JP2000223118A - Positive electrode material for lithium secondary battery and its manufacture - Google Patents

Positive electrode material for lithium secondary battery and its manufacture

Info

Publication number
JP2000223118A
JP2000223118A JP11019969A JP1996999A JP2000223118A JP 2000223118 A JP2000223118 A JP 2000223118A JP 11019969 A JP11019969 A JP 11019969A JP 1996999 A JP1996999 A JP 1996999A JP 2000223118 A JP2000223118 A JP 2000223118A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
active material
lithium secondary
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11019969A
Other languages
Japanese (ja)
Other versions
JP5153027B2 (en
Inventor
Motoe Nakajima
源衛 中嶋
Muneyuki Tanaka
宗幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP01996999A priority Critical patent/JP5153027B2/en
Publication of JP2000223118A publication Critical patent/JP2000223118A/en
Application granted granted Critical
Publication of JP5153027B2 publication Critical patent/JP5153027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve a cycle characteristic and a discharge characteristic by improving a positive electrode material of a lithium secondary battery. SOLUTION: In this positive electrode material for a lithium secondary battery comprising a positive electrode wherein lithium oxide fine particles as an active material are provided on a current collector, a negative electrode made of graphite and an organic electrolytic solution, the lithium oxide particle is a secondary particle into which primary particles nearly spherically aggregate. An average aggregation diameter of the lithium oxide particle is 10-100 μm, while a conductive auxiliary is added to the positive electrode by <=5 wt.%. The manufacturing method of the lithium secondary battery includes a process wherein the spherical fine particles having even particle diameters are prepared by mixing the positive electrode active material with an organic material such as PVA(polyvinyl alcohol) in a slurry state, then dropping it onto a disc rotating at a required speed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明に属する技術分野】本発明は、小型携帯情報端
末、電力貯蔵電源あるいは電気自動車等に使用されるリ
チウム二次電池の正極材に関するものであり、特に正極
のサイクル安定性を大幅に改善できる正極材活物質に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode material of a lithium secondary battery used for a small portable information terminal, a power storage power source, an electric vehicle, and the like, and in particular, can greatly improve the cycle stability of the positive electrode. The present invention relates to a positive electrode active material.

【0002】[0002]

【従来の技術】一般に、リチウム二次電池は正極、負極
およびセパレ−タを容器内に配置し、有機溶媒による非
水電解液を満たして構成される。正極活物質はアルミニ
ウム箔等の集電体に正極材活物質を塗布したもので、こ
の正極材活物質はLiCoO2、LiNiO2、LiMn2O4等に代表さ
れるようにリチウムと遷移金属の酸化物からなる粉体が
主として用いられ、特開平8−17471にその製法が
詳しく開示されている。これら正極活物質の合成は、一
般にリチウム塩粉末(LiOH、LiCO等)と遷
移金属酸化物(MnO、CoO、NiO等)粉末を混
合し、焼成する方法が広く採用されている。また、この
正極材活物質の電気伝導性は10−1〜10 6S/cmと一
般の導体と比べて低い値であるため、実用的な正電極を
構成する場合、電気伝導が低く工業製品として問題であ
った。このため、アルミニウムの集電体と正極材活物質
間もしくは活物質相互間の電気伝導性を高めるように、
正極材活物質より電気伝導性の良い炭素粉等の導電助材
が使用される(特開平10−125323)。実際に
は、正極材に重量比で数〜数十%程度の炭素粉を混ぜ、
さらにPVdF(ホ゜リフッ化ヒ゛ニリテ゛ン)、PTFE(ホ゜チテトラフルオロエチレン)
等の結着材と混練した後、ペ−スト状に練り上げて集電
体箔に厚み100μm程度で塗布、乾燥、プレス工程を経て
正電極が製造される。
2. Description of the Related Art In general, a lithium secondary battery is constructed by arranging a positive electrode, a negative electrode and a separator in a container and filling a non-aqueous electrolyte with an organic solvent. The positive electrode active material is obtained by applying a positive electrode material active material to a current collector such as an aluminum foil, and the positive electrode material active material is formed of lithium and a transition metal as represented by LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and the like. Oxide powder is mainly used, and its production method is disclosed in detail in JP-A-8-17471. For the synthesis of these positive electrode active materials, generally, a method of mixing a lithium salt powder (LiOH, Li 2 CO 3, etc.) and a transition metal oxide (MnO 2 , CoO, NiO, etc.) powder and firing the mixture is widely adopted. Further, the electrical conductivity of the positive electrode Zaikatsu material 10 -1 to 10 - for a low value compared to 6 S / cm 2 and general conductor, when configuring a practical positive electrode, the electrical conductivity is low It was a problem as an industrial product. Therefore, to increase the electrical conductivity between the aluminum current collector and the positive electrode active material or between the active materials,
A conductive auxiliary material such as carbon powder having better electric conductivity than the positive electrode active material is used (JP-A-10-125323). Actually, carbon powder of several to several tens% by weight is mixed with the positive electrode material,
In addition, PVdF (polyfluorinated polystyrene), PTFE (polytetrafluoroethylene)
After kneading with a binder such as the above, the mixture is kneaded into a paste and applied to a current collector foil with a thickness of about 100 μm, dried, and pressed to produce a positive electrode.

