JP2000230932A - Method for processing carbon nanotube - Google Patents

Method for processing carbon nanotube

Info

Publication number
JP2000230932A
JP2000230932A JP11033368A JP3336899A JP2000230932A JP 2000230932 A JP2000230932 A JP 2000230932A JP 11033368 A JP11033368 A JP 11033368A JP 3336899 A JP3336899 A JP 3336899A JP 2000230932 A JP2000230932 A JP 2000230932A
Authority
JP
Japan
Prior art keywords
carbon nanotube
plating
diameter
nanotube
carbon nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11033368A
Other languages
Japanese (ja)
Inventor
Kuninori Nishio
國憲 西尾
Teruuchi Terachi
照内 寺地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP11033368A priority Critical patent/JP2000230932A/en
Publication of JP2000230932A publication Critical patent/JP2000230932A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a processing method increasing the thickness of a carbon nanotube up to a size visible by an electron microscope by plating and processing the nanotube in this state before etching the same to restore the original diameter thereof. SOLUTION: Silver plating or electroless nickel plating is applied to a carbon nanotube with an average diameter nanometer until the thickness of the nanotube becomes a micron order, the plated carbon nanotube is fused to a probe base material of STM or AFM, and only the leading end part thereof is subjected to etching treatment to remove the plated portion to form a probe with a diameter of several nanometers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電界放射のエミッター
やSTM,AFMのプローブなどの機能材料又は複合強
化材料などの構造用材料として期待出来るカーボンナノ
チューブの加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing carbon nanotubes which can be expected as structural materials such as functional materials such as field emission emitters, STM and AFM probes, and composite reinforcing materials.

【0002】[0002]

【従来の技術および課題】近年ナノメーターの領域の物
質の研究が進み、その中でも特徴ある構造を有すす固体
炭素が注目されている。例えば、サッカーボール型C60
カーボンクラスターを初めとするフラーレン(full
urene)や球面状黒鉛層からなるたまねぎ状構造を
した炭素粒子(Bucky onion)が最近の固体
物理の分野で盛んに取り上げられている。また、199
1年にはフラーレン分子の関連物質として新しいタイプ
の炭素繊維であるカーボンナノチューブが発見された。
このカーボンナノチューブは直径1〜30nm、長さ1
μm程度の繊維状のものであり、グラファイト構造を持
つシートが円筒状に丸まりこれが入れ子状に配置した構
造である。
2. Description of the Related Art In recent years, research on substances in the nanometer range has been advanced, and among them, solid carbon having a characteristic structure has attracted attention. For example, soccer ball type C60
Fullerenes including carbon clusters
Carbon particles (Bucky onions) having an onion-like structure composed of a urene) or a spherical graphite layer have been actively taken up in the field of solid-state physics recently. 199
One year, a new type of carbon fiber, a carbon nanotube, was discovered as a related substance of fullerene molecules.
This carbon nanotube has a diameter of 1 to 30 nm and a length of 1
It is a fibrous material having a thickness of about μm, and has a structure in which a sheet having a graphite structure is rolled into a cylindrical shape and nested.

【0003】これらの物質は科学的な側面だけでなく実
用材料として興味が持たれている。例えばC60結晶にK
をドープすることにより超伝導性を示すことが知られて
いる。また、カーボンナノチューブは究極の炭素繊維と
いえる構造を持っており、化学的特性、電子的特性、力
学的特性及び新機能の発現に大きな期待を寄せられてい
る。実際、電界放射のエミッターやSTM,AFMのプ
ローブとして用いた研究がなされている。更に、これら
の力学的特性は従来の炭素繊維を凌ぐ強度と剛性を持つ
と期待され、最近の研究では塑性変形の可能性も示され
ている。
[0003] These substances are of interest not only for scientific aspects but also as practical materials. For example, K to C60 crystal
Is known to exhibit superconductivity by doping. Further, carbon nanotubes have a structure that can be said to be the ultimate carbon fiber, and are expected to exhibit chemical, electronic, mechanical and new functions. In fact, studies have been made on using it as an emitter for field emission and as a probe for STM and AFM. Furthermore, these mechanical properties are expected to have strength and rigidity exceeding conventional carbon fibers, and recent studies have shown the possibility of plastic deformation.

【0004】さらに、カーボンナノチューブの作成方法
は、CVD法、アーク法、レーザーアブレイション法の
3通りが現在行われており、この製法でカーボンナノチ
ューブを作り,遠心法、電気泳動法等で精製することに
より、ある程度カーボンナノチューブが作成できるよう
になってきた。の加工方法材料とする。
[0004] Furthermore, three methods of producing carbon nanotubes are currently performed, namely, a CVD method, an arc method, and a laser ablation method. Carbon nanotubes are produced by this method and purified by a centrifugation method, an electrophoresis method or the like. This has made it possible to produce carbon nanotubes to some extent. Processing method material.

【0005】ところが、このように作成されたカーボン
ナノチューブを加工しようにも、直径数ナノメートルと
いう微小なため、電子顕微鏡でも容易にみることができ
ないため、これを切断、接着等の加工をして実用化する
ことが困難であった。
[0005] However, the carbon nanotubes produced in this manner cannot be easily seen even with an electron microscope because they have a small diameter of several nanometers. It was difficult to put it to practical use.

【0006】そこで、この発明の目的は、カーボンナノ
チューブを電子顕微鏡で見える大きさまでメッキ等によ
り厚みを増し、その状態で加工し、その後エッチング等
なより、元の径にする加工方法を提供するものである。
Accordingly, an object of the present invention is to provide a processing method of increasing the thickness of a carbon nanotube by plating or the like to a size that can be seen with an electron microscope, processing the carbon nanotube in that state, and then etching the carbon nanotube to obtain the original diameter. It is.

【0007】[0007]

【課題を解決するための手段】本発明は、前記従来の欠
点を解決するためになされたもので、本発明の請求項1
記載のカーボンナノチューブの加工方法においては、平
均径ナノメートルのカーボンナノチューブに銀メッキま
たは無電解ニッケルメッキ等により厚さミクロンになる
までメッキ処理し、そのメッキされたカーボンナノチュ
ーブをSTM,ATMのプローブ基材に溶着し、先端部
分だけエッチング処理によりメッキ部を除去して直径ナ
ノメートルのプローブを作成するようにしたものであ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional drawbacks.
In the method for processing carbon nanotubes described above, a carbon nanotube having an average diameter of nanometers is plated by silver plating or electroless nickel plating to a thickness of micron, and the plated carbon nanotube is subjected to STM or ATM probe base. The probe is welded to the material, and only the tip portion is etched to remove the plated portion to produce a nanometer probe.

【0008】[0008]

【作用】本発明のカーボンナノチューブの加工方法にお
いては、カーボンナノチューブを電子顕微鏡で見える大
きさまでメッキ等により厚みを増し、その状態で加工
し、その後エッチング等なより、元の径にするので、容
易に加工でき、直径数ナノメートルのカーボンナノチュ
ーブの特性を発揮させることができる。
In the method for processing carbon nanotubes of the present invention, the carbon nanotubes are increased in thickness by plating or the like to a size that can be seen with an electron microscope, processed in that state, and then returned to the original diameter by etching or the like. And can exhibit the characteristics of carbon nanotubes having a diameter of several nanometers.

【0009】[0009]

【実施例】まず、カーボンナノチューブの作成方法は、
CVD法、アーク法、レーザーアブレイション法の3通
りにより行い、得られたカーボンナノチューブの煤を、
遠心法、電気泳動法等で精製する。
First, a method for producing carbon nanotubes is as follows.
Performed by the CVD method, the arc method, and the laser ablation method, and obtained the soot of the carbon nanotube,
Purify by centrifugation, electrophoresis, etc.

【0010】次に、得られたカーボンナノチューブの径
を太くするためメタライジングするわけであるが、メタ
ライジング方法としては、真空下での金属蒸着あるいは
それに類する方法とメッキによる方法の二つがあげられ
る。
Next, metallizing is performed to increase the diameter of the obtained carbon nanotube. There are two metallizing methods: metal deposition under vacuum or a method similar thereto, and plating. .

【0011】本実施例ではメタライジング法としてはメ
ッキ法を使用した。所で、かかる無電解メッキは、洗浄
等の細かい工程を略すると次の三工程に従って実施し
た、即ち、(1)前処理(2)触媒付与・活性化処理
(3)無電解メッキ処理である。無電解メッキ処理で
は、例えば塩化ニッケルと還元剤とを組合せた液で処理
し、ニッケル無電解メッキ層を形成せしめることにな
る。
In this embodiment, a plating method is used as the metallizing method. Incidentally, such electroless plating is performed in accordance with the following three steps if fine steps such as cleaning are omitted, that is, (1) pretreatment, (2) catalyst application / activation treatment, and (3) electroless plating treatment. . In the electroless plating process, for example, a nickel electroless plating layer is formed by treating with a solution in which nickel chloride and a reducing agent are combined.

【0012】かくして得られた無電解メッキ層を数ミク
ロン施したカーボンナノチューブを電子顕微鏡で見なが
ら、STMまたはAFMのプローブ基材にマニュプレー
タの操作で容易に溶着し、その後プローブに必要な先端
部分だけエッチング処理してメッキを剥がすことによ
り、先端径数ナノメートルという極細のプローブを作成
できた。ここで、例えばチタン入り銀ろうのような活性
金属を前処理として入れておくと、STMまたはAFM
のプローブ基材への溶着が容易となる。
While observing the thus obtained carbon nanotubes coated with the electroless plating layer by several microns with an electron microscope, the carbon nanotubes are easily welded to the STM or AFM probe base material by manipulator operation, and then only the tip necessary for the probe is formed. By peeling off the plating by etching, an extremely fine probe with a tip diameter of several nanometers could be made. Here, if an active metal such as silver solder containing titanium is added as a pretreatment, STM or AFM is used.
Is easily welded to the probe base material.

【0013】[0013]

【発明の効果】以上の説明から明らかなように、本発明
のカーボンナノチューブの加工方法においては、カーボ
ンナノチューブを電子顕微鏡で見える大きさまでメッキ
等により厚みを増し、その状態で加工し、その後エッチ
ング等なより、元の径にするので、容易に加工でき、直
径数ナノメートルのカーボンナノチューブの特性を発揮
させることができる加工方法を提供できる。
As is apparent from the above description, in the method for processing carbon nanotubes of the present invention, the thickness of carbon nanotubes is increased by plating or the like to a size that can be seen with an electron microscope, processed in that state, and then etched. In particular, since the original diameter is used, it is possible to provide a processing method that can be easily processed and can exhibit the characteristics of carbon nanotubes having a diameter of several nanometers.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年2月17日(1999.2.1
7)
[Submission date] February 17, 1999 (1999.2.1
7)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0004】さらに、カーボンナノチューブの作成方法
は、CVD法、アーク法、レーザーアブレイション法の
3通りが現在行われており、この製法でカーボンナノチ
ューブを作り,遠心法、電気泳動法等で精製することに
より、ある程度カーボンナノチューブが作成できるよう
になってきた。
[0004] Furthermore, three methods of producing carbon nanotubes are currently performed, namely, a CVD method, an arc method, and a laser ablation method. Carbon nanotubes are produced by this method and purified by a centrifugation method, an electrophoresis method or the like. This has made it possible to produce carbon nanotubes to some extent.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均径ナノメートルのカーボンナノチュ
ーブに銀メッキまたは無電解ニッケルメッキ等により厚
さミクロンになるまでメッキ処理し、そのメッキされた
カーボンナノチューブをSTMまたはAFMのプローブ
基材に溶着し、先端部分だけエッチング処理によりメッ
キ部を除去して直径ナノメートルのプローブを作成する
ことを特徴とするカーボンナノチューブの加工方法。
1. A carbon nanotube having an average diameter of nanometers is plated by silver plating or electroless nickel plating to a thickness of micron until the plated carbon nanotube is welded to an STM or AFM probe base material. A method for processing a carbon nanotube, wherein a plating part is removed by etching only a tip part to form a nanometer-diameter probe.
JP11033368A 1999-02-10 1999-02-10 Method for processing carbon nanotube Withdrawn JP2000230932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11033368A JP2000230932A (en) 1999-02-10 1999-02-10 Method for processing carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11033368A JP2000230932A (en) 1999-02-10 1999-02-10 Method for processing carbon nanotube

Publications (1)

Publication Number Publication Date
JP2000230932A true JP2000230932A (en) 2000-08-22

Family

ID=12384653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11033368A Withdrawn JP2000230932A (en) 1999-02-10 1999-02-10 Method for processing carbon nanotube

Country Status (1)

Country Link
JP (1) JP2000230932A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022499A1 (en) * 2000-09-18 2002-03-21 President And Fellows Of Harvard College Fabrication of nanotube microscopy tips
WO2004102582A1 (en) * 2003-03-05 2004-11-25 University Of Florida Carbon nanotube-based probes, related devices and methods of forming the same
KR20080053571A (en) * 2006-12-11 2008-06-16 광주과학기술원 Method for analysing nano-structure using electron microscope
KR101185009B1 (en) 2004-12-24 2012-09-21 재단법인 포항산업과학연구원 Manufacturing method of metal composite carbon nano tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022499A1 (en) * 2000-09-18 2002-03-21 President And Fellows Of Harvard College Fabrication of nanotube microscopy tips
WO2004102582A1 (en) * 2003-03-05 2004-11-25 University Of Florida Carbon nanotube-based probes, related devices and methods of forming the same
KR101185009B1 (en) 2004-12-24 2012-09-21 재단법인 포항산업과학연구원 Manufacturing method of metal composite carbon nano tube
KR20080053571A (en) * 2006-12-11 2008-06-16 광주과학기술원 Method for analysing nano-structure using electron microscope

Similar Documents

Publication Publication Date Title
JP3363759B2 (en) Carbon nanotube device and method of manufacturing the same
Cheung et al. Growth and fabrication with single-walled carbon nanotube probe microscopy tips
Stevens et al. Carbon nanotubes as probes for atomic force microscopy
US20080098805A1 (en) Nanotube-Based Nanoprobe Structure and Method for Making the Same
Avigal et al. Growth of aligned carbon nanotubes by biasing during growth
Terrones Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes
Zhong et al. Low temperature synthesis of extremely dense and vertically aligned single-walled carbon nanotubes
US7014743B2 (en) Methods for assembly and sorting of nanostructure-containing materials and related articles
JP4483152B2 (en) Hollow graphene sheet structure, electrode structure, manufacturing method thereof, and device
EP1484435B1 (en) Plasma-treated carbon fibrils and method of making same
US20040136893A1 (en) Carbon nanotube structures and method for manufacturing the same
JP2001064004A (en) Single layer carbon nano-horn structure and its production
Chen et al. Control of carbon nanotube morphology by change of applied bias field during growth
JP4259023B2 (en) Carbon nanotube device manufacturing method and carbon nanotube device
TW200307574A (en) Method for assembling nano objects
Stevens et al. Carbon nanotube scanning probe for imaging in aqueous environment
Ikuno et al. Metal-coated carbon nanotube tip for scanning tunneling microscope
JP2000230932A (en) Method for processing carbon nanotube
JP2000233911A (en) Method for processing carbon nanotube
Kharissova Vertically aligned carbon nanotubes fabricated by microwaves
Ma et al. Novel BN tassel-like and tree-like nanostructures
Murata et al. Exploiting metal coating of carbon nanotubes for scanning tunneling microscopy probes
US7585420B2 (en) Carbon nanotube substrates and catalyzed hot stamp for polishing and patterning the substrates
JP2006219358A (en) Nanocarbon and method for producing the nanocarbon
Ugarte Structure of carbon particles formed by curved graphene sheets (fullerenes, nanotubes): an electron microscopy study

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509