JP2000204499A - Electrolytical descaling of stainless steel strip - Google Patents

Electrolytical descaling of stainless steel strip

Info

Publication number
JP2000204499A
JP2000204499A JP11002540A JP254099A JP2000204499A JP 2000204499 A JP2000204499 A JP 2000204499A JP 11002540 A JP11002540 A JP 11002540A JP 254099 A JP254099 A JP 254099A JP 2000204499 A JP2000204499 A JP 2000204499A
Authority
JP
Japan
Prior art keywords
stainless steel
electrode
steel strip
positive electrode
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11002540A
Other languages
Japanese (ja)
Inventor
Kazuo Sakurai
一生 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP11002540A priority Critical patent/JP2000204499A/en
Publication of JP2000204499A publication Critical patent/JP2000204499A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently and economically descale a stainless steel strip almost without eroding an electrode by arranging a group of insoluble anodes in the center of an electrolytic cell and setting the distance from the groups of cathodes of a specified metal symmetrically arranged on both sides at a specified length corresponding to an electrolyte. SOLUTION: An annealed stainless steel strip S is traveled in the electrolyte 2 of an electrolytic cell 1, a DC current is applied to a groups 5 of anodes in the center and the groups 6 of cathodes symmetrically arranged on both sides through a power source 7, and the strip is electrolyzed by indirect energizing and descaled. The group 5 is composed of insoluble electrodes each coated with IrO2 and the oxide of Ti, Ta, Nb, Co, Mn, or the like, and the group 6 of cathodes is formed by the use of stainless steel or Ti of the first to third kind in a larger area than the group 5. Further, the distance between both groups is set at >=3 m, >=4 m and >=4 m, respectively, for the electrolyte contg. 50-300 g/l sodium sulfate and kept at 40-80 deg.C, the electrolyte contg. 50-300 g/l sulfuric acid and kept at 40-60 deg.C and the electrolyte contg. 50-300 g/l nitric acid and kept at 40-60 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電解液として主と
して、硫酸ソーダ,硫酸又は硝酸を用いて間接通電し
て、焼鈍によりステンレス鋼帯表面に生じたスケールを
安定して且つ安価に除去出来るステンレス鋼帯の電解脱
スケール方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a stainless steel capable of removing inexpensively a scale formed on the surface of a stainless steel strip by annealing in an indirect manner mainly using sodium sulfate, sulfuric acid or nitric acid as an electrolytic solution. The present invention relates to a method for electrolytic descaling of steel strip.

【0002】[0002]

【従来の技術】冷間圧延後のステンレス鋼帯に対して行
われる焼鈍処理方法の一つとして、大気雰囲気炉内で燃
料をバーナー燃焼させて直火熱処理する大気焼鈍方法が
ある。この大気焼鈍においては、大気中の酸素の作用を
受けてステンレス鋼帯の表面に金属酸化物であるスケー
ルが生成するので、これを除去し良好な品質のステンレ
ス鋼帯を製造するために、焼鈍処理後に脱スケール処理
が行われる。そして一般にステンレス鋼帯の脱スケール
処理は、その前工程の焼鈍処理と共に一連のラインにて
連続的に行われている。
2. Description of the Related Art As one of annealing methods performed on a stainless steel strip after cold rolling, there is an atmospheric annealing method in which a fuel is burned in a furnace in an atmosphere furnace to perform direct heat treatment. In this atmospheric annealing, scales, which are metal oxides, are formed on the surface of the stainless steel strip under the action of oxygen in the atmosphere.In order to remove the scale and produce a stainless steel strip of good quality, the annealing is performed. After the treatment, a descaling treatment is performed. Generally, the descaling process of the stainless steel strip is continuously performed in a series of lines together with the annealing process in the preceding process.

【0003】この脱スケール方法としては従来よりいく
つかの方法があって、主として中性塩である硫酸ソーダ
から成る水溶液中での電解処理(以下、単に中性塩電解
処理と言うことがある)や、苛性ソーダと硝酸ソーダと
の混合溶融塩中での浸漬処理等の前処理を行った後に硝
弗酸に浸漬(以下、単に混酸浸漬と言うことがある)し
たり、硫酸水溶液中で電解処理(以下、単に硫酸電解処
理と言うことがある)や硝酸水溶液中で電解処理(以
下、単に硝酸電解処理と言うことがある)を行う処理方
法が広く採用されている。
[0003] There are several conventional descaling methods, and an electrolytic treatment in an aqueous solution mainly composed of sodium sulfate, which is a neutral salt (hereinafter, may be simply referred to as a neutral salt electrolytic treatment). Or pre-treatment such as immersion in a mixed molten salt of caustic soda and sodium nitrate, then immersion in nitric hydrofluoric acid (hereinafter sometimes simply referred to as mixed acid immersion), or electrolytic treatment in sulfuric acid aqueous solution (Hereinafter, it may be simply referred to as a sulfuric acid electrolytic treatment) or a treatment method of performing an electrolytic treatment in an aqueous nitric acid solution (hereinafter, may be simply referred to as a nitric acid electrolytic treatment) is widely used.

【0004】これらの中性塩電解処理,硝酸電解処理又
は硫酸電解処理による電解脱スケール方法は古くより採
用されている方法ではあるが、それぞれの中性塩,硫酸
又は硝酸の各電解液の条件に加えて、その電解方法によ
っても大きくその作用・効果が異なってくる。
[0004] These electrolytic descaling methods by neutral salt electrolytic treatment, nitric acid electrolytic treatment or sulfuric acid electrolytic treatment are methods that have been adopted for a long time, but the conditions of each neutral salt, sulfuric acid or nitric acid electrolytic solution are required. In addition to the above, the operation and effect differ greatly depending on the electrolysis method.

【0005】このような電解脱スケール方法を、従来の
標準的な電極配置を示す電解装置の概略構成図である図
2により説明する。電解槽1には前述の電解液2が入れ
られており、焼鈍処理されたステンレス鋼帯Sは矢印方
向に走行して入口及び出口の各デフレクターロール3,
3及び浸漬ロール4,4によって電解液2中を通過し、
その間に通電されてステンレス鋼帯Sの陽極電解が行わ
れる。電解脱スケール時の通電方法としては、以前から
電解液中に配した陰電極と接触ロールを通してこのステ
ンレス鋼帯を陽電極として通電する直接通電方法が行わ
れていた。しかし焼鈍後のステンレス鋼帯Sには非導電
性のスケールが表面に存在しているため通電不可能であ
り、無理に通電を行おうとするとスパークが発生してス
テンレス鋼帯Sに疵を発生させることになる。このた
め、焼鈍後のスケールを表面に有するステンレス鋼帯S
の脱スケールに当たっては、電解液2中に別に陽電極5
を配して電解液2中の陽電極5及び陰電極6に通電する
ことにより電解液2を通してステンレス鋼帯Sに通電す
る間接通電方法が無接点であることから薄板や高速処理
に適するとして広く採用されるようになってきた。この
ように間接通電するときの電極5,6の配置は、通常ス
テンレス鋼帯Sの表裏面に対向して陽電極5と陰電極6
とが交互に並んでそれぞれ複数個配置されて電極列が形
成され、この電極列は通常、図2に示すようにステンレ
ス鋼帯Sの上面側及び下面側のそれぞれにおいて形成さ
れていた。このように配置された陽電極5及び陰電極6
に電解用直流電源7から通電すると、陽電極5及び陰電
極6に対向するステンレス鋼帯Sの各部分はそれぞれ陰
極及び陽極に分極されて一連の電気回路を形成する。こ
の結果、陽極に分極された鋼帯部分は陽極電解処理を受
けて脱スケールが行われる。また、陰極に分極された鋼
帯部分は陰極電解処理を受けるが電解条件によって多少
の脱スケール作用を受ける程度である。
[0005] Such an electrolytic descaling method will be described with reference to FIG. 2 which is a schematic configuration diagram of an electrolytic apparatus showing a conventional standard electrode arrangement. The aforementioned electrolytic solution 2 is put in the electrolytic cell 1, and the annealed stainless steel strip S travels in the direction of the arrow to move each of the inlet and outlet deflector rolls 3.
3 and the immersion rolls 4 and 4 pass through the electrolyte 2;
During that time, electricity is supplied to perform anodic electrolysis of the stainless steel strip S. As an energizing method at the time of electrolytic descaling, a direct energizing method of energizing the stainless steel strip as a positive electrode through a negative electrode and a contact roll disposed in an electrolytic solution has been conventionally performed. However, since the non-conductive scale is present on the surface of the annealed stainless steel strip S, it is impossible to energize it. If the energization is forcibly performed, a spark is generated and the stainless steel strip S is flawed. Will be. Therefore, the stainless steel strip S having the scale after annealing on the surface
When descaling, a positive electrode 5 is separately placed in the electrolyte 2.
The indirect energization method of energizing the stainless steel strip S through the electrolytic solution 2 by energizing the positive electrode 5 and the negative electrode 6 in the electrolytic solution 2 is non-contact. It has been adopted. The arrangement of the electrodes 5 and 6 when the indirect current is supplied in this manner is usually such that the positive electrode 5 and the negative electrode 6 face the front and back surfaces of the stainless steel strip S.
Are alternately arranged to form a plurality of electrode rows, and this electrode row is usually formed on each of the upper surface side and the lower surface side of the stainless steel strip S as shown in FIG. The positive electrode 5 and the negative electrode 6 thus arranged
When a current is supplied from the DC power source 7 for electrolysis, the respective portions of the stainless steel strip S facing the positive electrode 5 and the negative electrode 6 are polarized to a cathode and an anode, respectively, to form a series of electric circuits. As a result, the steel strip portion polarized to the anode is subjected to anodic electrolysis and descaling is performed. Further, the steel strip portion polarized to the cathode is subjected to the cathodic electrolysis treatment, but only slightly descaled depending on the electrolysis conditions.

