JP2000216042A - Manufacture of laminated ceramic capacitor - Google Patents

Manufacture of laminated ceramic capacitor

Info

Publication number
JP2000216042A
JP2000216042A JP11017956A JP1795699A JP2000216042A JP 2000216042 A JP2000216042 A JP 2000216042A JP 11017956 A JP11017956 A JP 11017956A JP 1795699 A JP1795699 A JP 1795699A JP 2000216042 A JP2000216042 A JP 2000216042A
Authority
JP
Japan
Prior art keywords
firing
ceramic capacitor
temperature
hour
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11017956A
Other languages
Japanese (ja)
Other versions
JP4803854B2 (en
Inventor
Takeshi Nomura
武史 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP01795699A priority Critical patent/JP4803854B2/en
Publication of JP2000216042A publication Critical patent/JP2000216042A/en
Application granted granted Critical
Publication of JP4803854B2 publication Critical patent/JP4803854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a crack from being generated in a laminated ceramic capacitor at the time of a firing of the capacitor by a method wherein at least a specified temperature range of the heat-up part in the firing of the capacitor is heated up at a specified speed. SOLUTION: A laminated ceramic capacitor 1 has internal electrodes 21 and 25 and dielectric layers 3, which are alternately laminated, and one pair of external electrodes 51 and 55 being connected with the electrodes 21 and 25. The electrodes 21 and 25 of this capacitor 1 are formed of an Ni layer or an Ni alloy layer. Here, the temperature range of at least 700 deg.C or higher to 1100 deg.C or lower of the heat-up part in a firing of the capacitor is heated up at a speed higher than 500 deg.C/hour, preferably higher than about 600 deg.C/hour and more preferably higher than about 800 deg.C/hour and it is preferable that the oxygen partial pressure in an atmosphere of a temperature higher than 1100 deg.C in the firing is one lower than 10-8 atm. Moreover, in the case where the firing of the capacitor 1 is continuously performed, the oxygen partial pressure in the atmosphere in a temperature range of one part lower than 1100 deg.C of the cooling-down part in the firing of the capacitor is set at an oxygen partial pressure higher than 10-8 atm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、積層型セラミック
コンデンサの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer ceramic capacitor.

【0002】[0002]

【従来の技術】積層型セラミックコンデンサは、通常、
内部電極のペーストと誘電体のペーストとをグリーンシ
ート法や印刷法等により積層し、焼成して製造される。
かかる内部電極には、一般に、PdやPd合金が用いられて
きたが、Pdは高価であるため、比較的安価なNiやNi合金
が使用されつつある。ところで、内部電極をNiやNi合金
で形成する場合は、大気中で焼成を行うと電極が酸化し
てしまうという問題がある。このため、一般に、脱バイ
ンダ後は、NiとNiOの平衡酸素分圧よりも低い酸素分圧
で焼成し、その後熱処理により誘電体層を再酸化させて
いる(特開平03−133116、特許第2787746号)。ここ
で、昇温速度としては500℃/時間以下が開示されてい
る。NiやNi合金製の内部電極を有する積層型セラミック
コンデンサは、PdやPd合金に比べて安価であることか
ら、誘電体層を薄くしてかつ誘電体層数を多くすること
によって、単位体積当たりの蓄電密度の大容量化が容易
になされ得る。しかし、薄層多層になるにつれ、焼成後
のクラック発生が問題となる。
2. Description of the Related Art A multilayer ceramic capacitor is usually
It is manufactured by laminating the paste of the internal electrode and the paste of the dielectric by a green sheet method, a printing method, or the like, and firing.
In general, Pd and Pd alloy have been used for such internal electrodes. However, since Pd is expensive, relatively inexpensive Ni or Ni alloy is being used. By the way, when the internal electrode is formed of Ni or a Ni alloy, there is a problem that the electrode is oxidized when firing in the air. For this reason, in general, after the binder is removed, firing is performed at an oxygen partial pressure lower than the equilibrium oxygen partial pressure of Ni and NiO, and then the dielectric layer is reoxidized by heat treatment (Japanese Patent Laid-Open No. 03-133116, Patent No. 2787746). issue). Here, a temperature rising rate of 500 ° C./hour or less is disclosed. Multilayer ceramic capacitors with internal electrodes made of Ni or Ni alloy are inexpensive compared to Pd or Pd alloy.Thus, by making the dielectric layers thinner and increasing the number of dielectric layers, The storage capacity of the battery can be easily increased. However, as the number of thin layers increases, the occurrence of cracks after firing becomes a problem.

【0003】[0003]

【発明が解決しようとする課題】従って、本発明の目的
は、薄層多層であっても焼成に際してクラック発生のな
い信頼性の高い積層型セラミックコンデンサを製造する
方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for manufacturing a highly reliable multilayer ceramic capacitor which is free from cracks during firing even in a thin multilayer structure.

