JP2000228374A - Method for forming metallic thin film, and manufacture of metallic fine particle scattering solution - Google Patents

Method for forming metallic thin film, and manufacture of metallic fine particle scattering solution

Info

Publication number
JP2000228374A
JP2000228374A JP11239355A JP23935599A JP2000228374A JP 2000228374 A JP2000228374 A JP 2000228374A JP 11239355 A JP11239355 A JP 11239355A JP 23935599 A JP23935599 A JP 23935599A JP 2000228374 A JP2000228374 A JP 2000228374A
Authority
JP
Japan
Prior art keywords
metal
thin film
substrate
organic solvent
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11239355A
Other languages
Japanese (ja)
Other versions
JP3953237B2 (en
Inventor
Masaaki Hirakawa
正明 平川
Chiaki Tanaka
千晶 田中
Hirohiko Murakami
村上  裕彦
Hiroyuki Yamakawa
洋幸 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP23935599A priority Critical patent/JP3953237B2/en
Publication of JP2000228374A publication Critical patent/JP2000228374A/en
Application granted granted Critical
Publication of JP3953237B2 publication Critical patent/JP3953237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To readily embed a wiring metal in a recess part with respect to a semiconductor substrate, having the recess such as a wiring groove, a via hole, a contact hole, or the like. SOLUTION: In this method for forming a metallic thin film, a metallic fine particle scattering solution, in which a metal atomic aggregate is scatted in an organic solvent is made, and this scattering solution is coated on a semiconductor substrate, and the substrate forming the coated film is burnt to evaporate and ignite an organic matter. Furthermore if desirable, after burning, an oxide caused by burning is reduced, whereby a metal thin film 2 is formed, and thereafter, a metal to be used as a wiring is embedded in the recess of a wiring groove, a via hole, and a contact hole. A mixture solution of the organic solvent, a surfactant, an organic metal compound is heated, whereby metal atoms are separated, and the metal atomic aggregate is prepared, thereby forming a scattering solution of the metal atomic aggregate which is made stabilized by the surfactant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、LSI基板などの
半導体基板上へのCu、Ag等の配線に利用する金属の
埋め込みを容易にするための金属薄膜形成方法、および
該金属薄膜の形成後、配線金属で半導体基板上の配線
溝、ビアホール、コンタクトホール等の凹部を埋め込む
金属配線形成方法、ならびに該金属薄膜を形成するため
に用いる金属微粒子分散液の作製方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a metal thin film for facilitating embedding of a metal used for wiring such as Cu and Ag on a semiconductor substrate such as an LSI substrate, and a method for forming the metal thin film after forming the metal thin film. The present invention also relates to a method for forming a metal wiring for embedding recesses such as wiring grooves, via holes, and contact holes on a semiconductor substrate with a wiring metal, and a method for preparing a metal fine particle dispersion used for forming the metal thin film.

【0002】[0002]

【従来の技術】近年の半導体産業におけるLSIの高集
積化および高速化により、半導体基板の配線の微細化と
多層化が進んでいる。そのために配線ピッチが狭まり、
配線間容量や配線遅延によるLSIの性能低下が起こ
る。これを防ぐために、電気抵抗率の低い配線材料と誘
電率の低い層間絶縁膜を用いる必要に迫られ、配線材料
として、従来のAl合金等の代わりに電気抵抗率の低
い、かつ、エレクトロマイグレーション(EM)耐性の
高いCu、Agを使用する動きが活発になってきてい
る。Cu成膜技術としてはスパッタ法、CVD法、メッ
キ法等があり、配線溝、ビアホール、コンタクトホール
等にCuを堆積させる方法が開発されている。これらの
方法のうちメッキ法によりCuを成膜する際には、前処
理として、スパッタ法、CVD法によりCuシード層と
してCu薄膜をつける必要がある。また、Ag成膜技術
としては、スパッタ法等で配線溝、ビアホール、コンタ
クトホール等にAg薄膜を堆積させる方法が研究されて
いる。
2. Description of the Related Art With the recent increase in the degree of integration and speed of LSIs in the semiconductor industry, finer wiring and multi-layering of semiconductor substrates have been promoted. As a result, the wiring pitch narrows,
The performance of the LSI is degraded due to the capacitance between wirings and wiring delay. In order to prevent this, it is necessary to use a wiring material having a low electric resistivity and an interlayer insulating film having a low dielectric constant. As a wiring material, instead of a conventional Al alloy or the like, a low electric resistivity and electromigration ( EM) The use of highly resistant Cu and Ag is becoming active. As a Cu film forming technique, there are a sputtering method, a CVD method, a plating method and the like, and a method of depositing Cu in a wiring groove, a via hole, a contact hole or the like has been developed. Among these methods, when forming a Cu film by a plating method, it is necessary to provide a Cu thin film as a Cu seed layer by a sputtering method or a CVD method as a pretreatment. As the Ag film forming technique, a method of depositing an Ag thin film in a wiring groove, a via hole, a contact hole or the like by a sputtering method or the like has been studied.

【0003】[0003]

【発明が解決しようとする課題】メッキ法でCuを成膜
して配線形成する場合、上記したように、前処理とし
て、スパッタ法、CVD法によりCuシード層であるC
u薄膜を引かなければメッキを行うことができないのだ
が、従来のCu薄膜形成法では、次のような問題があっ
た。スパッタ法を用いて基板(例えば、バリア層を含ん
だSi基板)上にCu薄膜を形成すると、図1に示すよ
うに、基板1上の配線溝やビアホール、コンタクトホー
ル等の底部にCu薄膜2が凸状あるいは平坦に形成され
るため、配線溝やホール等の底部のコーナーがメッキを
行うための最適な形状にならないという問題がある。さ
らに、アスペクト比の高い配線溝やホール等に所期の目
的に適ったCu薄膜を形成することが困難であるという
問題もある。また、CVD法を用いて基板上にCu薄膜
を形成する場合には、得られる膜質を制御することが困
難であり、さらに、プロセスコストも非常に高価になる
という問題がある。また、Ag成膜技術は、上記したよ
うにスパッタ法等で研究されているが、プロセス中の熱
処理により生じるAg凝集を防ぐことが困難であるとい
う問題がある。
In the case of forming a wiring by forming a Cu film by a plating method, as described above, as a pretreatment, a Cu seed layer, which is a Cu seed layer, is formed by a sputtering method or a CVD method.
Although plating cannot be performed unless the u thin film is pulled, the conventional Cu thin film forming method has the following problems. When a Cu thin film is formed on a substrate (for example, a Si substrate including a barrier layer) by a sputtering method, as shown in FIG. 1, a Cu thin film 2 is formed on the bottom of a wiring groove, a via hole, a contact hole, etc. on the substrate 1. Is formed to be convex or flat, so that there is a problem that corners at the bottom of wiring grooves, holes and the like do not have an optimal shape for plating. Further, there is a problem that it is difficult to form a Cu thin film suitable for an intended purpose in a wiring groove or a hole having a high aspect ratio. In addition, when a Cu thin film is formed on a substrate by using the CVD method, it is difficult to control the quality of the obtained film, and further, there is a problem that the process cost becomes extremely high. In addition, although the Ag film forming technique has been studied by the sputtering method or the like as described above, there is a problem that it is difficult to prevent Ag aggregation caused by heat treatment during the process.

