JP2000191818A - Preparation of porous particulate - Google Patents

Preparation of porous particulate

Info

Publication number
JP2000191818A
JP2000191818A JP10370558A JP37055898A JP2000191818A JP 2000191818 A JP2000191818 A JP 2000191818A JP 10370558 A JP10370558 A JP 10370558A JP 37055898 A JP37055898 A JP 37055898A JP 2000191818 A JP2000191818 A JP 2000191818A
Authority
JP
Japan
Prior art keywords
polymer seed
weight
crosslinkable monomer
seed particles
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10370558A
Other languages
Japanese (ja)
Inventor
Yasuhiko Nagai
康彦 永井
Hiroko Minamino
裕子 南野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP10370558A priority Critical patent/JP2000191818A/en
Publication of JP2000191818A publication Critical patent/JP2000191818A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing porous particulates having a size of the order of microns with an easy operation, by making polymer seed particles dispersed in water absorb both a crosslinkable monomer and a polymerization initiator, thereafter polymerizing the crosslinkable monomer thereby to form a polymer having a composition different from that of the polymer seed particle. SOLUTION: Polymer seed particles which have been prepared by a soap-free polymerization, a dispersion polymerization and have a Cv value of 5% or less and an weight-average molecular weight of 10,000-300,000 are made to disperse into water. To this polymer seed particle aqueous dispersion is so added an emulsion containing 100 pts.wt. of a crosslinkable monomer and 0.1-10 pts.wt. of a polymerization initiator as to have a ratio of 20-100 pts.wt. of the crosslinkable monomer to 1 pt.wt. of the polymer seed particles, and the polymer seed particles are made to absorb the crosslinkable monomer, thereafter the crosslinkable monomer is polymerized, thus forming a polymer having a composition different from that of the polymer seed particle. As the crosslinkable monomer are used a divinyl benzene, a polyethylene glycol (meth) acrylate and so on.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示素子用ス
ペーサやクロマトグラフィー用充填剤等に用いられる多
孔質微粒子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing porous fine particles used for a spacer for a liquid crystal display device, a filler for chromatography, and the like.

【0002】[0002]

【従来の技術】ミクロンオーダーの均一径を有する微粒
子は、液晶表示素子用スペーサやクロマトグラフィー用
充填剤等の用途があり、高付加価値の微粒子である。従
来より、このような微粒子を得る方法としては、懸濁重
合で得られた微粒子を乾式及び湿式の分級装置によって
ふるい分ける方法が主流であった。
2. Description of the Related Art Fine particles having a uniform diameter on the order of microns are used as spacers for liquid crystal display elements or fillers for chromatography, and are high value-added fine particles. Conventionally, as a method for obtaining such fine particles, a method in which fine particles obtained by suspension polymerization are sieved using a dry and wet classifier has been the mainstream.

【0003】また、特公昭57−24369号公報や特
公平5−64964号公報には、分級を必要としない単
分散微粒子の製造方法が開示されている。これらの方法
は、比較的小さな粒子に重合性単量体を吸収させ、ミク
ロンオーダーの大きさに膨らませた後に、重合を行うシ
ード重合に関するものであり、このような重合方法によ
り得られる微粒子は、水中に重合性単量体の油滴を存在
させて重合させるため、その表面張力により真球状にな
るのが普通である
Further, Japanese Patent Publication No. 57-24369 and Japanese Patent Publication No. 5-64964 disclose a method for producing monodispersed fine particles which does not require classification. These methods are related to seed polymerization in which a relatively small particle is made to absorb a polymerizable monomer and swelled to a micron-order size, followed by polymerization, and the fine particles obtained by such a polymerization method are: In order to polymerize in the presence of oil droplets of polymerizable monomer in water, it is normal to make it spherical due to its surface tension

【0004】一方、サブミクロンオーダーの微粒子で
は、乳化重合での相分離による異形粒子が知られてお
り、だるま状、いいだこ状、金平糖状、中空状等の粒子
が大久保らのグループにより報告されている〔高分子
36巻 P651(1987)、第8回 高分子ミクロ
スフェア討論会 講演会要旨集 P95〕。
On the other hand, in the case of fine particles on the order of submicrons, irregularly shaped particles due to phase separation in emulsion polymerization are known, and particles such as daruma, leek, confetti, and hollow have been reported by the group of Okubo et al. [Polymer
36, P651 (1987), 8th Polymer Microsphere Symposium Lecture Abstracts P95].

【0005】これらの粒子は、その形状から表面が平滑
な粒子に比べ、表面積が大きいこと、流動性が変わるこ
と、光の反射性が変わること等の特徴を有し、これらの
性質を利用した応用分野の展開が期待される。しかし、
これらの粒子は、乳化シード重合によるサブミクロンオ
ーダーの粒子であり、ミクロンオーダーの粒子が報告さ
れた例は少ない。
[0005] These particles have characteristics such as a large surface area, a change in fluidity, a change in light reflectivity, and the like as compared with particles having a smooth surface due to their shapes. Application fields are expected to expand. But,
These particles are submicron-order particles obtained by emulsion seed polymerization, and few examples have reported micron-order particles.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記に鑑
み、容易な操作で、ミクロンオーダーの多孔質微粒子の
製造を可能とする方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a method which enables easy production of micron-order porous fine particles.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために種々検討を行った結果、製造する重合
体シード粒子の重量平均分子量を制御し、かつ、吸収さ
せる架橋性単量体の組成を選択することにより、ミクロ
ンオーダーで多孔質形状の微粒子を製造することができ
ることを見いだし本発明を完成させたものである。
Means for Solving the Problems The present inventors have conducted various studies to achieve the above object, and as a result, have found that the weight average molecular weight of the polymer seed particles to be produced is controlled and the crosslinkable monomer capable of absorbing is obtained. It has been found that by selecting the composition of the monomer, fine particles having a porous shape on the order of microns can be produced, and the present invention has been completed.