【0004】[0004]

【課題を解決するための手段】このような目的は、下記
の(1)〜(3)の本発明により達成される。 (1)NiまたはNi合金からなる内部電極と誘電体層とを
交互に積層してなる積層型セラミックコンデンサを、昇
温部、該昇温部に続き、所定の焼成温度に維持する温度
維持部、および降温部を含む焼成工程によって焼成する
積層型セラミックコンデンサの製造方法において、焼成
における昇温部の少なくとも700℃以上1100℃以下を500
℃/時間以上の速度で昇温することを特徴とする積層型
セラミックコンデンサの製造方法。 (2)焼成において1100℃以上の雰囲気の酸素分圧が10
- 8atm以下であることを特徴とする上記(1)の積層型
セラミックコンデンサの製造方法。 (3)焼成における降温部において1100℃以下の一部の
温度範囲の雰囲気の酸素分圧が10- 8atm以上であること
を特徴とする上記(1)または(2)の積層型セラミッ
クコンデンサの製造方法。
This and other objects are achieved by the present invention which is defined below as (1) to (3). (1) A multilayer ceramic capacitor formed by alternately laminating an internal electrode made of Ni or a Ni alloy and a dielectric layer is provided with a heating section, a temperature maintaining section following the heating section, and maintaining a predetermined firing temperature. In a method for manufacturing a multilayer ceramic capacitor that is fired by a firing step including a temperature lowering section, at least 700 ° C to 1100 ° C
A method for producing a multilayer ceramic capacitor, wherein the temperature is raised at a rate of at least C / hour. (2) In the firing, the oxygen partial pressure in an atmosphere of 1100 ° C or more is 10
- method of manufacturing a multilayer ceramic capacitor of the above (1), characterized in that 8 atm or less. (3) partial pressure of oxygen in the atmosphere in a portion of the temperature range of 1100 ° C. or less in the cooling unit in the baking is 10 - 8 above, wherein the at atm or more (1) or of the multilayer ceramic capacitor (2) Production method.

【0005】[0005]

【発明の実施の形態】本発明は、焼成における昇温部の
少なくとも700℃以上1100℃以下を500℃/時間以上、好
ましくは600℃/時間以上、更に好ましくは800℃/時間以
上の速度で昇温することを特徴とする積層型セラミック
コンデンサの製造方法である。以下、本発明の製造方法
の具体的構成について詳細に説明する。図1に、本発明
の製造方法により製造される積層型セラミックコンデン
サの好適例を示す。積層型セラミックコンデンサ1は、
内部電極21、25と、誘電体層3とが交互に積層さ
れ、各内部電極21、25に接続している1対の外部電
極51、55を有するものである。本発明で製造される
積層型セラミックコンデンサは、内部電極21、25が
NiまたはNi合金から形成されたものである。Ni合金とし
ては、Niを95重量%以上含有するNiと、Mn、Cr、Co、Al
等の1種以上との合金であることが好ましい。内部電極
21、25の厚み等の諸条件は目的や用途に応じ適宜決
定すればよいが、通常の厚みは、1〜5μm、特に1〜
2μm程度である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a method for heating at least 700 ° C. to 1100 ° C. in a heating section at a rate of 500 ° C./hour or more, preferably 600 ° C./hour or more, more preferably 800 ° C./hour or more. This is a method for manufacturing a multilayer ceramic capacitor characterized by raising the temperature. Hereinafter, a specific configuration of the manufacturing method of the present invention will be described in detail. FIG. 1 shows a preferred example of a multilayer ceramic capacitor manufactured by the manufacturing method of the present invention. The multilayer ceramic capacitor 1 includes:
The internal electrodes 21 and 25 and the dielectric layer 3 are alternately laminated, and have a pair of external electrodes 51 and 55 connected to the internal electrodes 21 and 25. In the multilayer ceramic capacitor manufactured by the present invention, the internal electrodes 21 and 25 have
It is formed from Ni or a Ni alloy. Ni alloys include Ni containing 95% by weight or more of Ni, Mn, Cr, Co, and Al.
It is preferable to use an alloy with one or more of these. Various conditions such as the thickness of the internal electrodes 21 and 25 may be appropriately determined according to the purpose and application, but the normal thickness is 1 to 5 μm, particularly 1 to 5 μm.
It is about 2 μm.

【0006】誘電体層3は、グレインと粒界相で構成さ
れている。また、いわゆるコアーシェル構造のものでも
構わない。誘電体層3の材質は、例えば、下記式で表さ
れる組成の誘電体酸化物を含有するものである。 式[(Ba1 - x - yCaxSry)O]m・(Ti1 - zZrz)O2+αMnO+
βY2O3+γV2O5+δWO3 式中、xは0〜0.25、好ましくは0〜0.10、yは0〜0.05、好
ましくは0〜0.01、zは0.1〜0.3、好ましくは0.15〜0.2
0、mは1.000〜1.020、好ましくは1.002〜1.015、αは0.
01〜0.5重量%、好ましくは0.1〜0.4重量%、βは0.05
〜0.5重量%、好ましくは0.2〜0.4重量%、γは0.005〜
0.3重量%、好ましくは0.01〜0.1重量%、δは0.005〜
0.3重量%、好ましくは0.01〜0.1重量%程度含まれるこ
とが好ましい。α、β、γおよびδは、誘電体酸化物全
体の重量に対する割合である。誘電体層3の層数や厚み
等の諸条件は、目的や用途に応じ適宜決定すればよい。
通常積層数は、1〜600、特に10〜500程度であ
り、一層当りの厚みは、1〜50μm、特に1〜10μm
程度である。
[0006] The dielectric layer 3 is composed of grains and a grain boundary phase. Moreover, what is called a core-shell structure may be used. The material of the dielectric layer 3 contains, for example, a dielectric oxide having a composition represented by the following formula. Formula [(Ba 1 - x - y Ca x Sr y) O] m · (Ti 1 - z Zr z) O 2 + αMnO +
βY 2 O 3 + γV 2 O 5 + δWO 3 In the formula, x is 0 to 0.25, preferably 0 to 0.10, y is 0 to 0.05, preferably 0 to 0.01, and z is 0.1 to 0.3, preferably 0.15 to 0.2.
0, m is 1.000 to 1.020, preferably 1.002 to 1.015, α is 0.
01 to 0.5% by weight, preferably 0.1 to 0.4% by weight, β is 0.05
~ 0.5% by weight, preferably 0.2-0.4% by weight, γ is 0.005 ~
0.3% by weight, preferably 0.01 to 0.1% by weight, δ is 0.005 to
It is preferably contained in an amount of 0.3% by weight, preferably about 0.01 to 0.1% by weight. α, β, γ, and δ are ratios to the weight of the entire dielectric oxide. Various conditions such as the number and thickness of the dielectric layer 3 may be appropriately determined according to the purpose and use.
Usually, the number of layers is 1 to 600, particularly about 10 to 500, and the thickness per layer is 1 to 50 μm, especially 1 to 10 μm.
It is about.

【0007】本発明の製造方法においては、外部電極5
1、55には、通常CuやCu合金あるいはNiやNi合金等を
用いる。外部電極51、55の厚みは任意であり、目的
や用途に応じ適宜決定すればよいが、通常10〜100
μm程度である。このようにして得られる積層型セラミ
ックコンデンサ1の形状やサイズは、目的や用途に応じ
適宜決定すればよい。例えば直方体状の場合は、通常0.
6〜3.2mm×0.3〜1.6mm×0.3〜1.6mm程度である。
In the manufacturing method of the present invention, the external electrode 5
For 1 and 55, Cu or Cu alloy, Ni or Ni alloy or the like is usually used. The thickness of the external electrodes 51 and 55 is arbitrary, and may be appropriately determined according to the purpose and application.
It is about μm. The shape and size of the multilayer ceramic capacitor 1 thus obtained may be appropriately determined depending on the purpose and application. For example, in the case of a rectangular parallelepiped, it is usually 0.
It is about 6 to 3.2 mm x 0.3 to 1.6 mm x 0.3 to 1.6 mm.

【0008】本発明の製造方法をさらに具体的に説明す
る。まず、誘電体層3用スラリー(ペースト)、内部電
極21、25用ペーストおよび外部電極51、55用ペ
ーストをそれぞれ製造する。誘電体層3用のスラリーを
製造する際に用いる誘電体の粉末としては、通常、原料
を混合、仮焼き、粉砕した、いわゆる固相法の粉体だけ
でなく、蓚酸塩法や水熱合成法などのいわゆる液相法に
よる粉体であってもよい。材料粉末は、通常、平均粒子
径0.1〜3μm程度のものが用いられる。誘電体層3用の
スラリーを調製する際に用いられる結合剤、可塑剤、分
散剤、溶剤等の添加剤は種々のものであってよい。ま
た、ガラスフリットを添加してもよい。
The production method of the present invention will be described more specifically. First, a slurry (paste) for the dielectric layer 3, a paste for the internal electrodes 21 and 25, and a paste for the external electrodes 51 and 55 are manufactured. The dielectric powder used when producing the slurry for the dielectric layer 3 is usually not only powder obtained by mixing, calcining and pulverizing raw materials, but also a so-called solid phase method, but also an oxalate method or hydrothermal synthesis. Powders obtained by a so-called liquid phase method such as a method may be used. As the material powder, one having an average particle diameter of about 0.1 to 3 μm is usually used. Various additives such as a binder, a plasticizer, a dispersant, and a solvent may be used when preparing the slurry for the dielectric layer 3. Further, a glass frit may be added.

【0009】結合剤としては、例えばアクリル樹脂、ブ
チラール樹脂、エチルセルロースなど、可塑剤として
は、例えばポリエチレングリコール、フタール酸エステ
ル、フタール酸ジブチルなど、分散剤としては、例えば
オレイン酸、ロジン、グリセリン、オクタデシルアミ
ン、オレイン酸エチル、メンセーデン油など、溶剤とし
てはトルエン、アセトン、テルピネオール、ブチルカル
ビトール、メチルエチルケトンなどが挙げられる。この
スラリー(ペースト)を調製する際の誘電体材料の全体
に対する割合は50〜80重量%程度とし、その他、結合剤
は2〜5重量%、可塑剤は0.1〜5重量%、分散剤は0.1〜5
重量%、溶剤は20〜50重量%程度が適当である。次い
で、前記誘電体材料とこれらを混合し、例えばボールミ
ルや3本ロール等で混練してスラリー(ペースト)とす
る。
As the binder, for example, acrylic resin, butyral resin, ethyl cellulose, etc., as the plasticizer, for example, polyethylene glycol, phthalate, dibutyl phthalate, etc., as the dispersant, for example, oleic acid, rosin, glycerin, octadecyl Solvents include toluene, acetone, terpineol, butyl carbitol, methyl ethyl ketone, and the like. When this slurry (paste) is prepared, the ratio of the dielectric material to the whole is about 50 to 80% by weight, and the binder is 2 to 5% by weight, the plasticizer is 0.1 to 5% by weight, and the dispersant is 0.1 to 5% by weight. ~Five
% By weight, and about 20 to 50% by weight of the solvent. Next, the dielectric material and these are mixed and kneaded with, for example, a ball mill or a three-roll mill to form a slurry (paste).