【0004】本発明は、この様な従来のCu、Ag膜の
配線形成技術の問題点を解決するためになされたもので
ある。Cu薄膜の場合は、膜質の制御が容易であるこ
と、プロセスコストが安価であることに加え、配線溝、
ビアホールやコンタクトホール等の凹部を有する半導体
基板に対し、凹部にCu薄膜を凹状に形成すること(図
2)で、その後のメッキ法によるCu埋め込みを容易に
し、さらには、スパッタ法、CVD法によるCu埋め込
みをも容易にする方法を提供することを課題とし、ま
た、Ag薄膜の場合は、Cu薄膜の場合と同様に膜質の
制御が容易であること、プロセスコストが安価であるこ
とと共に、プロセス中に生じるAgの凝集を防ぐことの
できる方法を提供することを課題としている。
The present invention has been made to solve such a problem of the conventional wiring forming technology of Cu and Ag films. In the case of a Cu thin film, in addition to easy control of film quality and low process cost, wiring grooves,
By forming a Cu thin film in a concave shape on a semiconductor substrate having a concave portion such as a via hole or a contact hole (FIG. 2), Cu embedding by a subsequent plating method is facilitated, and further, by a sputtering method or a CVD method. It is an object of the present invention to provide a method for facilitating the embedding of Cu. In the case of an Ag thin film, control of film quality is easy as in the case of a Cu thin film, the process cost is low, and the process cost is low. It is an object of the present invention to provide a method capable of preventing aggregation of Ag occurring therein.

【0005】[0005]

【課題を解決するための手段】本発明の金属薄膜形成方
法は、配線溝、ビアホール、コンタクトホール等の凹部
を有する半導体基板上の凹部に凹状に金属薄膜を形成す
るものであり、それによってスパッタ法、メッキ法、C
VD法等により配線材料で該凹部を埋め込むことが容易
になる。
According to the present invention, there is provided a method of forming a metal thin film in a concave shape on a semiconductor substrate having a concave portion such as a wiring groove, a via hole or a contact hole. Method, plating method, C
It becomes easy to fill the recess with a wiring material by a VD method or the like.

【0006】本発明の金属薄膜形成法は、配線溝、ビア
ホール、コンタクトホール等の凹部に配線に利用する金
属を埋め込む前の半導体基板上に、金属原子集合体を有
機溶媒に分散させた金属微粒子分散液を塗布し、塗布膜
の形成された基板を焼成して該基板上の有機物質を蒸
発、燃焼させ、所望により、焼成により生じた酸化物を
還元することによって、該基板上に金属薄膜を形成する
ことからなる。
According to the method of forming a metal thin film of the present invention, metal fine particles obtained by dispersing an aggregate of metal atoms in an organic solvent on a semiconductor substrate before embedding metal used for wiring in recesses such as wiring grooves, via holes, and contact holes. The dispersion liquid is applied, and the substrate on which the coating film is formed is baked to evaporate and burn the organic substance on the substrate, and if necessary, the oxide generated by the calcination is reduced, whereby the metal thin film is formed on the substrate. To form

【0007】前記焼成を、真空雰囲気中、大気雰囲気
中、または真空雰囲気と大気雰囲気との二段階で行うこ
とが好ましく、通常、100〜450℃で、1〜30分
間行われる。焼成温度が100℃未満だと有機物質が十
分に蒸発、燃焼されず、また、450℃を超えると半導
体素子に熱的ダメージを与えるという問題がある。前記
還元は、真空雰囲気中またはほぼ4%以下の水素を含ん
だ不活性ガス雰囲気中で行うことが好ましく、通常、2
00〜450℃で1〜60分間行われる。水素濃度に関
しては、水素の爆発下限がほぼ4%であることから、安
全のために水素濃度を4%程度以下に希釈したガスを用
いることが好ましい。また、還元温度が200℃未満だ
と還元が十分に行われないため、薄膜中に部分的に酸化
銅が残留してしまい、450℃を超えると半導体素子に
熱的ダメージを与えるという問題がある。このような焼
成・還元のプロセスを行うことで、所期の金属薄膜が形
成できる。
The sintering is preferably performed in a vacuum atmosphere, an air atmosphere, or in two stages of a vacuum atmosphere and an air atmosphere, and is usually performed at 100 to 450 ° C. for 1 to 30 minutes. If the firing temperature is lower than 100 ° C., the organic substance is not sufficiently evaporated and burned. If the firing temperature is higher than 450 ° C., the semiconductor element is thermally damaged. The reduction is preferably performed in a vacuum atmosphere or an inert gas atmosphere containing about 4% or less of hydrogen.
It is performed at 00 to 450 ° C. for 1 to 60 minutes. Regarding the hydrogen concentration, since the lower limit of the explosion of hydrogen is almost 4%, it is preferable to use a gas diluted to a hydrogen concentration of about 4% or less for safety. If the reduction temperature is lower than 200 ° C., the reduction is not performed sufficiently, so that copper oxide partially remains in the thin film, and if it exceeds 450 ° C., the semiconductor element is thermally damaged. . By performing such a firing / reducing process, an intended metal thin film can be formed.

【0008】本発明の金属配線形成法は、上記のように
して凹部を有する基板上に予め金属薄膜を形成させた
後、該金属微粒子分散液の塗布工程および焼成工程を繰
り返して該凹部を複数層の金属薄膜で埋め込むか、また
はスパッタ法、メッキ法、CVD法等により、配線に利
用する金属、例えばCu、Agで該基板上の凹部を埋め
込むことからなる。これにより、該凹部を完全に埋め込
むことができる。
In the metal wiring forming method of the present invention, a metal thin film is formed in advance on a substrate having a concave portion as described above, and then the coating and baking steps of the metal fine particle dispersion are repeated to form the plurality of concave portions. The method includes embedding a concave portion on the substrate with a metal used for wiring, for example, Cu or Ag, by embedding with a metal thin film of the layer, or by sputtering, plating, CVD, or the like. Thereby, the concave portion can be completely buried.

【0009】本発明で用いる、金属原子集合体が有機溶
媒に分散してなる金属微粒子分散液としては、以下記載
するような方法で作製する金属微粒子分散液の他に、C
u微粒子が有機溶媒に分散した市販のCu微粒子分散液
(真空冶金株式会社製、パーフェクトカッパー(商品
名))等がある。この市販のCu微粒子分散液は、Cu
がコロイド粒子状態で存在しているものであり、本発明
でいう金属原子集合体分散液の範疇に含まれるものとす
る。
The metal fine particle dispersion obtained by dispersing a metal atom aggregate in an organic solvent used in the present invention includes a metal fine particle dispersion prepared by the method described below,
There are commercially available Cu fine particle dispersions in which u fine particles are dispersed in an organic solvent (Perfect Copper (trade name) manufactured by Vacuum Metallurgy Co., Ltd.) and the like. This commercially available Cu fine particle dispersion is Cu Cu
Is present in the form of colloidal particles, and is included in the category of the metal atom aggregate dispersion according to the present invention.