【0008】すなわち本発明は、水中に分散した重量平
均分子量が1万〜30万の重合体シード粒子に、架橋性
単量体及び重合開始剤を吸収させた後、架橋性単量体を
重合させ、重合体シード粒子と異なる組成の重合体を形
成することを特徴とする多孔質微粒子の製造方法であ
る。以下に本発明を詳述する。
That is, according to the present invention, after a crosslinkable monomer and a polymerization initiator are absorbed in polymer seed particles having a weight average molecular weight of 10,000 to 300,000 dispersed in water, the crosslinkable monomer is polymerized. And forming a polymer having a composition different from that of the polymer seed particles. Hereinafter, the present invention will be described in detail.

【0009】本発明では、重合体シード粒子として、重
量平均分子量が1万〜30万のものを用いる。上記重量
平均分子量が1万未満であると、後で添加する架橋成分
との相分離が起こらず、単なる均一な真球微粒子になっ
てしまい、一方、上記重量平均分子量が30万を超える
と、相分離が顕著になりすぎて、偏平形状となるため、
上記範囲に限定される。
In the present invention, polymer seed particles having a weight average molecular weight of 10,000 to 300,000 are used. When the weight average molecular weight is less than 10,000, phase separation with a crosslinking component to be added later does not occur, resulting in simple uniform spherical fine particles. On the other hand, when the weight average molecular weight exceeds 300,000, Because phase separation becomes too remarkable and becomes flat shape,
It is limited to the above range.

【0010】上記重合体シード粒子の製造に用いられる
単量体としては特に限定されず、例えば、スチレン、α
−メチルスチレン、p−メチルスチレン、p−クロロス
チレン、クロロメチルスチレン等のスチレン誘導体;塩
化ビニル、酢酸ビニル、プロピオン酸ビニル等のビニル
エステル類;アクリロニトリル等の不飽和ニトリル類;
(メタ)アクリル酸メチル、(メタ)アクリル酸エチ
ル、(メタ)アクリル酸ブチル、(メタ)アクリル酸−
2−エチルヘキシル、(メタ)アクリル酸ステアリル、
エチレングリコール(メタ)アクリレート、トリフルオ
ロエチル(メタ)アクリレート、ペンタフルオロプロピ
ル(メタ)アクリレート、シクロヘキシル(メタ)アク
リレート等の(メタ)アクリル酸エステル誘導体等が挙
げられる。これらの単量体は、単独で用いてもよく、2
種以上を併用してもよい。
The monomer used for the production of the polymer seed particles is not particularly restricted but includes, for example, styrene, α
Styrene derivatives such as -methylstyrene, p-methylstyrene, p-chlorostyrene and chloromethylstyrene; vinyl esters such as vinyl chloride, vinyl acetate and vinyl propionate; unsaturated nitriles such as acrylonitrile;
Methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylic acid
2-ethylhexyl, stearyl (meth) acrylate,
(Meth) acrylic acid ester derivatives such as ethylene glycol (meth) acrylate, trifluoroethyl (meth) acrylate, pentafluoropropyl (meth) acrylate, and cyclohexyl (meth) acrylate are exemplified. These monomers may be used alone,
More than one species may be used in combination.

【0011】上記重合体シード粒子は、ソープフリー重
合、分散重合、乳化重合、懸濁重合等により製造するこ
とができるが、粒子径分布の小さいものを製造する場合
には、ソープフリー重合、分散重合により製造すること
が望ましい。これらの重合法では、粒子径分布のCV値
が、5%以下の重合体シード粒子を製造することが可能
である。従って、最終的に製造する多孔質微粒子も単分
散性の高いものとすることができる。
The above-mentioned polymer seed particles can be produced by soap-free polymerization, dispersion polymerization, emulsion polymerization, suspension polymerization, and the like. It is desirable to produce by polymerization. In these polymerization methods, it is possible to produce polymer seed particles having a CV value of a particle size distribution of 5% or less. Therefore, the finally produced porous fine particles can have high monodispersity.

【0012】上記CV値とは、下記の式(1); CV値(%)=(σ/Dn)×100・・・・(1) (式中、σは、粒子径の標準偏差を表し、Dnは、数平
均粒子径を表す)で表される値である。上記標準偏差及
び数平均粒子径は、微粒子300個を電子顕微鏡で観察
することにより得られる数値である。
The CV value is defined by the following equation (1); CV value (%) = (σ / Dn) × 100 (1) (where σ represents the standard deviation of the particle diameter) , Dn represent the number average particle diameter). The standard deviation and the number average particle diameter are numerical values obtained by observing 300 fine particles with an electron microscope.

【0013】本発明では、水中に分散した上記重合体シ
ード粒子に、架橋性単量体及び重合開始剤を吸収させた
後、上記架橋性単量体を重合させる。重合体シード粒子
に吸収させる架橋性単量体としては特に限定されず、例
えば、ジビニルベンゼン、ジビニルビフェニル、ジビニ
ルナフタレン、ポリエチレングリコールジ(メタ)アク
リレート、1,6−ヘキサンジオールジ(メタ)アクリ
レート、ネオペンチルグリコールジ(メタ)アクリレー
ト、トリメチロールプロパントリ(メタ)アクリレー
ト、テトラメチロールメタントリ(メタ)アクリレー
ト、テトラメチロールプロパンテトラ(メタ)アクリレ
ート、ジアリルフタレート及びその異性体、トリアリル
イソシアヌレート及びその誘導体等の架橋性単量体が挙
げられる。上記架橋性単量体は、単独で用いてもよく、
2種以上を併用してもよい。
In the present invention, the crosslinkable monomer and the polymerization initiator are absorbed in the polymer seed particles dispersed in water, and then the crosslinkable monomer is polymerized. The crosslinkable monomer to be absorbed by the polymer seed particles is not particularly limited. For example, divinylbenzene, divinylbiphenyl, divinylnaphthalene, polyethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, Neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylol methane tri (meth) acrylate, tetramethylolpropane tetra (meth) acrylate, diallyl phthalate and its isomers, triallyl isocyanurate and its derivatives And the like. The crosslinkable monomer may be used alone,
Two or more kinds may be used in combination.

