration process can be set shorter, and the gain for the low frequency component of the integration process can be reduced.

【0022】以上のように本実施の形態では、撮像信号
が低コントラストであるとき、輝度信号の判別手段によ
る判別結果と前記積分処理の両者に基づき振れ補正信号
発生部2における積分手段の時定数を変化させて応答特
性を変化させることで、振れ補正時の周辺光量の劣化を
防止できる。
As described above, in the present embodiment, when the image pickup signal has a low contrast, the time constant of the integration means in the shake correction signal generation unit 2 is based on both the result of the determination by the brightness signal determination means and the integration processing. Is changed to change the response characteristic, it is possible to prevent deterioration of the peripheral light amount at the time of shake correction.

【0023】(実施の形態2)以下、本発明の実施の形
態2における画像動き補正装置について説明する。本実
施の形態は、前述の実施の形態1に対し、振れ補正信号
発生部2での処理内容のみが異なるため、以下その動作
を動き補正信号発生部2での処理をもとに説明する。な
お、基本的な構成は図1のブロック図に示されるもので
あるため、説明は省略する。図4のフローチャートにお
いて図3と異なるのは、ステップ305であって、ステ
ップ204で算出された焦点距離に応じたゲインを決定
するステップである。
(Embodiment 2) Hereinafter, an image motion correcting apparatus according to Embodiment 2 of the present invention will be described. This embodiment is different from the above-described first embodiment only in the processing content in the shake correction signal generation unit 2, and therefore, the operation will be described below based on the processing in the motion correction signal generation unit 2. The basic configuration is shown in the block diagram of FIG. 4 in the flowchart of FIG. 4 is a step of determining a gain according to the focal length calculated in step 204, which is step 305.

【0024】以上のように構成された本実施の形態の構
成について、以下その動作について説明する。
The operation of the above-configured embodiment of the present invention will be described below.

【0025】まず、ステップ201にて動き検出部8か
らの動きデータの取り込みを行い、ステップ202で、
積分定数、ゲイン、クリップの初期化を行う。次に、ス
テップ203で輝度信号のばらつき度合いを判別し、予
め設定されたしきい値以上であると判断された場合(高
コントラスト)は、ステップ202で設定された初期値
に基づきステップ206〜208の処理が行われる。
First, in step 201, motion data is fetched from the motion detecting section 8, and in step 202,
Initialize the integration constant, gain, and clip. Next, in step 203, the degree of variation of the luminance signal is determined, and when it is determined that the difference is equal to or higher than a preset threshold value (high contrast), steps 206 to 208 are performed based on the initial value set in step 202. Is performed.

【0026】ステップ203でしきい値以下であると判
断された場合(低コントラスト)は、まずステップ20
4において、撮像レンズ3から得られる焦点距離情報4
から検出した焦点距離情報を基に撮像レンズ3のズーム
倍率を求める。
If it is determined in step 203 that the difference is less than the threshold value (low contrast), first, in step 20
4, the focal length information 4 obtained from the imaging lens 3
Then, the zoom magnification of the imaging lens 3 is obtained based on the focal length information detected from.

【0027】次のステップ305は、振れ補正信号発生
部2に取り込んだ動き検出手段8の出力から求められた
撮像装置の動きに対するゲイン調整を行う際の(ステッ
プ207)のゲインGを撮像レンズ3の焦点距離により
決定する。
In the next step 305, the gain G at the time of performing the gain adjustment (step 207) for the motion of the image pickup device obtained from the output of the motion detecting means 8 taken into the shake correction signal generator 2 is set to the image pickup lens 3 Is determined by the focal length of

【0028】本ステップは、内部に焦点距離からゲイン
Gを計算する関数、もしくは焦点距離とゲインGの関係
を規定するテーブルを有し、この関数またはテーブルに
よりゲインGを決定し、ステップ202で初期値に設定
されていたゲインGの設定値を本ステップで決定された
値に決定する。
In this step, a function for calculating the gain G from the focal length or a table for defining the relationship between the focal length and the gain G is provided. The gain G is determined by the function or the table. The set value of the gain G set to the value is determined to the value determined in this step.