【0003】[0003]

【発明が解決しようとする課題】以上述べた従来技術に
おいて、通常の方法で合成された正極活物質粒子は、粒
子径がサブミクロンオーダーの一次粒子が凝集した二次
粒子から構成されている。このため二次粒子の粒度分布
に広がりを持っており、粒子形状もさまざまで一定しな
い。このような正極活物質は導電助材、結着材と混練し
てアルミニウム電極上に塗布された場合、その粒径が小
さくなるほど導電助材間との良好な接触を得るのが難し
い。そのため、充放電サイクルが進行するに従い、正極
活物質自身が導電助剤や集電体に対し電気的に接触不良
をおこし容量劣化の原因となる。また、電池を高速充放
電させると正極における電圧降下が大きくなってしま
い、電池の能力を充分に引き出せない。この対策とし
て、添加する炭素粉等の導電助材を増やし、正極活物質
−集電体間の電気的接触を保持すことが行われている
が、電極のカサ密度が高まり、正電極としての単位体積
当たりの容量を犠牲にしてしまう問題がある。また、正
極活物質に含まれる微粉を削除する目的で分級等が行わ
れているが、分級の困難さ、収率の低下が製造コスト上
昇につながり問題となっている。
In the prior art described above, the positive electrode active material particles synthesized by a usual method are composed of secondary particles in which primary particles having a particle size on the order of submicrons are aggregated. Therefore, the particle size distribution of the secondary particles has a wide range, and the particle shape is various and not constant. When such a positive electrode active material is applied on an aluminum electrode after being kneaded with a conductive auxiliary material and a binder, it is more difficult to obtain good contact between the conductive auxiliary materials as the particle size becomes smaller. Therefore, as the charge / discharge cycle progresses, the positive electrode active material itself causes poor electrical contact with the conductive assistant and the current collector, which causes a capacity deterioration. In addition, when the battery is charged and discharged at a high speed, the voltage drop at the positive electrode becomes large, and the performance of the battery cannot be sufficiently brought out. As a countermeasure, increasing the amount of conductive auxiliary material such as carbon powder to be added and maintaining the electrical contact between the positive electrode active material and the current collector have been performed. There is a problem that capacity per unit volume is sacrificed. In addition, classification and the like are performed for the purpose of removing fine powder contained in the positive electrode active material. However, difficulty in classification and a decrease in yield lead to an increase in manufacturing cost, which is a problem.