【0010】本発明の金属微粒子分散液の作製法は、次
の通りである。窒素等の不活性雰囲気下、高沸点の有機
溶媒と非イオン界面活性剤のような界面活性剤との混合
液中に有機金属化合物を滴下し、これを大気中で加熱
(例えば、60℃〜150℃)、撹拌することにより、
該有機金属化合物中の金属原子を析出せしめる。析出し
た金属原子は混合液中のミセルに取り込まれ、その中で
金属原子は金属クラスター乃至微粒子の範囲のサイズか
らなる金属原子集合体に成長し、分散液中で金属クラス
ター乃至微粒子からなる金属原子集合体の状態で存在す
る。このような金属クラスターは原子数個からなるもの
であり、金属微粒子は原子数千個からなるものである。
これらの金属原子集合体は非イオン界面活性剤の存在に
より安定化しているので、金属原子集合体が該有機溶媒
中に安定に分散された状態の分散液が作製される。
The method for preparing the metal fine particle dispersion of the present invention is as follows. Under an inert atmosphere such as nitrogen, an organometallic compound is dropped into a mixture of a high-boiling organic solvent and a surfactant such as a nonionic surfactant, and the mixture is heated in the air (for example, 60 ° C. 150 ° C.) by stirring.
Metal atoms in the organometallic compound are precipitated. The precipitated metal atoms are taken into micelles in the mixed solution, in which the metal atoms grow into metal atom aggregates having a size in the range of metal clusters or fine particles. It exists in an aggregate state. Such a metal cluster is composed of several atoms, and the metal fine particles are composed of thousands of atoms.
Since these metal atom aggregates are stabilized by the presence of the nonionic surfactant, a dispersion in which the metal atom aggregates are stably dispersed in the organic solvent is produced.

【0011】使用される有機溶媒は、キシレン、トルエ
ン、ドデシルベンゼン、ミネラルスピリット、トリデカ
ン、およびα−テルピネオールから選ばれる高沸点有機
溶媒が好ましい。また、使用される界面活性剤は、ポリ
オキシエチレンラウリルエーテルのようなポリオキシエ
チレンアルキルエーテル、ポリエチレングリコールモノ
アルキレート、およびポリオキシエチレンアルキルアミ
ンから選ばれる非イオン界面活性剤が好ましい。使用さ
れる有機金属化合物は、ヘキサフルオロアセチルアセト
ン銅トリメチルビニルシラン[(hfac)Cu(tmv
s)]、ヘキサフルオロアセチルアセトン銅ジメチル−
1,5シクロオクタジエン[(hfac)Cu(DMCO
D)]、ヘキサフルオロアセチルアセトン銅トリエトキシ
ビニルシラン[(hfac)Cu(teovs)]、ビスジピ
バロイルメタン銅[(dpm)2Cu]、ビスヘキサフルオ
ロアセチルアセトン銅[(hfac)2Cu]、ヘキサフル
オロアセチルアセトン銀トリメチルホスフィン[(hfa
c)Ag(tmp)]、およびナフテン酸銅から選ばれる化
合物が好ましい。かくして得られた金属原子集合体含有
分散液は、有機金属化合物を5〜30wt%含むものが
好ましく、また、界面活性剤を5〜45wt%含むもの
が好ましい。有機金属化合物の濃度が5wt%未満だと
有効な厚さの金属薄膜を形成するには実用的ではなく、
また、該濃度は30wt%を超えると安定な分散液を作
製することが困難であり、仮に作製できても高粘度とな
り、スピンコートにより埋め込みを行うことが困難であ
る。界面活性剤の濃度が5wt%未満だと安定な分散液
を作製することが困難であり、また、該濃度が45wt
%を超えると分散液の粘度が高くなり、スピンコートに
より埋め込みを行うことが困難である。
The organic solvent used is preferably a high boiling organic solvent selected from xylene, toluene, dodecylbenzene, mineral spirit, tridecane, and α-terpineol. The surfactant used is preferably a nonionic surfactant selected from polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyethylene glycol monoalkylate, and polyoxyethylene alkylamine. The organometallic compound used is hexafluoroacetylacetone copper trimethylvinylsilane [(hfac) Cu (tmv
s)], hexafluoroacetylacetone copper dimethyl-
1,5 cyclooctadiene [(hfac) Cu (DMCO
D)], hexafluoroacetylacetone copper triethoxyvinylsilane [(hfac) Cu (teovs)], bisdipivaloylmethane copper [(dpm) 2 Cu], bishexafluoroacetylacetone copper [(hfac) 2 Cu], hexa Fluoroacetylacetone silver trimethylphosphine [(hfa
c) Ag (tmp)] and a compound selected from copper naphthenate. The thus-obtained dispersion containing metal atom aggregates preferably contains 5 to 30 wt% of an organic metal compound, and preferably contains 5 to 45 wt% of a surfactant. If the concentration of the organometallic compound is less than 5 wt%, it is not practical to form a metal thin film having an effective thickness,
On the other hand, if the concentration exceeds 30 wt%, it is difficult to produce a stable dispersion, and even if it can be produced, it has a high viscosity, and it is difficult to embed by spin coating. If the concentration of the surfactant is less than 5 wt%, it is difficult to produce a stable dispersion, and the concentration of the surfactant is 45 wt%.
%, The viscosity of the dispersion becomes high, and it is difficult to perform embedding by spin coating.

【0012】本発明で用いることのできる市販のCu微
粒子分散液は、例えば上記したような製品であり、半導
体基板上に金属薄膜を形成する際の乾燥・焼成工程で蒸
発するような有機溶媒、好ましくは100℃以上で蒸発
する有機溶媒と、平均粒径0.1μm以下のCu金属微
粒子、またはCu金属含有微粒子とを混合してなり、該
微粒子の表面が該有機溶媒で覆われて個々に独立して分
散している粘度が100cP以下の分散液である。ま
た、Cu微粒子の濃度は、5〜70wt%、好ましくは
15〜50wt%である。Cu金属含有微粒子は、Cu
金属元素以外にCuへの溶解度が低く、かつ半導体基板
の基材(絶縁層構成材料)と反応しやすい金属又はこれ
らの金属を含む化合物を少なくとも一種含有していても
よく、これにより基材との接着性が向上されうる。この
金属元素の具体的な例としては、例えば、Mg、Al、
B、Ta、Nb及びVから選ばれれる金属又はこれら金
属を含む化合物が挙げられる。本発明により作製される
上記金属微粒子分散液も、このようなCu以外の金属ま
たはこれら金属含有化合物を含んでいてもよい。
The commercially available Cu fine particle dispersion which can be used in the present invention is, for example, the above-mentioned product, and an organic solvent which evaporates in a drying / firing step when forming a metal thin film on a semiconductor substrate. Preferably, an organic solvent that evaporates at 100 ° C. or higher is mixed with Cu metal fine particles having an average particle diameter of 0.1 μm or less, or Cu metal-containing fine particles, and the surfaces of the fine particles are individually covered with the organic solvent. It is a dispersion liquid having a viscosity of 100 cP or less which is independently dispersed. The concentration of the Cu fine particles is 5 to 70 wt%, preferably 15 to 50 wt%. Cu metal-containing fine particles are Cu
In addition to the metal element, it may contain at least one kind of metal having low solubility in Cu and easily reacting with the substrate (insulating layer constituent material) of the semiconductor substrate or a compound containing these metals. Can be improved in adhesiveness. Specific examples of the metal element include, for example, Mg, Al,
A metal selected from B, Ta, Nb, and V, or a compound containing these metals. The metal fine particle dispersion prepared according to the present invention may also contain such a metal other than Cu or a metal-containing compound.