【0029】これにより、後に続くステップ207では
ステップ202で設定されたゲインの初期値ではなく、
ステップ305で再設定されたゲインによりゲイン調整
を行うこととなる。
As a result, in the following step 207, the initial value of the gain set in the step 202 is used instead of the initial value.
In step 305, the gain is adjusted based on the gain reset.

【0030】このように、輝度信号の均一度合いがしき
い値以下の時にゲイン調整時の(ステップ207)のゲ
インを通常の手振れ補正時のゲインの設定値に比べ小さ
く設定し、且つ焦点距離に応じて更に小さく設定する
と、振れ補正信号発生部2から補正レンズ1に送られる
制御信号自体が小さくなり、全体の応答性を落とすこと
ができる。
As described above, when the degree of uniformity of the luminance signal is equal to or less than the threshold value, the gain at the time of the gain adjustment (step 207) is set smaller than the gain set value at the time of the normal camera shake correction, and the focal length is reduced. If the value is set to a smaller value, the control signal itself sent from the shake correction signal generator 2 to the correction lens 1 becomes smaller, and the overall responsiveness can be reduced.

【0031】以上のように本実施の形態では、撮像信号
が低コントラストであるとき、輝度信号の判別手段によ
る判別結果と前記ゲイン調整の両者に基づき振れ補正信
号発生部2の応答特性を変化させることで振れ補正時の
周辺光量の劣化を防止できる。
As described above, in the present embodiment, when the image pickup signal has a low contrast, the response characteristic of the shake correction signal generator 2 is changed based on both the result of the determination by the luminance signal determining means and the gain adjustment. As a result, it is possible to prevent deterioration of the peripheral light amount at the time of shake correction.

【0032】(実施の形態3)以下、本発明の実施の形
態3における画像動き補正装置について説明する。本実
施の形態では、本発明の実施の形態1に対し、振れ補正
信号発生部2での処理内容のみが異なるため、以下その
動作を動き補正信号発生手段2での処理をもとに説明す
る。なお、本発明の実施の形態1と同様の処理内容部分
に関しては図3及び図4と同様の同一の符号を付して説
明は省略する。前述の実施の形態と異なるステップとし
て、本実施の形態では図5のステップ405において、
ステップ204で算出された焦点距離に基づき補正レン
ズ1の補正範囲を越えないように信号幅を制限するクリ
ップ処理を行う際のクリップ値を決定している。
(Embodiment 3) An image motion compensating apparatus according to Embodiment 3 of the present invention will be described below. In the present embodiment, since only the processing contents in the shake correction signal generation unit 2 are different from those in the first embodiment of the present invention, the operation will be described below based on the processing in the motion correction signal generation means 2. . It should be noted that the same processing contents as those in the first embodiment of the present invention are denoted by the same reference numerals as those in FIGS. 3 and 4, and description thereof is omitted. As a step different from the above-described embodiment, in the present embodiment, in step 405 of FIG.
Based on the focal length calculated in step 204, a clip value for performing a clip process for limiting a signal width so as not to exceed the correction range of the correction lens 1 is determined.

【0033】以上のように構成された本実施の形態の画
像動き補正装置について、以下その動作について説明す
る。
The operation of the image motion compensating apparatus of the present embodiment configured as described above will be described below.