【0004】図6に上記従来技術で作製した正極活物質
の二次粒子の粒形態の模式図と粒度分布を示す。上記し
たように正極活物質は粒径サブミクロンオーダーの一次
粒子が凝集した二次粒子から成る。このため、その粒形
態は様々な大きさと形状を持ち、さらに凝集の仕方のハ゛
ラツキにより二次粒子径の分布に広がりが見られる。この
試料を用いたときのサイクル特性と放電レート特性を図
7および8に示す。サイクルが進むにつれて急速な容量
の低下がみられ、また高放電レート領域でも容量低下が
観察される。この原因は前に述べたように正極活物質の
微粉側が導電助剤と接触不良を起こすためと考えられ
る。これを確認するために従来技術で作製した正極活物
質を、粒径10μm以下、10〜32μm、32〜100μmの3
種類に分級したサンプルを作り、それぞれのレート特性
を測定した。その結果を図9に示す。図9からわかるよ
うに、粒径10μm以下の微粉のサンプルのレート特性が
特に悪い。この結果から粒径10μm以下の微粉だけを取
り除ければ特性改善を図れることが推定できるが、分級
の困難さあるいは収率の低下など製造コストを押し上げ
るため適用するには問題があった。
FIG. 6 shows a schematic diagram of the particle morphology of the secondary particles of the positive electrode active material produced by the above-mentioned prior art and a particle size distribution. As described above, the positive electrode active material is composed of secondary particles in which primary particles of a submicron order are aggregated. For this reason, the particle morphology has various sizes and shapes, and the distribution of the secondary particle diameter is widened due to the variation of the aggregation method. FIGS. 7 and 8 show the cycle characteristics and discharge rate characteristics when this sample was used. As the cycle progresses, a rapid decrease in capacity is observed, and a decrease in capacity is observed even in a high discharge rate region. It is considered that this is because the fine powder side of the positive electrode active material causes poor contact with the conductive additive as described above. In order to confirm this, the positive electrode active material prepared by the conventional technique was used for a particle having a particle size of 10 μm or less, 10 to 32 μm,
Samples classified into different types were prepared, and their rate characteristics were measured. FIG. 9 shows the result. As can be seen from FIG. 9, the rate characteristics of the fine powder sample having a particle size of 10 μm or less are particularly poor. From these results, it can be presumed that the characteristics can be improved by removing only fine powder having a particle size of 10 μm or less.

【0005】二次電池の内部を等価的な電気回路に置き
換えてみると、正極における導電性の低下は内部抵抗の
増加として扱うことができる。したがって、内部抵抗の
増大は充電時には充電効率の低下を招くばかりか、満充
電のために長時間を要すること、放電時には内部電圧降
下による端子電圧の低下が大きくなってしまい、理論容
量より遙か低い値のエネルギーを得るしかなかった。こ
の物理関係は上記した等価回路から容易に説明できる。
いずれにしても、二次電池の充放電時に際しては内部抵
抗による損失が発生するため、電池の自己加熱によって
電池寿命を縮めあるいは信頼性を著しく低下させる原因
となっていた。
When the inside of the secondary battery is replaced with an equivalent electric circuit, a decrease in conductivity at the positive electrode can be treated as an increase in internal resistance. Therefore, an increase in internal resistance not only causes a decrease in charging efficiency during charging, but also requires a long time for full charging, and a large decrease in terminal voltage due to an internal voltage drop during discharging, far exceeding the theoretical capacity. The only option was to get a low value of energy. This physical relationship can be easily explained from the above-described equivalent circuit.
In any case, a loss due to the internal resistance occurs during charging and discharging of the secondary battery, and thus self-heating of the battery has shortened the battery life or significantly reduced the reliability.

【0006】[0006]

【課題を解決するための手段】以上述べた従来技術の問
題を解決するために、本発明ではディスクスプレーを用
いて正極活物質の2次粒子の粒径とその形状を合成の段
階で制御し、実際正極に塗布する際の2次粒子の粒形態
を所要の範囲に規定するものである。まず、従来の方法
で作製した正極材粒子にPVA(ホ゜リヒ゛ニルアルコール)等の有機物
質と純水を加えスラリーとする。このスラリーを図2に示すよう
な所要の速度で回転する円盤上に滴下すると、滴下され
たスラリーはコリオリの力を受け円盤から外径方向に飛散
し、空中で自身の表面張力でほぼ球状の粒子になる。粒
子径はスラリーを滴下する円盤の回転数を適宜選ぶことによ
り制御できる。高速で回転するほど粒子径は小さくな
る。この粒子を乾燥して焼成すれば、焼成完了時に正極
活物質粒子が球状の粒形態を有し、かつほぼ一定の粒径
を持つ粒子を得ることが可能である。この手法で作製し
た正極活物質を使えば、正電極作製時に添加する導電助
剤の増量もしくは正極活物質の微粉を取り除く工程を行
うことなく、正極材活物質と集電体間の電気的接触性を
向上させることができる。特性面でも従来ない効果を得
ることを発見し本発明に到達したものである。従来の製
造方法では、焼成後粉砕の工程を経るため粉体の粒径と
その形状が一定にならなかったため、従来の課題を解決
することが出来なかった。
In order to solve the above-mentioned problems of the prior art, in the present invention, the particle size and the shape of the secondary particles of the positive electrode active material are controlled at the stage of synthesis by using a disk spray. The particle morphology of the secondary particles when actually applied to the positive electrode is defined in a required range. First, an organic substance such as PVA (polyvinyl alcohol) and pure water are added to the positive electrode material particles produced by a conventional method to form a slurry. When this slurry is dropped on a rotating disk at a required speed as shown in FIG. 2, the dropped slurry is scattered in the outer diameter direction from the disk under the Coriolis force, and becomes substantially spherical due to its own surface tension in the air. Become particles. The particle diameter can be controlled by appropriately selecting the number of revolutions of the disk on which the slurry is dropped. The higher the speed, the smaller the particle size. If the particles are dried and fired, it is possible to obtain particles having a substantially uniform particle size in the positive electrode active material particles when the firing is completed. By using the positive electrode active material produced by this method, the electrical contact between the positive electrode active material and the current collector can be made without increasing the amount of conductive additive added during the production of the positive electrode or removing the fine particles of the positive electrode active material. Performance can be improved. The present inventors have found that an effect which has not been obtained in the past in terms of characteristics is obtained, and reached the present invention. In the conventional manufacturing method, since the particle diameter and the shape of the powder were not constant due to the pulverization step after firing, the conventional problem could not be solved.

【0007】[0007]

【発明の実施の形態】本実施例の試料作製方法と充放電
試験方法を以下に示す。正極活物質は以下の手法で作製
した。まず炭酸リチウムと二酸化マンガンの粉末を所定
のモル比で混合し、600℃で焼成、粉砕して得た平均
粒径7μm程度のLiMn粉を原料粉とした。こ
の原料粉(66.7wt%)に純水(32.3wt
%)、PVA(ポリビニルアルコール)(1wt%)を
加えスラリ−としディスクスプレーを使って平均粒径3
0μm程度の顆粒とした。なお、正極活物質は電極作製
時に厚み100μm程度で集電体上に塗布されるので、最
大粒径は100μm以下が望ましい。2次粒子としての顆
粒の粒径はディスクスプレーのディスク回転数を制御す
ることにより調整した。この顆粒を温度800℃、大気
中で焼成し正極活物質とした。1次粒子が凝集して2次
粒子を形成するが、の状態とその凝集径をMIE散乱理論
を用いたレーザー回折式粒度分布測定法で測定した。ま
た、従来技術で、炭酸リチウムと二酸化マンガンの粉末
を所定のモル比で混合し、600℃で焼成後、800℃
で焼成、粉砕して得たLiMn粉を、下記方法で
評価した結果を比較例とした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for preparing a sample and a method for a charge / discharge test of this example are described below. The positive electrode active material was produced by the following method. First, LiMn 2 O 4 powder having an average particle diameter of about 7 μm obtained by mixing lithium carbonate and manganese dioxide powders at a predetermined molar ratio, firing and pulverizing at 600 ° C. was used as a raw material powder. Pure water (32.3 wt%) is added to this raw material powder (66.7 wt%).
%) And PVA (polyvinyl alcohol) (1% by weight) to form a slurry, and using a disk sprayer to obtain an average particle size of 3
Granules of about 0 μm were obtained. Since the positive electrode active material is applied on the current collector with a thickness of about 100 μm at the time of manufacturing the electrode, the maximum particle size is desirably 100 μm or less. The particle size of the granules as secondary particles was adjusted by controlling the disk rotation speed of the disk spray. The granules were fired at a temperature of 800 ° C. in the air to obtain a positive electrode active material. The primary particles aggregate to form secondary particles, and the state and the aggregate diameter were measured by a laser diffraction particle size distribution measuring method using MIE scattering theory. Further, according to the prior art, lithium carbonate and manganese dioxide powders are mixed at a predetermined molar ratio, fired at 600 ° C., and then heated at 800 ° C.
The results obtained by evaluating the LiMn 2 O 4 powder obtained by firing and pulverizing by the following method were used as comparative examples.

【0008】充放電試験は、簡易モデルセルに試料を組
み込み評価した。簡易モデルセルは試験極、参照極(リチウ
ムフォイル)、対極(リチウムフォイル)から成り、それぞれの電極は電
解液中に浸されている。参照極端子と試験極端子には電
位差計を、試験極端子と対極端子には充電器を接続して
いる。試験極には、上記に記載した実施例を使用するも
ので、正極活物質、炭素粉等の導電助材、PVDF(ホ゜リフカヒ゛
ニリテ゛ン)等の結着材を所定の割合で混練し、ペ−スト状に
した後、集電体であるアルミニウム箔上に塗布、乾燥後
プレスで圧着したものを用いた。電解液には1M LiPF6/
EC:DMC=1:1を使用した。
[0008] In the charge / discharge test, a sample was evaluated in a simple model cell. The simple model cell includes a test electrode, a reference electrode (lithium foil), and a counter electrode (lithium foil), and each electrode is immersed in an electrolyte. A potentiometer is connected to the reference electrode terminal and the test electrode terminal, and a charger is connected to the test electrode terminal and the counter electrode terminal. For the test electrode, the above-described embodiment is used. A positive electrode active material, a conductive auxiliary material such as carbon powder, and a binder such as PVDF (polyolefin) are kneaded at a predetermined ratio, and the mixture is mixed. After it was made into a strike, it was applied on an aluminum foil as a current collector, dried, and then pressed by a press. 1M LiPF6 /
EC: DMC = 1: 1 was used.

【0009】充電は一定電流密度0.5mA/cm2で試験極上
にリチウムを電析させ、対リチウム参照極電位が4.3Vに
なるまで行った。また、放電容量の計測では試験極の電
位がリチウム参照極に対し3.0Vになるまでに流れた電気
量を計測した。初回の放電容量を100としサイクルが
進むんだときの放電容量を初期放電容量に対する比率で
算出した(サイクル特性)。放電レ−ト特性は放電時の
電流密度を0.5、1.0、1.5、2.0mA/cm2と変えて電池容量
を測定した。電流密度0.5mA/cm2での放電容量を100
とし、電流密度を増大した時の容量をその比で算出した
(放電容量維持率)。
The charge was performed at a constant current density of 0.5 mA / cm 2 by depositing lithium on the test electrode until the potential of the reference electrode with respect to lithium became 4.3 V. In the measurement of the discharge capacity, the amount of electricity flowing until the potential of the test electrode became 3.0 V with respect to the lithium reference electrode was measured. With the initial discharge capacity set to 100, the discharge capacity when the cycle progressed was calculated by the ratio to the initial discharge capacity (cycle characteristics). The discharge rate characteristics were measured by changing the current density during discharge to 0.5, 1.0, 1.5, and 2.0 mA / cm 2 and measuring the battery capacity. Discharge capacity at a current density of 0.5 mA / cm 2 is 100
The capacity when the current density was increased was calculated by the ratio (discharge capacity retention ratio).

【0010】次に発明方法で作製した正極活物質の粒形
態と粒度分布を図1に、サイクル特性とレート特性を図
3および4にそれぞれ示す。本発明では、製造段階で正
極材の粒形態を球状にでき、なおかつ10μm以下の微
粉をほとんど含んでいない。本発明例では安定なサイク
ル特性が得られている。また、図4に示すように放電時
の電流密度を上げた場合でも容量低下が少ないことが分
かる。また、図5に示すレート特性では本発明において
粒形態を球状とし、なおかつ10μm以下の微粉をほと
んど含んでいない正極材粒子は、従来技術よりも導電助
剤を少なくしても良好な正極材−集電体間の電気伝導性
を得ることができ、放電時の電流密度を上げた場合でも
容量低下が少ない。つまり、本発明正極活物質は、電極
密度が低下しないため高容量で良好な高速放電特性を実
現させている。
Next, FIG. 1 shows the particle morphology and particle size distribution of the positive electrode active material produced by the method of the present invention, and FIGS. 3 and 4 show the cycle characteristics and rate characteristics, respectively. In the present invention, the particle form of the positive electrode material can be made spherical in the production stage, and it hardly contains fine powder of 10 μm or less. In the example of the present invention, stable cycle characteristics are obtained. Further, as shown in FIG. 4, it can be seen that even when the current density at the time of discharging is increased, the capacity decrease is small. Further, in the rate characteristics shown in FIG. 5, the positive electrode material particles having a spherical morphology in the present invention and containing almost no fine powder having a particle size of 10 μm or less have a good positive electrode material even if the amount of the conductive auxiliary is smaller than that of the prior art. Electric conductivity between the current collectors can be obtained, and a decrease in capacity is small even when the current density during discharge is increased. That is, the positive electrode active material of the present invention realizes high capacity and good high-speed discharge characteristics because the electrode density does not decrease.

【0011】[0011]

【発明の効果】本発明を実施することにより集電体と活
物質との電気的および機械的な結合が強固になり、サイ
クル特性および放電特性などが大幅に改善できる。ま
た、正極の内部抵抗を低減することが可能となるため、
従来添加していた導電助材を省略もしくは少量の添加で
従来の性能を確保でき、電極カサ密度を高めた小型電池
を提供できる。
According to the present invention, the electrical and mechanical coupling between the current collector and the active material is strengthened, and the cycle characteristics and discharge characteristics can be greatly improved. Also, since the internal resistance of the positive electrode can be reduced,
The conventional performance can be ensured by omitting or adding a small amount of the conductive auxiliary agent conventionally added, and a small battery with an increased electrode bulk density can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による正極活物質粒形態と粒度分布。FIG. 1 shows the morphology and particle size distribution of a positive electrode active material according to the present invention.

【図2】ディスクスプレイによる製造方法の概略。FIG. 2 is an outline of a manufacturing method by disk spraying.

【図3】本発明による正極活物質のサイクル特性。FIG. 3 shows cycle characteristics of a positive electrode active material according to the present invention.

【図4】本発明による正極活物質のレート特性。FIG. 4 shows a rate characteristic of a positive electrode active material according to the present invention.

【図5】本発明の正極活物質に導電助剤を添加した場合
のレート特性。
FIG. 5 shows rate characteristics when a conductive auxiliary is added to the positive electrode active material of the present invention.

【図6】従来技術による正極活物質の粒形態と粒度分
布。
FIG. 6 is a graph showing the particle morphology and particle size distribution of a positive electrode active material according to a conventional technique.

【図7】従来の正極活物質のサイクル特性。FIG. 7 shows cycle characteristics of a conventional positive electrode active material.

【図8】従来の正極活物質の放電レート特性。FIG. 8 shows a discharge rate characteristic of a conventional positive electrode active material.

【図9】従来の正極活物質を分級後のレート特性。FIG. 9 shows rate characteristics after classification of a conventional positive electrode active material.

【符号の説明】[Explanation of symbols]

1 スラリー、2 コック、3 ディスク板、4 ピ
ン、5 粒子、6 乾燥棟
1 slurry, 2 cocks, 3 discs, 4 pins, 5 particles, 6 drying ridge

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 集電体に活物質としてリチウム酸化物の
粉体を配した正極、炭素材質の負極および有機電解液と
からなるリチウム二次電池において、前記リチウム酸化
物の粒子が、一次粒子がほぼ球状に凝集した二次粒子か
らなることを特徴とするリチウム二次電池の正電極材。
1. A lithium secondary battery comprising a positive electrode in which a lithium oxide powder is disposed as an active material on a current collector, a carbon material negative electrode, and an organic electrolyte, wherein the lithium oxide particles are primary particles. Is composed of secondary particles that are substantially spherically aggregated. A positive electrode material for a lithium secondary battery.
【請求項2】 請求項1において、前記リチウム酸化物
の粉体が10μm以上100μm以下の平均凝集径を有する
ことを特徴とするリチウム二次電池の正極材。
2. The positive electrode material for a lithium secondary battery according to claim 1, wherein the lithium oxide powder has an average aggregate diameter of 10 μm or more and 100 μm or less.
【請求項3】 請求項1または2のいずれかにおいて、
前記正極には導電助剤を添加しないかもしくは5wt%
以下添加することを特徴とするリチウム二次電池の正極
材。
3. The method according to claim 1, wherein
No conductive additive added to the positive electrode or 5 wt%
A positive electrode material for a lithium secondary battery, which is added as follows.
【請求項4】 集電体に活物質としてリチウム酸化物の
粉体を配した正極、炭素材質の負極および有機電解液と
からなるリチウム二次電池の製造方法において、正極活
物質をPVA(ホ゜リヒ゛ニルアルコール)等の有機材料とスラリー状に混合
した後、所要の速度で回転する円盤上に滴下供給し、粒
径の均一な球状の粉体を得る工程を含むことを特徴とす
るリチウム二次電池電極材の製造方法。
4. A method for producing a lithium secondary battery comprising a positive electrode in which a lithium oxide powder is disposed as an active material on a current collector, a negative electrode made of a carbon material, and an organic electrolytic solution, wherein the positive electrode active material is PVA (polyvinyl). A lithium secondary battery characterized by comprising a step of mixing with an organic material such as alcohol) in a slurry form and then dropping and supplying the slurry onto a rotating disk at a required speed to obtain a spherical powder having a uniform particle size. Manufacturing method of electrode material.
JP01996999A 1999-01-28 1999-01-28 Method for producing positive electrode material of lithium secondary battery Expired - Fee Related JP5153027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01996999A JP5153027B2 (en) 1999-01-28 1999-01-28 Method for producing positive electrode material of lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01996999A JP5153027B2 (en) 1999-01-28 1999-01-28 Method for producing positive electrode material of lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2000223118A true JP2000223118A (en) 2000-08-11
JP5153027B2 JP5153027B2 (en) 2013-02-27

Family

ID=12014032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01996999A Expired - Fee Related JP5153027B2 (en) 1999-01-28 1999-01-28 Method for producing positive electrode material of lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5153027B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279984A (en) * 2001-03-15 2002-09-27 Hitachi Metals Ltd Method of manufacturing positive electrode active material for non-aqueous lithium secondary battery, the positive electrode active material, and the non- aqueous lithium secondary battery using the positive electrode active material
JP2007234277A (en) * 2006-02-28 2007-09-13 Matsushita Electric Ind Co Ltd Positive electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11376559B2 (en) 2019-06-28 2022-07-05 eJoule, Inc. Processing system and method for producing a particulate material

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183047A (en) * 1993-12-22 1995-07-21 Sony Corp Nonaqueous electrolyte secondary battery
JPH07335220A (en) * 1994-06-14 1995-12-22 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolytic secondary battery and its positive electrode active material
JPH08339806A (en) * 1995-06-09 1996-12-24 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JPH09129230A (en) * 1995-10-31 1997-05-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic battery and manufacture of positive active material
JPH09231973A (en) * 1996-02-27 1997-09-05 Matsushita Electric Ind Co Ltd Positive electrode active material for nonaqueous electrolyte battery, positive electrode, and nonaqueous electrolyte battery
JPH1079250A (en) * 1996-07-10 1998-03-24 Toray Ind Inc Positive electrode active material, its manufacture, and nonaqueous solvent secondary battery using it
JPH1112045A (en) * 1997-06-25 1999-01-19 Natl House Ind Co Ltd Production of raw material for sintered article and production of sintered article
JPH1145718A (en) * 1997-05-27 1999-02-16 Tdk Corp Electrode for nonaqueous electrolytic battery
JPH11135119A (en) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd Active material and positive plate for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
JPH11273678A (en) * 1998-03-23 1999-10-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous electrolyte secondary battery using positive electrode active material
JPH11288716A (en) * 1998-03-31 1999-10-19 Hitachi Maxell Ltd Lithium ion secondary battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183047A (en) * 1993-12-22 1995-07-21 Sony Corp Nonaqueous electrolyte secondary battery
JPH07335220A (en) * 1994-06-14 1995-12-22 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolytic secondary battery and its positive electrode active material
JPH08339806A (en) * 1995-06-09 1996-12-24 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JPH09129230A (en) * 1995-10-31 1997-05-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic battery and manufacture of positive active material
JPH09231973A (en) * 1996-02-27 1997-09-05 Matsushita Electric Ind Co Ltd Positive electrode active material for nonaqueous electrolyte battery, positive electrode, and nonaqueous electrolyte battery
JPH1079250A (en) * 1996-07-10 1998-03-24 Toray Ind Inc Positive electrode active material, its manufacture, and nonaqueous solvent secondary battery using it
JPH1145718A (en) * 1997-05-27 1999-02-16 Tdk Corp Electrode for nonaqueous electrolytic battery
JPH1112045A (en) * 1997-06-25 1999-01-19 Natl House Ind Co Ltd Production of raw material for sintered article and production of sintered article
JPH11135119A (en) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd Active material and positive plate for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
JPH11273678A (en) * 1998-03-23 1999-10-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous electrolyte secondary battery using positive electrode active material
JPH11288716A (en) * 1998-03-31 1999-10-19 Hitachi Maxell Ltd Lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279984A (en) * 2001-03-15 2002-09-27 Hitachi Metals Ltd Method of manufacturing positive electrode active material for non-aqueous lithium secondary battery, the positive electrode active material, and the non- aqueous lithium secondary battery using the positive electrode active material
JP2007234277A (en) * 2006-02-28 2007-09-13 Matsushita Electric Ind Co Ltd Positive electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP5153027B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
KR101964726B1 (en) Spherical or spherical-like lithium ion battery cathode material and preparation method and application thereof
JP5007919B2 (en) Method for producing positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and non-aqueous lithium secondary battery using the same
CN100524911C (en) Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
JP4986098B2 (en) Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
CN110168785A (en) Ni-based active material presoma and preparation method thereof, Ni-based active material and lithium secondary battery
JP2023550443A (en) Positive electrode prelithiation agent and its preparation method and application
JP4168402B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery
JP3991359B2 (en) Cathode active material for non-aqueous lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery using the cathode active material
JP2004281253A (en) Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method and nonaqueous system lithium secondary battery using the material
JP2003173777A (en) Combining method and its combining material of positive electrode active material for nonaqueous lithium secondary battery and conductive subsidiary material, and positive electrode and nonaqueous lithium secondary battery using the same
CN106450267B (en) Lithium ion secondary battery
JP4868271B2 (en) Method for producing positive electrode active material for non-aqueous lithium secondary battery, positive electrode using this active material, and non-aqueous lithium secondary battery
JP2013175456A (en) Nonaqueous electrolyte secondary battery
JP2015524988A (en) Negative electrode active material for lithium secondary battery and lithium secondary battery including the same
JP6265521B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME
KR20190136382A (en) Lithium secondary battery
JP5062534B2 (en) Method for producing positive electrode active material for non-aqueous lithium secondary battery
JP2013182662A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
JP4743804B2 (en) Cathode active material for non-aqueous lithium secondary battery and method for producing the same
JPH09219188A (en) Nonaqueous electrolyte secondary battery, and manufacture of it
CN112670459A (en) Graphite negative electrode material and preparation and application thereof
JP5153027B2 (en) Method for producing positive electrode material of lithium secondary battery
JP3559934B2 (en) Positive active material for non-aqueous lithium secondary battery and lithium secondary battery
JP3506860B2 (en) Manufacturing method of non-aqueous solvent secondary battery
JP2005346956A (en) Positive electrode active material for nonaqueous lithium secondary battery, manufacturing method thereof, and nonaqueous lithium secondary battery using the positive electrode active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5153027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121030

LAPS Cancellation because of no payment of annual fees