【0013】本発明によれば、金属微粒子、金属含有微
粒子は、該微粒子分散液の形態で、半導体基板上のアス
ペクト比の大きい配線溝、ビアホール、コンタクトホー
ル等の凹部に対しても何らの問題もなく入り込み、そし
て、所定の雰囲気中、所定の温度・時間で加熱されるこ
とにより、該分散液の分散媒等が蒸発され、燃焼され、
微粒子同士が融着して凹部内に凹状の金属薄膜を形成で
きる。この凹状の金属薄膜は、基板の凹部に対してコン
フォーマルな状態からアスペクト比を減少させる状態ま
で任意に制御できる。
According to the present invention, metal fine particles and metal-containing fine particles, in the form of a fine particle dispersion, have no problem with respect to a concave portion such as a wiring groove, a via hole, or a contact hole having a large aspect ratio on a semiconductor substrate. Without entering, and by heating in a predetermined atmosphere at a predetermined temperature and time, the dispersion medium and the like of the dispersion are evaporated and burned,
The fine particles are fused together to form a concave metal thin film in the concave portion. This concave metal thin film can be arbitrarily controlled from a conformal state to a concave state of the substrate to a state in which the aspect ratio is reduced.

【0014】本発明では、上記したように、半導体基板
の凹部に予め金属薄膜を凹状に形成することで、半導体
基板に対して、スパッタ法、メッキ法等による配線金属
材料の埋め込みを容易にすることができる。スパッタ法
の場合は、作製された金属薄膜が凹状であり、しかもア
スペクト比を減少させるように堆積させることが可能な
ので、スパッタ法でさらに配線金属を堆積させ続け、配
線溝、ビアホール、コンタクトホール等の凹部を完全に
埋め込むことができる。また、メッキ法の場合は、凹部
に対しコンフォーマルに形成された凹状薄膜から等方的
にメッキされていくため、ボイドが発生し難くなる。ま
た、本発明によれば、凹状の金属薄膜を形成した後、同
じ金属微粒子分散液を用い、同様に該分散液の塗布工程
および焼成工程を複数回繰り返して、半導体基板の凹部
を複数層の金属薄膜で完全に埋め込むこともできる。本
発明において金属薄膜を作製するために用いる金属微粒
子分散液の金属と配線金属材料の金属とは同じものであ
ることが好ましいが、異なっていてもよい。
According to the present invention, as described above, a metal thin film is formed in a concave portion of a semiconductor substrate in advance, thereby facilitating embedding of a wiring metal material into the semiconductor substrate by a sputtering method, a plating method, or the like. be able to. In the case of the sputtering method, since the produced metal thin film is concave and can be deposited so as to reduce the aspect ratio, wiring metal is continuously deposited by the sputtering method, and wiring grooves, via holes, contact holes, etc. Can be completely embedded. Further, in the case of the plating method, since the concave portions are isotropically plated from the concave thin film formed conformally, voids are hardly generated. Further, according to the present invention, after forming the concave metal thin film, the same metal fine particle dispersion is used, and the application step and the firing step of the dispersion liquid are similarly repeated a plurality of times, so that the concave portions of the semiconductor substrate are formed in a plurality of layers. It can be completely embedded with a metal thin film. In the present invention, the metal of the fine metal particle dispersion used for preparing the metal thin film and the metal of the wiring metal material are preferably the same, but may be different.

【0015】[0015]

【実施例】次に、実施例により本発明を詳細に説明する
が、本発明はこれらの例によってなんら限定されるもの
ではない。
Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0016】実施例1 本実施例では、金属微粒子分散液として市販のCu微粒
子分散液(真空冶金株式会社製、パーフェクトカッパー
(商品名))を用いて、Si基板上に設けられた配線
溝、ビアホール、コンタクトホールを処理した。このS
i基板には0.3〜5μmの配線溝と0.15〜2μm
のビアホール、コンタクトホールがあり、該配線溝およ
びホールを含む基板表面にはスパッタにより、TiNの
バリヤ層が厚さ70nmで形成されていた。
Example 1 In this example, a commercially available Cu fine particle dispersion (Perfect Copper (trade name) manufactured by Vacuum Metallurgy Co., Ltd.) was used as a metal fine particle dispersion, and a wiring groove provided on a Si substrate was prepared. Via holes and contact holes were processed. This S
The i-substrate has a wiring groove of 0.3 to 5 μm and 0.15 to 2 μm.
A via layer and a contact hole were provided, and a barrier layer of TiN was formed with a thickness of 70 nm on the substrate surface including the wiring groove and the hole by sputtering.

【0017】上記の基板をスピンコーターにセットして
1000rpmで回転させ、その上方から上記のCu微
粒子分散液を滴下し、2000rpmでスピンコートし
た。基板表面に液膜のある状態の基板を10Paの真空
雰囲気中、350℃で1分間加熱して有機溶媒および残
留有機成分を蒸発、燃焼させた。次に、1×10-6Pa
の真空雰囲気中、400℃で30分間加熱して、焼成プ
ロセスでの燃焼により一部のCuがCuOになってしま
ったものをCuに還元した。このようにしてCu微粒子
同士が融着して、配線溝、ビアホール、コンタクトホー
ル等の凹部内に凹状のCuシード層としてのCu薄膜を
形成できた。凹状のCuシード層を付けることにより、
その後の工程で、スパッタ法を用いて配線金属としての
Cuを配線溝、ビアホール、コンタクトホール等に埋め
込みやすくなった。また、メッキ法の場合は、アスペク
ト比8までの配線溝、ビアホール、コンタクトホール等
にCuを容易に埋め込むことができた。
The above substrate was set on a spin coater and rotated at 1000 rpm, and the above-mentioned Cu fine particle dispersion was dropped from above and spin-coated at 2,000 rpm. The substrate having a liquid film on the substrate surface was heated at 350 ° C. for 1 minute in a vacuum atmosphere of 10 Pa to evaporate and burn the organic solvent and residual organic components. Next, 1 × 10 −6 Pa
Was heated in a vacuum atmosphere at 400 ° C. for 30 minutes to reduce Cu to CuO in which part of Cu turned into CuO by burning in the firing process. In this way, the Cu fine particles were fused together, and a Cu thin film as a concave Cu seed layer could be formed in a concave portion such as a wiring groove, a via hole, or a contact hole. By attaching a concave Cu seed layer,
In a subsequent step, Cu as a wiring metal was easily buried in a wiring groove, a via hole, a contact hole, or the like by using a sputtering method. In the case of plating, Cu could be easily embedded in wiring grooves, via holes, contact holes and the like having an aspect ratio of up to 8.

【0018】実施例2 実施例1の基板をスピンコーターにセットして1000
rpmで回転させ、その上方から実施例1のCu微粒子
分散液を滴下し、2000rpmでスピンコートした。
基板表面に液膜のある状態の基板を10Paの真空雰囲
気中、350℃で1分間加熱し、続いて大気中、300
℃で3分間加熱して有機溶媒および残留有機成分を蒸
発、燃焼させた。次に、4%程の水素を含んだ不活性ガ
ス雰囲気中、250℃で30分間加熱して、焼成プロセ
スでの燃焼により一部のCuがCuOになってしまった
ものをCuに還元した。このようにしてCu微粒子同士
が融着して、配線溝、ビアホール、コンタクトホール等
の凹部内に凹状のCuシード層としてのCu薄膜を形成
できた。この凹状のCuシード層を付けることにより、
その後の工程で、スパッタ法を用いてCuを配線溝、ビ
アホール、コンタクトホール等の凹部内に埋め込みやす
くなった。また、メッキ法の場合は、アスペクト比8ま
での配線溝、ビアホール、コンタクトホール等の凹部内
にCuを容易に埋め込むことができた。
Example 2 The substrate of Example 1 was set on a spin coater and 1000
After rotating at rpm, the Cu microparticle dispersion of Example 1 was dropped from above, and spin-coated at 2000 rpm.
The substrate having a liquid film on the substrate surface is heated at 350 ° C. for 1 minute in a vacuum atmosphere of 10 Pa,
C. for 3 minutes to evaporate and burn the organic solvent and residual organic components. Next, heating was performed at 250 ° C. for 30 minutes in an inert gas atmosphere containing about 4% of hydrogen to reduce Cu to CuO in which part of Cu turned into CuO by burning in the firing process. In this way, the Cu fine particles were fused together, and a Cu thin film as a concave Cu seed layer could be formed in a concave portion such as a wiring groove, a via hole, or a contact hole. By attaching this concave Cu seed layer,
In a subsequent step, Cu was easily buried in a recess such as a wiring groove, a via hole, or a contact hole by using a sputtering method. In the case of the plating method, Cu could be easily buried in recesses such as wiring grooves, via holes, and contact holes having an aspect ratio of up to 8.

【0019】実施例3 有機金属化合物としてヘキサフルオロアセチルアセトン
銅トリメチルビニルシラン、分散溶媒としてα−テルピ
ネオール、界面活性剤としてポリオキシエチレンラウリ
ルエーテルを用いて、以下のようにして金属原子集合体
含有分散液を調製した。窒素雰囲気下、分散溶媒(60
wt%)と界面活性剤(20wt%)の混合液中に有機
金属化合物(20wt%)を滴下し、大気中80℃で1
日撹拌することにより、Cuクラスター乃至Cu微粒子
の範囲のサイズからなった金属原子集合体含有分散液を
調製した。
Example 3 Using hexafluoroacetylacetone copper trimethylvinylsilane as an organometallic compound, α-terpineol as a dispersion solvent, and polyoxyethylene lauryl ether as a surfactant, a dispersion containing metal atom aggregates was prepared as follows. Prepared. Under a nitrogen atmosphere, a dispersion solvent (60
wt.) and a surfactant (20 wt.%) are dropped into a mixture of the organic metal compound (20 wt.
By stirring for a day, a metal atom aggregate-containing dispersion having a size ranging from Cu clusters to Cu fine particles was prepared.

【0020】上記の金属原子集合体含有分散液を用い、
Si基板上に設けられた配線溝、ホールを処理した。こ
のSi基板には0.3〜5μmの配線溝と0.15〜2
μmのビアホール、コンタクトホールが設けられ、これ
らの配線溝およびホールを含む基板表面にはスパッタに
より、TiNのバリヤ層が厚さ70nmで形成されてい
た。上記の基板をスピンコーターにセットして1000
rpmで回転させ、その上方から上記金属原子集合体含
有分散液を滴下し、2000rpmでスピンコートし
た。基板表面に液膜のある状態の基板を10Paの真空
雰囲気中、350℃で1分間、続いて大気中、300℃
で3分間加熱して、有機溶媒および残留有機成分を蒸
発、燃焼させた。次いで、4%程の水素を含んだ不活性
ガス雰囲気中、250℃で30分間加熱して、焼成プロ
セスでの燃焼により一部のCuがCuOになってしまっ
たものをCuに還元した。こうして各Cu原子集合体同
士が融着して、配線溝、ビアホール、コンタクトホール
等の凹部内に凹状のCu薄膜を形成できた。この凹状の
Cu薄膜をつけることにより、その後の工程で、スパッ
タ法を用いて、配線材料のCuを配線溝、ビアホール、
コンタクトホール等の凹部内に埋め込みやすくなった。
また、メッキ法の場合は、アスペクト比8までの配線
溝、ビアホール、コンタクトホール等を容易に埋め込む
ことができた。
Using the above-mentioned metal atom aggregate-containing dispersion,
The wiring grooves and holes provided on the Si substrate were processed. The Si substrate has a wiring groove of 0.3 to 5 μm and a groove of 0.15 to 2 μm.
A via hole and a contact hole of μm were provided, and a barrier layer of TiN was formed with a thickness of 70 nm on the surface of the substrate including these wiring grooves and holes by sputtering. The above substrate was set on a spin coater and 1000
The dispersion liquid containing the metal atom aggregate was dropped from above, and spin-coated at 2,000 rpm. A substrate having a liquid film on the substrate surface is placed in a vacuum atmosphere of 10 Pa at 350 ° C. for 1 minute, and then in air at 300 ° C.
For 3 minutes to evaporate and burn the organic solvent and residual organic components. Next, the mixture was heated at 250 ° C. for 30 minutes in an inert gas atmosphere containing about 4% of hydrogen, and Cu which was partially converted into CuO by combustion in the firing process was reduced to Cu. In this manner, the Cu atom aggregates were fused to each other, and a concave Cu thin film could be formed in a concave portion such as a wiring groove, a via hole, or a contact hole. By providing this concave Cu thin film, in a subsequent step, Cu of the wiring material is transferred to the wiring groove, via hole,
It is easy to embed in a concave part such as a contact hole.
Further, in the case of the plating method, wiring grooves, via holes, contact holes and the like having an aspect ratio of up to 8 could be easily buried.

【0021】実施例4 本実施例では、金属原子集合体含有分散液を、有機金属
化合物としてヘキサフルオロアセチルアセトン銅ジメチ
ル−1,5シクロオクタジエン、分散溶媒としてミネラ
ルスピリット、界面活性剤としてポリオキシエチレンラ
ウリルエーテルを用いて作製した場合の例を示す。作製
法は実施例3に記載した方法に従い、有機金属化合物:
界面活性剤:分散溶媒=15:15:70(wt%)と
して行った。
Example 4 In this example, a dispersion containing a metal atom aggregate was prepared by using hexafluoroacetylacetone copper dimethyl-1,5-cyclooctadiene as an organometallic compound, mineral spirit as a dispersion solvent, and polyoxyethylene as a surfactant. An example in the case of using lauryl ether is shown. The preparation was performed according to the method described in Example 3, and the organometallic compound:
Surfactant: dispersion solvent = 15: 15: 70 (wt%).

【0022】実施例3と同じ基板をスピンコーターにセ
ットして1000rpmで回転させ、その上方から上記
の金属原子集合体含有分散液を滴下し、2000rpm
でスピンコートした。基板表面に液膜のある状態の基板
を10Paの真空雰囲気中、350℃で1分間加熱して
有機溶媒および残留有機成分を蒸発、燃焼させた。次
に、1×10-6Paの真空雰囲気中、400℃で30分
間加熱して、燃焼により一部のCuがCuOになってし
まったものを還元してCuにした。こうして各Cu原子
集合体同士が融着し、配線溝、ビアホール、コンタクト
ホール等の凹部内に凹状のCu薄膜を形成できた。この
Cu薄膜形成法を同様の手順で繰り返し、Cu薄膜を5
層重ねることで、アスペクト比6までの配線溝、ビアホ
ール、コンタクトホール等の凹部を完全に埋め込むこと
ができた。
The same substrate as in Example 3 was set on a spin coater, rotated at 1000 rpm, and the above-mentioned metal atom aggregate-containing dispersion was dropped from above, and the rotation speed was increased to 2,000 rpm.
Was spin-coated. The substrate having a liquid film on the substrate surface was heated at 350 ° C. for 1 minute in a vacuum atmosphere of 10 Pa to evaporate and burn the organic solvent and residual organic components. Next, it was heated at 400 ° C. for 30 minutes in a vacuum atmosphere of 1 × 10 −6 Pa to reduce Cu to CuO in which part of Cu was converted to CuO by burning. In this way, each Cu atom aggregate was fused together, and a concave Cu thin film could be formed in a concave portion such as a wiring groove, a via hole, or a contact hole. This Cu thin film forming method is repeated in the same procedure,
By stacking layers, recesses such as wiring grooves, via holes, and contact holes having an aspect ratio of up to 6 could be completely filled.

【0023】実施例5 本実施例では、金属原子集合体含有分散液を、有機金属
化合物としてヘキサフルオロアセチルアセトン銀トリメ
チルホスフィン[(hfac)Ag(tmp)]、分散溶媒と
してα−テルピネオール、界面活性剤としてポリエチレ
ングリコールモノラウリレートを用いて作製した場合の
例を示す。作製法は実施例3に記載した方法に従い、有
機金属化合物:界面活性剤:分散溶媒=15:25:6
0として行った。
Example 5 In this example, a dispersion containing a metal atom aggregate was prepared by using silver hexafluoroacetylacetone trimethylphosphine [(hfac) Ag (tmp)] as an organometallic compound, α-terpineol as a dispersion solvent, and a surfactant. As an example, the case of using polyethylene glycol monolaurate is shown. The preparation was performed according to the method described in Example 3, and the organometallic compound: surfactant: dispersion solvent = 15: 25: 6
Performed as 0.

【0024】実施例3と同じ基板をスピンコーターにセ
ットして1000rpmで回転させ、その上方から上記
の金属原子集合体含有分散液を滴下し、2000rpm
でスピンコートした。基板表面に液膜のある状態の基板
を10Paの真空雰囲気中、350℃で1分間加熱して
有機溶媒および残留有機成分を蒸発または燃焼させた。
こうして各Ag原子集合体同士が融着し、配線溝、ビア
ホール、コンタクトホール等の凹部内に凹状のAg薄膜
を形成できた。この凹状のAg薄膜をつけることによ
り、その後の工程で、スパッタ法を用いて、配線材料の
Agを配線溝、ビアホール、コンタクトホール等の凹部
内に埋め込みやすくなった。また、上記Ag薄膜形成法
を同様の手順で5回繰り返し、Ag薄膜を5層重ねるこ
とで、アスペクト比6までの配線溝、ビアホール、コン
タクトホール等の凹部を完全に埋め込むことができた。
The same substrate as in Example 3 was set on a spin coater, rotated at 1000 rpm, and the above-mentioned metal atom aggregate-containing dispersion was dropped from above, and the rotation speed was increased to 2,000 rpm.
Was spin-coated. The substrate having a liquid film on the substrate surface was heated at 350 ° C. for 1 minute in a vacuum atmosphere of 10 Pa to evaporate or burn the organic solvent and residual organic components.
Thus, each Ag atom aggregate was fused together, and a concave Ag thin film could be formed in a concave portion such as a wiring groove, a via hole, or a contact hole. By providing the concave Ag thin film, it becomes easier to embed Ag of the wiring material in the recesses such as the wiring grooves, via holes, and contact holes by using the sputtering method in the subsequent step. In addition, the above-described Ag thin film forming method was repeated five times in the same procedure, and five Ag thin films were overlapped to completely fill recesses such as wiring grooves, via holes, and contact holes with an aspect ratio of up to 6.

【0025】[0025]

【発明の効果】本発明の金属薄膜形成法では、基板の凹
部に対して、分散液の粘度、濃度のパラメータや塗布条
件を変化させることにより、凹部内にコンフォーマルな
状態、またはアスペクト比を減少させる状態に塗布が可
能である。従って、本発明の金属薄膜形成法を用い半導
体基板上の配線溝、ビアホール、コンタクトホール等の
凹部内に凹状金属薄膜が形成された後、スパッタ法、メ
ッキ法などにより、この凹部を配線金属で容易に埋め込
むことができる。また、この金属薄膜を複数層重ねるこ
とにより、アスペクト比の高い凹部であっても完全に埋
め込むことができる。
According to the method for forming a metal thin film of the present invention, a conformal state or an aspect ratio is formed in a concave portion of a substrate by changing a parameter of a viscosity and a concentration of a dispersion and a coating condition with respect to the concave portion of the substrate. It is possible to apply in a state where it is reduced. Therefore, after a concave metal thin film is formed in a concave portion such as a wiring groove, a via hole, or a contact hole on a semiconductor substrate by using the metal thin film forming method of the present invention, the concave portion is formed with a wiring metal by a sputtering method, a plating method, or the like. Can be easily embedded. In addition, by stacking a plurality of metal thin films, even a concave portion having a high aspect ratio can be completely buried.

【0026】また、本発明の金属微粒子分散液作製法に
よれば、半導体基板の該凹部内に凹状の金属薄膜を形成
できる分散液が得られる。
Further, according to the method for preparing a metal fine particle dispersion of the present invention, a dispersion capable of forming a concave metal thin film in the concave portion of the semiconductor substrate is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来例により、スパッタ法を用いて基板上に形
成した金属薄膜の模式的断面図
FIG. 1 is a schematic cross-sectional view of a metal thin film formed on a substrate by sputtering according to a conventional example.

【図2】本発明の方法により、基板上に形成した金属薄
膜の模式的断面図
FIG. 2 is a schematic cross-sectional view of a metal thin film formed on a substrate by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 バリア層を含んだSi基板 2 金属薄膜 1 Si substrate including barrier layer 2 Metal thin film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 裕彦 茨城県つくば市東光台5−9−7 日本真 空技術株式会社筑波超材料研究所内 (72)発明者 山川 洋幸 茨城県つくば市東光台5−9−7 日本真 空技術株式会社筑波超材料研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hirohiko Murakami 5-9-7 Tokodai, Tsukuba, Ibaraki Japan Inside Tsukuba Super Materials Research Laboratory, Japan Vapor Technology Co., Ltd. (72) Inventor Hiroyuki Yamakawa 5 Tokodai, Tsukuba, Ibaraki -9-7 Nippon Vacuum Technology Co., Ltd. Tsukuba Super Materials Laboratory

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 配線溝、ビアホール、コンタクトホール
の凹部に配線に利用する金属を埋め込む前の半導体基板
上に、金属原子集合体が有機溶媒に分散された金属微粒
子分散液を塗布し、塗布膜の形成された基板を焼成して
該基板上の有機物質を蒸発、燃焼させ、該基板上に金属
薄膜を形成することを特徴とする金属薄膜形成方法。
1. A metal fine particle dispersion in which a metal atom aggregate is dispersed in an organic solvent is applied to a semiconductor substrate before a metal used for wiring is embedded in a recess of a wiring groove, a via hole, or a contact hole, and a coating film is formed. B) forming a metal thin film on the substrate by baking the substrate on which the organic substance is evaporated and burning to form a metal thin film on the substrate.
【請求項2】 前記焼成の後、焼成により生じた酸化物
を還元することを特徴とする請求項1記載の金属薄膜形
成方法。
2. The method for forming a metal thin film according to claim 1, wherein after the firing, an oxide generated by the firing is reduced.
【請求項3】 前記焼成を、真空雰囲気中、大気雰囲気
中、または該真空雰囲気中と大気雰囲気中との二段階
で、100〜450℃で行うことを特徴とする請求項1
または2記載の金属薄膜形成方法。
3. The method according to claim 1, wherein the calcination is performed at 100 to 450 ° C. in a vacuum atmosphere, in an air atmosphere, or in two stages of the vacuum atmosphere and the air atmosphere.
Or the method of forming a metal thin film according to 2.
【請求項4】 前記還元を、4%以下の水素を含んだ不
活性ガス雰囲気中または真空雰囲気中、200〜450
℃で行うことを特徴とする請求項2または3記載の金属
薄膜形成方法。
4. The reduction is carried out in an inert gas atmosphere containing 4% or less of hydrogen or in a vacuum atmosphere.
The method according to claim 2 or 3, wherein the method is carried out at a temperature of ° C.
【請求項5】 前記金属微粒子分散液が、非イオン界面
活性剤と高沸点有機溶媒との混合液に有機金属化合物を
添加し、次いで加熱して該有機金属化合物中の金属を析
出させ、該金属の原子のクラスター乃至微粒子の範囲の
サイズからなる金属原子集合体を調製し、該金属原子集
合体を非イオン界面活性剤の存在により安定化させて作
製された分散液であることを特徴とする請求項1〜4の
いずれかに記載の金属薄膜形成方法。
5. The metal fine particle dispersion is prepared by adding an organometallic compound to a mixed solution of a nonionic surfactant and a high-boiling organic solvent, and then heating to precipitate a metal in the organometallic compound. It is a dispersion prepared by preparing a metal atom aggregate having a size in the range of clusters or fine particles of metal atoms and stabilizing the metal atom aggregate by the presence of a nonionic surfactant. The method for forming a metal thin film according to claim 1.
【請求項6】 前記有機溶媒が、キシレン、トルエン、
ドデシルベンゼン、ミネラルスピリット、トリデカン、
およびα−テルピネオールから選ばれる高沸点有機溶媒
であり、また、前記分散液が、界面活性剤として、ポリ
オキシエチレンアルキルエーテル、ポリエチレングリコ
ールモノアルキレート、およびポリオキシエチレンアル
キルアミンから選ばれる非イオン界面活性剤を含んでい
ることを特徴とする請求項1〜5のいずれかに記載の金
属薄膜形成方法。
6. The organic solvent is xylene, toluene,
Dodecylbenzene, mineral spirit, tridecane,
And a high-boiling organic solvent selected from α-terpineol, and the dispersion is a nonionic interface selected from polyoxyethylene alkyl ether, polyethylene glycol monoalkylate, and polyoxyethylene alkylamine as a surfactant. The method according to any one of claims 1 to 5, further comprising an activator.
【請求項7】 配線溝、ビアホール、コンタクトホール
の凹部を有する半導体基板上に、金属原子集合体が有機
溶媒に分散された金属微粒子分散液を塗布し、塗布膜の
形成された基板を焼成して該基板上の有機物質を蒸発、
燃焼させ、該基板上に金属薄膜を形成させた後、該金属
微粒子分散液の塗布工程および焼成工程を繰り返して該
凹部を複数層の金属薄膜で埋め込むか、または、スパッ
タ法、メッキ法およびCVD法により配線に利用する金
属で該凹部を埋め込むことを特徴とする金属配線形成方
法。
7. A fine metal particle dispersion in which a metal atom aggregate is dispersed in an organic solvent is applied on a semiconductor substrate having a recess of a wiring groove, a via hole, and a contact hole, and the substrate on which the coating film is formed is baked. To evaporate the organic material on the substrate,
After burning to form a metal thin film on the substrate, the coating process and the firing process of the metal fine particle dispersion are repeated to fill the recesses with a plurality of layers of metal thin films, or a sputtering method, a plating method and a CVD method. Forming the recesses with a metal used for wiring by a method.
【請求項8】 非イオン界面活性剤と高沸点有機溶媒と
の混合液に有機金属化合物を添加し、次いで加熱して該
有機金属化合物中の金属を析出させ、該金属の原子のク
ラスター乃至微粒子の範囲のサイズからなる金属原子集
合体を調製し、該金属原子集合体を非イオン界面活性剤
の存在により安定化させて、該集合体が該有機溶媒中に
安定に分散された分散液を作製することを特徴とする金
属微粒子分散液の作製方法。
8. An organometallic compound is added to a mixture of a nonionic surfactant and a high-boiling organic solvent, followed by heating to precipitate the metal in the organometallic compound. A metal atom aggregate having a size in the range of is prepared, the metal atom aggregate is stabilized by the presence of a nonionic surfactant, and a dispersion in which the aggregate is stably dispersed in the organic solvent is obtained. A method for producing a metal fine particle dispersion, characterized by being produced.
【請求項9】 前記有機溶媒が、キシレン、トルエン、
ドデシルベンゼン、ミネラルスピリット、トリデカン、
およびα−テルピネオールから選ばれる高沸点有機溶媒
であり、前記非イオン界面活性剤が、ポリオキシエチレ
ンアルキルエーテル、ポリエチレングリコールモノアル
キレート、およびポリオキシエチレンアルキルアミンか
ら選ばれる界面活性剤であることを特徴とする請求項8
記載の金属微粒子分散液の作製方法。
9. The method according to claim 9, wherein the organic solvent is xylene, toluene,
Dodecylbenzene, mineral spirit, tridecane,
And a high-boiling organic solvent selected from α-terpineol, wherein the nonionic surfactant is a surfactant selected from polyoxyethylene alkyl ether, polyethylene glycol monoalkylate, and polyoxyethylene alkylamine. Claim 8
A method for producing the metal fine particle dispersion according to the above.
【請求項10】 前記有機金属化合物が、ヘキサフルオ
ロアセチルアセトン銅トリメチルビニルシラン[(hfa
c)Cu(tmvs)]、ヘキサフルオロアセチルアセトン
銅ジメチル−1,5シクロオクタジエン[(hfac)C
u(DMCOD)]、ヘキサフルオロアセチルアセトン銅
トリエトキシビニルシラン[(hfac)Cu(teov
s)]、ビスジピバロイルメタン銅[(dpm)2Cu]、ビ
スヘキサフルオロアセチルアセトン銅[(hfac)2
u]、ヘキサフルオロアセチルアセトン銀トリメチルホ
スフィン[(hfac)Ag(tmp)]、およびナフテン酸
銅から選ばれる化合物であることを特徴とする請求項8
または9に記載の金属微粒子分散液の作製方法。
10. The organic metal compound is hexafluoroacetylacetone copper trimethylvinylsilane [(hfa
c) Cu (tmvs)], copper hexafluoroacetylacetone dimethyl-1,5-cyclooctadiene [(hfac) C
u (DMCOD)], hexafluoroacetylacetone copper triethoxyvinylsilane [(hfac) Cu (teov
s)], bisdipivaloylmethane copper [(dpm) 2 Cu], bishexafluoroacetylacetone copper [(hfac) 2 C
u], silver hexafluoroacetylacetone trimethylphosphine [(hfac) Ag (tmp)], and copper naphthenate.
Or the method for producing a metal fine particle dispersion according to item 9.
JP23935599A 1998-12-02 1999-08-26 Method for forming metal thin film and method for producing metal fine particle dispersion Expired - Fee Related JP3953237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23935599A JP3953237B2 (en) 1998-12-02 1999-08-26 Method for forming metal thin film and method for producing metal fine particle dispersion