【0014】重合体シード粒子に吸収させる架橋性単量
体として、上記架橋性単量体のほかに、例えば、上記し
た重合体シード粒子の製造に用いられる単官能の単量体
等を用いてもよく、上記架橋性単量体と上記単官能の単
量体等とを併用してもよい。ただし、多孔質微粒子の製
造においては、相分離と重合収縮が起きることが必要で
あるため、重合体シード粒子を構成する重合体とは異な
った組成の重合体を合成することが必要であり、上記架
橋性単量体を全単量体の50重量%以上配合することが
好ましい。
As the crosslinkable monomer to be absorbed by the polymer seed particles, in addition to the above crosslinkable monomer, for example, a monofunctional monomer or the like used in the production of the above polymer seed particles may be used. The crosslinkable monomer and the monofunctional monomer may be used in combination. However, in the production of porous fine particles, it is necessary to cause phase separation and polymerization shrinkage, it is necessary to synthesize a polymer having a composition different from the polymer constituting the polymer seed particles, It is preferred that the above-mentioned crosslinkable monomer is blended in an amount of 50% by weight or more based on all monomers.

【0015】上記重合開始剤としては特に限定されず、
例えば、過酸化ベンゾイル、過酸化ラウロイル、オルソ
クロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾ
イル、3,5,5−トリメチルヘキサノイルパーオキサ
イド、t−ブチルパーオキシ−2−エチルヘキサノエー
ト、ジ−t−ブチルパーオキサイド等の有機過酸化物;
アゾビスイソブチロニトリル、アゾビスシクロヘキサカ
ルボニトリル、アゾビス(2,4−ジメチルバレロニト
リル)等のアゾ系化合物等が挙げられる。上記重合開始
剤の配合量は、架橋性単量体100重量部に対して、
0.1〜10重量部が好ましい。
The above-mentioned polymerization initiator is not particularly limited.
For example, benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxy-2-ethylhexanoate, di-t- Organic peroxides such as butyl peroxide;
Examples include azo compounds such as azobisisobutyronitrile, azobiscyclohexacarbonitrile, and azobis (2,4-dimethylvaleronitrile). The amount of the polymerization initiator is based on 100 parts by weight of the crosslinkable monomer.
0.1 to 10 parts by weight is preferred.

【0016】水中に分散した上記重合体シード粒子に、
上記架橋性単量体及び重合開始剤を吸収させる際には、
上記架橋性単量体と上記重合開始剤とを、エマルジョン
として水中に添加し、重合体シード粒子に吸収させるこ
とが好ましい。上記エマルジョンを調製する際には、上
記架橋性単量体と重合開始剤とに、予め水と乳化剤とを
添加しておき、この混合物をホモジナイザーで処理する
か、超音波処理を行うか、又は、ナノマイザー等の微細
乳化機により乳化すればよい。
The polymer seed particles dispersed in water are:
When absorbing the crosslinking monomer and the polymerization initiator,
It is preferable that the crosslinkable monomer and the polymerization initiator are added to water as an emulsion and absorbed by the polymer seed particles. When preparing the emulsion, to the crosslinking monomer and the polymerization initiator, water and an emulsifier are added in advance, and the mixture is treated with a homogenizer, or subjected to ultrasonic treatment, or What is necessary is just to emulsify with a fine emulsifier, such as a Nanomizer.

【0017】また、上記架橋性単量体と重合開始剤とを
重合体シード粒子に吸収させるには、上記エマルジョン
を重合体シード粒子の分散水溶液と混合し、1〜24時
間攪拌すればよい。吸収の終了は、光学顕微鏡で観察す
ることにより確認することができる。
In order to absorb the crosslinkable monomer and the polymerization initiator into the polymer seed particles, the emulsion may be mixed with an aqueous dispersion of the polymer seed particles and stirred for 1 to 24 hours. The end of the absorption can be confirmed by observing with an optical microscope.

【0018】上記多孔質微粒子の製造方法においては、
必要に応じて分散安定剤を用いてもよい。上記分散安定
剤としては、媒体に可溶なものを用いることができる。
これらの分散安定剤としては、例えば、ポリビニルアル
コール、ポリビニルピロリドン、メチルセルロース、エ
チルセルロース、ポリアクリル酸、ポリアクリルアミ
ド、ポリエチレンオキシド等の媒体中に可溶の高分子、
ノニオン性の界面活性剤、イオン性界面活性剤等が挙げ
られる。
In the above method for producing porous fine particles,
If necessary, a dispersion stabilizer may be used. As the dispersion stabilizer, those that are soluble in a medium can be used.
As these dispersion stabilizers, for example, polyvinyl alcohol, polyvinylpyrrolidone, methyl cellulose, ethyl cellulose, polyacrylic acid, polyacrylamide, a polymer soluble in a medium such as polyethylene oxide,
Nonionic surfactants, ionic surfactants and the like can be mentioned.

【0019】上記シード重合を行う際の架橋性単量体の
添加量は、上記種粒子1重量部に対して、20〜100
重量部が好ましい。架橋性単量体の添加量が20重量部
未満では、製造される架橋微粒子の破壊強度が充分でな
く、100重量部を超えるとシード重合時に粒子の合一
等により粒子径分布が広がるため好ましくない。
The amount of the crosslinkable monomer to be added during the seed polymerization is from 20 to 100 parts by weight based on 1 part by weight of the seed particles.
Parts by weight are preferred. If the added amount of the crosslinkable monomer is less than 20 parts by weight, the breaking strength of the produced crosslinked fine particles is not sufficient, and if it exceeds 100 parts by weight, the particle size distribution is widened due to coalescence of the particles during seed polymerization, which is preferable. Absent.

【0020】上記した本発明の多孔質微粒子の製造方法
における技術的なポイントは二つある。一つはシード重
合時に起きる相分離であり、他の一つは、架橋性単量体
が重合時に起こす重合収縮である。
There are two technical points in the method for producing porous fine particles of the present invention described above. One is phase separation that occurs during seed polymerization, and the other is polymerization shrinkage that occurs when the crosslinkable monomer is polymerized.

【0021】重合体シード粒子と後から吸収させる架橋
性単量体の重合体の組成が異なる場合には、シード重合
の進行に伴い、相分離が発生する。この相分離の程度
は、二つの高分子の分子量に影響され、重合体シード粒
子の分子量が大きければ大きいほど、相分離が顕著に起
こることになる。
When the composition of the polymer seed particles and the polymer of the crosslinkable monomer to be subsequently absorbed are different, phase separation occurs as the seed polymerization proceeds. The degree of the phase separation is affected by the molecular weights of the two polymers, and the larger the molecular weight of the polymer seed particles, the more significant the phase separation occurs.

【0022】重合体シード粒子の分子量が1万未満であ
れば、上記したように、後で形成する重合体との間に相
分離が起こらず、真球状の粒子となり、重合体シード粒
子の分子量が1万〜30万程度であれば、粒子の幾つか
の部分で相分離が起こるとともに、その部分で重合収縮
が起こるため、あちこちに孔の開いた多孔質微粒子とな
る。
If the molecular weight of the polymer seed particles is less than 10,000, phase separation does not occur between the polymer seed particles and a polymer to be formed later as described above, resulting in true spherical particles. Is about 10,000 to 300,000, phase separation occurs in some parts of the particles, and polymerization shrinkage occurs in those parts, resulting in porous fine particles having pores in various places.

【0023】また、重合体シード粒子の分子量が30万
を超えると、重合体シード粒子内での相分離はいっそう
顕著となり、相分離した高分子が1か所に集まり、重合
収縮も1か所に集中することになるので、粒子の一部が
へこんだ偏平粒子形状となるのである。
Further, when the molecular weight of the polymer seed particles exceeds 300,000, phase separation within the polymer seed particles becomes more remarkable, the phase-separated polymer gathers in one place, and the polymerization shrinks in one place. Therefore, the particles have a flat particle shape in which some of the particles are dented.

【0024】[0024]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0025】実施例1重合体シード粒子Aの製造 イオン交換水90重量部とスチレン10重量部とn−デ
シルメルカプタン0.5重量部とNaCl0.1重量部
とをセパラブルフラスコに入れ、この容器に冷却管、攪
拌羽根及び窒素導入管を取り付け、1時間窒素を流し入
れて重合雰囲気の窒素置換を行った。次に、攪拌羽根を
回転させ、70℃まで昇温し、更に1時間窒素置換を行
った。続いて、少量の水に溶かした0.1重量部の過硫
酸カリウムを注射器を用いて系中に注ぎ込んだ。
Example 1 Preparation of Polymer Seed Particle A 90 parts by weight of ion-exchanged water, 10 parts by weight of styrene, 0.5 part by weight of n-decyl mercaptan and 0.1 part by weight of NaCl were placed in a separable flask. A cooling tube, a stirring blade and a nitrogen introducing tube were attached to the reactor, and nitrogen was introduced thereinto for 1 hour to replace the polymerization atmosphere with nitrogen. Next, the stirring blade was rotated, the temperature was raised to 70 ° C., and the atmosphere was replaced with nitrogen for 1 hour. Subsequently, 0.1 part by weight of potassium persulfate dissolved in a small amount of water was poured into the system using a syringe.

【0026】この後、70℃のまま24時間反応を続
け、その後温度を室温まで下げて反応を停止させた。反
応終了時の重合転化率は80%であった。生成した重合
液を遠心分離にかけ、重合媒体と重合体シード粒子Aと
に固液分離を行った。続いて、エタノール、エタノール
と水との混合媒体、水の順序で各2回ずつ重合体シード
粒子Aの洗浄と遠心分離を行い、余分な重合開始剤、単
量体、連鎖移動剤を取り除いた。
Thereafter, the reaction was continued at 70 ° C. for 24 hours, and then the temperature was lowered to room temperature to stop the reaction. At the end of the reaction, the polymerization conversion was 80%. The resulting polymerization liquid was subjected to centrifugation to perform solid-liquid separation on the polymerization medium and the polymer seed particles A. Subsequently, the polymer seed particles A were washed and centrifuged twice each in the order of ethanol, a mixed medium of ethanol and water, and water to remove excess polymerization initiator, monomer, and chain transfer agent. .

【0027】粒子径の測定 洗浄した重合体シード粒子Aを適当な媒体に分散し、金
属メッシュに支持されたコロジオン膜に沈着固定した。
これを透過型電子顕微鏡を用いて観察し、重合体シード
粒子Aの写真を撮影した。撮影された写真中の任意粒子
200〜500個の粒子径を測り、平均粒子径及び粒子
径分布を求めた。その結果、平均粒子径Dn=0.73
μm、CV値=2.8%であった。また、ゲルパーミエ
イションクロマトグラフィー(GPC)を用いて、分子
量を測定したところ、重量平均分子量Mw=11400
0であった。
Measurement of Particle Diameter The washed polymer seed particles A were dispersed in a suitable medium and deposited and fixed on a collodion film supported by a metal mesh.
This was observed using a transmission electron microscope, and a photograph of the polymer seed particles A was taken. The particle diameter of 200 to 500 arbitrary particles in the photographed photograph was measured, and the average particle diameter and the particle diameter distribution were determined. As a result, the average particle diameter Dn = 0.73
μm, CV value = 2.8%. When the molecular weight was measured using gel permeation chromatography (GPC), the weight average molecular weight Mw was 11,400.
It was 0.

【0028】架橋微粒子の製造 得られた重合体シード粒子A0.5重量部にイオン交換
水50重量部、ラウリル硫酸ナトリウム0.05重量部
を加え、均一に分散させたものを重合体シード粒子A分
散液とし、更にポリビニルアルコールの3重量%水溶液
を20重量部加えて、セパラブルフラスコに入れた。次
に、ジビニルベンゼン5重量部、過酸化べンゾイル(2
5重量%含水)0.25重量部、イオン交換水50重量
部、ラウリル硫酸ナトリウム0.1重量部を混合してホ
モジナイザーにより微分散乳化した。この乳化液を重合
体シード粒子A分散液に添加し、25℃、100rpm
で24時間攪拌して上記乳化液を重合体シード粒子Aに
吸収させた。ついで、窒素を系内に1時間流して、窒素
置換を行った後、200rpmで攪拌しつつ、70℃で
24時間重合を行い、架橋微粒子を得た。
Preparation of Crosslinked Fine Particles 50 parts by weight of ion-exchanged water and 0.05 parts by weight of sodium lauryl sulfate were added to 0.5 parts by weight of the obtained polymer seed particles A, and the resulting mixture was uniformly dispersed. As a dispersion, 20 parts by weight of a 3% by weight aqueous solution of polyvinyl alcohol was added, and the dispersion was placed in a separable flask. Next, 5 parts by weight of divinylbenzene and benzoyl peroxide (2
0.25 parts by weight of water (containing 5% by weight), 50 parts by weight of ion-exchanged water, and 0.1 part by weight of sodium lauryl sulfate were mixed and finely dispersed and emulsified by a homogenizer. This emulsion was added to the dispersion liquid of the polymer seed particles A, and the mixture was added at 25 ° C and 100 rpm.
And the mixture was stirred for 24 hours to absorb the emulsion into the polymer seed particles A. Next, nitrogen was introduced into the system for 1 hour to perform nitrogen substitution, and then polymerization was performed at 70 ° C. for 24 hours while stirring at 200 rpm to obtain crosslinked fine particles.

【0029】重合終了後、重合液を遠心分離にかけ、重
合媒体と架橋微粒子とに固液分離を行った。続いて、エ
タノール、エタノールと水との混合媒体、水の順序で各
2回ずつ架橋微粒子の洗浄と遠心分離を行い、余分な重
合開始剤、単量体、界面活性剤を取り除いた。得られた
架橋微粒子について、重合体シード粒子Aと同様に透過
型電子顕微鏡を用いて観察し、その後、粒子径及び粒子
系分布の測定を行った。結果を表1に示した。
After the completion of the polymerization, the polymerization liquid was subjected to centrifugal separation to perform solid-liquid separation into a polymerization medium and crosslinked fine particles. Subsequently, the crosslinked fine particles were washed and centrifuged twice each in the order of ethanol, a mixed medium of ethanol and water, and water to remove excess polymerization initiator, monomer, and surfactant. The obtained crosslinked fine particles were observed using a transmission electron microscope in the same manner as in the case of the polymer seed particles A, and then the particle diameter and the particle system distribution were measured. The results are shown in Table 1.

【0030】実施例2重合体シード粒子Bの製造 仕込み組成を、イオン交換水90重量部とスチレン10
重量部とn−デシルメルカプタン0.3重量部とNaC
l0.1重量部とした以外は実施例1と同様にして重合
体シード粒子Bを得た。得られた重合体シード粒子B
は、平均粒子径Dn=0.74μm、CV値=3.2
%、重量平均分子量Mw=55000であった。
Example 2 The preparation composition of the polymer seed particles B was as follows: 90 parts by weight of ion-exchanged water and styrene 10
Parts by weight, 0.3 parts by weight of n-decyl mercaptan and NaC
Polymer seed particles B were obtained in the same manner as in Example 1 except that the amount was changed to 0.1 part by weight. Obtained polymer seed particles B
Means average particle diameter Dn = 0.74 μm, CV value = 3.2
%, Weight average molecular weight Mw = 55000.

【0031】架橋微粒子の作製 重合体シード粒子Bを用いた以外は実施例1と同様にし
て架橋微粒子を得た。得られた架橋微粒子について、実
施例1と同様に透過型電子顕微鏡を用いた観察を行い、
粒子径及び粒子径分布を測定した。結果を表1に示し
た。なお、得られた架橋微粒子の走査型電子顕微鏡及び
透過型電子顕微鏡による観察写真を図1及び図2に示し
た。
Preparation of Crosslinked Fine Particles Crosslinked fine particles were obtained in the same manner as in Example 1 except that polymer seed particles B were used. The obtained crosslinked fine particles were observed using a transmission electron microscope in the same manner as in Example 1,
The particle size and particle size distribution were measured. The results are shown in Table 1. 1 and 2 show photographs of the obtained crosslinked fine particles observed by a scanning electron microscope and a transmission electron microscope.

【0032】実施例3重合体シード粒子Cの製造 仕込み組成を、イオン交換水90重量部とスチレン10
重量部とn−デシルメルカプタン1.0重量部とNaC
l0.1重量部とした以外は実施例1と同様にして重合
体シード粒子Cを得た。得られた重合体シード粒子C
は、平均粒子径Dn=0.73μm、CV値=3.2
%、重量平均分子量Mw=17000であった。
Example 3 The preparation composition of polymer seed particles C was as follows: 90 parts by weight of ion-exchanged water and styrene 10
Parts by weight, 1.0 part by weight of n-decyl mercaptan and NaC
Polymer seed particles C were obtained in the same manner as in Example 1 except that the amount was changed to 10.1 parts by weight. Obtained polymer seed particles C
Means average particle diameter Dn = 0.73 μm, CV value = 3.2
%, Weight average molecular weight Mw = 17000.

【0033】架橋微粒子の作製 重合体シード粒子Cを用いた以外は実施例1と同様にし
て架橋微粒子を得た。得られた架橋微粒子について、実
施例1と同様に透過型電子顕微鏡を用いた観察を行い、
粒子径及び粒子径分布を測定した。結果を表1に示し
た。
Preparation of Crosslinked Fine Particles Crosslinked fine particles were obtained in the same manner as in Example 1 except that polymer seed particles C were used. The obtained crosslinked fine particles were observed using a transmission electron microscope in the same manner as in Example 1,
The particle size and particle size distribution were measured. The results are shown in Table 1.

【0034】実施例4 重合体シード粒子として、実施例1で得られた重合体シ
ード粒子Aを用いた。そして、架橋性単量体として、ジ
ビニルベンゼン3重量部及びスチレン2重量部を用いた
以外は、実施例1と同様にして、架橋微粒子を製造し
た。得られた架橋微粒子について、実施例1と同様に透
過型電子顕微鏡を用いた観察を行い、粒子径及び粒子系
分布を測定した。結果を表1に示した。
Example 4 The polymer seed particles A obtained in Example 1 were used as the polymer seed particles. Then, crosslinked fine particles were produced in the same manner as in Example 1 except that 3 parts by weight of divinylbenzene and 2 parts by weight of styrene were used as the crosslinkable monomer. The obtained crosslinked fine particles were observed using a transmission electron microscope in the same manner as in Example 1, and the particle diameter and the particle distribution were measured. The results are shown in Table 1.

【0035】実施例5重合体シード粒子Dの製造 ポリビニルピロリドン(重量平均分子量:30000)
を3.6重量部、エアロゾルOT(和光純薬工業社製、
アニオン界面活性剤)0.6重量部、アゾビスイソブチ
ロニトリル(AIBN)0.14重量部をエタノール8
4重量部の混合液に溶解させ、この溶液を攪拌しながら
窒素気流下でスチレン14重量部を滴下した。その後、
系を60℃に昇温して、24時間反応を行った。反応終
了後、遠心分離機にて重合体シード粒子Dを単離し、メ
タノールにて数回洗浄を行った。得られた重合体シード
粒子Dは、平均粒子径Dn=1.8μm、CV値=3.
0%、重量平均分子量Mw=85000であった。
Example 5 Preparation of polymer seed particles D Polyvinylpyrrolidone (weight average molecular weight: 30,000)
3.6 parts by weight of aerosol OT (manufactured by Wako Pure Chemical Industries, Ltd.
0.6 parts by weight of anionic surfactant) and 0.14 parts by weight of azobisisobutyronitrile (AIBN)
The mixture was dissolved in 4 parts by weight of a mixed solution, and 14 parts by weight of styrene was added dropwise to the solution while stirring under a nitrogen stream. afterwards,
The system was heated to 60 ° C. and reacted for 24 hours. After the completion of the reaction, the polymer seed particles D were isolated with a centrifuge, and washed several times with methanol. The obtained polymer seed particles D had an average particle diameter Dn of 1.8 μm and a CV value of 3.
0%, weight average molecular weight Mw = 85,000.

【0036】架橋微粒子の作製 重合体シード粒子Dを用いた以外は実施例1と同様にし
て架橋微粒子を得た。得られた架橋微粒子について、実
施例1と同様に透過型電子顕微鏡を用いた観察を行い、
粒子径及び粒子径分布を測定した。結果を表1に示し
た。
Preparation of Crosslinked Fine Particles Crosslinked fine particles were obtained in the same manner as in Example 1 except that polymer seed particles D were used. The obtained crosslinked fine particles were observed using a transmission electron microscope in the same manner as in Example 1,
The particle size and particle size distribution were measured. The results are shown in Table 1.

【0037】実施例6重合体シード粒子Eの製造 スチレン10重量部に代えて、メチルメタクリレート1
0重量部を用いた以外は、実施例1と同様にして重合体
シード粒子Eを得た。得られた重合体シード粒子Eは、
平均粒子径Dn=0.80μm、CV値=4.4%、重
量平均分子量Mw=186000であった。
Example 6 Preparation of Polymer Seed Particle E Instead of 10 parts by weight of styrene, methyl methacrylate 1 was used.
Polymer seed particles E were obtained in the same manner as in Example 1 except that 0 parts by weight was used. The obtained polymer seed particles E are
The average particle diameter Dn was 0.80 μm, the CV value was 4.4%, and the weight average molecular weight Mw was 186,000.

【0038】架橋微粒子の作製 重合体シード粒子Eを用い、ジビニルベンゼン5重量部
に代えて、エチレングリコールメタクリレート(EDM
A)5重量部用いた以外は実施例1と同様にして架橋微
粒子を得た。得られた架橋微粒子について、実施例1と
同様に透過型電子顕微鏡を用いた観察を行い、粒子径及
び粒子径分布を測定した。結果を表1に示した。
Preparation of Crosslinked Fine Particles Using polymer seed particles E, ethylene glycol methacrylate (EDM) was used instead of 5 parts by weight of divinylbenzene.
A) Crosslinked fine particles were obtained in the same manner as in Example 1 except that 5 parts by weight were used. The obtained crosslinked fine particles were observed using a transmission electron microscope in the same manner as in Example 1, and the particle size and the particle size distribution were measured. The results are shown in Table 1.

【0039】比較例1重合体シード粒子Fの製造 仕込み組成を、イオン交換水90重量部とスチレン10
重量部とNaCl0.1重量部とした以外は実施例1と
同様にして重合体シード粒子Fを得た。得られた重合体
シード粒子Fは、平均粒子径Dn=0.97μm、CV
値=2.8%、重量平均分子量Mw=695000であ
った。
Comparative Example 1 The preparation composition of the polymer seed particles F was as follows: 90 parts by weight of ion-exchanged water and styrene 10
Polymer seed particles F were obtained in the same manner as in Example 1 except that the parts by weight and 0.1 parts by weight of NaCl were used. The obtained polymer seed particles F had an average particle diameter Dn = 0.97 μm and a CV
Value = 2.8%, weight average molecular weight Mw = 695000.

【0040】架橋微粒子の作製 重合体シード粒子Fを用いた以外は実施例1と同様にし
て架橋微粒子を得た。得られた架橋微粒子について、実
施例1と同様に透過型電子顕微鏡を用いた観察を行い、
粒子径及び粒子径分布を測定した。結果を表1に示し
た。
Preparation of Crosslinked Fine Particles Crosslinked fine particles were obtained in the same manner as in Example 1 except that polymer seed particles F were used. The obtained crosslinked fine particles were observed using a transmission electron microscope in the same manner as in Example 1,
The particle size and particle size distribution were measured. The results are shown in Table 1.

【0041】比較例2重合体シード粒子Gの製造 仕込み組成を、イオン交換水90重量部とスチレン10
重量部とオクチルメルカプタン3.0重量部とNaCl
0.1重量部とした以外は実施例1と同様にして重合体
シード粒子Gを得た。得られた重合体シード粒子Gは、
平均粒子径Dn=0.78μm、CV値=4.0%、重
量平均分子量Mw=3000であった。
Comparative Example 2 The preparation composition of the polymer seed particles G was as follows: 90 parts by weight of ion-exchanged water and styrene 10
Parts by weight, 3.0 parts by weight of octyl mercaptan and NaCl
Except for using 0.1 part by weight, polymer seed particles G were obtained in the same manner as in Example 1. The obtained polymer seed particles G are:
The average particle diameter Dn was 0.78 μm, the CV value was 4.0%, and the weight average molecular weight Mw was 3000.

【0042】架橋微粒子の作製 重合体シード粒子Gを用いた以外は実施例1と同様にし
て架橋微粒子を得た。得られた架橋微粒子について、実
施例1と同様に透過型電子顕微鏡を用いた観察を行い、
粒子径及び粒子径分布を測定した。結果を表1に示し
た。
Preparation of Crosslinked Fine Particles Crosslinked fine particles were obtained in the same manner as in Example 1 except that the polymer seed particles G were used. The obtained crosslinked fine particles were observed using a transmission electron microscope in the same manner as in Example 1,
The particle size and particle size distribution were measured. The results are shown in Table 1.

【0043】比較例3 重合体シード粒子として、実施例1で得られた重合体シ
ード粒子Aを用いた。そして、架橋性単量体として、ス
チレン5重量部を用いた以外は実施例1と同様にして架
橋微粒子を得た。得られた架橋微粒子について、実施例
1と同様に透過型電子顕微鏡を用いた観察を行い、粒子
径及び粒子径分布を測定した。結果を表1に示した。
Comparative Example 3 The polymer seed particles A obtained in Example 1 were used as the polymer seed particles. Then, crosslinked fine particles were obtained in the same manner as in Example 1 except that 5 parts by weight of styrene was used as the crosslinkable monomer. The obtained crosslinked fine particles were observed using a transmission electron microscope in the same manner as in Example 1, and the particle size and the particle size distribution were measured. The results are shown in Table 1.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【発明の効果】本発明の多孔質微粒子の製造方法は、上
述の構成からなるので、容易な操作で、ミクロンオーダ
ーの多孔質微粒子を製造することができる。
As described above, the method for producing porous fine particles of the present invention has the above-mentioned structure, and therefore, it is possible to produce micron-order porous fine particles by an easy operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例2で得られた架橋微粒子の走査型電子顕
微鏡写真である。
FIG. 1 is a scanning electron micrograph of the crosslinked fine particles obtained in Example 2.

【図2】実施例2で得られた架橋微粒子の透過型電子顕
微鏡写真である。
FIG. 2 is a transmission electron micrograph of the crosslinked fine particles obtained in Example 2.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F074 AA32D AA35D AA41D AA48D AA49D AB01 BB01 BB02 CC10X DA47 DA59 4J011 JA06 JA07 JA13 JB16 JB26 4J026 AA17 AA21 AA25 AA37 AA38 AA45 AA46 AA47 AA49 AA61 AC33 AC36 BA05 BA07 BA22 BA28 BA40 BA50 DA03 DA04 DA05 DA14 DB08 DB10 DB12 DB13 GA02 GA06  ──────────────────────────────────────────────────続 き Continuing on the front page F term (reference) 4F074 AA32D AA35D AA41D AA48D AA49D AB01 BB01 BB02 CC10X DA47 DA59 4J011 JA06 JA07 JA13 JB16 JB26 4J026 AA17 AA21 AA25 AA37 AA38 AABA BAACA DA04 DA05 DA14 DB08 DB10 DB12 DB13 GA02 GA06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水中に分散した重量平均分子量が1万〜
30万の重合体シード粒子に、架橋性単量体及び重合開
始剤を吸収させた後、架橋性単量体を重合させ、重合体
シード粒子と異なる組成の重合体を形成することを特徴
とする多孔質微粒子の製造方法。
A weight average molecular weight dispersed in water of 10,000 or more.
After absorbing a crosslinkable monomer and a polymerization initiator into 300,000 polymer seed particles, the crosslinkable monomer is polymerized to form a polymer having a different composition from the polymer seed particles. Of producing porous fine particles.
【請求項2】 重合体シード粒子は、ソープフリー重合
又は分散重合により製造されてなることを特徴とする請
求項1記載の多孔質微粒子の製造方法。
2. The method for producing porous fine particles according to claim 1, wherein the polymer seed particles are produced by soap-free polymerization or dispersion polymerization.
【請求項3】 架橋性単量体及び重合開始剤をエマルジ
ョンとして水中に添加し、重合体シード粒子に吸収させ
ることを特徴とする請求項1又は2記載の多孔質微粒子
の製造方法。
3. The method for producing porous fine particles according to claim 1, wherein the crosslinkable monomer and the polymerization initiator are added to water as an emulsion and absorbed by the polymer seed particles.
JP10370558A 1998-12-25 1998-12-25 Preparation of porous particulate Pending JP2000191818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10370558A JP2000191818A (en) 1998-12-25 1998-12-25 Preparation of porous particulate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10370558A JP2000191818A (en) 1998-12-25 1998-12-25 Preparation of porous particulate

Publications (1)

Publication Number Publication Date
JP2000191818A true JP2000191818A (en) 2000-07-11

Family

ID=18497218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10370558A Pending JP2000191818A (en) 1998-12-25 1998-12-25 Preparation of porous particulate

Country Status (1)

Country Link
JP (1) JP2000191818A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111717A (en) * 2004-10-14 2006-04-27 Tosoh Corp Crosslinked (meth)acrylamide particle, method for producing the same and use thereof
WO2006093179A1 (en) * 2005-03-01 2006-09-08 Soken Chemical & Engineering Co., Ltd. Porous monodispersed particles and method for production thereof, and use thereof
JP2006274250A (en) * 2005-03-01 2006-10-12 Soken Chem & Eng Co Ltd Colored monodisperse particles and its manufacturing method
JP2008266504A (en) * 2007-04-24 2008-11-06 Konica Minolta Business Technologies Inc Method for manufacturing hollow particles
JP2010038985A (en) * 2008-07-31 2010-02-18 Jsr Corp Colorant for toner, toner, and developer
JP2010168464A (en) * 2009-01-22 2010-08-05 Sekisui Plastics Co Ltd Irregular-shaped monodisperse particle, method for manufacturing the same, and light diffusion film containing the same
JP2012526158A (en) * 2009-05-04 2012-10-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing hydrophilic poly-N-vinylpyrrolidone and use thereof
WO2013115165A1 (en) * 2012-01-31 2013-08-08 日本エクスラン工業株式会社 Composite aggregate resin particle and composition containing same particle
EP2783678A1 (en) 2013-03-28 2014-10-01 Sekisui Plastics Co., Ltd. Porous resin particles, method of manufacturing the same, and use of the same
JP2014198785A (en) * 2013-03-29 2014-10-23 積水化成品工業株式会社 Porous resin particle, its manufacturing method and use thereof
US9200154B2 (en) 2012-03-27 2015-12-01 Sekisui Plastics Co., Ltd. Porous resin particles, method of manufacturing the same, and use of the same
CN109384886A (en) * 2017-08-02 2019-02-26 镇江爱邦电子科技有限公司 A kind of high cross-linking supports microballoon of New type LCD frame adhesive

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111717A (en) * 2004-10-14 2006-04-27 Tosoh Corp Crosslinked (meth)acrylamide particle, method for producing the same and use thereof
KR101184614B1 (en) 2005-03-01 2012-09-21 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 Porous monodispersed particles and method for production thereof, and use thereof
WO2006093179A1 (en) * 2005-03-01 2006-09-08 Soken Chemical & Engineering Co., Ltd. Porous monodispersed particles and method for production thereof, and use thereof
JP2006274250A (en) * 2005-03-01 2006-10-12 Soken Chem & Eng Co Ltd Colored monodisperse particles and its manufacturing method
US7741378B2 (en) 2005-03-01 2010-06-22 Soken Chemical & Engineering Co., Ltd. Porous monodispersed particles and method for production thereof, and use thereof
JP2008266504A (en) * 2007-04-24 2008-11-06 Konica Minolta Business Technologies Inc Method for manufacturing hollow particles
JP2010038985A (en) * 2008-07-31 2010-02-18 Jsr Corp Colorant for toner, toner, and developer
JP2010168464A (en) * 2009-01-22 2010-08-05 Sekisui Plastics Co Ltd Irregular-shaped monodisperse particle, method for manufacturing the same, and light diffusion film containing the same
JP2012526158A (en) * 2009-05-04 2012-10-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing hydrophilic poly-N-vinylpyrrolidone and use thereof
WO2013115165A1 (en) * 2012-01-31 2013-08-08 日本エクスラン工業株式会社 Composite aggregate resin particle and composition containing same particle
JPWO2013115165A1 (en) * 2012-01-31 2015-05-11 日本エクスラン工業株式会社 Composite aggregated resin particles and composition containing the particles
US9200154B2 (en) 2012-03-27 2015-12-01 Sekisui Plastics Co., Ltd. Porous resin particles, method of manufacturing the same, and use of the same
EP2783678A1 (en) 2013-03-28 2014-10-01 Sekisui Plastics Co., Ltd. Porous resin particles, method of manufacturing the same, and use of the same
JP2014198785A (en) * 2013-03-29 2014-10-23 積水化成品工業株式会社 Porous resin particle, its manufacturing method and use thereof
CN109384886A (en) * 2017-08-02 2019-02-26 镇江爱邦电子科技有限公司 A kind of high cross-linking supports microballoon of New type LCD frame adhesive

Similar Documents

Publication Publication Date Title
Song et al. Cross-linked, monodisperse, micron-sized polystyrene particles by two-stage dispersion polymerization
JP5566152B2 (en) Method for producing monodisperse polymer particles
JP2002080503A (en) Hollow polymer fine particle and method for producing the same
JP2000191818A (en) Preparation of porous particulate
JP4190239B2 (en) Colloidal crystal and method for producing the same
JPS61215603A (en) Production of polymer particle
JPS61215604A (en) Production of polymer particle
JP2002363205A (en) Fine particle and electroconductive fine particle
TWI757039B (en) Method for producing porous microstructure
JP4268639B2 (en) Spherical resin fine particles, method for producing spherical resin fine particles, and spacer for liquid crystal display element
CN114634596A (en) Preparation method of polyacrylate polymer microspheres
JP3487665B2 (en) Method for producing polymer fine particles
JP2000191706A (en) Production of flat fine particle
JPS62121701A (en) Production of polymer particle
JP3298215B2 (en) Method for producing polymer particles having refractive index distribution
JPH0564964B2 (en)
JP4113290B2 (en) Liquid crystal display element spacer and liquid crystal display element
JP2662952B2 (en) Method for producing polymer particles having a narrow particle size distribution
JP3534862B2 (en) Method for producing highly monodispersed fine particles
JPS63189413A (en) Production of crosslinked polymer particle
TWI751612B (en) Method for producing porous microstructure
JP2000109508A (en) Production of crosslinked microparticle, spacer for liquid crystal display element and liquid crystal display element
JP3101022B2 (en) Method for producing polymer fine particles
JPH03701A (en) Preparation of polymer gel, polymer gel and actuator
KR101400322B1 (en) Monodisperse Particles and Preparation Method Thereof