【0010】内部電極21、25用のペーストを製造す
る際に用いる導体材料としては、NiやNi合金さらにはこ
れらの混合物を用いる。このような導体材料は、球状、
鱗片状等、その形状に特に制限はなく、またこれらの形
状のものが混合したものであってもよい。また、平均粒
径は0.1〜10μm、さらには0.1〜1μm程度のものを用い
るのが好ましい。有機質ビヒクルは、バインダーおよび
溶剤を含有するものである。バインダーとしては、例え
ばエチルセルロース、アクリル樹脂、ブチラール樹脂等
公知のものはいずれも使用可能である。バインダー含有
量は1〜5重量%程度が適当である。溶剤としては、例え
ばテルピネオール、ブチルカルビトール、ケロシン等公
知のものはいずれも使用可能である。溶剤含有量は20〜
60重量%程度が適当である。この他、総計10重量%程度
以下の範囲で、必要に応じ、ソルビタン脂肪酸エステ
ル、グリセリン脂肪酸エステル等の分散剤や、ジオクチ
ルフタレート、ジブチルフタレート等の可塑剤やデラミ
ネーション防止、焼結抑制等の目的で、誘電体、絶縁体
等の各種セラミック粉体を添加することもできる。ま
た、有機金属レジネートを添加することも有効である。
外部電極51、55用のペーストは、上記の導体材料粉
末を含有する通常のペーストを用いればよい。
As the conductor material used when producing the paste for the internal electrodes 21 and 25, Ni, a Ni alloy, or a mixture thereof is used. Such conductive materials are spherical,
There is no particular limitation on the shape, such as a scale, and a mixture of these shapes may be used. Further, it is preferable to use those having an average particle size of about 0.1 to 10 μm, and more preferably about 0.1 to 1 μm. The organic vehicle contains a binder and a solvent. As the binder, any known binder such as ethyl cellulose, acrylic resin and butyral resin can be used. The binder content is suitably about 1 to 5% by weight. As the solvent, any of known solvents such as terpineol, butyl carbitol, and kerosene can be used. Solvent content is 20 ~
About 60% by weight is appropriate. In addition, if necessary, a dispersing agent such as sorbitan fatty acid ester and glycerin fatty acid ester, a plasticizer such as dioctyl phthalate and dibutyl phthalate, and a purpose of preventing delamination and suppressing sintering, in a range of about 10% by weight or less. Thus, various ceramic powders such as dielectrics and insulators can be added. It is also effective to add an organic metal resinate.
As the paste for the external electrodes 51 and 55, a normal paste containing the above-described conductor material powder may be used.

【0011】このようにして得られた内部電極ペースト
と、誘電体3用スラリーは、シート法、印刷法、転写法
等により、それぞれ交互に積層される。次に、所定の積
層体サイズに切断した後、脱バインダ処理および焼成を
行い、誘電体層3を再酸化させるため、熱処理を行う。
脱バインダ処理は、通常の空気中の条件で行えばよい
が、下記の条件で行うことも好ましい。 昇温速度:10〜300℃/時間、特に50〜100℃/時間 保持温度:200〜350℃、特に250〜300℃ 保持時間:0.5〜20時間、特に1〜10時間 雰囲気:空気中
The internal electrode paste thus obtained and the slurry for the dielectric 3 are alternately laminated by a sheet method, a printing method, a transfer method, or the like. Next, after cutting to a predetermined laminate size, binder removal processing and firing are performed, and heat treatment is performed to reoxidize the dielectric layer 3.
The binder removal treatment may be performed under normal air conditions, but is also preferably performed under the following conditions. Heating rate: 10-300 ° C / hour, especially 50-100 ° C / hour Holding temperature: 200-350 ° C, especially 250-300 ° C Holding time: 0.5-20 hours, especially 1-10 hours Atmosphere: in air

【0012】本発明においては、焼成の昇温部の少なく
とも700℃以上1100℃以下を500℃/時間以上、好ましく
は、600℃/時間以上、更に好ましくは、800℃/時間以上
の速度で昇温する。昇温速度が500℃/時間未満になる
と、内部電極21、25の入っている部分とマージン部
の間にクラックが発生しやすくなる。
In the present invention, at least 700 ° C. or more and 1100 ° C. or less of the heating portion of the firing is heated at a rate of 500 ° C./hour or more, preferably 600 ° C./hour or more, more preferably 800 ° C./hour or more. Warm up. If the rate of temperature rise is less than 500 ° C./hour, cracks are likely to occur between the portion containing the internal electrodes 21 and 25 and the margin.

【0013】次に、焼成条件としては、下記の条件が好
ましい。なお、内部電極としてNiまたはNi合金を用いる
ため内部電極の酸化を防止するために焼成は還元性雰囲
気で行う。 保持温度:1150〜1400℃、特に1200〜1300℃ 保持時間:0.5〜8時間、特に1〜3時間 焼成雰囲気:10-7〜10-13atm、特に10-10〜10-12atm 冷却速度:50〜500℃/時間、特に200〜300℃/時間 雰囲気用ガスには、加湿したN2、H2の混合ガスを用いる
ことが好適である。焼成において1100℃以上の雰囲気の
酸素分圧は10-8atm以下であることが好ましい。1100℃
以上の雰囲気の酸素分圧が10-8atmより高いと、内部電
極が酸化され易くなる。
Next, the following conditions are preferable as firing conditions. Since Ni or a Ni alloy is used as the internal electrode, firing is performed in a reducing atmosphere to prevent oxidation of the internal electrode. Holding temperature: 1150-1400 ° C, especially 1200-1300 ° C Holding time: 0.5-8 hours, especially 1-3 hours Firing atmosphere: 10 -7 -10 -13 atm, especially 10 -10 -10 -12 atm Cooling rate: 50 to 500 ° C./hour, particularly 200 to 300 ° C./hour As the atmospheric gas, it is preferable to use a humidified mixed gas of N 2 and H 2 . In the firing, the oxygen partial pressure in an atmosphere of 1100 ° C. or more is preferably 10 −8 atm or less. 1100 ℃
When the oxygen partial pressure in the above atmosphere is higher than 10 -8 atm, the internal electrodes are easily oxidized.

【0014】還元性雰囲気で焼成した後、積層体には熱
処理を施すことが好ましい。熱処理は内部電極の酸化を
抑制しつつ、温度保持部の低酸素分圧焼成で一部還元し
た誘電体を再酸化するための処理であり、これにより絶
縁抵抗を増加させ、高い信頼性(高温加速寿命)を確保す
ることができる。熱処理は、以下の条件で行うことが好
ましい。 保持温度:1100℃以下、特に500〜1100℃ 保持時間:0〜20時間、特に6〜10時間 酸素分圧:10- 8atm以上、特に10- 7atm以上 冷却速度:50〜500℃/時間、特に100〜300℃/時間 雰囲気用ガスには、加湿したN2、H2の混合ガスを用いる
ことが好適である。
After firing in a reducing atmosphere, the laminate is preferably subjected to a heat treatment. The heat treatment is a process for reoxidizing the dielectric partially reduced by the low oxygen partial pressure firing of the temperature holding unit while suppressing the oxidation of the internal electrode, thereby increasing the insulation resistance and increasing the reliability (high temperature (Accelerated life). The heat treatment is preferably performed under the following conditions. Holding temperature: 1100 ° C. or less, in particular 500 to 1100 ° C. Retention time: 0-20 hours, especially 6-10 hours of oxygen partial pressure: 10 - 8 atm or more, particularly 10 - 7 atm above cooling rate: 50 to 500 ° C. / Time In particular, it is preferable to use a humidified mixed gas of N 2 and H 2 as the atmosphere gas at 100 to 300 ° C./hour.

【0015】脱バインダ処理後、焼成を行うが、これは
独立に行っても、連続して行ってもよい。また、焼成お
よび熱処理工程も、独立に行っても、連続して行っても
よい。連続して行う場合は、焼成における降温部におい
て、1100℃以下の一部の温度範囲の雰囲気の酸素分圧を
10- 8atm以上とすればよい。また、このときに温度保持
部を設けてもよい。好ましい保持温度および保持時間は
上記した通りである。このようにして得られた焼結体に
は、例えばバレル研磨、サンドブラスト等にて端面研磨
を施し、外部電極用ペーストを焼き付けて外部電極5
1、55を形成する。必要に応じ、外部電極51、55
上にSnあるいは半田層をめっきしてもよい。
After the binder removal treatment, baking is performed, which may be performed independently or continuously. Further, the firing and heat treatment steps may be performed independently or continuously. In the case of performing continuously, the oxygen partial pressure of the atmosphere in a part of the temperature range of 1100 ° C or lower in the temperature lowering part in the firing is
10 - may be the 8 atm or more. At this time, a temperature holding unit may be provided. Preferred holding temperature and holding time are as described above. The end surface of the sintered body thus obtained is polished by, for example, barrel polishing or sand blasting, and the external electrode paste is baked.
1, 55 are formed. If necessary, external electrodes 51, 55
Sn or a solder layer may be plated thereon.

【0016】[0016]

【作用】図2に示すように、積層型セラミックコンデン
サの製造において、焼成時の昇温中に、内部電極の入っ
ている部分は約700℃〜750℃で収縮する。これに対し
て、マージン部はこの温度域ではほとんど収縮しない。
また、この温度域では、セラミック誘電体は焼結が始ま
っておらず、強度は非常に弱い。従って、この温度域で
は、薄層多層チップにおいて、内部電極の入っている部
分は収縮するのに対して、外側のマージン部は収縮しな
い。そこで、内部電極の入っている部分とマージン部の
間にクラックが入りやすく、薄層多層チップが700℃以
上1100℃以下の温度域に長くさらされるほど、すなわち
昇温速度が小さいほどクラックは顕著になる。従って、
内部電極の入っている部分とマージン部の収縮差が認め
られる温度範囲、すなわち、少なくとも700℃以上1100
℃以下をなるべく速く通過して両者の収縮率の差が小さ
くなる温度域まで速やかに昇温することがクラック防止
の上で有効である。また、セラミック誘電体は約1000℃
付近から強度が急激に大きくなる。すなわち、急昇温で
1100℃以上にすることによって、収縮率差があっても、
強度が大きくなることによりクラックは抑制されるよう
になる。
As shown in FIG. 2, in the manufacture of the multilayer ceramic capacitor, the portion containing the internal electrodes contracts at about 700 ° C. to 750 ° C. during the temperature rise during firing. In contrast, the margin portion hardly shrinks in this temperature range.
In this temperature range, the ceramic dielectric has not yet started to sinter, and has a very low strength. Therefore, in this temperature range, in the thin multilayer chip, the portion containing the internal electrode shrinks, while the outer margin does not shrink. Therefore, cracks are likely to occur between the part containing the internal electrode and the margin, and the more the thin multilayer chip is exposed to the temperature range of 700 ° C. or more and 1100 ° C. or less, that is, the crack becomes more remarkable as the rate of temperature rise is smaller. become. Therefore,
Temperature range where the difference in shrinkage between the part containing the internal electrode and the margin is recognized, that is, at least 700 ° C or higher 1100
It is effective from the viewpoint of preventing cracking that the temperature is quickly raised to a temperature range in which the difference between the two shrinkage ratios is reduced by passing the temperature as low as possible as quickly as possible. Also, the ceramic dielectric is about 1000 ℃
The intensity increases sharply from around. In other words, when the temperature rises
By setting it to 1100 ° C or more, even if there is a difference in shrinkage,
As the strength increases, cracks are suppressed.

【0017】[0017]

【実施例】以下、本発明の具体的実施例を挙げ、本発明
をさらに詳細に説明する。 実施例1、2および比較例1、2 出発原料 BaCO3 :65.28重量% TiO2 :23.72重量% ZrO2 : 7.49重量% CaCO3 : 2.88重量% SiO2 : 0.05重量% MnCO3 : 0.24重量% Y2O3 : 0.25重量% V2O5 : 0.04重量% WO3 : 0.05重量% 上記の出発原料をジルコニア製ボールミルで16時間湿式
混合した。次いで、スプレードライヤーで乾燥させた
後、空気中にて、1200℃で3時間仮焼した。得られた仮
焼物をボールミルで16時間湿式粉砕し、平均粒子径0.7
μmのチタン酸バリウム系の誘電体材料を得た。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to specific examples of the present invention. Examples 1 and 2 and Comparative Examples 1 and 2 Starting material BaCO 3 : 65.28% by weight TiO 2 : 23.72% by weight ZrO 2 : 7.49% by weight CaCO 3 : 2.88% by weight SiO 2 : 0.05% by weight MnCO 3 : 0.24% by weight Y 2 O 3 : 0.25% by weight V 2 O 5 : 0.04% by weight WO 3 : 0.05% by weight The above starting materials were wet-mixed in a zirconia ball mill for 16 hours. Next, after drying with a spray drier, it was calcined in air at 1200 ° C. for 3 hours. The obtained calcined material was wet-pulverized for 16 hours with a ball mill, and had an average particle diameter of 0.7.
A μm barium titanate-based dielectric material was obtained.

【0018】この誘電体材料を下記の成分と配合し、ボ
ールミルで16時間混合して、誘電体層用スラリーを得
た。 誘電体材料 : 100.00重量部 アセトン : 51.60重量部 トルエン : 14.31重量部 酢酸エチル : 17.70重量部 分散剤 : 0.28重量部 可塑剤 : 0.13重量部 アクリル樹脂: 5.70重量部
This dielectric material was blended with the following components and mixed in a ball mill for 16 hours to obtain a dielectric layer slurry. Dielectric material: 100.00 parts by weight Acetone: 51.60 parts by weight Toluene: 14.31 parts by weight Ethyl acetate: 17.70 parts by weight Dispersant: 0.28 parts by weight Plasticizer: 0.13 parts by weight Acrylic resin: 5.70 parts by weight

【0019】次に下記の成分を、3本ロールにより混練
し、内部電極用ペーストを作製した。 Ni :44.6重量% テルピネオール : 52.0重量% エチルセルロース : 3.0重量% ベンゾトリアゾール: 0.4重量%
Next, the following components were kneaded with a three-roll mill to prepare an internal electrode paste. Ni: 44.6% by weight Terpineol: 52.0% by weight Ethyl cellulose: 3.0% by weight Benzotriazole: 0.4% by weight

【0020】これらのペーストを用い、以下のようにし
て図1に示される積層型セラミックコンデンサ1を製造
した。まず、誘電体スラリーから、いわゆるドクターブ
レード法によって厚さ7μmのグリーンシートを作製し
た。このグリーンシート上に、内部電極ペーストを用い
て印刷法により内部電極を形成した。このようなシート
を200枚積層し、上下に内部電極を印刷していない誘電
体グリーンシートを20枚ずつ積層し、120℃で5分間、1
ton/cm2で加熱圧着した。次いで所定のサイズに切断
し、脱バインダ処理した後、焼成および熱処理を連続し
て下記の条件にて行った。
Using these pastes, a multilayer ceramic capacitor 1 shown in FIG. 1 was manufactured as follows. First, a green sheet having a thickness of 7 μm was prepared from the dielectric slurry by a so-called doctor blade method. Internal electrodes were formed on this green sheet by a printing method using an internal electrode paste. Two hundred such sheets are laminated, and twenty dielectric green sheets on which no internal electrodes are printed are laminated at a time at 120 ° C. for 5 minutes.
Thermocompression bonding was performed at ton / cm 2 . Next, after cutting into a predetermined size and removing the binder, firing and heat treatment were continuously performed under the following conditions.

【0021】脱バインダ処理 昇温速度:50℃/時間 保持温度:300℃ 保持時間:4時間 雰囲気:空気中Binder removal process Temperature rise rate: 50 ° C / hour Holding temperature: 300 ° C Holding time: 4 hours Atmosphere: In air

【0022】焼成 昇温速度:X℃までは300℃/時間、X℃以上はY℃/
時間 保持温度:1270℃ 保持時間:2時間 冷却速度:300℃/時間 雰囲気ガス:加湿したN2ガスとH2(5%)の混合ガス 酸素分圧:10- 1 2atm
Firing Temperature rising rate: 300 ° C./hour up to X ° C., Y ° C./hour above X ° C.
Time holding temperature: 1270 ° C. Retention time: 2 hours Cooling rate: 300 ° C. / Time Atmosphere gas: mixed gas of oxygen partial pressure in the humidified N 2 gas and H 2 (5%): 10 - 1 2 atm

【0023】熱処理 保持温度:1100℃ 保持時間:2時間 冷却速度:300℃/時間 雰囲気ガス:加湿したN2ガス 酸素分圧:10-6atmHeat treatment Holding temperature: 1100 ° C Holding time: 2 hours Cooling rate: 300 ° C / hour Atmospheric gas: Humidified N 2 gas Oxygen partial pressure: 10 -6 atm

【0024】上記脱バインダ処理、焼成および熱処理の
それぞれの雰囲気用ガスの加湿には、ウェッターを使用
し、このウェッターの水温を35℃に制御した。得られた
各種焼結体の端面をサンドブラストにて研磨した後、In
−Ga合金を塗布して試験用電極を形成した。このように
して製造した積層型セラミックコンデンサのサイズは、
3.2mm×1.6mm×1.4mmであり、誘電体層3の厚みは4μ
m、内部電極21、25の厚みは1.3μmであった。次
に、得られた種々の試験用コンデンサ(各100個)を、
エポキシ樹脂に埋め込んで硬化後、研削、研磨すること
によって断面を観察した。内部電極の入っている部分と
マージン部の間にクラックが発生したコンデンサの個数
を調べた。得られた結果を下記の表1に示す。
A wetter was used to humidify the atmosphere gas for the binder removal treatment, firing and heat treatment, and the water temperature of the wetter was controlled at 35 ° C. After polishing the end faces of the obtained various sintered bodies by sand blast,
A test electrode was formed by applying a -Ga alloy. The size of the multilayer ceramic capacitor manufactured in this way is
3.2 mm × 1.6 mm × 1.4 mm, and the thickness of the dielectric layer 3 is 4 μm.
m, and the thickness of the internal electrodes 21 and 25 was 1.3 μm. Next, the obtained various test capacitors (100 each)
After embedding in an epoxy resin and curing, the cross section was observed by grinding and polishing. The number of capacitors in which cracks occurred between the portion containing the internal electrode and the margin was examined. The results obtained are shown in Table 1 below.

【0025】[0025]

【表1】 [Table 1]

【0026】表1から以下のことがわかる。まず、200
℃/時間および300℃/時間で全域を昇温した比較例1
および2では、内部電極の入っている部分とマージン部
の間にクラックが極めて高い頻度(それぞれ100%およ
び98%)で発生した。これに対し、500℃までは300℃/
時間、500℃以上は500℃/時間で昇温した実施例1、70
0℃までは300℃/時間、700℃以上は500℃/時間で昇温
した実施例2、700℃までは300℃/時間、700℃以上は8
00℃/時間で昇温した実施例3では、クラックの発生率
はそれぞれ2%、1%、0%である。また、800℃まで
を300℃/時間、800℃以上は500℃/時間で昇温した比
較例3では、700℃〜800℃の間の昇温速度が低いため、
クラック発生率が高い(28%)。上記結果は、700℃以
上1100℃以下を500℃/時間以上の昇温速度で昇温する
ことにより、クラックの発生が激減することを明瞭に示
している。
The following can be seen from Table 1. First, 200
Comparative Example 1 in which the entire temperature was raised at 300 ° C / hour and 300 ° C / hour
In Examples 2 and 3, cracks occurred at extremely high frequencies (100% and 98%, respectively) between the portion containing the internal electrode and the margin. In contrast, up to 500 ° C, 300 ° C /
Example 1, where the temperature was raised at 500 ° C / hour over 500 ° C for 70 hours
Example 2 in which the temperature was raised at 300 ° C./hour up to 0 ° C. and 500 ° C./hour up to 700 ° C., 300 ° C./hour up to 700 ° C., and 8 at 700 ° C. or higher
In Example 3 in which the temperature was raised at 00 ° C./hour, the crack occurrence rates were 2%, 1%, and 0%, respectively. In Comparative Example 3 in which the temperature was raised up to 800 ° C. at 300 ° C./hour and 800 ° C. or higher at 500 ° C./hour, the rate of temperature increase between 700 ° C. and 800 ° C. was low.
High crack occurrence rate (28%). The above results clearly show that the occurrence of cracks is drastically reduced by increasing the temperature from 700 ° C. to 1100 ° C. at a rate of 500 ° C./hour or more.

【発明の効果】本発明の積層型セラミックコンデンサの
製造方法においては、焼成時の昇温中の少なくとも700
℃以上の昇温速度を大きくすることによってクラックの
発生が顕著に抑制される。
According to the method for manufacturing a multilayer ceramic capacitor of the present invention, at least 700
The generation of cracks is remarkably suppressed by increasing the rate of temperature increase of not less than ° C.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法により製造される積層型セラミッ
クコンデンサの1例の断面図である。
FIG. 1 is a cross-sectional view of an example of a multilayer ceramic capacitor manufactured by a method of the present invention.

【図2】積層型セラミックコンデンサの内部電極の入っ
ている部分とマージン部の昇温過程における収縮挙動を
示すグラフである。
FIG. 2 is a graph showing a shrinkage behavior of a portion of the multilayer ceramic capacitor in which an internal electrode is contained and a margin portion in a temperature rising process.

【符号の説明】[Explanation of symbols]

1:積層型セラミックコンデンサ、3:誘電体層、2
1、25:内部電極、51、55:外部電極
1: multilayer ceramic capacitor, 3: dielectric layer, 2
1, 25: internal electrode, 51, 55: external electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 NiまたはNi合金からなる内部電極と誘電
体層とを交互に積層してなる積層型セラミックコンデン
サを、昇温部、該昇温部に続き、所定の焼成温度に維持
する温度維持部、および降温部を含む焼成工程によって
焼成する積層型セラミックコンデンサの製造方法におい
て、焼成における昇温部の少なくとも700℃以上1100℃
以下を500℃/時間以上の速度で昇温することを特徴とす
る積層型セラミックコンデンサの製造方法。
1. A laminated ceramic capacitor in which internal electrodes made of Ni or a Ni alloy and dielectric layers are alternately laminated, a heating section, and a temperature for maintaining a predetermined firing temperature following the heating section. In the manufacturing method of the multilayer ceramic capacitor to be fired by the firing step including the maintaining unit and the cooling unit, at least 700 ° C. or higher and 1100 ° C.
A method for producing a multilayer ceramic capacitor, characterized in that the temperature is raised at a rate of 500 ° C./hour or more:
【請求項2】 焼成において1100℃以上の雰囲気の酸素
分圧が10-8atm以下であることを特徴とする請求項1に記
載の積層型セラミックコンデンサの製造方法。
2. The method for producing a multilayer ceramic capacitor according to claim 1, wherein the oxygen partial pressure of the atmosphere at 1100 ° C. or more in the firing is 10 −8 atm or less.
【請求項3】 焼成における降温部において1100℃以下
の一部の温度範囲の雰囲気の酸素分圧が10- 8atm以上で
あることを特徴とする請求項1または2に記載の積層型
セラミックコンデンサの製造方法。
Multilayer ceramic capacitor according to claim 1 or 2, characterized in that at 8 atm or more - wherein the partial pressure of oxygen in the atmosphere for some temperature range of 1100 ° C. or less in the cooling unit in the firing 10 Manufacturing method.
JP01795699A 1999-01-27 1999-01-27 Manufacturing method of multilayer ceramic capacitor Expired - Fee Related JP4803854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01795699A JP4803854B2 (en) 1999-01-27 1999-01-27 Manufacturing method of multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01795699A JP4803854B2 (en) 1999-01-27 1999-01-27 Manufacturing method of multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2000216042A true JP2000216042A (en) 2000-08-04
JP4803854B2 JP4803854B2 (en) 2011-10-26

Family

ID=11958214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01795699A Expired - Fee Related JP4803854B2 (en) 1999-01-27 1999-01-27 Manufacturing method of multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP4803854B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081033A (en) * 2007-09-26 2009-04-16 Noritake Co Ltd Conductive paste for high-speed calcination
CN100559522C (en) * 2002-01-28 2009-11-11 株式会社村田制作所 The manufacture method of laminated ceramic electronic component
US8540832B2 (en) 2009-06-15 2013-09-24 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component and manufacturing method therefor
US8609564B2 (en) 2009-08-27 2013-12-17 Murata Manufacturing Co., Ltd. Manufacturing method for laminated ceramic capacitor, and laminated ceramic capacitor
US8858746B2 (en) 2009-08-20 2014-10-14 Murata Manufacturing Co., Ltd. Manufacturing method for laminated ceramic capacitor, and laminated ceramic capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100559522C (en) * 2002-01-28 2009-11-11 株式会社村田制作所 The manufacture method of laminated ceramic electronic component
JP2009081033A (en) * 2007-09-26 2009-04-16 Noritake Co Ltd Conductive paste for high-speed calcination
US8540832B2 (en) 2009-06-15 2013-09-24 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component and manufacturing method therefor
US9183986B2 (en) 2009-06-15 2015-11-10 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component and manufacturing method therefor
US8858746B2 (en) 2009-08-20 2014-10-14 Murata Manufacturing Co., Ltd. Manufacturing method for laminated ceramic capacitor, and laminated ceramic capacitor
US8609564B2 (en) 2009-08-27 2013-12-17 Murata Manufacturing Co., Ltd. Manufacturing method for laminated ceramic capacitor, and laminated ceramic capacitor

Also Published As

Publication number Publication date
JP4803854B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
CN108257779B (en) Laminated ceramic electronic component
JP5434407B2 (en) Ceramic electronic component and manufacturing method thereof
EP1536438B1 (en) Multilayer ceramic capacitor
WO2005117041A1 (en) Electronic part, layered ceramic capacitor, and manufacturing method thereof
JP3794562B2 (en) Multilayer ceramic electronic components
JP4548118B2 (en) DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT AND METHOD FOR PRODUCING THEM
JP2004319435A (en) Conductive particle, conductive paste, electronic part, laminated ceramic capacitor and manufacturing method of the same
JP4896364B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4735071B2 (en) Electronic component manufacturing method and electronic component
JP6586507B2 (en) COG dielectric composition for nickel electrodes
JP3419713B2 (en) Manufacturing method of multilayer ceramic chip capacitor
JP2787746B2 (en) Multilayer ceramic chip capacitors
JP3134024B2 (en) Multilayer ceramic chip capacitors
JP2784982B2 (en) Multilayer ceramic chip capacitors
JP4803854B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2001217137A (en) Laminated ceramic electronic component and manufacturing method therefor
JP2001284161A (en) Method for manufacturing nickel powder, paste for electrode and electronic component
JP3520075B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2005347288A (en) Method of manufacturing multilayered ceramic capacitor
JP2975459B2 (en) Multilayer ceramic chip capacitors
JP2004203669A (en) Dielectric porcelain composition, electronic components, and manufacturing processes thereof
JP4001241B2 (en) Multilayer ceramic electronic component and paste for multilayer ceramic electronic component
JP4403733B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3545287B2 (en) Method for manufacturing ceramic electronic component and method for removing binder
JP3272763B2 (en) Manufacturing method of multilayer ceramic chip capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090910

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090915

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees