JP2000195506A - Manufacture of negative electrode for nonaqueous system secondary battery - Google Patents

Manufacture of negative electrode for nonaqueous system secondary battery

Info

Publication number
JP2000195506A
JP2000195506A JP10372845A JP37284598A JP2000195506A JP 2000195506 A JP2000195506 A JP 2000195506A JP 10372845 A JP10372845 A JP 10372845A JP 37284598 A JP37284598 A JP 37284598A JP 2000195506 A JP2000195506 A JP 2000195506A
Authority
JP
Japan
Prior art keywords
coating film
negative electrode
current collector
forming agent
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10372845A
Other languages
Japanese (ja)
Inventor
Ryuichi Akagi
赤木  隆一
Toru Nishimura
徹 西村
Fumihide Shiga
史英 志賀
Atsushi Suzuki
淳 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP10372845A priority Critical patent/JP2000195506A/en
Publication of JP2000195506A publication Critical patent/JP2000195506A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enhance charging discharging cycle characteristics by forming a coating film containing Si or its compound and a coating film forming agent which is carbonized by heat treatment and contains no halogen, and sintering the coating film under a non-oxidizing atmosphere at a specified temperature to integrate with the current collector. SOLUTION: As an Si compound, silicon oxide and silicone resin are listed, and converted into Si by decomposition or reduction in a non-oxidizing atmosphere. As a coating film forming agent, a material having a function of holding a shape of a coating film and a function of ensuring adhesion with a current collector and containing no halogen is used, and usual thermoplastic resin, a rubber like polymer, and thermosetting resin are listed. The content of residual carbon after heat treatment of the coating film forming agent is preferable to be 5 wt.% or more. As a binder or an adhesive, thermoplastic resin is preferable, and since the thermosetting resin is preferable to raise the content of the residual carbon, both resins are mixed to adjust the content of residual carbon. The sintering temperature of the coating film is preferable to be 400-800 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ケイ素を負極活物
質として用いる充放電のサイクル特性に優れ、焼結体と
集電体との密着性が良好な非水系二次電池用負極の製造
方法に関する。
The present invention relates to a method for producing a negative electrode for a non-aqueous secondary battery having excellent charge-discharge cycle characteristics using silicon as a negative electrode active material and having good adhesion between a sintered body and a current collector. About.

【0002】[0002]

【従来の技術】携帯電話やノ−トパソコン等の普及に伴
って、リチウムイオンを挿入放出可能な正極活物質及び
負極活物質を含む高容量なリチウム二次電池が注目され
ている。負極活物質として焼成炭素質材料を用いる負極
が実用化されているが、一層の高容量を有する負極活物
質が求められている。
2. Description of the Related Art With the spread of portable telephones, notebook personal computers and the like, high-capacity lithium secondary batteries containing a positive electrode active material and a negative electrode active material capable of inserting and releasing lithium ions have been receiving attention. A negative electrode using a calcined carbonaceous material has been put to practical use as a negative electrode active material, but a negative electrode active material having a higher capacity is required.

【0003】焼成炭素質材料より高容量が期待できるケ
イ素又はその化合物を負極活物質として用い、負極を構
成する試みがなされている。例えば、特開平7-296
02号公報には、LixSi(0≦x≦5)を負極活物質
として用い、導電材の黒鉛と結着剤を加え成型してペレ
ットとし、導電性接着剤を集電体として負極を製造する
方法が、また特開平5-74463号公報には、シリコ
ン単結晶を活物質として用いニッケルメッシュで鋏むこ
とにより負極を製造する方法が開示されている。
[0003] Attempts have been made to construct a negative electrode using silicon or a compound thereof, which can be expected to have a higher capacity than a calcined carbonaceous material, as the negative electrode active material. For example, JP-A-7-296
No. 02 discloses that Li x Si (0 ≦ x ≦ 5) is used as a negative electrode active material, graphite as a conductive material and a binder are added to form a pellet, and a negative electrode is formed using a conductive adhesive as a current collector. Japanese Patent Laid-Open Publication No. Hei 5-74463 discloses a method of manufacturing a negative electrode by using silicon single crystal as an active material and scissoring it with a nickel mesh.

【0004】また、本出願人は、WO98/24135
号公報において、ケイ素と炭素質材料との複合体からな
る焼結体を負極に用いることを提案している。ケイ素又
はその化合物と、加熱処理により炭化可能な有機材料及
び/又は炭素材料とを非酸化雰囲気下で加熱することに
より、ケイ素と炭素質材料が複合した焼結体が得られ
る。焼結体を用いることにより、活物質の充填密度が上
がるため、電池の体積当りの容量の向上が期待できる。
また、炭素質材料が導電材として機能し、負極の電気抵
抗が低下するため、電池の内部抵抗の低減が期待でき
る。
[0004] The applicant of the present invention has published WO 98/24135.
Japanese Patent Application Laid-Open Publication No. H11-216, proposes to use a sintered body composed of a composite of silicon and a carbonaceous material for a negative electrode. By heating silicon or its compound and an organic material and / or carbon material that can be carbonized by heat treatment in a non-oxidizing atmosphere, a sintered body in which silicon and a carbonaceous material are combined can be obtained. By using a sintered body, the packing density of the active material is increased, so that an improvement in the capacity per volume of the battery can be expected.
Further, since the carbonaceous material functions as a conductive material and the electric resistance of the negative electrode decreases, a reduction in the internal resistance of the battery can be expected.

【0005】[0005]

【発明が解決しようとする課題】本発明は、ケイ素を活
物質とする焼結体を用いる負極の改良に関するものであ
り、さらに詳しくは充放電のサイクル特性に優れた非水
系二次電池用負極の製造方法を提供することを目的とす
る。
The present invention relates to an improvement of a negative electrode using a sintered body containing silicon as an active material, and more particularly to a negative electrode for a non-aqueous secondary battery having excellent charge / discharge cycle characteristics. It is an object of the present invention to provide a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明の非水系二次電池
用負極の製造方法は、ケイ素と炭素質材料とを含む非水
系二次電池用負極の製造方法であって、ケイ素又はその
化合物と加熱処理により炭化しハロゲンを含有しない塗
膜形成剤とを含む塗膜を形成し、該塗膜を非酸化雰囲気
下400〜800℃で加熱処理して焼結し、上記集電体
と一体化させることを特徴とする。
The method for producing a negative electrode for a non-aqueous secondary battery of the present invention is a method for producing a negative electrode for a non-aqueous secondary battery containing silicon and a carbonaceous material, comprising silicon or a compound thereof. And a heat treatment to form a coating film containing a film-forming agent that is carbonized and contains no halogen. The coating film is heat-treated at 400 to 800 ° C. in a non-oxidizing atmosphere, sintered, and integrated with the current collector. It is characterized in that

【0007】本発明の製造方法においては、集電体上に
塗膜を形成後、非酸化雰囲気下で焼結することにより、
ケイ素と炭素質材料を含み、集電体と一体化した負極を
作製する。本発明では、ハロゲンを含まない塗膜形成剤
を用いるため、加熱処理時においても炉を腐蝕させるハ
ロゲンガスやハロゲン化水素ガスが発生せず、炉の耐久
性が向上するとともに、加熱処理時の排ガス処理の費用
も減らすことができ、製造コストの低減が可能となる。
また、本発明に用いる塗膜形成剤は、従来用いられてい
るポリフッ化ビニリデン等のフッ素系の結着剤に比べ、
熱分解し易いため、加熱処理温度を400℃以上と、従
来に比べより低温に設定でき、さらに材料選択の許容度
が広がるため、製造コストの低減に寄与する。
In the production method of the present invention, a film is formed on a current collector and then sintered in a non-oxidizing atmosphere,
A negative electrode containing silicon and a carbonaceous material and integrated with a current collector is manufactured. In the present invention, since a film-forming agent containing no halogen is used, a halogen gas or a hydrogen halide gas that corrodes the furnace is not generated even during the heat treatment, and the durability of the furnace is improved, and the heat treatment is performed during the heat treatment. Exhaust gas treatment costs can also be reduced, and manufacturing costs can be reduced.
Further, the coating film forming agent used in the present invention is compared with a conventionally used fluorine-based binder such as polyvinylidene fluoride,
Since thermal decomposition is easy, the heat treatment temperature can be set to 400 ° C. or higher, which is lower than in the past, and the latitude in material selection is expanded, which contributes to a reduction in manufacturing costs.

【0008】また、本発明の製造方法においては、塗膜
形成剤の加熱処理後の残炭率は5重量%以上、より好ま
しくは10重量%以上である。ここで、残炭率は、加熱
処理前の重量に対する加熱処理後の重量の比率で表され
る。残炭率が5重量%以上であれば、焼結体と集電体と
の密着性が向上して、充放電のサイクル特性が一層向上
する。
Further, in the production method of the present invention, the residual carbon ratio of the coating film forming agent after the heat treatment is 5% by weight or more, more preferably 10% by weight or more. Here, the residual carbon ratio is represented by the ratio of the weight after the heat treatment to the weight before the heat treatment. When the residual carbon ratio is 5% by weight or more, the adhesion between the sintered body and the current collector is improved, and the charge / discharge cycle characteristics are further improved.

【0009】[0009]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に用いるケイ素としては、結晶質、非晶質のいず
れも用いる事ができ、ケイ素を含む化合物を用いても良
い。ケイ素化合物としては、酸化ケイ素などの無機ケイ
素化合物や、シリコーン樹脂、含ケイ素高分子化合物な
どの有機ケイ素化合物様の非酸化雰囲気で分解又は還元
されてケイ素に変化し得る材料が挙げられる。これらの
中でも、特にケイ素(単体)が好ましい。ケイ素の純度
は特に限定されるものではないが、十分な容量を得るた
めケイ素含有率90重量%以上であることが好ましく、
経済性から99.999重量%以下のものが好ましい。
ケイ素粉末を用いる場合、その粒子径は特に限定されな
いが、ハンドリングや原料価格、負極材料の均一性の観
点から、平均粒子径0.01μm以上100μm以下の
ものが好適に用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
As silicon used in the present invention, either crystalline or amorphous silicon can be used, and a compound containing silicon may be used. Examples of the silicon compound include inorganic silicon compounds such as silicon oxide, and materials capable of being decomposed or reduced into silicon by being decomposed or reduced in a non-oxidizing atmosphere like an organic silicon compound such as a silicone resin or a silicon-containing polymer compound. Among these, silicon (simple) is particularly preferred. The purity of silicon is not particularly limited, but is preferably 90% by weight or more in order to obtain a sufficient capacity,
From the economical viewpoint, those having a content of 99.999% by weight or less are preferred.
When silicon powder is used, its particle diameter is not particularly limited, but from the viewpoint of handling, raw material cost and uniformity of the negative electrode material, those having an average particle diameter of 0.01 μm or more and 100 μm or less are suitably used.

【0010】また、本発明に用いる塗膜形成剤として
は、塗膜の形状を保持する機能と集電体との接着性を確
保する機能を有し、ハロゲンを含まないものであれば、
従来公知のいずれの結着剤又は接着剤を用いることがで
きる。例えば、ポリエチレン、ポリプロピレン、ポリエ
チレンテレフタレート、ポリアミド、セルロース、ポリ
アクリロニトリル、ポリエチレンオキサイド、ポリプロ
ピレンオキサイド、ポリビニルピロリドン、ポリビニル
アルコール、ウレタン樹脂等の熱可塑性高分子、スチレ
ン・ブタジエンゴム、イソプレンゴム、エチレン・プロ
ピレンゴム等のゴム状高分子、熱可塑性エラストマー、
さらにウレタン樹脂、フェノ−ル樹脂、エポキシ樹脂、
不飽和ポリエステル樹脂、フラン樹脂、尿素樹脂、メラ
ミン樹脂、アルキッド樹脂、キシレン樹脂等の熱硬化性
樹脂等が挙げられる。ここで、結着剤又は接着剤として
は、熱可塑性高分子が好ましく、残炭率を上げるには熱
硬化性樹脂が好ましい。したがって、両者を混合するこ
とにより、適宜残炭率を調整できる。又、熱可塑性高分
子を架橋することにより、残炭率を上げることもでき
る。
The film-forming agent used in the present invention may be any one having a function of maintaining the shape of the coating film and a function of ensuring adhesiveness to the current collector and containing no halogen.
Any conventionally known binder or adhesive can be used. For example, thermoplastic polymers such as polyethylene, polypropylene, polyethylene terephthalate, polyamide, cellulose, polyacrylonitrile, polyethylene oxide, polypropylene oxide, polyvinyl pyrrolidone, polyvinyl alcohol, urethane resin, styrene / butadiene rubber, isoprene rubber, ethylene / propylene rubber, etc. Rubbery polymers, thermoplastic elastomers,
Furthermore, urethane resin, phenol resin, epoxy resin,
Examples include thermosetting resins such as unsaturated polyester resins, furan resins, urea resins, melamine resins, alkyd resins, and xylene resins. Here, as the binder or the adhesive, a thermoplastic polymer is preferable, and a thermosetting resin is preferable to increase the residual carbon ratio. Therefore, by mixing both, the residual carbon ratio can be adjusted appropriately. Further, the residual carbon ratio can be increased by crosslinking the thermoplastic polymer.

【0011】また、集電体には、ステンレス、銅族及び
白金族から選ばれたいずれか一つの金属を用いる事がで
きるが、還元状態でも電気化学的に安定で、導電性が高
く、さらに安価である銅が望ましい。
The current collector may be any one metal selected from stainless steel, copper group and platinum group, but is electrochemically stable even in a reduced state, has high conductivity, and Inexpensive copper is desirable.

【0012】また、塗膜を燒結する温度は、用いる集電
体の融点以下が望ましく、例えば銅を用いる場合には、
融点である1083℃以下の必要がある。さらに、塗膜
形成剤が炭化して導電性を発現するためには、400℃
以上の必要がある。したがって、好ましくは400〜8
00℃、さらに、好ましくは600〜800℃である。
ここで、焼結は窒素雰囲気下、アルゴン雰囲気下等の非
酸化雰囲気下で行う。
The temperature for sintering the coating film is desirably equal to or lower than the melting point of the current collector used. For example, when copper is used,
The melting point must be 1083 ° C. or less. Further, in order for the film-forming agent to be carbonized and to exhibit conductivity, it is required to be 400 ° C.
Need more. Therefore, preferably 400 to 8
00 ° C, more preferably 600 to 800 ° C.
Here, the sintering is performed in a non-oxidizing atmosphere such as a nitrogen atmosphere or an argon atmosphere.

【0013】また、本発明の正極活物質として用いられ
る正極材料は、従来公知の何れの材料も使用でき、例え
ば、LixCoO2,LixNiO2,MnO2,LiMn
2,LixMn24,LixMn2-y4,α−V25
TiS2等が挙げられる。
As the cathode material used as the cathode active material of the present invention, any conventionally known materials can be used. For example, Li x CoO 2 , Li x NiO 2 , MnO 2 , LiMn
O 2 , Li x Mn 2 O 4 , Li x Mn 2-y O 4 , α-V 2 O 5 ,
TiS 2 and the like.

【0014】また、本発明に使用される非水電解質は、
有機溶媒にリチウム化合物を溶解させた非水電解液、又
は高分子にリチウム化合物を固溶或いはリチウム化合物
を溶解させた有機溶媒を保持させた高分子固体電解質を
用いることができる。非水電解液は、有機溶媒と電解質
とを適宜組み合わせて調製されるが、これら有機溶媒や
電解質はこの種の電池に用いられるものであればいずれ
も使用可能である。
Further, the non-aqueous electrolyte used in the present invention comprises:
A non-aqueous electrolyte in which a lithium compound is dissolved in an organic solvent, or a solid polymer electrolyte in which a lithium compound is dissolved in a polymer or an organic solvent in which a lithium compound is dissolved is held can be used. The non-aqueous electrolyte is prepared by appropriately combining an organic solvent and an electrolyte, and any of these organic solvents and electrolytes can be used as long as they are used for this type of battery.

【0015】[0015]

【実施例】実施例1.ケイ素粉末(平均粒子径1μm、
純度99%、高純度化学研究所(株))80重量部(以
下、重量部は部と略す)とグラファイト及びピッチ樹脂
の混合物粉末(グラファイト90部/ピッチ樹脂10
部、大阪化成(株))20部をスパーテルで混合し、窒
素雰囲気下1100℃で3時間焼成した後、振動ミルで
5分間粉砕して、原料粉末を得た。
[Embodiment 1] Silicon powder (average particle diameter 1 μm,
Purity 99%, High Purity Chemical Laboratory Co., Ltd. 80 parts by weight (hereinafter, parts by weight are abbreviated as "parts") and a powder mixture of graphite and pitch resin (90 parts graphite / pitch resin 10)
And 20 parts of Osaka Kasei Co., Ltd. were mixed with a spatula, baked at 1100 ° C. for 3 hours in a nitrogen atmosphere, and then pulverized with a vibration mill for 5 minutes to obtain a raw material powder.

【0016】塗膜形成剤としてウレタン樹脂(日本ポリ
ウレタン工業(株)、40%溶液))を用い、樹脂溶液
40部をN−メチル−2−ピロリドン35部で希釈して
原料粉末25部を加え、振動ミルで10分間混合してス
ラリー状とした。次に、アプリケータ(ギャップ500
μm)を用いて、スラリーを銅箔(厚さ30μm)上に
塗布し、80℃で30分間乾燥後、直径2cmの円形に
裁断し、平板プレス機で1.5t/cm2の圧力で圧着
して塗膜を得た。塗膜を窒素雰囲気下800℃で3時間
焼成して、負極とした。
Using a urethane resin (40% solution of Nippon Polyurethane Industry Co., Ltd.) as a coating film forming agent, dilute 40 parts of the resin solution with 35 parts of N-methyl-2-pyrrolidone and add 25 parts of raw material powder. The mixture was mixed in a vibration mill for 10 minutes to form a slurry. Next, the applicator (gap 500
μm), the slurry is applied on a copper foil (thickness 30 μm), dried at 80 ° C. for 30 minutes, cut into a circular shape having a diameter of 2 cm, and pressure-bonded with a plate press at a pressure of 1.5 t / cm 2. Thus, a coating film was obtained. The coating film was fired at 800 ° C. for 3 hours in a nitrogen atmosphere to obtain a negative electrode.

【0017】コバルト酸リチウム88部、アセチレンブ
ラック6部及びポリテトラフルオロエチレン樹脂6部か
らなる混合物を成型型に入れ、1t/cm2の圧力で成
型し、直径2cmの円板状にした正極を用いた。
A mixture consisting of 88 parts of lithium cobaltate, 6 parts of acetylene black and 6 parts of polytetrafluoroethylene resin is put into a mold, and molded at a pressure of 1 t / cm 2 to form a disk-shaped positive electrode having a diameter of 2 cm. Using.

【0018】電解液は、炭酸エチレンと炭酸ジメチルの
1:1混合溶媒に六フッ化リン酸リチウムを1mol/
l溶解させたもの(三菱化学(株))を用いた。
The electrolytic solution is a mixture of ethylene carbonate and dimethyl carbonate in a 1: 1 mixture of lithium hexafluorophosphate and 1 mol / mol.
l dissolved (Mitsubishi Chemical Corporation) was used.

【0019】セパレータに厚さ25μmの多孔性ポリエ
チレンフィルム(旭化成(株))を用い、上記正極と負
極をセパレータを介して積層し、電池缶に収容し、電解
液を注液後、密閉してコイン型電池を作製した。
Using a 25 μm-thick porous polyethylene film (Asahi Kasei Corporation) as a separator, the above positive electrode and negative electrode are laminated via a separator, accommodated in a battery can, injected with an electrolytic solution, and sealed. A coin-type battery was manufactured.

【0020】36時間室温でエージング後、2mAの定
電流で充放電試験を行った。1サイクル目の放電容量は
24mAh、30サイクル目の放電容量は23mAhで
あった。また、焼結体と集電体との密着性は良好であっ
た。
After aging at room temperature for 36 hours, a charge / discharge test was performed at a constant current of 2 mA. The discharge capacity at the first cycle was 24 mAh, and the discharge capacity at the 30th cycle was 23 mAh. The adhesion between the sintered body and the current collector was good.

【0021】また、上記のウレタン樹脂溶液を80℃で
乾燥させて溶剤を除去し、残ったウレタン樹脂について
窒素気流中で熱重量分析したところ、800℃における
残炭率は5重量%であった。
The urethane resin solution was dried at 80 ° C. to remove the solvent, and the remaining urethane resin was subjected to thermogravimetric analysis in a stream of nitrogen. As a result, the residual carbon ratio at 800 ° C. was 5% by weight. .

【0022】実施例2.塗膜の加熱処理温度を450℃
で行った以外は、実施例1と同様の方法で、負極の作
製、コイン型電池の作製及び充放電試験を行った。初期
の放電容量は24mAh、50サイクル目の放電容量は
22mAhであった。また、焼結体と集電体との密着性
は良好であった。
Embodiment 2 FIG. Heat treatment temperature of coating film is 450 ° C
In the same manner as in Example 1, a negative electrode, a coin-type battery, and a charge / discharge test were performed in the same manner as in Example 1. The initial discharge capacity was 24 mAh, and the discharge capacity at the 50th cycle was 22 mAh. The adhesion between the sintered body and the current collector was good.

【0023】実施例3.実施例1において、塗膜形成剤
としてウレタン樹脂(日本ポリウレタン工業(株)、4
0%溶液)40部に架橋剤(硬化剤)としてコロネート
HX(日本ポリウレタン工業(株))を3.2部添加し
た以外は実施例1と同様にして負極を得、コイン型電池
を作製した。同様の充放電試験を行った結果、1サイク
ル目の放電容量は24mAh、30サイクル目の放電容
量は23mAhであった。また、焼結体と集電体との密
着性は良好であった。
Embodiment 3 FIG. In Example 1, urethane resin (Nippon Polyurethane Industry Co., Ltd.)
A negative electrode was obtained in the same manner as in Example 1 except that 3.2 parts of Coronate HX (Nippon Polyurethane Industry Co., Ltd.) was added as a crosslinking agent (curing agent) to 40 parts of a 0% solution) to produce a coin-type battery. . As a result of performing the same charge / discharge test, the discharge capacity at the first cycle was 24 mAh, and the discharge capacity at the 30th cycle was 23 mAh. The adhesion between the sintered body and the current collector was good.

【0024】また、このウレタン樹脂溶液と硬化剤を混
合した溶液を80℃で乾燥させて溶剤を除去し、残った
ウレタン樹脂と硬化剤の混合物について窒素気流中で熱
重量分析を行ったところ、800℃における残炭率は1
0重量%であった。
Further, the solution obtained by mixing the urethane resin solution and the curing agent was dried at 80 ° C. to remove the solvent, and the remaining mixture of the urethane resin and the curing agent was subjected to thermogravimetric analysis in a nitrogen stream. The residual carbon ratio at 800 ° C is 1
It was 0% by weight.

【0025】[0025]

【発明の効果】以上のように、本発明によれば、ケイ素
又はその化合物と加熱処理により炭化しハロゲンを含有
しない塗膜形成剤とを含む塗膜を形成し、塗膜を非酸化
雰囲気下で焼結して集電体と一体化させることにより、
充放電のサイクル特性に優れ、焼結体と集電体との密着
性が良好な非水系二次電池用負極を提供できる。
As described above, according to the present invention, a coating film containing silicon or a compound thereof and a film-forming agent carbonized by heat treatment and containing no halogen is formed, and the coating film is formed in a non-oxidizing atmosphere. By sintering and integrating with the current collector,
It is possible to provide a negative electrode for a non-aqueous secondary battery having excellent charge-discharge cycle characteristics and excellent adhesion between a sintered body and a current collector.

【0026】また、加熱処理時に腐食性ガスを発生させ
ることがなく、またより低温で加熱処理でき、さらに従
来のポリフッ化ビニリデンに比べより安価な材料を用い
ることができるため、製造コストの低減が可能となる。
In addition, since no corrosive gas is generated during the heat treatment, the heat treatment can be performed at a lower temperature, and a material that is less expensive than the conventional polyvinylidene fluoride can be used. It becomes possible.

【0027】また、塗膜形成剤の残炭率を5重量%以上
とすることにより、焼結体と集電体との密着性がより増
大し、充放電のサイクル特性が一層向上する。
When the residual carbon ratio of the coating film forming agent is 5% by weight or more, the adhesion between the sintered body and the current collector is further increased, and the charge / discharge cycle characteristics are further improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 志賀 史英 和歌山県和歌山市湊1334番地 花王株式会 社研究所内 (72)発明者 鈴木 淳 和歌山県和歌山市湊1334番地 花王株式会 社研究所内 Fターム(参考) 5H003 AA04 BA01 BB04 BC05 BD04 5H014 AA04 BB01 BB08 CC01 EE10 HH01  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor, Fumihide Shiga 1334 Minato, Wakayama, Wakayama Prefecture, Japan Kao Corporation Research Institute (72) Inventor Atsushi Suzuki 1334, Minato, Wakayama City, Wakayama Prefecture, Kao F-Terminal Research Institute (Reference) 5H003 AA04 BA01 BB04 BC05 BD04 5H014 AA04 BB01 BB08 CC01 EE10 HH01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ケイ素と炭素質材料とを含む非水系二次
電池用負極の製造方法であって、ケイ素又はその化合物
と加熱処理により炭化しハロゲンを含有しない塗膜形成
剤とを含む塗膜を集電体上に形成し、該塗膜を非酸化雰
囲気下で焼結し、上記集電体と一体化させる非水系二次
電池用負極の製造方法。
1. A method for producing a negative electrode for a non-aqueous secondary battery comprising silicon and a carbonaceous material, comprising a film containing silicon or a compound thereof and a film-forming agent carbonized by heat treatment and containing no halogen. Is formed on a current collector, and the coating film is sintered in a non-oxidizing atmosphere to be integrated with the current collector to produce a negative electrode for a non-aqueous secondary battery.
【請求項2】 上記塗膜形成剤の上記加熱処理温度にお
ける残炭率が5重量%以上である請求項1記載の非水系
二次電池用負極の製造方法。
2. The method for producing a negative electrode for a non-aqueous secondary battery according to claim 1, wherein the residual carbon ratio of the coating film forming agent at the heat treatment temperature is 5% by weight or more.
JP10372845A 1998-12-28 1998-12-28 Manufacture of negative electrode for nonaqueous system secondary battery Pending JP2000195506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10372845A JP2000195506A (en) 1998-12-28 1998-12-28 Manufacture of negative electrode for nonaqueous system secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10372845A JP2000195506A (en) 1998-12-28 1998-12-28 Manufacture of negative electrode for nonaqueous system secondary battery