【0034】まず、ステップ201にて動き検出部8か
らのデータの取り込みを行い、ステップ202で積分定
数、ゲイン、クリップの初期化を行う。次に、ステップ
203で輝度信号のばらつき度合いを判定し、ばらつき
度合いがしきい値以上であると判断された場合(高コン
トラスト)はステップ202で設定された初期値に基づ
きステップ206〜208の処理が行われる。ステップ
203でしきい値以下であると判断された場合(低コン
トラスト)は、まずステップ204において焦点距離情
報4から検出した焦点距離情報を元に撮像レンズ3のズ
ーム倍率を求めることができる。
First, in step 201, data is taken in from the motion detecting section 8, and in step 202, an integration constant, a gain, and a clip are initialized. Next, in step 203, the degree of variation of the luminance signal is determined. If it is determined that the degree of variation is equal to or greater than the threshold value (high contrast), the processing in steps 206 to 208 is performed based on the initial value set in step 202. Is performed. If it is determined in step 203 that the value is equal to or smaller than the threshold (low contrast), the zoom magnification of the imaging lens 3 can be obtained based on the focal length information detected from the focal length information 4 in step 204.

【0035】次のステップ405は、ステップ208に
おいて振れ補正信号発生部2の出力が補正レンズ1の補
正範囲を超えることがないようにクリップ処理を行う際
のクリップ値Cを決定する。
In the next step 405, a clip value C for performing the clipping process is determined so that the output of the shake correction signal generator 2 does not exceed the correction range of the correction lens 1 in step 208.

【0036】本ステップは、内部に焦点距離からクリッ
プ値Cを計算する関数、もしくは焦点距離とクリップ値
Cの関係を規定するテーブルを有し、この関数またはテ
ーブルによりクリップ値Cを決定し、ステップ202で
初期値に設定されていたクリップ値Cの設定値を本ステ
ップで決定された値に決定する。
This step has a function for calculating the clip value C from the focal length or a table for defining the relationship between the focal length and the clip value C. The clip value C is determined by this function or table. In step 202, the set value of the clip value C set as the initial value is determined to the value determined in this step.

【0037】これにより、後に続くステップ208では
ステップ202で設定されたクリップ値の初期値ではな
く、ステップ405で再設定されたクリップ値によりク
リップ処理を行うこととなる。
As a result, in the subsequent step 208, clip processing is performed using the clip value reset in step 405 instead of the initial value of the clip value set in step 202.

【0038】このように、輝度信号の均一度合いがしき
い値以下の時にクリップ処理のクリップ値を通常の手振
れ補正時のクリップ値の設定値に比べ小さく設定し、且
つ焦点距離に応じて更に小さく設定すると、振れ補正信
号発生部2から補正レンズ1に送られる制御信号幅を小
さく設定でき、つまり振れの補正範囲が狭められるため
結果として輝度信号の均一度合いが小さいときの補正の
度合いを少なくできる。
As described above, when the degree of uniformity of the luminance signal is equal to or less than the threshold value, the clip value of the clip processing is set to be smaller than the set value of the clip value at the time of normal camera shake correction, and further reduced according to the focal length. When set, the width of the control signal sent from the shake correction signal generation unit 2 to the correction lens 1 can be set small, that is, the correction range of the shake is narrowed, and as a result, the degree of correction when the uniformity of the luminance signal is small can be reduced. .

【0039】以上のように本実施の形態では、撮像信号
が低コントラストであるとき、輝度信号の判別手段によ
る判別結果と前記クリップ処理の両者に基づき制御信号
の応答特性を変化させることで振れ補正時の周辺光量の
劣化を防止できる。
As described above, in the present embodiment, when the image pickup signal has a low contrast, the shake correction is performed by changing the response characteristic of the control signal based on both the determination result by the luminance signal determination means and the clip processing. The deterioration of the peripheral light quantity at the time can be prevented.

【0040】[0040]

【発明の効果】以上のように本発明によれば、撮像信号
が低コントラストの際における、振れ補正時の周辺光量
の劣化を防止できるという優れた効果を奏するものであ
る。
As described above, according to the present invention, there is an excellent effect that it is possible to prevent deterioration of the peripheral light amount at the time of shake correction when the imaging signal has a low contrast.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1による画像動き補正装置
を示すブロック図
FIG. 1 is a block diagram showing an image motion correcting apparatus according to a first embodiment of the present invention.

【図2】本発明の実施の形態1における輝度均一度合い
判別の処理内容を説明するための模式図
FIG. 2 is a schematic diagram for explaining processing content of luminance uniformity determination according to the first embodiment of the present invention.