【0006】しかし、前述の各電解液2は腐食性が高い
ため、電解処理用の電極材質として適当なものが無く、
従来は鉛−アンチモン合金や高珪素鋳鉄が陽電極5に使
用されてきた。しかしながらこれらの電極寿命は6ヶ月
程度と短いものであった。しかもこれらの電極は重く、
電極交換に要する作業負荷が多大のものであった。また
加電圧も高いために電解電力コストも嵩み、これらの電
極は少なからず溶解するために液の汚染を来たすという
問題もあった。なお、陰電極6は高度な耐食性を必要と
しないことから、安価なSUS410が使用されてきた
が、交換するまでには至らないまでも多少の腐食は生じ
ていた。また、図2に示すように陽電極5と陰電極6と
が交互に複数個並んでいるため、隣接する陽電極5から
陰電極6へ直接流れるステンレス鋼帯Sの電解に寄与し
ない無効電流が生じるという問題もあった。
However, since the above-mentioned respective electrolytic solutions 2 are highly corrosive, there is no suitable electrode material for electrolytic treatment, and
Conventionally, a lead-antimony alloy or high silicon cast iron has been used for the positive electrode 5. However, the life of these electrodes was as short as about 6 months. And these electrodes are heavy,
The work load required for electrode replacement was enormous. In addition, since the applied voltage is high, the cost of electrolyzing power is increased, and there is a problem that these electrodes dissolve to a considerable extent and dissolve the liquid. Since the cathode 6 does not require a high degree of corrosion resistance, inexpensive SUS410 has been used, but some corrosion has occurred even if it is not replaced. Further, as shown in FIG. 2, since a plurality of positive electrodes 5 and negative electrodes 6 are alternately arranged, a reactive current which does not contribute to electrolysis of the stainless steel strip S flowing directly from the adjacent positive electrode 5 to the negative electrode 6 is generated. There was also a problem that would occur.

【0007】そこで、本発明者はこれらの問題点を解決
するため、特開平3−267399号公報や特開平4−
45300号公報にて『複数個の陽電極とこの陽電極に
電解用直流電源を介して接続されている複数個の陰電極
とをステンレス鋼帯の走行面に対向して一つの電解槽内
に配置した電極列を備えた電解装置を使用して焼鈍後の
ステンレス鋼帯を電解浴中を走行させながら間接通電法
により電解処理するに当たり、陽電極としてイリジウム
酸化物とチタン,タンタル,ニオブ,コバルト及びマン
ガンから選ばれた金属の酸化物とから成る電極被覆を有
する不溶性電極を用い、陰電極としてステンレス鋼及び
第1種,第2種及び第3種の各チタンから選ばれる金属
の電極を用い、陰電極の数を陽電極の数よりも多く、し
かも電解装置の中央部より上流域と下流域とにおける陽
電極と陰電極との配置が対称となるように、且つ総ての
陽電極を順次並べて形成させた陽電極群を電極列の中央
に電極配置した』ステンレス鋼帯の電解脱スケール方法
を開示したのである。
The inventor of the present invention has proposed a method for solving these problems, as disclosed in Japanese Patent Application Laid-Open Nos. Hei 3-267399 and Hei 4-
No. 45300, "A plurality of positive electrodes and a plurality of negative electrodes connected to the positive electrode via a DC power supply for electrolysis are placed in one electrolytic cell facing the running surface of the stainless steel strip. When anodized stainless steel strip is electrolyzed by an indirect energization method while running the annealed stainless steel strip in an electrolytic bath using an electrolysis apparatus having an arranged electrode array, iridium oxide and titanium, tantalum, niobium, and cobalt are used as positive electrodes. And an oxide of a metal selected from manganese and an insoluble electrode having an electrode coating, and a negative electrode using stainless steel and an electrode of a metal selected from the first, second and third types of titanium. The number of cathodes is larger than the number of cathodes, and the arrangement of cathodes and cathodes in the upstream and downstream regions from the center of the electrolyzer is symmetrical. Sequentially arranged Central to the electrode arrangement "electrolytic descaling process of the stainless steel strip formed electrode rows positive electrode group was it was disclosed.

【0008】このように構成することにより、即ち陽電
極を不溶性電極としたことによって陽電極交換頻度が低
減されて生産能力の向上及び製造費用の低減を図ること
が出来、隣接する陽電極間に陰電極を介在させることな
く総ての陽電極を順次並べて形成させた陽電極群を電極
列の中央に電極配置したことによって隣接する陽電極か
ら直接陰電極へ流れるステンレス鋼帯の電解に寄与しな
い無効電流が非常に少なくて電力効率が非常に良く、陰
電極の数を陽電極の数よりも多くしたことによって陰電
極1本当たりの電流密度を低下させて陰電極の寿命を延
ばすことが出来、電解装置の中央部より上流域と下流域
とにおける陽電極群と陰電極群との配置を対称とするこ
とによって上流域と下流域におけるステンレス鋼帯に電
位差が生じないので電気抵抗の低い部分でスパークが生
じて設備の破損やステンレス鋼帯に疵を付けることがな
いという効果が生じたのである。しかし、この方法でも
脱スケールの更なる高速化、電極寿命の延長及び無効電
流の低減には未だ不充分なものがあった。
[0008] With this configuration, that is, by changing the positive electrode to an insoluble electrode, the frequency of replacing the positive electrode can be reduced, thereby improving the production capacity and reducing the manufacturing cost. By arranging the positive electrode group in which all the positive electrodes are sequentially arranged without the interposition of the negative electrode at the center of the electrode row, it does not contribute to the electrolysis of the stainless steel strip flowing from the adjacent positive electrode directly to the negative electrode. The reactive current is very low and the power efficiency is very good. By increasing the number of cathodes to the number of cathodes, the current density per cathode can be reduced and the life of cathodes can be extended. By symmetrically arranging the positive electrode group and the negative electrode group in the upstream area and the downstream area from the central part of the electrolyzer, there is no potential difference between the stainless steel strip in the upstream area and the downstream area. Is the effect that it is not possible to scratch the damage or stainless steel strip of the facility spark occurs in the low electric resistance portion occurs. However, even with this method, there are still insufficient methods for further increasing the descaling speed, extending the electrode life, and reducing the reactive current.

【0009】[0009]

【発明が解決しようとする課題】本発明は、前記従来技
術の欠点を解消し、陽電極及び陰電極の溶損が殆ど無く
両極間の無効電流も極力少なくして焼鈍後のステンレス
鋼帯の電解を高能率で経済的に行い得るステンレス鋼帯
の電解脱スケール方法を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks of the prior art, and hardly dissolves the positive electrode and the negative electrode, minimizes the reactive current between the two electrodes and minimizes the anodized stainless steel strip. It is an object of the present invention to provide a method for electrolytic descaling of stainless steel strip which can perform electrolysis efficiently and economically.

【0010】[0010]

【課題を解決するための手段】本発明者は種々検討した
結果、本発明者が前に特開平3−267399号公報や
特開平4−45300号公報にて開示した方法を改善す
ることで、前記課題を解決出来ることを究明した。即
ち、一つの電解槽内に配置した電極列を構成する陰電極
の数又は面積を陽電極の数又は面積よりも多く又は広
く、しかも電解装置の中央部より上流域と下流域とにお
ける陽電極と陰電極との配置が対称となるように、且つ
総ての陽電極を順次並べて形成させた陽電極群を電極列
の中央に配置し、しかも該陽電極群と隣接する陰電極群
との距離を、電解液が主として硫酸ソーダの場合にはそ
の濃度が50〜300g/l、液温が40〜80℃の範
囲内において3m以上、電解液が主として硫酸の場合に
はその濃度が50〜300g/l、液温が40〜60℃
の範囲内において4m以上、電解液が主として硝酸の場
合にはその濃度が50〜300g/l、液温が40〜6
0℃の範囲内において4m以上という従来装置に比べて
充分に大きな間隔に設定すれば良いことを究明して本発
明を完成した。
As a result of various studies, the present inventor has found that the present inventor has improved the method disclosed in Japanese Patent Application Laid-Open Nos. 3-267399 and 4-45300 before, It has been found that the above problem can be solved. That is, the number or area of the negative electrodes constituting the electrode array arranged in one electrolytic cell is larger or larger than the number or area of the positive electrodes, and moreover, the positive electrodes in the upstream area and the downstream area from the central part of the electrolysis apparatus. A positive electrode group formed by sequentially arranging all the positive electrodes so that the arrangement of the positive electrode and the negative electrode is symmetrical is arranged at the center of the electrode row, and the positive electrode group and the adjacent negative electrode group When the electrolyte is mainly sodium sulfate, the concentration is 50 to 300 g / l, the solution temperature is 3 m or more in the range of 40 to 80 ° C, and when the electrolyte is mainly sulfuric acid, the concentration is 50 to 300 g / l. 300g / l, liquid temperature 40-60 ℃
If the electrolytic solution is mainly nitric acid, the concentration is 50 to 300 g / l and the liquid temperature is 40 to 6
The present inventors have completed the present invention by finding that it is sufficient to set the interval at 4 ° C. or more within the range of 0 ° C., which is sufficiently larger than that of the conventional apparatus.

【0011】そして更に、陽電極群及び陰電極群を構成
する単電極を相互にステンレス鋼帯の通板方向に沿って
密着させて配置すること、即ち同極性の電極を密着させ
て配置することによって各電極群の長さを短くすれば従
来の電解槽でも陽電極群と隣接する陰電極群との距離を
延長させ得ることや、陽電極としてステンレス鋼帯と対
向する平板面上に突起又は格子状の板を設けるか、又は
ステンレス鋼帯と対向する面を波状に成形した不溶性電
極を使用すれば陽電極群を構成する単電極のステンレス
鋼帯に投影される面積より電解に寄与する実質面積が広
くなって好ましいことや、陽電極の数又は面積と陰電極
の数又は面積との比は1:4〜1:8の範囲にすること
が好ましいことも合わせて究明したのである。
Further, the single electrodes constituting the positive electrode group and the negative electrode group are arranged in close contact with each other along the passing direction of the stainless steel strip, that is, the electrodes of the same polarity are arranged in close contact with each other. By shortening the length of each electrode group, it is possible to extend the distance between the positive electrode group and the adjacent negative electrode group even in a conventional electrolytic cell, or as a positive electrode, a protrusion or a projection on the flat surface facing the stainless steel strip. If a grid-like plate is provided or an insoluble electrode whose surface facing the stainless steel strip is formed in a wavy shape is used, the substance that contributes to electrolysis from the area projected on the stainless steel strip of the single electrode constituting the positive electrode group. It has also been determined that the area is large and preferable, and that the ratio of the number or area of the positive electrode to the number or area of the negative electrode is preferably in the range of 1: 4 to 1: 8.

【0012】以下に、本発明に係るステンレス鋼帯の電
解脱スケール方法について、電極の配置列を示す電解装
置の概略構成図である図1により詳細に説明する。本発
明方法においては陽電極5として特公昭63−3099
6号公報に記載されているような、イリジウム酸化物
と、チタン,タンタル,ニオブ,コバルト及びマンガン
から選ばれた金属の酸化物とから成る電極被膜を有する
イリジウム系不溶性電極を使用する。このイリジウム系
不溶性電極は、アルミニウム等の金属を有機酸やその塩
を含む溶液中で酸化処理して酸化被覆の形成,電解エッ
チング等の表面処理を間接通電法で連続的に行う場合の
長期安定使用に耐える陽電極として開発されてきたもの
であるが、前述の電解液中でステンレス鋼帯Sの電解を
行う場合も充分に有効であることを本発明者は究明して
いる。
Hereinafter, the method for electrolytic descaling of a stainless steel strip according to the present invention will be described in detail with reference to FIG. 1 which is a schematic configuration diagram of an electrolytic apparatus showing the arrangement of electrodes. In the method of the present invention, the positive electrode 5 is JP-B-63-3099.
An iridium-based insoluble electrode having an electrode coating composed of iridium oxide and an oxide of a metal selected from titanium, tantalum, niobium, cobalt and manganese is used as described in Japanese Patent Application Publication No. 6 (1994). This iridium-based insoluble electrode has a long-term stability when a metal such as aluminum is oxidized in a solution containing an organic acid or a salt thereof to form an oxide coating, and surface treatment such as electrolytic etching is continuously performed by an indirect energization method. Although it has been developed as a positive electrode that can withstand use, the present inventors have found that the electrolysis of the stainless steel strip S in the aforementioned electrolytic solution is sufficiently effective.

【0013】また、本発明方法においては陰電極6とし
てステンレス鋼又はチタンを使用する。ステンレス鋼
は、好ましくはSUS304,SUS316,SUS4
30,SUS420,SUS410等から選ばれ、チタ
ンはJISH4600に規定されている第1種,第2種
及び第3種から選ばれる。これらは前述の水溶液の電解
液2中で陰電極としての充分な機能を有するばかりでな
く、軽くて強く且つかなりの耐食性を有し、更に量産さ
れ汎用されているため比較的安価な素材である。
In the method of the present invention, stainless steel or titanium is used as the negative electrode 6. Stainless steel is preferably SUS304, SUS316, SUS4
30, SUS420, SUS410, etc., and titanium is selected from the first, second and third types specified in JIS H4600. These materials are not only sufficiently functional as a negative electrode in the above-mentioned aqueous electrolyte solution 2, but also light, strong and have considerable corrosion resistance, and are relatively inexpensive materials because they are mass-produced and widely used. .

【0014】本発明方法において使用する電解装置は、
図1に示すように電解液2が建浴されている一つの電解
槽1内に陽電極5及び陰電極6が配置された構造であ
り、本発明の大きな特徴として、陰電極6の数又は面積
を陽電極5の数又は面積よりも多く又は広くするのであ
り、それも大幅に例えば4:1〜8:1の比となるよう
にすると共に、電解装置の中央部より上流域と下流域
(本発明で上流,下流とは、ステンレス鋼帯Sの通板方
向に基づいて言う)とにおける陽電極5群と陰電極6群
との配置が対称となるように電極配置し、陽電極5と陰
電極6とを電解用直流電源7に接続する。そして図1に
示すように総ての陽電極5を順次並べて、即ち隣接する
陽電極5,5間に陰電極6を介在させることなく並べて
形成された陽電極5群を電極列の中央に配置するのであ
る。
The electrolysis apparatus used in the method of the present invention comprises:
As shown in FIG. 1, the structure is such that the positive electrode 5 and the negative electrode 6 are arranged in one electrolytic cell 1 in which the electrolytic solution 2 is bathed. The area is larger or larger than the number or the area of the positive electrodes 5, which is also made to have a large ratio of, for example, 4: 1 to 8: 1. (In the present invention, the upstream and downstream are defined based on the passing direction of the stainless steel strip S), and the positive electrode 5 group and the negative electrode 6 group are arranged so as to be symmetrical. And the negative electrode 6 are connected to a DC power source 7 for electrolysis. As shown in FIG. 1, all the positive electrodes 5 are sequentially arranged, that is, a group of positive electrodes 5 formed side by side without interposing the negative electrode 6 between the adjacent positive electrodes 5, 5 is arranged at the center of the electrode row. You do it.

【0015】このように陽電極5群と陰電極6群との配
置が電解装置の中央部より上流域と下流域とで対称にな
るように配置する理由は、上流域と下流域におけるステ
ンレス鋼帯Sに電位差を極力生じさせないためであり、
若し陽電極5群及び陰電極6群を電解槽1内に偏って配
置した場合には上流域と下流域におけるステンレス鋼帯
Sに大きな電位差が生じ、その結果、焼鈍処理と電解脱
スケール処理等を含む一連のラインが電気的に絶縁され
ない限り電気抵抗の低い部分でスパークが生じて設備の
破損やステンレス鋼帯Sに疵を付けることになる。また
陽電極5を順次並べて、即ち隣接する陽電極5,5間に
陰電極6を介在させることなく総て陽電極5を順次並べ
て形成させた陽電極5群を電極列の中央に電極配置する
理由は、陽電極5と陰電極6とが隣接する箇所を減少せ
しめることによって隣接する陽電極5から陰電極6へ流
れるステンレス鋼帯Sの電解に寄与しない無効電流を最
小限にするためである。
The reason why the positive electrode group 5 and the negative electrode group 6 are arranged so as to be symmetrical in the upstream region and the downstream region with respect to the center of the electrolyzer is that the stainless steel in the upstream region and the downstream region is disposed. This is to minimize the potential difference in the band S,
If the positive electrode group 5 and the negative electrode group 6 are arranged eccentrically in the electrolytic cell 1, a large potential difference occurs between the stainless steel strip S in the upstream region and the downstream region, and as a result, annealing and electrolytic descaling are performed. Unless a series of lines including the above is electrically insulated, a spark is generated in a portion having a low electric resistance, which causes breakage of the equipment and flaws on the stainless steel strip S. A group of positive electrodes 5 in which the positive electrodes 5 are sequentially arranged, that is, all the positive electrodes 5 are sequentially arranged without interposing the negative electrode 6 between the adjacent positive electrodes 5, 5 is arranged at the center of the electrode row. The reason is to reduce the reactive current that does not contribute to the electrolysis of the stainless steel strip S flowing from the adjacent positive electrode 5 to the negative electrode 6 by reducing the position where the positive electrode 5 and the negative electrode 6 are adjacent to each other. .

【0016】今回、本発明者はこの陽電極5群と陰電極
6群とが隣接する距離について注目し、従来の1m程度
の距離から更に延長した場合の有効電流を把握するた
め、実ライン規模に近い実験槽を用い、陽電極5群と陰
電極6群との間の距離を変化させてステンレス鋼帯Sに
流れる電流を調査した。即ち電解液2として、主として
硫酸ソーダ,硫酸及び硝酸の各水溶液を選択し、濃度や
温度を変えて負荷電流に対してステンレス鋼帯Sに流れ
る電流を電流効率として定義して実験を行った。実験結
果を図6,図7及び図8に示す。これは、ステンレス鋼
帯Sと各電極との間の距離を変化させた場合の陽電極5
群と陰電極6群と間の距離(極間距離)に対して電力効
率をプロットしたものである。
At this time, the present inventor pays attention to the distance between the positive electrode group 5 and the negative electrode group 6 and determines the effective current when the distance is further extended from the conventional distance of about 1 m. The current flowing through the stainless steel strip S was examined by changing the distance between the positive electrode group 5 and the negative electrode group 6 using an experimental tank close to. That is, an experiment was conducted by mainly selecting each aqueous solution of sodium sulfate, sulfuric acid, and nitric acid as the electrolyte solution 2, changing the concentration and temperature, and defining the current flowing through the stainless steel strip S as the current efficiency with respect to the load current. The experimental results are shown in FIGS. 6, 7 and 8. This is because the positive electrode 5 when the distance between the stainless steel strip S and each electrode is changed.
7 is a graph in which power efficiency is plotted with respect to a distance between a group and a group of negative electrodes 6 (distance between poles).

【0017】これらの図6,図7及び図8における電解
液が主として硫酸ソーダの場合,主として硫酸の場合及
び主として硝酸の場合において、各電解液の濃度は本発
明における電解液の濃度範囲に入っているが、液温は本
発明における電解液の液温範囲から外れている。濃度と
液温が変われば水溶液の導電性が変化して電流効率は当
然変化するが、各水溶液の濃度と液温を変化させた場合
の極間距離と電流効率に及ぼす影響について、本発明者
が一定の電極距離における電流効率の差分については実
験の結果、大きな差は認められなかった。従って、この
図6より、電解液が主として硫酸ソーダの場合には陽電
極群と隣接する陰電極群との間の距離を3m以上離すこ
とで、現状の距離1m時での電流効率がせいぜい70%
であったのに対して約90%まで向上することが判り、
図7より、電解液が主として硫酸の場合には陽電極群と
隣接する陰電極群との間の距離を4m以上離すことで、
現状の距離1m時での電流効率が8%であったのに対し
て約10%まで向上することが判り、図8より、電解液
が主として硝酸の場合には、陽電極群と隣接する陰電極
群との間の距離を4m以上離すことで、現状の距離1m
時での電流効率がせいぜい5%であったのに対して約3
0%まで向上することが判った。なお、ステンレス鋼帯
と各電極との間の距離の電流効率に及ぼす影響は、陽電
極群と陰電極群との間の距離の影響に比べると小さいこ
とも判った。
When the electrolyte in FIGS. 6, 7 and 8 is mainly sodium sulfate, mainly sulfuric acid and mainly nitric acid, the concentration of each electrolyte falls within the concentration range of the electrolyte in the present invention. However, the liquid temperature is out of the liquid temperature range of the electrolytic solution in the present invention. When the concentration and the liquid temperature change, the conductivity of the aqueous solution changes and the current efficiency naturally changes.However, when the concentration and the liquid temperature of each aqueous solution are changed, the influence on the distance between the electrodes and the current efficiency is described by the present inventor. However, as a result of the experiment, no significant difference was observed for the difference in current efficiency at a fixed electrode distance. Therefore, from FIG. 6, when the electrolytic solution is mainly sodium sulfate, the current efficiency at the current distance of 1 m is at most 70 mm by separating the distance between the positive electrode group and the adjacent negative electrode group by 3 m or more. %
It turns out that it is improved to about 90%,
From FIG. 7, when the electrolytic solution is mainly sulfuric acid, the distance between the positive electrode group and the adjacent negative electrode group is set to 4 m or more,
It can be seen that the current efficiency at the current distance of 1 m was 8% but improved to about 10%. From FIG. 8, when the electrolytic solution was mainly nitric acid, the negative electrode adjacent to the positive electrode group was observed. By increasing the distance between the electrodes and the electrode group by 4 m or more, the current distance is 1 m
The current efficiency at the time was 5% at most, but about 3%.
It was found to be improved to 0%. It was also found that the effect of the distance between the stainless steel strip and each electrode on the current efficiency was smaller than the effect of the distance between the positive electrode group and the negative electrode group.

【0018】前述の電解液に応じて電流効率が大きく異
なる理由は、電解液の導電率に起因したものであり、硫
酸や硝酸のように導電率が大きいもの、即ち水溶液の電
気抵抗が低いものは、陽電極5群と陰電極6群との間の
距離の電流効率に及ぼす影響は小さいことも示唆され
た。前述の電流効率の向上効果は見掛け上では低い数値
であるが、電解用の負荷電流が数千アンペアから数万ア
ンペアを通電することを考えると、たとえ数%の電流効
率の向上でも大きな節電効果を生むことになる。
The reason why the current efficiency varies greatly depending on the electrolytic solution described above is due to the conductivity of the electrolytic solution, such as those having high conductivity such as sulfuric acid or nitric acid, that is, those having low electric resistance of the aqueous solution. It was also suggested that the influence of the distance between the positive electrode group 5 and the negative electrode group 6 on the current efficiency was small. Although the aforementioned effect of improving current efficiency is apparently low, considering that the load current for electrolysis carries several thousand to tens of thousands of amperes, a large power saving effect can be achieved even if the current efficiency is improved by several percent. Will be born.

【0019】このように、陽電極5群と隣接する陰電極
6群との間の距離を離すことで、陽電極5群と陰電極6
群との間に流れる無効電流の減少が可能であることは判
ったが、既存の電解槽1において陽電極5群と隣接する
陰電極6群との間の距離を離すためには電解槽1の長さ
が有限なため制約を受ける。そこで、陽電極5群と陰電
極6群との間の距離を充分に確保し、しかも電解槽1の
延長を伴わない手段として、従来の電解脱スケール方法
である陰電極を構成する単体の電極6が或る距離をおい
て配置されていた点、及び陽電極5の形状に注目した。
By increasing the distance between the positive electrode group 5 and the adjacent negative electrode group 6, the positive electrode group 5 and the negative electrode group 6 are separated.
Although it has been found that the reactive current flowing between the electrodes can be reduced, it is necessary to increase the distance between the group of the positive electrodes 5 and the group of the adjacent negative electrodes 6 in the existing electrolytic cell 1. Is limited because of its finite length. Therefore, as a means for securing a sufficient distance between the positive electrode group 5 and the negative electrode group 6 and not involving the extension of the electrolytic cell 1, a single electrode constituting a negative electrode which is a conventional electrolytic descaling method is used. Attention was paid to the point that 6 was arranged at a certain distance and the shape of the positive electrode 5.

【0020】即ち、高電流密度での電解処理や長い電解
時間での電解処理をする必要がある場合には広い電極面
積の陰電極6又は陽電極5が必要となるが、広い電極面
積を有する電極の製作が困難なことや補修の容易性か
ら、しばしば同一極性となる電極を並べた電極群が使用
されることがある。本発明者は限られた長さの電解槽1
において、極力、陽電極5群と陰電極6群との間の距離
を離すために、これらの陽電極5群を構成する各単体の
電極を密着させて配置することに着目し実施した結果、
陽電極5自体の損傷や電極交換のための作業性も何ら問
題が無いことを確認した。
That is, when it is necessary to perform the electrolytic treatment at a high current density or the electrolytic treatment for a long electrolytic time, the negative electrode 6 or the positive electrode 5 having a large electrode area is required. Due to the difficulty in manufacturing the electrodes and the ease of repair, an electrode group in which electrodes having the same polarity are often arranged is sometimes used. The present inventor has proposed an electrolytic cell 1 having a limited length.
In order to increase the distance between the positive electrode group 5 and the negative electrode group 6 as much as possible, attention was paid to arranging the individual electrodes constituting the positive electrode group 5 in close contact with each other, and as a result,
It was confirmed that there was no problem in terms of damage to the positive electrode 5 itself and workability for electrode replacement.

【0021】また、前述のように陽電極5及び陰電極6
に対向するステンレス鋼帯Sの各部分はそれぞれ陰極及
び陽極に分極されて一連の電気回路を形成する。即ち、
陽電極5の必要性はこの電気回路を形成するためであ
り、陽電極5に対向したステンレス鋼帯Sは陰極に分極
されるが、ステンレス鋼帯Sの陰極分極の作用は小さい
ものである。換言すると、陽電極5の存在は、この電気
回路の形成の手段として重要であり、通電時の耐食性が
高ければ狭い面積又は少ない本数で良いわけであり、面
積が狭いか又は本数が少ない方が経済性が良いわけであ
るし、陽電極5群及び陰電極6群との間の距離を確保す
ることが容易となるわけである。そこで本発明者は、陽
電極5の形状は放熱板の如く、限定された見掛けの面積
より有効面積が大きくなる形状とすることで、実質的な
電流密度を確保出来しかも見掛けの面積を小さくするこ
とが出来ることに着目しこれを適用した。
As described above, the positive electrode 5 and the negative electrode 6
The respective portions of the stainless steel strip S facing each other are polarized to a cathode and an anode, respectively, to form a series of electric circuits. That is,
The necessity of the positive electrode 5 is for forming this electric circuit. The stainless steel strip S facing the positive electrode 5 is polarized to the cathode, but the action of the cathode polarization of the stainless steel strip S is small. In other words, the presence of the positive electrode 5 is important as a means for forming this electric circuit, and a smaller area or a smaller number is sufficient if the corrosion resistance during energization is higher. This is economical and facilitates securing the distance between the positive electrode group 5 and the negative electrode group 6. Therefore, the present inventor has made it possible to secure a substantial current density and reduce the apparent area by making the shape of the positive electrode 5 such that the effective area is larger than the limited apparent area, such as a heat sink. Focusing on the ability to do this, we applied this.

【0022】この形状に関する例を図3〜5に示す。図
3はステンレス鋼帯Sと対向する陽電極5として平板面
上に突起物を設けた1実施例を示す斜視図、図4はステ
ンレス鋼帯Sと対向する陽電極5として平板面上に格子
状の板を設けた1実施例を示す斜視図、図5はステンレ
ス鋼帯Sと対向する面を陽電極5として波状に成形加工
した1実施例を示す斜視図である。なお、これらの成形
加工した陽電極5の表面は、特公昭63−30996号
公報に記載されているようにイリジウム酸化物と、チタ
ン,タンタル,ニオブ,コバルト及びマンガンから選ば
れた金属の酸化物とから成る電極被膜で被覆されてい
る。
Examples of this shape are shown in FIGS. FIG. 3 is a perspective view showing one embodiment in which projections are provided on a flat plate surface as the positive electrode 5 facing the stainless steel strip S, and FIG. 4 is a grid on the flat plate surface as the positive electrode 5 facing the stainless steel strip S. FIG. 5 is a perspective view showing an example in which a surface facing a stainless steel strip S is formed as a positive electrode 5 in a wave shape. The surface of the formed positive electrode 5 is coated with an iridium oxide and a metal oxide selected from titanium, tantalum, niobium, cobalt and manganese as described in JP-B-63-30996. And an electrode coating comprising:

【0023】なお、陰電極6はステンレス鋼帯Sを陽極
として分極するために必要があり、脱スケールに対して
はこの陽極への分極が重要で、更に陽極への分極時間が
長い方が好ましいので、前述のように限定された見掛け
の面積より有効面積が大きくなる形状とすることは無意
味である。
The negative electrode 6 is required to polarize the stainless steel strip S as an anode, and the polarization to the anode is important for descaling, and the polarization time to the anode is preferably longer. Therefore, it is meaningless to make the shape such that the effective area is larger than the apparent area limited as described above.

【0024】[0024]

【発明の実施の形態】図1に示すように、電解槽1の陽
電極5,陰電極6及びそれらの電極列を前述の如く構成
し、電解液2として主として中性塩,硫酸又は硝酸の各
水溶液を前述の如き濃度,温度に制御して入れられた電
解液2を使用し、ステンレス鋼帯Sを通板させながら間
接通電する。この場合、陽電極5としてイリジウム系不
溶性電極を使用しているため、従来陽電極として使用し
ていた鉛−アンチモン合金や高珪素鋳鉄などに比べて高
い電流密度で通電しても破損が少なく、従って陽電極5
よりも数が多いか又は面積が広い陰電極6に対して電流
密度を通常の状態に保って通電することが出来る。更
に、同じ極性の電極5,6をそれぞれ密着させて配置し
たことも加わり、従来技術に比べて総電極数が同じでも
陰電極6の数を多くするか又は面積を広くすることが出
来、陽電極5の数又は面積が同じなら陰電極6の数をも
っと多くするか又は面積を広くすることが出来る。従っ
て、例えば既設の電解槽1を利用する場合でも陽陰各電
極5,6を数又は面積と配置とを変更して電極列を前記
のように構成することにより、ステンレス鋼帯Sが電解
液2中を走行する時に、多くなった陰電極6に対向する
位置を通過する時間、即ち陽極電解を受ける時間はそれ
だけ多くなって充分な電解脱スケール処理が行われるの
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, the positive electrode 5, the negative electrode 6 and the electrode array of the electrolytic cell 1 are constructed as described above, and the electrolytic solution 2 is mainly composed of neutral salt, sulfuric acid or nitric acid. Using the electrolytic solution 2 in which each aqueous solution is controlled at the concentration and temperature as described above, indirect energization is performed while the stainless steel strip S is passed through. In this case, since an iridium-based insoluble electrode is used as the positive electrode 5, even if the current is applied at a high current density as compared with a lead-antimony alloy or high-silicon cast iron conventionally used as the positive electrode, damage is small, Therefore, the positive electrode 5
A current can be supplied to the negative electrode 6 having a larger number or a larger area while maintaining the current density in a normal state. In addition, the electrodes 5 and 6 having the same polarity are arranged in close contact with each other, so that the number of cathode electrodes 6 can be increased or the area can be increased even if the total number of electrodes is the same as in the prior art. If the number or the area of the electrodes 5 is the same, the number of the negative electrodes 6 can be increased or the area can be increased. Therefore, for example, even when the existing electrolytic cell 1 is used, the stainless steel strip S is formed by changing the number or the area and the arrangement of the positive and negative electrodes 5 and 6 to form the electrode array as described above. When the vehicle travels in the interior 2, the time required to pass the position facing the increased negative electrode 6, that is, the time required for anodic electrolysis, is increased accordingly, and sufficient electrolytic descaling treatment is performed.

【0025】そして、陽電極5を順次並べて、即ち隣接
する陽電極5,5間に陰電極を介在させることなく総て
の陽電極5を順次並べて形成させた陽電極5群を電極列
の中央に電極配置してあるので、陽電極5群と陰電極6
群とが隣接する箇所が2ヵ所しか存在せず、加えて陽電
極5群と陰電極6群との間に必要充分な距離が確保され
ているため、従来より隣接する陽電極5から陰電極6へ
直接流れてステンレス鋼帯Sの電解脱スケールに寄与し
ない無効電流が極めて少なく、電力効率が非常に良いの
である。
A group of positive electrodes 5 formed by sequentially arranging the positive electrodes 5, that is, by arranging all the positive electrodes 5 sequentially without interposing a negative electrode between the adjacent positive electrodes 5, 5 is placed at the center of the electrode row. The positive electrode 5 group and the negative electrode 6
Since there are only two places adjacent to the group and a necessary and sufficient distance is secured between the group of the positive electrode 5 and the group of the negative electrode 6, the distance between the group of the positive electrode 5 and the group of the negative electrode 6, the reactive current that does not contribute to electrolytic descaling of the stainless steel strip S is extremely small, and the power efficiency is very good.

【0026】なお、非電解時における陽電極5群と陰電
極6群との間に電池形成による陽電極5の表面活性の低
下を防止するため、非電解時には陽電極5群と陰電極6
群との間に2ボルト以上の電圧を付加しておくか、又は
電解液2を別の槽に移送して電解槽1を空にしておくの
が好ましい。そして、前述した如く陽電極5群と陰電極
6群との間の距離を充分に確保することは、従来の間接
通電法の場合のようにステンレス鋼帯Sの表裏面に対向
して陽電極5と陰電極6とが交互に並んでそれぞれ複数
個配置されて電極列が形成される電極配置に対して適用
することも考えられるが、これでは電解槽1の長さが長
くなるので好ましくない。
In order to prevent a decrease in the surface activity of the positive electrode 5 due to the formation of a battery between the positive electrode group 5 and the negative electrode group 6 during non-electrolysis, the positive electrode group 5 and the negative electrode 6 during non-electrolysis.
It is preferable to apply a voltage of 2 volts or more to the group, or to transfer the electrolytic solution 2 to another cell and leave the electrolytic cell 1 empty. As described above, a sufficient distance between the positive electrode group 5 and the negative electrode group 6 is ensured by facing the front and back surfaces of the stainless steel strip S as in the case of the conventional indirect energization method. It is conceivable to apply the present invention to an electrode arrangement in which a plurality of electrodes 5 and negative electrodes 6 are alternately arranged to form an electrode row. However, this is not preferable because the length of the electrolytic cell 1 is increased. .

【0027】[0027]

【実施例】1.電解液が主として硫酸ソーダの場合(実
施例1,2及び比較例1,2) 種々の鋼種のステンレス鋼帯Sを焼鈍・電解脱スケール
出来るラインにおいて、特定の鋼種(SUS430,板
厚1.0mm,板幅1030mm)を用いて、以下に説
明する条件下で通板して電解脱スケールすることを12
ヶ月間続けた。即ち、実施例では陽電極5としてイリジ
ウム酸化物とチタン酸化物とから成る電極被覆を有する
図5に示す形状の12個のイリジウム系不溶性電極を密
着した状態に配置した陽電極群を、また陰電極6として
SUS304ステンレス鋼から成る27個の電極を密着
した状態に配置した2つの陰電極群を陽電極群の両側に
それぞれ図1と同様に対称に配置して電極列を構成し、
濃度150g/lの硫酸ソーダ水溶液(液温:60℃)
を電解液2として電解装置を使用して、所定の負荷電流
にて中性塩電解処理を行った。また比較例では、陽電極
5はイリジウム系不溶性電極を使用しているものの、従
来形状である平板のものを使用し、図2に示すように陰
電極6と陽電極5とを交互に配置した電極列を使用した
が、陰電極6の数と陽電極5の数とは実施例と同様にし
た。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS When the electrolytic solution is mainly sodium sulfate (Examples 1 and 2 and Comparative Examples 1 and 2) In a line capable of annealing and electrolytic descaling stainless steel strips S of various steel types, a specific steel type (SUS430, plate thickness 1.0 mm) , Plate width of 1030 mm) and passing through a plate under the conditions described below to perform electrolytic descaling.
Continued for months. That is, in the embodiment, a positive electrode group in which 12 iridium-based insoluble electrodes having an electrode coating made of iridium oxide and titanium oxide and having a shape shown in FIG. As the electrode 6, two negative electrode groups in which 27 electrodes made of SUS304 stainless steel are arranged in close contact with each other are arranged symmetrically on both sides of the positive electrode group as in FIG.
150 g / l sodium sulfate aqueous solution (liquid temperature: 60 ° C)
Was subjected to a neutral salt electrolytic treatment at a predetermined load current using an electrolytic apparatus as the electrolytic solution 2. Further, in the comparative example, although the iridium-based insoluble electrode was used as the positive electrode 5, a conventional flat plate was used, and the negative electrodes 6 and the positive electrodes 5 were alternately arranged as shown in FIG. Although an electrode array was used, the number of negative electrodes 6 and the number of positive electrodes 5 were the same as in the example.

【0028】実施例1と比較例1との通板速度は共に6
0m/min.であり、また実施例2と比較例2との通板速
度は共に90m/min.である。そして、全負荷電流は通
板速度が90m/min.の場合、60m/min.時の1.5
倍とした。陽電極5及び陰電極6の数の相違から、比較
例1においては電流密度は陽電極5では8.3A/d
2,陰電極6では1.9A/dm2であり、合計電解時
間は陽電極5では3.6秒間,陰電極6では16.2秒間
であった。実施例1では電流効率の向上した分、全負荷
電流値を下げているので、電流密度は陽電極5では6.
5A/dm2、陰電極6では1.4A/dm2であり、合
計電解時間は陽電極5の形状を図5に示す形状としてい
るため、その見掛けの電極長は比較例の0.8倍となっ
ている。即ち、陽電極5では2.88(3.6秒×0.
8)秒間、陰電極6では16.2秒間であった。実施例
2と比較例2とにおける陽電極5及び陰電極6の電流密
度や合計電解時間は同様に計算される。なお、実施例,
比較例いずれの場合も、電解装置の使用開始時では各電
極5,6は新品であり、そのまま全期間使用した。ま
た、電解液2は通常通りに時々更新した。
The passing speed of Example 1 and Comparative Example 1 was 6
0 m / min., And the passing speed of Example 2 and Comparative Example 2 was 90 m / min. When the passing speed is 90 m / min., The total load current is 1.5 at 60 m / min.
Doubled. Due to the difference in the number of the positive electrode 5 and the negative electrode 6, the current density in the comparative example 1 was 8.3 A / d in the positive electrode 5.
m 2 and 1.9 A / dm 2 for the negative electrode 6, and the total electrolysis time was 3.6 seconds for the positive electrode 5 and 16.2 seconds for the negative electrode 6. In the first embodiment, the full load current value is reduced by the amount corresponding to the improvement of the current efficiency.
5A / dm 2, a 1.4A / dm 2 At the cathode 6, because the total electrolysis time is in the shape shown in FIG. 5 the shape of the positive electrode 5, the electrode length of the apparent 0.8 times Comparative Example It has become. That is, 2.88 (3.6 seconds × 0.
8) seconds, and 16.2 seconds for the negative electrode 6. The current densities and the total electrolysis time of the positive electrode 5 and the negative electrode 6 in Example 2 and Comparative Example 2 are calculated similarly. Examples,
In each of the comparative examples, the electrodes 5 and 6 were new at the start of use of the electrolysis apparatus, and were used as they were during the entire period. Further, the electrolyte 2 was sometimes updated as usual.

【0029】このようにして焼鈍後のステンレス鋼帯S
の電解脱スケールを12ヶ月間行って脱スケール状態と
各電極の破損状態を観察した。電解脱スケール開始時と
12ヶ月後との結果を表1に示す。なお、表1に示した
結果は、いずれも建浴又は更新直後のものであり、脱ス
ケール状態の確認は、条件の大きな変化のない混酸浴中
で浸漬処理する仕上げ酸洗後に行ったものである。比較
例1と実施例1の比較から本発明方法の実施により、電
解電力の低減と電極寿命の延長ができたことが判る。ま
た、比較例2と実施例2の比較から本発明方法の実施に
より、電解電力の低減と電極寿命の延長に加えて脱スケ
ール能力の向上が認められることが判る。
The stainless steel strip S thus annealed
Was performed for 12 months to observe the descaling state and the broken state of each electrode. Table 1 shows the results at the start of electrolytic descaling and after 12 months. The results shown in Table 1 were obtained immediately after building bath or immediately after renewal, and the descaling state was confirmed after finishing pickling in which the immersion treatment was performed in a mixed acid bath in which the conditions did not change significantly. is there. From a comparison between Comparative Example 1 and Example 1, it can be seen that, by implementing the method of the present invention, the electrolysis power was reduced and the electrode life was extended. From the comparison between Comparative Example 2 and Example 2, it can be seen that the implementation of the method of the present invention shows an improvement in descaling capability in addition to a reduction in electrolysis power and an extension of the electrode life.

【0030】[0030]

【表1】 [Table 1]

【0031】2.電解液:主として硫酸(実施例3,4
及び比較例3,4) 前述と同様なステンレス鋼帯Sを実施例1,2及び比較
例1,2の条件にて中性塩電解処理を行った後に、濃度
100g/lの硫酸水溶液(浴温は60℃)を電解液2
とした電解脱スケール処理にて仕上げ酸洗(即ち、混酸
浴中で浸漬処理を使用しない表面仕上げ)を行ったこ
と、及び全負荷電流を変更したこと以外は、実施例1,
2及び比較例1,2と同じ条件で電解脱スケールを実施
した。比較例3においては電流密度は陽電極5では8.
3A/dm2,陰電極6では1.9A/dm2であり、合
計電解時間は陽電極5では3.6秒間,陰電極6では1
6.2秒間であった。実施例3では電流効率の向上した
分、全負荷電流値を下げているので、電流密度は陽電極
5では6.7A/dm2、陰電極6では1.5A/dm2
あり、合計電解時間は陽電極5の形状を図5に示す形状
としているため、その見掛けの電極長は比較例の0.8
倍となっている。即ち、陽電極5では2.88(3.6秒
×0.8)秒間,陰電極6では16.2秒間であった。実
施例4と比較例4とにおける陽電極5及び陰電極6の電
流密度や合計電解時間は同様に計算される。なお、実施
例,比較例いずれの場合も、電解装置の使用開始時では
各電極5,6は新品であり、そのまま全期間使用した。
また、電解液2は通常通りに時々更新した。
2. Electrolyte: mainly sulfuric acid (Examples 3 and 4)
And Comparative Examples 3 and 4) The same stainless steel strip S as described above was subjected to neutral salt electrolysis under the conditions of Examples 1 and 2 and Comparative Examples 1 and 2, and then a 100 g / l sulfuric acid aqueous solution (bath). (The temperature is 60 ° C).
Examples 1 and 2 except that a finish pickling (that is, surface finishing without using immersion treatment in a mixed acid bath) was performed by electrolytic descaling treatment, and that the full load current was changed.
2 and Comparative Examples 1 and 2 were subjected to electrolytic descaling under the same conditions. In Comparative Example 3, the current density of the positive electrode 5 was 8.
3 A / dm 2 , 1.9 A / dm 2 for the negative electrode 6, and a total electrolysis time of 3.6 seconds for the positive electrode 5 and 1 for the negative electrode 6.
6.2 seconds. Min with improved in current efficiency Example 3, since the lower the full load current, the current density is 6.7A / dm 2 in the positive electrode 5, a 1.5A / dm 2 At the cathode 6, total electrolyte For the time, since the shape of the positive electrode 5 is as shown in FIG. 5, the apparent electrode length is 0.8 in the comparative example.
Doubled. That is, the time was 2.88 (3.6 seconds × 0.8) seconds for the positive electrode 5 and 16.2 seconds for the negative electrode 6. The current densities and the total electrolysis time of the positive electrode 5 and the negative electrode 6 in Example 4 and Comparative Example 4 are calculated in the same manner. In each of the examples and comparative examples, the electrodes 5 and 6 were new at the start of use of the electrolysis apparatus, and were used as they were during the entire period.
Further, the electrolyte 2 was sometimes updated as usual.

【0032】このようにして焼鈍後のステンレス鋼帯S
の電解脱スケールを12ヶ月間行って脱スケール状態と
各電極の破損状態を観察した。電解脱スケール開始時と
12ヵ月後との結果を表2に示す。なお、表2に示した
結果は、いずれも建浴又は更新直後のものであり、脱ス
ケール状態の確認は硫酸電解を行った後のものである。
比較例3と実施例3の比較から本発明方法の実施によ
り、電解電力の低減と電極寿命の延長ができたことが判
る。また、比較例4と実施例4の比較から本発明方法の
実施により、電解電力の低減と電極寿命の延長に加えて
脱スケール能力の向上が認められることが判る。
The stainless steel strip S thus annealed
Was performed for 12 months to observe the descaling state and the broken state of each electrode. Table 2 shows the results at the start of electrolytic descaling and after 12 months. In addition, the result shown in Table 2 is a thing immediately after building bath or renewal, and the confirmation of a descaling state is after sulfuric acid electrolysis was performed.
From a comparison between Comparative Example 3 and Example 3, it can be seen that the implementation of the method of the present invention was able to reduce the electrolytic power and extend the electrode life. From the comparison between Comparative Example 4 and Example 4, it can be seen that the implementation of the method of the present invention shows an improvement in descaling ability in addition to a reduction in electrolytic power and an extension of the electrode life.

【0033】[0033]

【表2】 [Table 2]

【0034】3.電解液:主として硝酸(実施例5,6
及び比較例5,6) 前述と同様なステンレス鋼帯Sを実施例1,2及び比較
例1,2の条件にて中性塩電解処理を行った後に、濃度
150g/lの硝酸水溶液(浴温は60℃)を電解液2
とした電解脱スケール処理にて仕上げ酸洗(即ち、混酸
浴中で浸漬処理を使用しない表面仕上げ)を行ったこ
と、及び全負荷電流を変更したこと以外は、実施例1,
2及び比較例1,2と同じ条件で電解脱スケールを実施
した。比較例5においては電流密度は陽電極5では1
6.7A/dm2,陰電極6では3.7A/dm2であり、
合計電解時間は陽電極5では3.6秒間,陰電極6では
16.2秒間であった。実施例5では電流効率の向上し
た分、全負荷電流値を下げているので、電流密度は陽電
極5では2.8A/dm2、陰電極6では0.6A/dm2
であり、合計電解時間は陽電極5の形状を図5に示す形
状としているため、その見掛けの電極長は比較例の0.
8倍となっている。即ち、陽電極5では2.88(3.6
秒×0.8)秒間、陰電極6では16.2秒間であった。
実施例6と比較例6とにおける陽電極5及び陰電極6の
電流密度や合計電解時間は同様に計算される。なお、実
施例,比較例いずれの場合も、電解装置の使用開始時で
は各電極5,6は新品であり、そのまま全期間使用し
た。また、電解液2は通常通りに時々更新した。
3. Electrolyte: mainly nitric acid (Examples 5 and 6)
And Comparative Examples 5 and 6) After the same stainless steel strip S as described above was subjected to neutral salt electrolysis under the conditions of Examples 1 and 2 and Comparative Examples 1 and 2, a 150 g / l nitric acid aqueous solution (bath) was used. (The temperature is 60 ° C).
Examples 1 and 2 except that a finish pickling (that is, surface finishing without using immersion treatment in a mixed acid bath) was performed by electrolytic descaling treatment, and that the full load current was changed.
2 and Comparative Examples 1 and 2 were subjected to electrolytic descaling under the same conditions. In Comparative Example 5, the current density was 1 in the positive electrode 5.
6.7A / dm 2, a the negative electrode 6 3.7A / dm 2,
The total electrolysis time was 3.6 seconds for the positive electrode 5 and 16.2 seconds for the negative electrode 6. Min was increased in Example 5, the current efficiency, since the lower the full load current, the current density is 2.8A / dm 2 in the positive electrode 5, negative in the electrode 6 0.6 A / dm 2
Since the total electrolysis time was such that the shape of the positive electrode 5 was the shape shown in FIG. 5, the apparent electrode length was 0.1 in the comparative example.
It is eight times. That is, the positive electrode 5 has 2.88 (3.6).
Second × 0.8) seconds, and 16.2 seconds for the negative electrode 6.
The current density and the total electrolysis time of the positive electrode 5 and the negative electrode 6 in Example 6 and Comparative Example 6 are calculated similarly. In each of the examples and comparative examples, the electrodes 5 and 6 were new at the start of use of the electrolysis apparatus, and were used as they were during the entire period. Further, the electrolyte 2 was sometimes updated as usual.

【0035】このようにして焼鈍後のステンレス鋼帯S
の電解脱スケールを12ヶ月間行って脱スケール状態と
各電極の破損状態を観察した。電解脱スケール開始時と
12ヵ月後との結果を表3に示す。なお、表3に示した
結果は、いずれも建浴又は更新直後のものであり、脱ス
ケール状態の確認は硝酸電解を行った後のものである。
比較例5と実施例5の比較から本発明方法の実施によ
り、電解電力の低減と電極寿命の延長ができたことが判
る。また、比較例6と実施例6の比較から本発明方法の
実施により、電解電力の低減と電極寿命の延長に加えて
脱スケール能力の向上が認められることが判る。
The stainless steel strip S thus annealed
Was performed for 12 months to observe the descaling state and the broken state of each electrode. Table 3 shows the results at the start of electrolytic descaling and 12 months later. The results shown in Table 3 were obtained immediately after the bath was constructed or renewed, and the descaling state was confirmed after nitric acid electrolysis was performed.
From a comparison between Comparative Example 5 and Example 5, it can be seen that the implementation of the method of the present invention was able to reduce the electrolytic power and extend the electrode life. From a comparison between Comparative Example 6 and Example 6, it can be seen that the implementation of the method of the present invention shows an improvement in descaling ability in addition to a reduction in electrolysis power and an extension of electrode life.

【0036】[0036]

【表3】 [Table 3]

【0037】表1,2,3から、各実施例では負荷電流
を電流効率の向上に見合った分、下げても脱スケールが
可能であり、負荷電流の低減により電解電圧も低下し、
電解電力は低減できた。更に、既存の電解槽長において
ステンレス鋼帯の陽極電荷長の延長が可能なったことか
ら、脱スケールの高速化が図れた。更に電極の寿命も延
長され、大きな経済的効果が得られた。
From Tables 1, 2 and 3, it can be seen that in each embodiment, descaling is possible even if the load current is reduced by an amount corresponding to the improvement of the current efficiency.
The electrolysis power could be reduced. Furthermore, since the anode charge length of the stainless steel strip could be extended in the existing electrolytic cell length, the descaling was accelerated. Further, the life of the electrode was extended, and a great economic effect was obtained.

【0038】[0038]

【発明の効果】以上に詳述した如く、本発明に係るステ
ンレス鋼帯の電解脱スケール方法は、下記のような効果
を奏するものであり、その工業的価値は非常に大きなも
のである。
As described in detail above, the electrolytic descaling method for stainless steel strip according to the present invention has the following effects, and its industrial value is very large.

【0039】 陽電極を順次並べて即ち隣接する陽電
極間に陰電極を介在させることなく総ての陽電極を順次
並べて形成させた陽電極群を電極列の中央に電極配置し
てあるので、陽電極と陰電極とが隣接する箇所が2ヵ所
しか存在せず、加えて陽電極群と陰電極群との距離を電
解液の種類に応じて適切な長さ以上に確保しているた
め、隣接する陽電極から陰電極へ流れるステンレス鋼帯
の電解脱スケールに寄与しない無効電流が非常に少な
く、電力効率が非常に良い。また、無効電流が非常に少
なくなくなったことから更に電極寿命が延長された。
Since a positive electrode group formed by sequentially arranging the positive electrodes, that is, by arranging all the positive electrodes sequentially without interposing the negative electrode between the adjacent positive electrodes, is disposed in the center of the electrode row, the positive electrode group is arranged. There are only two places where the electrode and the negative electrode are adjacent, and in addition, the distance between the positive electrode group and the negative electrode group is more than an appropriate length according to the type of electrolyte. The reactive current that does not contribute to electrolytic descaling of the stainless steel strip flowing from the positive electrode to the negative electrode is very small, and the power efficiency is very good. Further, since the reactive current has become very small, the life of the electrode has been further extended.

【0040】 同極性の電極を密着させて配置すれ
ば、同じ長さの電解槽でも陰電極の数又は面積を増加さ
せることが可能となるので、全負荷電流を同じにした場
合に陰電極1本当りの電流密度が低下することになり、
陰電極の寿命が延びる。
If electrodes of the same polarity are arranged in close contact with each other, the number or area of the negative electrodes can be increased even in electrolytic cells of the same length. The current density per unit will decrease,
The life of the negative electrode is extended.

【0041】 同極性の電極を密着させて配置すれ
ば、同じ長さの電解槽でも陰電極の数又は面積を増加さ
せることが可能となるので、脱スケール作用を左右する
陽電極電解時間の延長が電解槽の改造を行うことなく可
能となり、設備の生産性の向上が安価に図れた。
If electrodes of the same polarity are arranged in close contact with each other, the number or area of the negative electrodes can be increased even in electrolytic cells of the same length. Can be performed without remodeling the electrolytic cell, and the productivity of the equipment can be improved at low cost.

【0042】 陽電極として、ステンレス鋼帯と対向
する平板面上に突起又は格子状の板を設けるか、又はス
テンレス鋼帯と対向する面を波状に成形した不溶性電極
を使用すれば、ステンレス鋼帯の電解脱スケールに寄与
する実質的な電流密度を確保しながら陽電極の見掛けの
面積を小さくすることが可能となるので、電解槽の長さ
を短くすることが出来、同じ長さの電解槽では陰電極の
数を増加させることが可能となるので、前記及びの
効果を更に高めることができる。
As the positive electrode, a projection or a grid-like plate is provided on a flat surface facing the stainless steel strip, or if an insoluble electrode whose surface facing the stainless steel strip is formed in a wavy shape is used, the stainless steel strip can be used. It is possible to reduce the apparent area of the positive electrode while securing a substantial current density that contributes to electrolytic descaling of the electrolytic cell. In this case, the number of cathodes can be increased, so that the above effects can be further enhanced.

【0043】 陽電極の数又は面積と陰電極の数又は
面積との比を1:4〜1:8の範囲にすると、脱スケー
ル作用を左右する陽電極電解時間の延長が可能となるの
で、脱スケール効率が高い。
When the ratio of the number or area of the positive electrode to the number or area of the negative electrode is in the range of 1: 4 to 1: 8, it is possible to extend the electrolysis time of the positive electrode, which affects the descaling action. High descaling efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るステンレス鋼帯の電解脱スケール
方法における電解装置の電極の配置列を示す概略構成図
である。
FIG. 1 is a schematic configuration diagram showing an arrangement row of electrodes of an electrolytic device in a method for electrolytic descaling of a stainless steel strip according to the present invention.

【図2】従来の標準的な電解装置の電極の配置例を示す
概略構成図である。
FIG. 2 is a schematic configuration diagram showing an example of an arrangement of electrodes of a conventional standard electrolytic device.

【図3】陽電極としてステンレス鋼帯と対向する平板面
上に突起物を設けた1実施例を示す斜視図である。
FIG. 3 is a perspective view showing an embodiment in which a projection is provided on a flat plate surface facing a stainless steel strip as a positive electrode.

【図4】陽電極としてステンレス鋼帯と対向する平板面
上に格子状の板を設けた1実施例を示す斜視図である。
FIG. 4 is a perspective view showing one embodiment in which a grid-like plate is provided as a positive electrode on a flat plate surface facing a stainless steel strip.

【図5】陽電極としてステンレス鋼帯と対向する面を波
状に成形加工した1実施例を示す斜視図である。
FIG. 5 is a perspective view showing one embodiment in which a surface facing a stainless steel strip is formed into a wavy shape as a positive electrode.

【図6】電解液が主として硫酸ソーダの場合における陽
電極群と陰電極群との間の距離(極間距離)に対する電
流効率に及ぼす影響を示す図である。
FIG. 6 is a diagram showing the effect on the current efficiency with respect to the distance (distance between electrodes) between the positive electrode group and the negative electrode group when the electrolytic solution is mainly sodium sulfate.

【図7】電解液が主として硫酸の場合における陽電極群
と陰電極群との間の距離(極間距離)に対する電流効率
に及ぼす影響を示す図である。
FIG. 7 is a diagram showing the effect on the current efficiency with respect to the distance (electrode distance) between the positive electrode group and the negative electrode group when the electrolytic solution is mainly sulfuric acid.

【図8】電解液が主として硝酸の場合における陽電極群
と陰電極群との間の距離(極間距離)に対する電流効率
に及ぼす影響を示す図である。
FIG. 8 is a diagram showing the effect on the current efficiency with respect to the distance (electrode distance) between the positive electrode group and the negative electrode group when the electrolytic solution is mainly nitric acid.

【符号の説明】[Explanation of symbols]

1 電解槽 2 電解液 3 デフレクターロール 4 浸漬ロール 5 陽電極 6 陰電極 7 電解用直流電源 S ステンレス鋼帯 DESCRIPTION OF SYMBOLS 1 Electrolyzer 2 Electrolyte 3 Deflector roll 4 Dipping roll 5 Positive electrode 6 Negative electrode 7 DC power supply for electrolysis S Stainless steel strip

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数個の陽電極とこの陽電極に電解用直
流電源を介して接続されている複数個の陰電極とをステ
ンレス鋼帯の走行面に対向して一つの電解槽内に配置し
た電極列を備えた電解装置を使用して焼鈍後のステンレ
ス鋼帯を主として硫酸ソーダ,硫酸又は硝酸から成る電
解液中を走行させながら間接通電法により電解処理する
に当たり、陽電極としてイリジウム酸化物とチタン,タ
ンタル,ニオブ,コバルト及びマンガンから選ばれた金
属の酸化物とから成る電極被覆を有する不溶性電極を用
い、陰電極としてステンレス鋼又は第1種,第2種及び
第3種の各チタンから選ばれた金属の電極を用い、陰電
極の数又は面積を陽電極の数又は面積よりも多く又は広
く、しかも電解装置の中央部より上流域と下流域とにお
ける陽電極と陰電極との配置が対称となるように、且つ
総ての陽電極を順次並べて形成させた陽電極群を電極列
の中央に電極配置し、しかも該陽電極群と隣接する陰電
極群との距離を、電解液が主として硫酸ソーダの場合に
はその濃度が50〜300g/l、液温が40〜80℃
の範囲内において3m以上、電解液が主として硫酸の場
合にはその濃度が50〜300g/l、液温が40〜6
0℃の範囲内において4m以上、電解液が主として硝酸
の場合にはその濃度が50〜300g/l、液温が40
〜60℃の範囲内において4m以上に設定して電解処理
することを特徴とするステンレス鋼帯の電解脱スケール
方法。
1. A plurality of positive electrodes and a plurality of negative electrodes connected to the positive electrode via a DC power supply for electrolysis are arranged in one electrolytic cell so as to face the running surface of the stainless steel strip. Of the annealed stainless steel strip using an electrolysis apparatus equipped with an electrode array and running it in an electrolyte consisting mainly of sodium sulfate, sulfuric acid or nitric acid by the indirect energization method. And an insoluble electrode having an electrode coating comprising an oxide of a metal selected from titanium, tantalum, niobium, cobalt and manganese, and using stainless steel or each of the first, second and third titanium as a negative electrode. Using a metal electrode selected from the group consisting of a positive electrode and a negative electrode in the number or area of the negative electrode, which is larger or larger than the number or area of the positive electrode, and in an upstream area and a downstream area from the center of the electrolysis apparatus. And a positive electrode group formed by sequentially arranging all the positive electrodes is arranged in the center of the electrode row, and furthermore, the distance between the positive electrode group and the adjacent negative electrode group is reduced. When the electrolyte is mainly sodium sulfate, the concentration is 50 to 300 g / l, and the liquid temperature is 40 to 80 ° C.
3 m or more, and when the electrolytic solution is mainly sulfuric acid, the concentration is 50 to 300 g / l and the liquid temperature is 40 to 6 g / l.
4 m or more in the range of 0 ° C. When the electrolytic solution is mainly nitric acid, the concentration is 50 to 300 g / l, and the liquid temperature is 40 ° C.
An electrolytic descaling method for a stainless steel strip, wherein the electrolytic treatment is performed at a temperature of 4 m or more within a temperature range of 60 ° C.
【請求項2】 同極性の電極を密着させて配置する請求
項1に記載のステンレス鋼帯の電解脱スケール方法。
2. The method for electrolytic descaling a stainless steel strip according to claim 1, wherein electrodes of the same polarity are arranged in close contact with each other.
【請求項3】 陽電極として、ステンレス鋼帯と対向す
る平板面上に突起又は格子状の板を設けるか、又はステ
ンレス鋼帯と対向する面を波状に成形した不溶性電極を
使用する請求項1又は2に記載のステンレス鋼帯の電解
脱スケール方法。
3. A positive electrode comprising a projection or a grid-like plate provided on a flat plate surface facing the stainless steel strip, or an insoluble electrode having a surface facing the stainless steel strip formed in a wavy shape. Or the method of electrolytic descaling of stainless steel strip according to 2.
【請求項4】 陽電極の数又は面積と陰電極の数又は面
積との比を1:4〜1:8の範囲にする請求項1から3
までのいずれか1項に記載のステンレス鋼帯の電解脱ス
ケール方法。
4. The method according to claim 1, wherein the ratio of the number or area of the positive electrode to the number or area of the negative electrode is in the range of 1: 4 to 1: 8.
The method for electrolytic descaling a stainless steel strip according to any one of the above items.
JP11002540A 1999-01-08 1999-01-08 Electrolytical descaling of stainless steel strip Withdrawn JP2000204499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11002540A JP2000204499A (en) 1999-01-08 1999-01-08 Electrolytical descaling of stainless steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11002540A JP2000204499A (en) 1999-01-08 1999-01-08 Electrolytical descaling of stainless steel strip

Publications (1)

Publication Number Publication Date
JP2000204499A true JP2000204499A (en) 2000-07-25

Family

ID=11532223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11002540A Withdrawn JP2000204499A (en) 1999-01-08 1999-01-08 Electrolytical descaling of stainless steel strip

Country Status (1)

Country Link
JP (1) JP2000204499A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030013046A (en) * 2001-08-06 2003-02-14 주식회사 미래소재 Anode-Cathode-Agitator Combined Type Electrodeposition Apparatus
KR100431488B1 (en) * 2001-08-06 2004-05-14 주식회사 미래소재 Apparatus and method for fabricating metal fibres using electroforming
JP2008174794A (en) * 2007-01-18 2008-07-31 Nippon Mektron Ltd Pretreatment method to plating for printed circuit board
JP2012162794A (en) * 2011-02-09 2012-08-30 Nisshin Steel Co Ltd Electrolytic pickling method for descaling stainless steel strip
CN103074666A (en) * 2012-08-28 2013-05-01 无锡源清高新技术研究所有限公司 Electrolysis rust removing agent and electrolysis rust removing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030013046A (en) * 2001-08-06 2003-02-14 주식회사 미래소재 Anode-Cathode-Agitator Combined Type Electrodeposition Apparatus
KR100431488B1 (en) * 2001-08-06 2004-05-14 주식회사 미래소재 Apparatus and method for fabricating metal fibres using electroforming
JP2008174794A (en) * 2007-01-18 2008-07-31 Nippon Mektron Ltd Pretreatment method to plating for printed circuit board
JP4531777B2 (en) * 2007-01-18 2010-08-25 日本メクトロン株式会社 Pre-plating method for printed wiring boards
JP2012162794A (en) * 2011-02-09 2012-08-30 Nisshin Steel Co Ltd Electrolytic pickling method for descaling stainless steel strip
CN103074666A (en) * 2012-08-28 2013-05-01 无锡源清高新技术研究所有限公司 Electrolysis rust removing agent and electrolysis rust removing method

Similar Documents

Publication Publication Date Title
US4994157A (en) Method and apparatus for descaling stainless steel
EP1115917B1 (en) Process for electrolytic pickling using nitric acid-free solutions
CA2573988A1 (en) Method and device for pickling metals
JP2000204499A (en) Electrolytical descaling of stainless steel strip
JPH0827600A (en) Descaling method and device for stainless steel strip
JP2000064100A (en) Descaling apparatus for steel strip and apparatus for producing steel strip
JP2868589B2 (en) Neutral salt electrolytic treatment method for stainless steel strip
JP2001140100A (en) Device for electrolyzing metallic sheet and electrode for electrolyzing metallic sheet
JP2868574B2 (en) Electrolytic pickling of stainless steel strip
JP5757745B2 (en) Electrolytic pickling method for descaling stainless steel strip
JP2577619B2 (en) Method and apparatus for descaling alloy steel strip
JPH10219500A (en) Finish electrolytic pickling method for descaling of stainless steel strip
JP3873335B2 (en) Electrolytic descaling method for steel strip
JP3846646B2 (en) Surface cleaning method by electrolysis of steel
JPH1037000A (en) Surface roughening method and surface roughening device for aluminum sheet
JPH02310398A (en) Method for electrolytically descaling cold-rolled stainless steel
JP2577618B2 (en) Method and apparatus for descaling alloy steel strip
JP4189053B2 (en) High speed electrolytic descaling method for stainless steel
JPH06220699A (en) Device for electrolytically pickling steel material
JPH1161500A (en) Descaling of stainless steel strip and heat resistant steel strip
JPS6333600A (en) Method for electrolytically pickling steel strip
JP3269444B2 (en) Titanium descaling method and continuous annealing descaling device
RU2578623C1 (en) Electrolytic method for removing scales from belt of rolled metal
JPH04351221A (en) Method and apparatus for descaling hot-rolled alloy steel strip
JPH0196398A (en) Method for electrolytically descaling cold rolled stainless steel strip with neutral salt

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404