Publications (1)

Publication Number Publication Date
JP2000195506A true JP2000195506A (en) 2000-07-14

Family

ID=18501144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10372845A Pending JP2000195506A (en) 1998-12-28 1998-12-28 Manufacture of negative electrode for nonaqueous system secondary battery

Country Status (1)

Country Link
JP (1) JP2000195506A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278239A (en) * 2005-03-30 2006-10-12 Sharp Corp Lithium secondary battery, cathode plate for lithium secondary battery, and manufacturing method of those
WO2008081883A1 (en) * 2006-12-28 2008-07-10 Dow Corning Toray Co., Ltd. Porous silicon-containing carbon-based composite material, electrode composed of the same and battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278239A (en) * 2005-03-30 2006-10-12 Sharp Corp Lithium secondary battery, cathode plate for lithium secondary battery, and manufacturing method of those
JP4550640B2 (en) * 2005-03-30 2010-09-22 シャープ株式会社 Lithium secondary battery, positive electrode plate for lithium secondary battery, and production method thereof
WO2008081883A1 (en) * 2006-12-28 2008-07-10 Dow Corning Toray Co., Ltd. Porous silicon-containing carbon-based composite material, electrode composed of the same and battery

Similar Documents

Publication Publication Date Title
JP2948205B1 (en) Method for producing negative electrode for secondary battery
US20070212611A1 (en) Lithium secondary battery
JP2002117851A (en) Carbon material, negative electrode for secondary lithium ion battery, and secondary lithium ion battery
JP2003100284A (en) Lithium secondary battery
JP2008066128A (en) Negative electrode active material for lithium ion battery, and its manufacturing method, cathode for lithium ion battery, and lithium ion battery
JP3243239B2 (en) Method for producing positive electrode for non-aqueous secondary battery
JP2001345100A (en) Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JP2948206B1 (en) Anode materials for non-aqueous secondary batteries
JP2000173596A (en) Nonaqueous secondary battery
KR101142533B1 (en) Metal based Zn Negative Active Material and Lithium Secondary Battery Comprising thereof
CN108539151B (en) Electrode material for secondary battery and secondary battery
EP1479118B9 (en) Electrochemical cell comprising carbonaceous material and molybdenum carbide as anode
JP2000156224A (en) Nonaqueous electrolyte battery
JPH11339778A (en) Manufacture of secondary battery negative electrode
KR101243941B1 (en) Cathode material for Li secondary battery, manufacturing method thereof and Li secondary battery using the same
JP3510175B2 (en) Method for producing negative electrode for secondary battery
JP2000195506A (en) Manufacture of negative electrode for nonaqueous system secondary battery
JP3089662B2 (en) Non-aqueous electrolyte secondary battery
JP3079613B2 (en) Non-aqueous electrolyte secondary battery
JP2000195507A (en) Manufacture of negative electrode for nonaqueous system secondary battery
KR100432669B1 (en) Negative active material for rechargeable lithium batteries and preparing for same
KR101783316B1 (en) Positive electrode active material for rechargable lithium battery and rechargable lithium battery including the same
CN113161514A (en) Graphite composition, battery cathode and lithium ion battery
JP2002100345A (en) Manufacturing method of positive electrode for nonaqueous secondary battery
KR101777399B1 (en) Method for manufacturing positive electrode active material for rechargable lithium battery