【図3】本発明の実施の形態1における振れ補正信号発
生部2での処理内容を説明するためのフローチャート
FIG. 3 is a flowchart for explaining processing contents in a shake correction signal generation unit 2 according to the first embodiment of the present invention;

【図4】本発明の実施の形態2における振れ補正信号発
生部2での処理内容を説明するためのフローチャート
FIG. 4 is a flowchart for explaining processing contents in a shake correction signal generation unit 2 according to a second embodiment of the present invention.

【図5】本発明の実施の形態3における振れ補正信号発
生部2での処理内容を説明するためのフローチャート
FIG. 5 is a flowchart for explaining processing contents in a shake correction signal generation unit 2 according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 補正レンズ 2 振れ補正信号発生部 3 撮像レンズ 5 撮像素子 6 信号処理部 7 輝度均一度合い判別部 8 動き検出部 REFERENCE SIGNS LIST 1 correction lens 2 shake correction signal generation unit 3 imaging lens 5 imaging device 6 signal processing unit 7 brightness uniformity determination unit 8 motion detection unit

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 撮像装置の動きを検出する動き検出手段
と、複数のレンズ群から構成され焦点距離が可変可能な
撮像光学系と、前記撮像光学系の焦点距離を検出する焦
点距離検出手段と、前記撮像光学系の出力を光電変換す
るための撮像素子と、撮像装置の動きに起因して発生す
る撮影画像の動きを補正する動き補正手段と、前記撮像
素子からの輝度信号を複数の領域に分けて均一度合いを
判別する輝度信号判別手段と、前記輝度信号判別手段か
らの均一度合い判別結果と前記動き検出手段からの動き
情報に基づき前記動き補正手段を制御する振れ補正信号
発生手段とを備えたことを特徴とする画像動き補正装
置。
1. A movement detecting means for detecting a movement of an image pickup apparatus, an image pickup optical system comprising a plurality of lens groups and having a variable focal length, and a focal length detecting means for detecting a focal length of the image pickup optical system. An image sensor for photoelectrically converting an output of the image pickup optical system, a motion correcting unit for correcting a motion of a captured image generated due to a motion of the image pickup apparatus, and a luminance signal from the image sensor for a plurality of regions. Brightness signal discriminating means for discriminating the degree of uniformity, and shake correction signal generating means for controlling the motion correcting means based on the uniformity discrimination result from the luminance signal discriminating means and motion information from the motion detecting means. An image motion compensating device comprising:
【請求項2】 撮像装置の動きを検出する動き検出手段
と、複数のレンズ群から構成され焦点距離が可変可能な
撮像光学系と、前記撮像光学系の焦点距離を検出する焦
点距離検出手段と、前記撮像光学系の出力を光電変換す
るための撮像素子と、撮像装置の動きに起因して発生す
る撮影画像の動きを補正する動き補正手段と、前記撮像
素子からの輝度信号を複数の領域に分けて均一度合いを
判別する輝度信号判別手段と、前記輝度信号判別手段か
らの均一度合い判別結果と前記動き検出手段からの動き
情報に基づき前記動き補正手段を制御する振れ補正信号
発生手段とを備え、前記振れ補正信号発生手段は、前記
動き検出手段の出力信号を積分するための積分手段を有
し、前記輝度信号の判別手段による判別結果と前記焦点
距離の両者に基づき前記積分の時定数を変えることで応
答特性を変化させることを特徴とする画像動き補正装
置。
2. An imaging optical system comprising a plurality of lens groups and having a variable focal length, and a focal length detecting unit detecting a focal length of the imaging optical system. An image sensor for photoelectrically converting an output of the image pickup optical system, a motion correcting unit for correcting a motion of a captured image generated due to a motion of the image pickup apparatus, and a luminance signal from the image sensor for a plurality of regions. Brightness signal discriminating means for discriminating the degree of uniformity, and shake correction signal generating means for controlling the motion correcting means based on the uniformity discrimination result from the luminance signal discriminating means and motion information from the motion detecting means. Wherein the shake correction signal generation means has integration means for integrating the output signal of the motion detection means, and based on both the determination result of the luminance signal determination means and the focal length. An image motion compensator, wherein a response characteristic is changed by changing a time constant of the integration.
【請求項3】 振れ補正信号発生手段は、輝度信号判別
手段で判別した輝度信号の均一度合いが小さい場合は積
分の時定数を短く設定することを特徴とする請求項2記
載の画像動き補正装置。
3. The image motion compensator according to claim 2, wherein the shake correction signal generating means sets a short time constant of integration when the degree of uniformity of the luminance signal determined by the luminance signal determining means is small. .
【請求項4】 撮像装置の動きを検出する動き検出手段
と、複数のレンズ群から構成され焦点距離が可変可能な
撮像光学系と、前記撮像光学系の焦点距離を検出する焦
点距離検出手段と、前記撮像光学系の出力を光電変換す
るための撮像素子と、撮像装置の動きに起因して発生す
る撮影画像の動きを補正する動き補正手段と、前記撮像
素子からの輝度信号を複数の領域に分けて均一度合いを
判別する輝度信号判別手段と、前記輝度信号判別手段か
らの均一度合い判別結果と前記動き検出手段からの動き
情報に基づき前記動き補正手段を制御する振れ補正信号
発生手段とを備え、前記振れ補正信号発生手段は、その
内部で発生する前記動き補正手段を制御するための制御
信号のゲインを調整し、前記輝度信号判別手段による判
別結果と前記焦点距離の両者に基づき前記制御信号のゲ
インを変えることで応答特性を変化させることを特徴と
する画像動き補正装置。
4. A motion detecting means for detecting a motion of the image pickup apparatus, an image pickup optical system comprising a plurality of lens groups and having a variable focal length, and a focal length detecting means detecting the focal length of the image pickup optical system. An image sensor for photoelectrically converting an output of the image pickup optical system, a motion correcting unit for correcting a motion of a captured image generated due to a motion of the image pickup apparatus, and a luminance signal from the image sensor for a plurality of regions. Brightness signal discriminating means for discriminating the degree of uniformity, and shake correction signal generating means for controlling the motion correcting means based on the uniformity discrimination result from the luminance signal discriminating means and motion information from the motion detecting means. The shake correction signal generating means adjusts the gain of a control signal for controlling the motion correction means generated inside the shake correction signal generation means, and determines the determination result by the luminance signal determination means and the focal length. An image motion compensating apparatus, wherein a response characteristic is changed by changing a gain of the control signal based on both of the separation.
【請求項5】 振れ補正信号発生手段は、輝度信号判別
手段で判別した輝度信号の均一度合いが小さい場合は制
御信号のゲインを小さく設定したことを特徴とする請求
項4記載の画像動き補正装置。
5. The image motion compensator according to claim 4, wherein the shake correction signal generating means sets the gain of the control signal to be small when the degree of uniformity of the luminance signal determined by the luminance signal determining means is small. .
【請求項6】 撮像装置の動きを検出する動き検出手段
と、複数のレンズ群から構成され焦点距離が可変可能な
撮像光学系と、前記撮像光学系の焦点距離を検出する焦
点距離検出手段と、前記撮像光学系の出力を光電変換す
るための撮像素子と、撮像装置の動きに起因して発生す
る撮影画像の動きを補正する動き補正手段と、前記撮像
素子からの輝度信号を複数の領域に分けて均一度合いを
判別する輝度信号判別手段と、前記輝度信号判別手段か
らの均一度合い判別結果と前記動き検出手段からの動き
情報に基づき前記動き補正手段を制御する振れ補正信号
発生手段とを備え、前記振れ補正信号発生手段は、その
内部で発生する前記動き補正手段を制御するための制御
信号の信号幅を制限し、前記輝度信号判別手段による判
別結果と前記焦点距離の両者に基づき前記信号幅を変え
ることで応答特性を変化させることを特徴とする画像動
き補正装置。
6. A motion detecting means for detecting a motion of an image pickup apparatus, an image pickup optical system comprising a plurality of lens groups and a variable focal length, and a focal length detecting means for detecting a focal length of the image pickup optical system. An image sensor for photoelectrically converting an output of the image pickup optical system, a motion correcting unit for correcting a motion of a captured image generated due to a motion of the image pickup apparatus, and a luminance signal from the image sensor for a plurality of regions. Brightness signal discriminating means for discriminating the degree of uniformity, and shake correction signal generating means for controlling the motion correcting means based on the uniformity discrimination result from the luminance signal discriminating means and motion information from the motion detecting means. Wherein the shake correction signal generation means limits a signal width of a control signal for controlling the motion correction means generated inside the shake correction signal generation means, and a determination result by the luminance signal determination means and the focal length. An image motion compensator wherein response characteristics are changed by changing the signal width based on both of the separation.
【請求項7】 振れ補正信号発生手段は、輝度信号判別
手段で判別した輝度信号の均一度合いが小さい場合は制
御信号の信号幅を小さく制限することを特徴とする請求
項6記載の画像動き補正装置。
7. The image motion compensation according to claim 6, wherein the shake correction signal generation means limits the signal width of the control signal to a small value when the degree of uniformity of the luminance signal determined by the luminance signal determination means is small. apparatus.
JP05821399A 1999-03-05 1999-03-05 Image motion correction device Expired - Fee Related JP4195950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05821399A JP4195950B2 (en) 1999-03-05 1999-03-05 Image motion correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05821399A JP4195950B2 (en) 1999-03-05 1999-03-05 Image motion correction device

Publications (2)

Publication Number Publication Date
JP2000261710A true JP2000261710A (en) 2000-09-22
JP4195950B2 JP4195950B2 (en) 2008-12-17

Family

ID=13077788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05821399A Expired - Fee Related JP4195950B2 (en) 1999-03-05 1999-03-05 Image motion correction device

Country Status (1)

Country Link
JP (1) JP4195950B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11202001B2 (en) 2018-11-15 2021-12-14 Canon Kabushiki Kaisha Image stabilization apparatus and method, and image capturing apparatus

Also Published As

Publication number Publication date
JP4195950B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
US10356321B2 (en) Imaging apparatus with focus adjustment control and exposure adjustment control
JP3745067B2 (en) Imaging apparatus and control method thereof
US6424372B1 (en) Electronic image-movement correcting device with a variable correction step feature
US6618091B1 (en) Image pickup apparatus having image signal state adjusting means a response characteristic of which is controlled in accordance with image magnification rate
JPH09322057A (en) Image pickup device
JP3250245B2 (en) Anti-vibration camera
JP3424063B2 (en) Image motion compensation device
JP3564247B2 (en) Image motion compensation device
JP3614617B2 (en) Image motion correction device
US8817127B2 (en) Image correction device for image capture device and integrated circuit for image correction device
JPH09163215A (en) Image pickup device
JP2002359768A (en) Device and method for correcting motion of image
WO2017104102A1 (en) Imaging device
JP2002148670A (en) Blur correcting device, controller applied to blur correcting device, control method applied to blur correcting device, control program applied to blur correcting device, and imaging unit
JP2003101866A (en) Optical device
JP4195950B2 (en) Image motion correction device
JP3610210B2 (en) Imaging device and interchangeable lens type imaging device
JP2005258277A (en) Image movement compensation device
JP2006203493A (en) Image movement correction device
JP3591357B2 (en) Image motion compensation device
JP2003333438A (en) Image motion correcting device
JP3382481B2 (en) Imaging device
JP7269119B2 (en) Image blur correction control device, camera body, lens unit, image blur correction control method, and program
JPH11266390A (en) Image pickup device
JPH08294041A (en) Image pickup device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees