JPH108166A - Copper alloy for heat sink - Google Patents

Copper alloy for heat sink

Info

Publication number
JPH108166A
JPH108166A JP16652596A JP16652596A JPH108166A JP H108166 A JPH108166 A JP H108166A JP 16652596 A JP16652596 A JP 16652596A JP 16652596 A JP16652596 A JP 16652596A JP H108166 A JPH108166 A JP H108166A
Authority
JP
Japan
Prior art keywords
copper alloy
heat sink
copper
thermal expansion
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16652596A
Other languages
Japanese (ja)
Inventor
Michio Miyauchi
理夫 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP16652596A priority Critical patent/JPH108166A/en
Publication of JPH108166A publication Critical patent/JPH108166A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a thermal expansion coefficient of a copper alloy for heat sink approximate to that of a semiconductor device and to provide excellent thermal conductivity and also strength capable of withstanding a repetition of thermal expansion and shrinkage during use by incorporating, as principal component, specific amounts of Cr into the copper alloy for heat sink. SOLUTION: This copper alloy for heat sink has a composition consisting of, by weight, 10-30% Cr and the balance Cu with inevitable impurities and further containing, if necessary, 0.005-0.5%, in total, of at least one element among B, N, and C or further containing <=0.5%, in total, of at least one element among >=0.005% each of Si, P, Mg, Co, Ag, Be, Al, Ni, Zn, Ti, Sn, and Zr. This copper alloy has a structure where acicular precipitates of Cr are dispersed in a copper matrix, and further, the copper matrix provides excellent thermal conductivity and the Cr precipitates make the thermal expansion coefficient of the copper alloy approximate to that of a semiconductor device. Moreover, this copper alloy has superior thermal fatigue resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子装置等のヒー
トシンクに適した銅合金に関する。
The present invention relates to a copper alloy suitable for a heat sink of an electronic device or the like.

【0002】[0002]

【従来の技術】電子装置、特に半導体素子を搭載する基
板には、半導体素子との間で熱歪みが生じないように、
熱膨張係数が半導体素子と同程度のFe−Ni系合金、
Fe−Ni−Co系合金、ステンレス合金、或いはアル
ミナ等の金属又はセラミック材料が使用されている。し
かし、前記材料はいずれも熱伝導性が悪く、半導体素子
の発熱を放散する機能に劣る為、銅やアルミニウム製の
熱伝導性部材をヒートシンクとして別に取付ける必要が
あった。前記熱伝導性部材は、熱膨張係数が半導体素子
に近いコバール(Fe−Ni−Co系合金)等を介在さ
せて半導体素子に取付けられる。
2. Description of the Related Art An electronic device, particularly a substrate on which a semiconductor element is mounted, is designed to prevent thermal distortion from occurring with the semiconductor element.
Fe-Ni alloy having a thermal expansion coefficient similar to that of a semiconductor element,
A metal or ceramic material such as an Fe-Ni-Co alloy, a stainless alloy, or alumina is used. However, each of the above materials has poor thermal conductivity and is inferior in the function of dissipating heat of the semiconductor element, so that a heat conductive member made of copper or aluminum needs to be separately attached as a heat sink. The heat conductive member is attached to the semiconductor element with Kovar (Fe-Ni-Co-based alloy) or the like having a thermal expansion coefficient close to that of the semiconductor element.

【0003】[0003]

【発明が解決しようとする課題】このようなことから、
半導体素子を搭載する基板には、熱膨張係数が半導体素
子と同程度で且つ熱伝導性に優れる材料として、多量の
合金元素が析出した二相合金からなるCu−Nb系合金
又はCu−Ag系合金が提案された。しかし、前記Cu
−Nb系合金はNbの融点が高い為溶解が困難であり、
前記Cu−Ag系合金はAgが6wt%も含有されていて
高価で、いずれも実用性に欠けるものであった。本発明
の目的は、熱膨張係数が半導体素子に近似し、熱伝導性
に優れ、しかも使用中の熱膨張と収縮の繰返しに耐え得
る強度を有し、半導体素子を搭載する基板等に適したヒ
ートシンク用銅合金を提供することにある。
SUMMARY OF THE INVENTION
On a substrate on which a semiconductor element is mounted, as a material having a thermal expansion coefficient similar to that of the semiconductor element and having excellent thermal conductivity, a Cu-Nb-based alloy or Cu-Ag-based alloy composed of a two-phase alloy in which a large amount of alloying elements are precipitated. Alloys have been proposed. However, the Cu
-Nb-based alloys are difficult to dissolve due to the high melting point of Nb,
The Cu-Ag alloy contains 6 wt% of Ag and is expensive, and all of them lack practicality. An object of the present invention is that the thermal expansion coefficient is close to that of a semiconductor element, has excellent thermal conductivity, and has a strength capable of withstanding repeated thermal expansion and contraction during use, and is suitable for a substrate or the like on which a semiconductor element is mounted. An object of the present invention is to provide a copper alloy for a heat sink.

【0004】[0004]

【課題を解決するための手段】請求項1記載の発明は、
Crを10〜30wt%含有し、残部Cu及び不可避不純物か
らなることを特徴とするヒートシンク用銅合金である。
According to the first aspect of the present invention,
This is a copper alloy for a heat sink characterized by containing Cr in an amount of 10 to 30% by weight, the balance being Cu and unavoidable impurities.

【0005】請求項2記載の発明は、Crを10〜30wt
%、B、N、Cのうちの少なくとも1元素を総計で 0.0
05〜 0.5wt%含有し、残部Cu及び不可避不純物からな
ることを特徴とするヒートシンク用銅合金である。
According to a second aspect of the present invention, Cr is contained in an amount of 10 to 30 wt.
%, At least one of B, N, and C in a total of 0.0
It is a copper alloy for a heat sink characterized in that the copper alloy contains 0.05 to 0.5% by weight and the balance is Cu and unavoidable impurities.

【0006】請求項3記載の発明は、請求項1又は請求
項2記載の銅合金にSi、P、Mg、Co、Ag、B
e、Al、Ni、Zn、Ti、Sn、Zrのうちの少な
くとも1元素が総計で 0.5wt%以下、個々に 0.005wt%
以上含有されていることを特徴とするヒートシンク用銅
合金である。
According to a third aspect of the present invention, there is provided the copper alloy according to the first or second aspect, wherein Si, P, Mg, Co, Ag, B
e, at least one element of Al, Ni, Zn, Ti, Sn, and Zr is 0.5 wt% or less in total, and 0.005 wt% individually.
It is a copper alloy for a heat sink characterized by being contained above.

【0007】[0007]

【発明の実施の形態】請求項1記載の発明の銅合金は、
銅マトリックス中にCrの針状析出物が分散した組織か
らなり、前記銅マトリックスが良好な熱伝導性を付与
し、前記Cr析出物が熱膨張係数を半導体素子のそれに
近似させるものである。本発明において、Crの含有量
を10〜30wt%に限定した理由は、10wt%未満では熱膨張
係数を半導体素子のそれに十分近似させることができ
ず、30wt%を超えては熱伝導性及び加工性が低下する為
である。
BEST MODE FOR CARRYING OUT THE INVENTION The copper alloy according to the first aspect of the present invention
The copper matrix has a structure in which needle-like precipitates of Cr are dispersed in a copper matrix. The copper matrix imparts good thermal conductivity, and the Cr precipitates have a coefficient of thermal expansion close to that of a semiconductor element. In the present invention, the reason why the content of Cr is limited to 10 to 30 wt% is that if the content is less than 10 wt%, the thermal expansion coefficient cannot be sufficiently approximated to that of the semiconductor element, and if it exceeds 30 wt%, the thermal conductivity and processing will not be sufficient. This is because the property decreases.

【0008】請求項2記載の発明において、B、N、C
の各元素は凝固の際の結晶核の生成頻度を高めて鋳造組
織を微細にする。これに伴いCrの析出物が、より針状
化し又より均一に分散し特性が安定化する。B、N、C
の各元素の含有量を総計で 0.005〜 0.5wt%に限定した
理由は、0.005 wt%未満ではその効果が十分に得られ
ず、 0.5wt%を超えるとCrとの間で化合物が形成され
加工性が低下する為である。
[0008] In the invention according to claim 2, B, N, C
Elements increase the frequency of generation of crystal nuclei during solidification and make the cast structure finer. As a result, the precipitates of Cr become more needle-like and more uniformly dispersed, and the characteristics are stabilized. B, N, C
The reason for limiting the total content of each element to 0.005 to 0.5 wt% is that if the content is less than 0.005 wt%, the effect cannot be obtained sufficiently, and if it exceeds 0.5 wt%, a compound is formed between Cr and This is because the property decreases.

【0009】請求項3記載の発明で含有させるSi、
P、Mg、Co、Ag、Be、Al、Ni、Zn、T
i、Sn、Zrの12元素について説明する。Siは強度
向上に寄与する。その含有量が 0.5wt%を超えては熱伝
導性及び加工性が低下する。Pは焼入れ性を高め、強度
向上に寄与する。その含有量が 0.5wt%を超えると結晶
粒界に偏析して耐食性及び熱伝導性が低下する。Mgは
不可避的に混入するSをMgS化合物としてトラップし
てマトリックス中に固溶し強度向上に寄与する。その含
有量が 0.5wt%を超えるとMgCu2 の共晶化合物が生
成して 722℃以上での熱間加工性が悪化する。CoはC
rの析出を促進して熱伝導性を向上させ、又結晶粒の粗
大化を防止して耐熱性を向上させる。その含有量が 0.5
wt%を超えるとその効果が飽和し不経済である。又加工
性が低下する。Agは耐熱性向上に寄与する。その含有
量が 0.5wt%を超えると熱伝導性が低下し、又融点が下
がって熱間加工性が悪化する。又不経済でもある。Be
は強度向上に寄与する。その含有量が 0.5wt%を超える
とその効果が飽和し不経済である。又加工性が低下す
る。Al、Ni、Zn、Ti、Snは強度向上に寄与す
る。その含有量が 0.5wt%を超えるといずれの場合も熱
伝導性が低下する。Zrはマトリックス中にCu3 Zr
化合物として微細に析出し強度及び耐熱性向上に寄与す
る。その含有量が 0.5wt%を超えてはその効果が飽和す
る上、熱伝導性が低下する。前記Si、P、Mg等の12
元素は、個々に 0.005wt%未満では、各々の効果が発現
されない。又前記12元素の含有量が総計で 0.5wt%を超
えると加工性、熱伝導性、耐食性、経済性等が低下す
る。従って前記12元素の総含有量を 0.5wt%以下、個々
に 0.005wt%以上に限定する。
The Si contained in the invention according to claim 3,
P, Mg, Co, Ag, Be, Al, Ni, Zn, T
The 12 elements i, Sn, and Zr will be described. Si contributes to strength improvement. If the content exceeds 0.5% by weight, the thermal conductivity and workability are reduced. P enhances hardenability and contributes to strength improvement. If the content exceeds 0.5% by weight, segregation occurs at the crystal grain boundaries, and the corrosion resistance and the thermal conductivity decrease. Mg traps S unavoidably mixed as an MgS compound and solid-dissolves in the matrix, thereby contributing to an improvement in strength. If the content exceeds 0.5% by weight, a eutectic compound of MgCu 2 is formed, and the hot workability at 722 ° C. or more deteriorates. Co is C
The heat conductivity is improved by accelerating the precipitation of r, and the heat resistance is improved by preventing the crystal grains from becoming coarse. Its content is 0.5
If it exceeds wt%, the effect is saturated and uneconomical. Also, the workability decreases. Ag contributes to improvement in heat resistance. When the content exceeds 0.5% by weight, the thermal conductivity is lowered, and the melting point is lowered to deteriorate the hot workability. It is also uneconomic. Be
Contributes to improvement in strength. If the content exceeds 0.5% by weight, the effect is saturated and uneconomical. Also, the workability decreases. Al, Ni, Zn, Ti, and Sn contribute to strength improvement. If the content exceeds 0.5% by weight, the thermal conductivity decreases in any case. Zr contains Cu 3 Zr in the matrix.
It precipitates finely as a compound and contributes to improvement in strength and heat resistance. If the content exceeds 0.5% by weight, the effect is saturated and the thermal conductivity is reduced. 12 such as Si, P, Mg, etc.
If each element is less than 0.005 wt%, each effect is not exhibited. If the total content of the 12 elements exceeds 0.5% by weight, workability, thermal conductivity, corrosion resistance, economic efficiency, and the like are reduced. Therefore, the total content of the 12 elements is limited to 0.5 wt% or less, and individually to 0.005 wt% or more.

【0010】[0010]

【実施例】以下に、本発明を実施例により詳細に説明す
る。 (実施例1)比較的酸素量の少ない銅地金を真空溶解炉
にて溶解し、この銅溶湯中にCrを添加し、この合金溶
湯を十分攪拌して金型に鋳込んで厚さ30mm、幅100mm 、
長さ150mm の鋳塊を得た。次にこの鋳塊を 950℃に加熱
して厚さ13mmに熱間圧延し、次いで厚さ12mmに両側を面
削して酸化スケールを除去し、次いで不活性ガス中で95
0℃30分間の加熱処理を施したのち、室温に急冷した。
次に厚さ10mmに冷間圧延し、これを 450℃で2時間焼鈍
後、厚さ 0.5mmの板材に冷間圧延した。必要に応じ途中
で中間焼鈍を入れた。Cr量は種々に変化させた。
The present invention will be described below in detail with reference to examples. (Example 1) A copper ingot having a relatively small amount of oxygen was melted in a vacuum melting furnace, Cr was added to the copper melt, and the alloy melt was sufficiently stirred and cast into a mold to have a thickness of 30 mm. , Width 100mm,
A 150 mm long ingot was obtained. The ingot is then heated to 950 ° C and hot rolled to a thickness of 13mm, then both sides are chamfered to a thickness of 12mm to remove oxide scale, and then 95% in an inert gas.
After a heat treatment at 0 ° C. for 30 minutes, the mixture was rapidly cooled to room temperature.
Next, the sheet was cold-rolled to a thickness of 10 mm, annealed at 450 ° C. for 2 hours, and then cold-rolled to a sheet having a thickness of 0.5 mm. Intermediate annealing was performed on the way as needed. The amount of Cr was variously changed.

【0011】このようにして得られた各々の板材につい
て導電率、熱膨張係数、引張強さ(強度)を調べた。
尚、導電率は熱伝導性とほぼ一対一に対応する。導電率
はJIS-H0505 に、引張強さはJIS-Z2241 に準じてそれぞ
れ測定した。熱膨張係数は作動トランスを用いる常法に
より測定した。結果を表1に示す。
The electrical conductivity, coefficient of thermal expansion, and tensile strength (strength) of each of the thus obtained plate members were examined.
Note that the electrical conductivity substantially corresponds to the thermal conductivity on a one-to-one basis. The electrical conductivity was measured according to JIS-H0505, and the tensile strength was measured according to JIS-Z2241. The coefficient of thermal expansion was measured by a conventional method using a working transformer. Table 1 shows the results.

【0012】[0012]

【表1】 [Table 1]

【0013】表1より明らかなように、本発明例品 (N
o.1〜4)は導電率(熱伝導性)が 75%IACS以上と高く、
又熱膨張係数は11.5〜12.8×10-6/℃で、シリコン半導
体素子に近い低い値であった。又強度も高く、使用中の
熱膨張収縮による熱疲労に十分耐え得るものであった。
これに対し、比較例品のNo.5はCr量が少ない為熱膨張
係数が純銅とあまり変わらない大きさであった。No.6は
Cr量が多い為圧延割れが生じた。導電率、熱膨張係数
はNo.4と同等でほぼ飽和状態であった。
As is clear from Table 1, the products of the present invention (N
o.1 to 4) have a high electrical conductivity (thermal conductivity) of 75% IACS or higher,
The thermal expansion coefficient was 11.5 to 12.8 × 10 −6 / ° C., which was a low value close to that of a silicon semiconductor device. Further, the strength was high, and it was able to sufficiently withstand thermal fatigue due to thermal expansion and contraction during use.
On the other hand, in Comparative Example No. 5, the coefficient of thermal expansion was not so different from that of pure copper because the amount of Cr was small. In No. 6, rolling cracks occurred due to the large amount of Cr. The conductivity and the coefficient of thermal expansion were equivalent to that of No. 4 and almost saturated.

【0014】(実施例2)比較的酸素量の少ない銅地金
を真空溶解炉にて溶解し、この銅溶湯中にCrを添加
し、更にB、N、Cの各元素をそれぞれCrの硼化物、
窒化物、炭化物として添加し、この合金溶湯を十分に攪
拌して金型に鋳込み、以下実施例1と同じ方法により厚
さ 0.5mmの板材を製造した。Cr、B、N、Cの添加量
は種々に変化させた。
(Example 2) A copper ingot having a relatively small amount of oxygen was melted in a vacuum melting furnace, Cr was added to the molten copper, and each of B, N, and C was added to each of the Cr boron. monster,
The alloy was added as nitrides and carbides, and the alloy melt was sufficiently stirred and cast into a mold. Thereafter, a plate having a thickness of 0.5 mm was manufactured in the same manner as in Example 1. The addition amounts of Cr, B, N, and C were variously changed.

【0015】得られた各々の板材について実施例1と同
じ調査を行った。結果を表2に示す。
The same investigation as in Example 1 was conducted for each of the obtained plate members. Table 2 shows the results.

【0016】[0016]

【表2】 (注)☆ No.17は請求項2の発明に対する比較例、* No.18は圧延割れ発生。[Table 2] (Note) ☆ No. 17 is a comparative example with respect to the invention of claim 2, * No. 18 shows rolling cracks.

【0017】表2より明らかなように、本発明例品 (N
o.7〜16) は、実施例1のNo.1〜4 と比較して導電率
(熱伝導性)、熱膨張係数、引張強さがそれぞれ向上し
た。これはB、N、Cのうちの少なくとも1元素が適量
添加されて、Cr析出物がより針状化し又より均一に分
散した為である。これに対し、比較例品のNo.17 はB量
が少なかった為B添加による効果が十分に得られず、N
o.18 はB、N、Cの総含有量が多かった為圧延割れが
発生した。
As is clear from Table 2, the sample of the present invention (N
o.7 to 16), the electrical conductivity (thermal conductivity), the coefficient of thermal expansion, and the tensile strength were improved as compared with Nos. 1 to 4 of Example 1, respectively. This is because at least one element of B, N and C was added in an appropriate amount, and the Cr precipitate became more acicular and more uniformly dispersed. On the other hand, in Comparative Example No. 17, the effect of addition of B was not sufficiently obtained because the amount of B was small.
In o.18, rolling cracks occurred because the total content of B, N, and C was large.

【0018】(実施例3)比較的酸素量の少ない銅地金
を真空溶解炉にて溶解し、この銅溶湯中にCrを添加
し、更にB、N、C、Si、P、Mg、Co、Ag、B
e、Al、Ni、Zn、Ti、Sn、Zrのうちの少な
くとも1元素を添加し、この合金溶湯を十分に攪拌して
金型に鋳込み、以下実施例1と同じ方法により厚さ 0.5
mmの板材を製造した。各元素の添加量は種々に変化させ
た。
Example 3 A copper metal having a relatively small amount of oxygen is melted in a vacuum melting furnace, Cr is added to the copper melt, and B, N, C, Si, P, Mg, Co , Ag, B
e, at least one element of Al, Ni, Zn, Ti, Sn, and Zr is added, and the molten alloy is sufficiently stirred and cast into a mold.
mm plate was manufactured. The addition amount of each element was variously changed.

【0019】得られた各々の板材について実施例1と同
じ調査を行った。結果を表3に示す。
The same investigation as in Example 1 was conducted for each of the obtained plate members. Table 3 shows the results.

【0020】[0020]

【表3】 [Table 3]

【0021】表3より明らかなように、本発明例品の N
o.19〜21は各々Si、P、Mgが添加されている為実施
例1のNo.1,3,4に較べてそれぞれ強度が向上した。No.2
2 〜30はB、N、Cが添加されている為全般に、導電率
と強度が向上し、熱膨張係数が低下した。更にCoが添
加されているNo.22 は導電率(熱伝導性)が、Be、A
l、Ni、Zn、Ti、Snが添加されているNo.24 〜
29は強度がそれぞれ一層向上した。又Ag、Zrが添加
されているNo.23,30は耐熱性が向上し、ヒートシンクと
しての寿命が改善された。尚、12元素個々の含有量が
0.005wt%未満の場合は各々の特性が十分に発現され
ず、12元素の総含有量が 0.5wt%を超えた場合は加工性
等が低下した。
As apparent from Table 3, the N of the sample of the present invention was
In Nos. 19 to 21, the strength was improved as compared with Nos. 1, 3, and 4 of Example 1, respectively, because Si, P, and Mg were added. No.2
Since B, N, and C were added to the samples Nos. 2 to 30, the conductivity and strength were generally improved, and the coefficient of thermal expansion was lowered. No. 22 to which Co is further added has conductivity (thermal conductivity) of Be, A
No. 24 to which l, Ni, Zn, Ti, and Sn are added
No. 29 has further improved strength. Nos. 23 and 30, to which Ag and Zr were added, had improved heat resistance and improved life as a heat sink. The content of each of the 12 elements is
When the content is less than 0.005 wt%, the respective properties are not sufficiently exhibited, and when the total content of the 12 elements exceeds 0.5 wt%, workability and the like are reduced.

【0022】[0022]

【発明の効果】以上に述べたように、本発明の銅合金
は、熱膨張係数が半導体素子に近似し、熱伝導性が良好
であり、耐熱疲労特性等の諸特性に優れる。依って半導
体素子を搭載する基板等に好適であり、工業上顕著な効
果を奏する。
As described above, the copper alloy of the present invention has a coefficient of thermal expansion close to that of a semiconductor element, has good thermal conductivity, and is excellent in various properties such as thermal fatigue resistance. Therefore, it is suitable for a substrate or the like on which a semiconductor element is mounted, and has an industrially remarkable effect.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Crを10〜30wt%含有し、残部Cu及び
不可避不純物からなることを特徴とするヒートシンク用
銅合金。
1. A copper alloy for a heat sink comprising 10 to 30% by weight of Cr and the balance of Cu and unavoidable impurities.
【請求項2】 Crを10〜30wt%、B、N、Cのうちの
少なくとも1元素を総計で 0.005〜 0.5wt%含有し、残
部Cu及び不可避不純物からなることを特徴とするヒー
トシンク用銅合金。
2. A copper alloy for a heat sink comprising 10 to 30% by weight of Cr, at least one element of B, N and C in a total of 0.005 to 0.5% by weight, and the balance being Cu and unavoidable impurities. .
【請求項3】 請求項1又は請求項2記載の銅合金にS
i、P、Mg、Co、Ag、Be、Al、Ni、Zn、
Ti、Sn、Zrのうちの少なくとも1元素が総計で
0.5wt%以下、個々に0.005 wt%以上含有されているこ
とを特徴とするヒートシンク用銅合金。
3. The copper alloy according to claim 1 or 2,
i, P, Mg, Co, Ag, Be, Al, Ni, Zn,
At least one element of Ti, Sn and Zr is in total
A copper alloy for a heat sink, characterized in that it is contained in an amount of 0.5 wt% or less and individually 0.005 wt% or more.
JP16652596A 1996-06-27 1996-06-27 Copper alloy for heat sink Pending JPH108166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16652596A JPH108166A (en) 1996-06-27 1996-06-27 Copper alloy for heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16652596A JPH108166A (en) 1996-06-27 1996-06-27 Copper alloy for heat sink

Publications (1)

Publication Number Publication Date
JPH108166A true JPH108166A (en) 1998-01-13

Family

ID=15832935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16652596A Pending JPH108166A (en) 1996-06-27 1996-06-27 Copper alloy for heat sink

Country Status (1)

Country Link
JP (1) JPH108166A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144047A (en) * 2004-11-17 2006-06-08 Dowa Mining Co Ltd Cu-Ni-Ti BASED COPPER ALLOY AND COOLING PLATE
WO2006112063A1 (en) * 2005-04-15 2006-10-26 Jfe Precision Corporation Alloy material for dissipating heat from semiconductor device and method for production thereof
CN108251632A (en) * 2018-01-18 2018-07-06 陕西斯瑞新材料股份有限公司 A kind of copper-chromium alloy surface crystal grain refinement and the method strengthened

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144047A (en) * 2004-11-17 2006-06-08 Dowa Mining Co Ltd Cu-Ni-Ti BASED COPPER ALLOY AND COOLING PLATE
JP4568092B2 (en) * 2004-11-17 2010-10-27 Dowaホールディングス株式会社 Cu-Ni-Ti copper alloy and heat sink
WO2006112063A1 (en) * 2005-04-15 2006-10-26 Jfe Precision Corporation Alloy material for dissipating heat from semiconductor device and method for production thereof
US7955448B2 (en) 2005-04-15 2011-06-07 Jfe Precision Corporation Alloy for heat dissipation of semiconductor device and semiconductor module, and method of manufacturing alloy
CN108251632A (en) * 2018-01-18 2018-07-06 陕西斯瑞新材料股份有限公司 A kind of copper-chromium alloy surface crystal grain refinement and the method strengthened

Similar Documents

Publication Publication Date Title
US4749548A (en) Copper alloy lead material for use in semiconductor device
KR101211984B1 (en) Cu-ni-si-based alloy for electronic material
EP0666931B1 (en) Copper alloy having high strength and conductivity and method of manufacturing thereof
KR100360131B1 (en) Method for improving the bendability of copper alloy and copper alloy manufactured therefrom
KR101297485B1 (en) Cu-ni-si-co-cr alloy for electronic material
JP2003073810A5 (en)
JP2001207229A (en) Copper alloy for electronic material
EP4116450A1 (en) Pure copper plate, copper/ceramic bonded body, and insulated circuit board
EP4253584A1 (en) Aluminum alloy and aluminum alloy structural member
JP4166147B2 (en) Method for producing copper alloy plate for high-strength electrical and electronic parts
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPH108166A (en) Copper alloy for heat sink
JPS6338412B2 (en)
JPH10265873A (en) Copper alloy for electrical/electronic parts and its production
JPS6296638A (en) Aluminum alloy for lead frame
JPH10287939A (en) Copper alloy for electric and electronic equipment, excellent in punchability
JPS6256937B2 (en)
JP2738130B2 (en) High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same
JPH06248375A (en) High strength and conductive copper alloy
JPH0129858B2 (en)
JPS6311418B2 (en)
JP2697242B2 (en) Continuous casting mold material made of Cu alloy having high cooling ability and method for producing the same
JPS6142772B2 (en)
JPH09316569A (en) Copper alloy for lead frame and its production
JPH06279894A (en) Copper alloy excellent in strength and electrical conductivity