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34324198 1998-12-02
JP10-343241 1998-12-02
JP23935599A JP3953237B2 (en) 1998-12-02 1999-08-26 Method for forming metal thin film and method for producing metal fine particle dispersion

Publications (2)

Publication Number Publication Date
JP2000228374A true JP2000228374A (en) 2000-08-15
JP3953237B2 JP3953237B2 (en) 2007-08-08

Family

ID=26534205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23935599A Expired - Fee Related JP3953237B2 (en) 1998-12-02 1999-08-26 Method for forming metal thin film and method for producing metal fine particle dispersion

Country Status (1)

Country Link
JP (1) JP3953237B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093904A (en) * 2000-08-31 2002-03-29 Hynix Semiconductor Inc Method for forming dual damascene wiring
JP2002141351A (en) * 2000-10-31 2002-05-17 Japan Science & Technology Corp Circuit board and method of forming metal wiring
WO2003069662A1 (en) * 2002-02-18 2003-08-21 Hitachi, Ltd. Method for manufacturing semiconductor device, and semiconductor device
JP2003257890A (en) * 2002-03-07 2003-09-12 Seiko Epson Corp Method for filling substance, method for forming film, device and its fabricating method
JP2006518103A (en) * 2003-02-17 2006-08-03 アルシメール・エス・アー Surface coating method, fabrication of microelectronic interconnects using the method, and integrated circuit
JP2007134481A (en) * 2005-11-10 2007-05-31 Sony Corp Method for manufacturing semiconductor device
US7238615B2 (en) 2003-01-15 2007-07-03 Seiko Epson Corporation Formation method for metal element, production method for semiconductor device, production method for electronic device, semiconductor device, electronic device, and electronic equipment
KR101323701B1 (en) * 2011-08-16 2013-10-30 한국과학기술원 Method for fabrcrating metal layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102549086A (en) 2009-09-16 2012-07-04 日立化成工业株式会社 Printing ink, metal nanoparticles used in the same, wiring, circuit board, and semiconductor package

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093904A (en) * 2000-08-31 2002-03-29 Hynix Semiconductor Inc Method for forming dual damascene wiring
JP4532768B2 (en) * 2000-08-31 2010-08-25 株式会社ハイニックスセミコンダクター Method for forming dual damascene wiring
JP2002141351A (en) * 2000-10-31 2002-05-17 Japan Science & Technology Corp Circuit board and method of forming metal wiring
WO2003069662A1 (en) * 2002-02-18 2003-08-21 Hitachi, Ltd. Method for manufacturing semiconductor device, and semiconductor device
JP2003257890A (en) * 2002-03-07 2003-09-12 Seiko Epson Corp Method for filling substance, method for forming film, device and its fabricating method
US7238615B2 (en) 2003-01-15 2007-07-03 Seiko Epson Corporation Formation method for metal element, production method for semiconductor device, production method for electronic device, semiconductor device, electronic device, and electronic equipment
JP2006518103A (en) * 2003-02-17 2006-08-03 アルシメール・エス・アー Surface coating method, fabrication of microelectronic interconnects using the method, and integrated circuit
JP2007134481A (en) * 2005-11-10 2007-05-31 Sony Corp Method for manufacturing semiconductor device
KR101323701B1 (en) * 2011-08-16 2013-10-30 한국과학기술원 Method for fabrcrating metal layer

Also Published As

Publication number Publication date
JP3953237B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
JP4362170B2 (en) Silver ultrafine particle independent dispersion
US5844318A (en) Aluminum film for semiconductive devices
CN1134049C (en) Plasma treatment for improving adhesiveness between inorgnic material and copper
US6159851A (en) Borderless vias with CVD barrier layer
US5580823A (en) Process for fabricating a collimated metal layer and contact structure in a semiconductor device
US6242808B1 (en) Semiconductor device with copper wiring and semiconductor device manufacturing method
EP0449309B1 (en) Method of making metalic thin film
JPH1041247A (en) Blanket selective deposition of cvd al using self-aligned ultra-thin film and improvement of reflectivity
JP2000228374A (en) Method for forming metallic thin film, and manufacture of metallic fine particle scattering solution
US6331484B1 (en) Titanium-tantalum barrier layer film and method for forming the same
JP2023182638A (en) Seed layers for copper interconnection
US5880023A (en) Process for formation of wiring layer in semiconductor device
JP2000123634A (en) Copper very fine particle independent dispersion solution
US6391778B1 (en) Contact/via force fill techniques and resulting structures
JP2001254185A (en) Method of depositing electrically conductive metallic thin film and electrically conductive metallic hyperfine particle-dispersed material used for the method
EP0980094B1 (en) Method for forming Cu-thin film
JPH07226387A (en) Metal wiring and its forming method
JP3304807B2 (en) Copper thin film deposition method
JP4751496B2 (en) (Cu-C) Seed Layer Formation Method
JP2000124157A (en) FORMATION OF Cu THIN FILM
JP2001053028A (en) Formation method of cu thin film
JP2000223491A (en) Cu film forming method
JP2832990B2 (en) Multilayer wiring forming method and vacuum deposition apparatus used for the same
JP2805663B2 (en) Wiring formation method
JP3638678B2 (en) Wiring hole and method for manufacturing wiring hole

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070424

R150 Certificate of patent or registration of utility model

Ref document number: 3953237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees