JP2000156231A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000156231A
JP2000156231A JP10327205A JP32720598A JP2000156231A JP 2000156231 A JP2000156231 A JP 2000156231A JP 10327205 A JP10327205 A JP 10327205A JP 32720598 A JP32720598 A JP 32720598A JP 2000156231 A JP2000156231 A JP 2000156231A
Authority
JP
Japan
Prior art keywords
positive electrode
specific surface
surface area
mixture layer
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10327205A
Other languages
Japanese (ja)
Inventor
Jo Sasaki
丈 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP10327205A priority Critical patent/JP2000156231A/en
Publication of JP2000156231A publication Critical patent/JP2000156231A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain the decomposition reaction of cobalt oxide and a successive heat generation reaction to prevent the occurrence of thermorunaway even if a charger breaks down and causes overcharge by setting the specific surface area of a depolarizing mixture layer containing a positive electrode host substance in a certain range. SOLUTION: Whereas it is effective to reduce the specific surface area of a depolarizing mixture layer in order to prevent the thermorunaway of a positive electrode active material in an overcharge by reducing the contact area between the positive electrode active material and an electrolyte, because the reaction area of a positive electrode decreases as the contact area between the positive electrode active material and the electrolyte decreases, so that the current density of the positive electrode increases and overvoltage rises, the specific surface area of the depolarizing mixture layer needs to be set to a certain value or more in view of a charge-discharge characteristic. Then, it is preferable that the specific surface area of the depolarizing mixture layer is adjusted in the range of 0.5-2 m2/g in order to satisfy two conditions such as the charge-discharge characteristic and safety. This nonaqueous electrolyte secondary battery that has large discharge capacity and improved in safety can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】電子機器の急激な小型軽量化に伴い、そ
の電源である電池に対して小型で軽量かつ高エネルギー
密度、更に繰り返し充放電が可能な二次電池開発への要
求が高まっている。また、大気汚染や二酸化炭素の増加
等の環境問題により、電気自動車の早期実用化が望まれ
ており、高効率、高出力、高エネルギー密度、軽量等の
特徴を有する優れた二次電池の開発が要望されている。
これらの要求を満たす二次電池として、非水電解質を使
用した二次電池が実用化されている。この電池は、従来
の水溶液電解液を使用した電池の数倍のエネルギー密度
を有している。その例として、正極にコバルト複合酸化
物、ニッケル複合酸化物又はスピネル型リチウムマンガ
ン酸化物を用い、負極にリチウムが吸蔵放出可能な炭素
材料などを用い、電解質として有機電解液を用いた、高
エネルギーで長寿命な4V級非水電解質二次電池が実用
化されている。さらに、負極に高容量のアモルファスカ
ーボン、又は/及び酸化物などを用いた高容量の非水電
解質二次電池が開発されてきており、小型高容量化の技
術開発が急速に進んでいる。このような非水電解質電池
では、小型高容量化、すなわち体積エネルギー密度の飛
躍的な増大にともなう、過充電、過放電の防止や内部短
絡の防止等が大きな課題となっている。過充電の防止対
策としては充電器による充電電圧の制御、過放電の防止
対策としては放電時の終始電圧の制御を行う方法が主流
となっている。また、充電器等の制御が故障した場合、
あるいは内部短絡による大電流の発生に備え、電池側に
所定の電池内圧に達したときに開裂する安全弁や電流遮
断手段を持たせている。この問題を解決するために、過
充電を防止する手段がいくつか提案されている。現状で
は、保護回路・保護素子を装着する方法、セパレータ孔
の熱閉塞を利用した方法などが例にあがっている。しか
し、保護回路・保護素子の利用は、電池パックの小型化
・低コスト化に大きな制約を与えるし、また、セパレー
タの熱閉塞は、非安全化時の発熱反応を利用しているた
め、発熱が急激に生じた場合には有効に作用しないこと
がある。そこで、過充電時の安全化を図る手段の一つと
しては、正極活物質の発熱速度を緩和し、セパレータの
熱閉塞機構を確実に作用させる方法が提案されている。
2. Description of the Related Art As electronic devices have rapidly become smaller and lighter, there is an increasing demand for secondary batteries that are small, lightweight, have a high energy density, and can be repeatedly charged and discharged. . In addition, due to environmental problems such as air pollution and an increase in carbon dioxide, early commercialization of electric vehicles is desired, and development of excellent secondary batteries having characteristics such as high efficiency, high output, high energy density, and light weight. Is required.
As a secondary battery that satisfies these requirements, a secondary battery using a non-aqueous electrolyte has been put to practical use. This battery has several times the energy density of a battery using a conventional aqueous electrolyte solution. As an example, a high energy energy using cobalt composite oxide, nickel composite oxide or spinel lithium manganese oxide for the positive electrode, a carbon material capable of inserting and extracting lithium for the negative electrode, and an organic electrolyte as the electrolyte is used. And a long-life 4V-class non-aqueous electrolyte secondary battery has been put to practical use. Furthermore, high-capacity non-aqueous electrolyte secondary batteries using high-capacity amorphous carbon and / or oxides for the negative electrode have been developed, and the technological development for miniaturization and high-capacity is rapidly progressing. In such a non-aqueous electrolyte battery, there has been a great problem of preventing overcharging, overdischarging, internal short circuit, and the like due to a reduction in size and capacity, that is, a dramatic increase in volume energy density. As a measure to prevent overcharge, a method of controlling a charging voltage by a charger and a measure to prevent overdischarge, a method of controlling a voltage from start to finish at the time of discharging have become mainstream. Also, if the control of the charger etc. breaks down,
Alternatively, in preparation for the occurrence of a large current due to an internal short circuit, the battery side is provided with a safety valve and a current interrupting means which are opened when a predetermined battery internal pressure is reached. In order to solve this problem, some means for preventing overcharging have been proposed. At present, examples include a method of mounting a protection circuit and a protection element, and a method of utilizing thermal closure of a separator hole. However, the use of protection circuits and protection elements greatly imposes restrictions on miniaturization and cost reduction of battery packs, and the heat clogging of the separator uses the exothermic reaction at the time of non-safety. May not work effectively if the occurrence occurs rapidly. Therefore, as one of means for improving safety at the time of overcharging, a method has been proposed in which the heat generation rate of the positive electrode active material is reduced and the heat closing mechanism of the separator is reliably operated.

【0003】[0003]

【発明が解決しようとする課題】一般に、過充電防止対
策としては、充電器によって充電電圧を制御する方法が
採用されているが、充電器が故障した場合には、非水電
解質二次電池へ所定量以上の電気量が充電されて、電池
が発熱し、最悪の場合発火に至ることがある。過充電に
よる非水電解質電池の不安全化の主な原因は、リチウム
又は/及びリチウムイオンを吸蔵放出するリチウム含有
金属酸化物等の正極活物質(以下、「正極ホスト物質」
とする)が、過充電時にリチウムの脱離によって熱的に
不安定な状態へと変化し、電池温度が臨海温度に達した
時点で、熱的に不安定になった正極活物質が非常に大き
な発熱分解反応を起こして熱逸走することにある。そこ
で本発明は、充電器が故障して過充電状態になったとし
ても、熱暴走を起こさぬように効果的に発熱を抑止しう
る、非水電解質二次電池を提供することを目的とする。
In general, as a measure for preventing overcharge, a method of controlling a charging voltage by a charger is adopted. However, when a charger fails, a non-aqueous electrolyte secondary battery must be used. When a predetermined amount of electricity or more is charged, the battery generates heat, and in the worst case, ignition may occur. The main cause of unsafety of a non-aqueous electrolyte battery due to overcharging is a positive electrode active material such as a lithium-containing metal oxide that absorbs and / or releases lithium and / or lithium ions (hereinafter referred to as a “positive host material”).
However, when overcharging, lithium desorbs and changes to a thermally unstable state. When the battery temperature reaches the critical temperature, the thermally unstable cathode active material becomes very unstable. A large exothermic decomposition reaction causes thermal runaway. Therefore, an object of the present invention is to provide a non-aqueous electrolyte secondary battery that can effectively suppress heat generation so that thermal runaway does not occur even when a charger fails and becomes overcharged. .

【0004】[0004]

【課題を解決するための手段】本発明は、正極ホスト物
質を含む正極合材層が形成された正極と、負極活物質と
してのリチウムイオンを吸蔵放出可能な負極ホスト物質
を含む負極合材層が形成された負極とを備えた非水電解
質二次電池において、正極合剤層の比表面積を0.5〜
2m2/gとすることにより、上記課題を解決するもの
である。正極活物質としてコバルト酸リチウム(LiC
oO2)を使用した場合、過充電時の最終成生物は酸化
コバルト( CoO2)と推定される。この酸化コバルト
は熱的に非常に不安定であるために、100℃以下の温
度でも分解を開始し、電解質との反応により非常に大き
な発熱反応を起こして熱逸走のトリガーとなる。酸化コ
バルトの分解反応および後続の発熱反応は電解質との相
互作用で起こる反応であるため、これらの反応を抑制す
るたためには正極活物質と電解質との接触面積を小さく
すればよく、そのためには正極合剤層の比表面積を低下
させればよい。
SUMMARY OF THE INVENTION The present invention provides a positive electrode on which a positive electrode mixture layer containing a positive electrode host material is formed, and a negative electrode mixture layer containing a negative electrode host material capable of inserting and extracting lithium ions as a negative electrode active material. In the non-aqueous electrolyte secondary battery including the negative electrode formed with, the specific surface area of the positive electrode mixture layer is 0.5 to
The above-mentioned problem is solved by setting it to 2 m 2 / g. Lithium cobaltate (LiC) as a positive electrode active material
When oO 2 ) is used, the final product at the time of overcharging is estimated to be cobalt oxide (CoO 2 ). Since this cobalt oxide is very unstable thermally, it starts to decompose even at a temperature of 100 ° C. or less, and causes a very large exothermic reaction due to the reaction with the electrolyte to trigger thermal escape. Since the decomposition reaction of cobalt oxide and the subsequent exothermic reaction are reactions that occur due to interaction with the electrolyte, these reactions can be suppressed by reducing the contact area between the positive electrode active material and the electrolyte. What is necessary is just to reduce the specific surface area of the positive electrode mixture layer.

【0005】[0005]

【発明の実施の形態】非水電解質電池の正極板は、通
常、正極活物質と導電剤とバインダーとを適当な溶媒を
用いてペースト状の合剤とし、この正極合剤を集電体と
してのアルミニウム等の金属箔上に塗布し、乾燥し、最
後にプレスして作製する。この正極板作製工程におい
て、正極合剤層の比表面積を調整する手段としては、正
極活物質や導電剤そのものの比表面積を選択する、合剤
ペーストの正極活物質と導電剤とバインダーと溶媒の混
合比を変化させる、金属箔上への塗布厚みを変化させ
る、乾燥条件を変化させる、加熱温度や加圧時間などの
プレス条件を変化させる等の方法がある。本発明におい
ては、合剤ペーストの正極活物質と導電剤とバインダー
と溶媒の混合比とプレス条件を変化させて、正極合剤層
の比表面積を調整した。正極活物質と電解質との接触面
積を小さくして、過充電時の正極活物質の熱逸走を防止
するためには、正極合剤層の比表面積をできるだけ小さ
くすればよいが、一方、正極活物質と電解質との接触面
積が小さくなるにしたがって正極の反応面積が小さくな
り、その結果正極の電流密度が大きくなり、過電圧が高
くなってしまうため、充放電特性の面からは、正極合剤
層の比表面積は一定値以上の値とする必要がある。本発
明は、非水電解質電池において、充放電特性と安全性と
の二つの条件を満たすために、正極合剤層の比表面積を
0.5〜2m2/gに調整するものである。本発明にな
る非水電解質電池の正極活物質としての正極ホスト物質
としては、前述のリチウム含有金属酸化物に限定される
ものではない。これ以外にも、無機化合物としては、組
成式LixMO2またはLiy24(ただしMは遷移金
属、0≦x≦1、0≦y≦2)で表わされる複合酸化
物、トンネル状の空孔を有する酸化物、層状構造の金属
カルコゲン化物を用いることができる。その具体例とし
ては、LiCoO2、LiNiO2、LiMn24、Li
2Mn24、MnO2、FeO2、V25、V613、Ti
2、TiS2などが挙げられる。さらにこれらの活物質
を混合して用いてもよい。また、本発明において、負極
ホスト物質はリチウムイオンを吸蔵放出できるものであ
ればよく、例えば、グラファイト、コークス、カーボ
ン、アモルファスカーボン、SnO、SnO2、Sn1-x
xO(M=Hg,P,B,Si,Ge又はSb、ただ
し0≦x<1)、Sn1-xx2(M=Hg,P,B,
Si,Ge又はSb、ただし0≦x<1)、Sn3
2(OH)2、Sn3-xx(OH)2(M=Hg,P,
B,Si,Ge,Sb,As又はMn、ただし0≦x<
3)、LiSiO2、SiO2、SiO、SiO2-x(0
≦x<1)、Si1-xxO(M=Hg,P,B,Si,
Ge又はSb、ただし0≦x<1)、Si1-xx
2(M=Hg,P,B,Si,Ge又はSb、ただし0
≦x<1)、Si1-xx2-y(M=Hg,P,B,S
i,Ge又はSb、ただし0≦x<1、0≦y<1)又
はLiSnO2の中から選ばれる1種又は2種以上の混
合物を使用することができる。このように、負極に容量
が大きい活物質を用い、高容量な電池に対しても本発明
を適用することによって、安全性の向上が可能である。
また、電解液溶媒に溶解するリチウム塩としては、Li
PF6、LiBF4、LiAsF6、LiCF3CO2、L
iCF3SO3、LiN(SO2CF32、LiN(SO2
CF2CF32、LiN(COCF32およびLiN
(COCF2CF3 2などの塩もしくはこれらの混合物
を使用することができる。また、電解液の溶媒として
は、プロピレンカーボネートやエチレンカーボネートな
どの環状炭酸エステル、ジエチルカーボネートやジメチ
ルカーボネートやメチルエチルカーボネートなどの鎖状
炭酸エステルを単独であるいはこれらの混合物を使用す
ることができる。なお、本発明になる非水電解質二次電
池は、普通その構成として正極、負極及びセパレータと
非水電解液との組み合わせからなっているが、セパレー
タとしては、多孔性ポリ塩化ビニル膜などの多孔性ポリ
マー膜やリチウムイオン又はイオン導伝性ポリマー電解
質膜を、単独または組み合わせて使用することができ
る。ポリマー電解質膜が、ポリエチレンオキシド、ポリ
アクリロニトリル、ポリエチレングリコールおよびこれ
らの変性体などの場合には、軽量で柔軟性があり、巻回
極板に使用する場合に有利である。さらに、イオン導伝
性ポリマー電解質膜と有機電解液を組み合わせて使用す
ることができる。また、電解質としはポリマー電解質以
外にも、無機固体電解質あるいは有機ポリマー電解質と
無機固体電解質の混合材料、もしくは有機バインダーに
よって結着された無機固体粉末など、いずれも公知のも
のの使用が可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The positive electrode plate of a non-aqueous electrolyte
Usually, the positive electrode active material, the conductive agent and the binder are mixed with an appropriate solvent.
Into a paste-like mixture, and this positive electrode mixture is used as a current collector.
On a metal foil such as aluminum
It is produced by pressing later. In this positive electrode plate manufacturing process,
As a means for adjusting the specific surface area of the positive electrode mixture layer,
A mixture that selects the specific surface area of the polar active material or the conductive agent itself
Mixing of paste active material, conductive agent, binder and solvent
Change the mixing ratio, change the coating thickness on the metal foil
Temperature, pressurization time, etc.
There are methods such as changing the pressing conditions. In the present invention
The positive electrode active material of the mixture paste, the conductive agent and the binder
By changing the mixing ratio of the solvent and the pressing conditions,
Was adjusted for the specific surface area. Contact surface between positive electrode active material and electrolyte
Product to prevent thermal runaway of the positive electrode active material during overcharge
To minimize the specific surface area of the positive electrode mixture layer,
On the other hand, on the other hand, the contact surface between the positive electrode active material and the electrolyte
The reaction area of the positive electrode decreases as the product decreases.
As a result, the current density of the positive electrode increases and the overvoltage increases.
From the viewpoint of charge and discharge characteristics,
The specific surface area of the layer needs to be a certain value or more. Departure
Akira said that in non-aqueous electrolyte batteries, charging and discharging characteristics and safety
In order to satisfy the above two conditions, the specific surface area of the positive electrode mixture layer
0.5-2mTwo/ G. The present invention
Host material as positive electrode active material for non-aqueous electrolyte batteries
Is limited to the aforementioned lithium-containing metal oxide
Not something. In addition, as inorganic compounds,
Formula LixMOTwoOr LiyMTwoOFour(However, M is transition gold
Complex oxidation represented by the genus 0 ≦ x ≦ 1, 0 ≦ y ≦ 2)
Objects, oxides with tunnel-like vacancies, metals with layered structure
Chalcogenides can be used. As a specific example
The LiCoOTwo, LiNiOTwo, LiMnTwoOFour, Li
TwoMnTwoOFour, MnOTwo, FeOTwo, VTwoOFive, V6O13, Ti
OTwo, TiSTwoAnd the like. Furthermore, these active materials
May be used in combination. In the present invention, the negative electrode
The host substance is capable of inserting and extracting lithium ions.
For example, graphite, coke, carb
, Amorphous carbon, SnO, SnOTwo, Sn1-x
MxO (M = Hg, P, B, Si, Ge or Sb, only
0 ≦ x <1), Sn1-xMxOTwo(M = Hg, P, B,
Si, Ge or Sb, provided that 0 ≦ x <1), SnThreeO
Two(OH)Two, Sn3-xMx(OH)Two(M = Hg, P,
B, Si, Ge, Sb, As or Mn, provided that 0 ≦ x <
3), LiSiOTwo, SiOTwo, SiO, SiO2-x(0
≦ x <1), Si1-xMxO (M = Hg, P, B, Si,
Ge or Sb, where 0 ≦ x <1), Si1-xMxO
Two(M = Hg, P, B, Si, Ge or Sb, where 0
≦ x <1), Si1-xMxO2-y(M = Hg, P, B, S
i, Ge or Sb, provided that 0 ≦ x <1, 0 ≦ y <1)
Is LiSnOTwoOne or a mixture of two or more selected from
Compounds can be used. Thus, the capacity of the negative electrode
The present invention is also applicable to high-capacity batteries using active materials with large
By applying, it is possible to improve safety.
Lithium salts dissolved in the electrolyte solvent include Li
PF6, LiBFFour, LiAsF6, LiCFThreeCOTwo, L
iCFThreeSOThree, LiN (SOTwoCFThree)Two, LiN (SOTwo
CFTwoCFThree)Two, LiN (COCFThree)TwoAnd LiN
(COCFTwoCFThree) TwoSalt or a mixture thereof
Can be used. Also, as a solvent for the electrolyte solution
Are propylene carbonate and ethylene carbonate
Which cyclic carbonate, diethyl carbonate or dimethyl
Chains such as leucarbonate and methyl ethyl carbonate
Use carbonates alone or in mixtures
Can be The non-aqueous electrolyte secondary battery according to the present invention
Ponds usually consist of a positive electrode, negative electrode and separator
Combination with non-aqueous electrolyte
For example, a porous polyvinyl chloride membrane
Polymer membrane and lithium ion or ion conductive polymer electrolysis
Membranes can be used alone or in combination
You. When the polymer electrolyte membrane is polyethylene oxide, poly
Acrylonitrile, polyethylene glycol and this
In the case of these modified products, they are lightweight and flexible,
This is advantageous when used for an electrode plate. In addition, ion conduction
Use a combination of a conductive polymer electrolyte membrane and an organic electrolyte
Can be In addition, the electrolyte should be smaller than the polymer electrolyte.
In addition, with inorganic solid electrolyte or organic polymer electrolyte
For mixed material of inorganic solid electrolyte or organic binder
Therefore, any known inorganic solid powder such as bound inorganic solid powder
It is possible to use

【実施例】以下に、好適な実施例を用いて本発明を説明
するが、本発明の主旨を越えない限り、以下に限定され
るものでないことはいうまでもない。正極合剤層の比表
面積を0.1〜5.0m2/gとした合計8種類の非水
電解質電池をそれぞれ10個づつ作製した。まず、正極
板の作製方法について説明する。正極活物質としての正
極ホスト物質としてはリチウムコバルト複合酸化物、導
電剤としてはアセチレンブラック、結着剤としてはポリ
フッ化ビニリデンを使用した。リチウムコバルト複合酸
化物とアセチレンブラックとポリフッ化ビニリデンを、
重量比で91:3:6の割合で混合し、溶媒であるNM
P(N−メチルピロリドン)を適宜加えてペースト状に
調整した。このペーストを、集電体材料としての厚み2
0μmのアルミニウム箔の両面に塗布して乾燥した。そ
して、各面の正極合剤層の厚さが180μmとなるよう
にプレスし、矩形状のリード部を残して幅24mmに切
断することによって正極板を作製した。正極合剤層の比
表面積は、リチウムコバルト複合酸化物とアセチレンブ
ラックとポリフッ化ビニリデンの合計重量に対するNM
Pの重量比とプレス時の加熱温度によって調整した。ま
た、正極合剤層のBET比表面積は、島津製作所製自動
比表面積測定装置ジェミニ2375を用いて測定し、目
的のBET比表面積をもつ正極板を各電池に使用した。
つぎに、負極板は、負極ホスト物質としての黒鉛と結着
剤としてのポリフッ化ビニリデンを重量比で92:8の
割合で混合し、溶媒であるNMPを適宜加えてペースト
状に調整した。このペーストを、集電体材料としての厚
み10μmの銅箔の両面に塗布して乾燥した。そして、
各面の負極合剤層の厚さが220μmとなるようにプレ
スし、矩形状のリード部を残して幅26mmに切断する
ことによって作製した。セパレータとしては、厚さ25
μm、幅28μmのポリエチレン微多孔膜を使用した。
電解液は、LiPF6を1mol/l含むエチレンカー
ボネート:ジエチルカーボネート=1:1(体積比)の
混合溶液を使用した。作製した非水電解質電池の設計容
量は900mAhとした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to preferred embodiments, but it goes without saying that the present invention is not limited thereto unless it exceeds the gist of the present invention. A total of eight types of nonaqueous electrolyte batteries, each having a specific surface area of the positive electrode mixture layer of 0.1 to 5.0 m 2 / g, were manufactured in ten units. First, a method for manufacturing a positive electrode plate will be described. A lithium cobalt composite oxide was used as a positive electrode host material as a positive electrode active material, acetylene black was used as a conductive agent, and polyvinylidene fluoride was used as a binder. Lithium cobalt composite oxide, acetylene black and polyvinylidene fluoride
The mixture was mixed at a weight ratio of 91: 3: 6, and the solvent NM was used.
P (N-methylpyrrolidone) was appropriately added to prepare a paste. This paste is applied to a thickness 2 as a current collector material.
It was applied to both sides of a 0 μm aluminum foil and dried. Then, the positive electrode mixture layer was pressed so that the thickness of the positive electrode mixture layer on each surface was 180 μm, and was cut to a width of 24 mm except for a rectangular lead portion, to produce a positive electrode plate. The specific surface area of the positive electrode mixture layer is NM with respect to the total weight of the lithium cobalt composite oxide, acetylene black and polyvinylidene fluoride.
It was adjusted by the weight ratio of P and the heating temperature at the time of pressing. The BET specific surface area of the positive electrode mixture layer was measured using an automatic specific surface area measuring device Gemini 2375 manufactured by Shimadzu Corporation, and a positive electrode plate having a target BET specific surface area was used for each battery.
Next, the negative electrode plate was prepared by mixing graphite as a negative electrode host material and polyvinylidene fluoride as a binder at a weight ratio of 92: 8, and adding NMP as a solvent as appropriate to form a paste. This paste was applied to both surfaces of a 10 μm thick copper foil as a current collector material and dried. And
It was prepared by pressing the negative electrode mixture layer on each surface so as to have a thickness of 220 μm, and cutting to a width of 26 mm leaving a rectangular lead portion. The thickness of the separator is 25
A microporous polyethylene membrane having a thickness of 28 μm and a width of 28 μm was used.
As the electrolytic solution, a mixed solution of ethylene carbonate: diethyl carbonate = 1: 1 (volume ratio) containing 1 mol / l of LiPF 6 was used. The designed capacity of the produced nonaqueous electrolyte battery was 900 mAh.

【0006】図1は、本発明になる非水電解質二次電池
の断面図である。図において、1は非水電解質二次電
池、2は電極群、3は負極板、4は正極板、5はセパレ
ータ、6は電池ケースである。非水電解質二次電池1の
構成は、負極板3、正極板4、セパレータ5からなる渦
巻き状の電極群2及び電解液が電池ケース6に収納され
た角形電池である。
FIG. 1 is a sectional view of a non-aqueous electrolyte secondary battery according to the present invention. In the figure, 1 is a non-aqueous electrolyte secondary battery, 2 is an electrode group, 3 is a negative electrode plate, 4 is a positive electrode plate, 5 is a separator, and 6 is a battery case. The configuration of the non-aqueous electrolyte secondary battery 1 is a prismatic battery in which a spiral electrode group 2 including a negative electrode plate 3, a positive electrode plate 4, and a separator 5 and an electrolyte are accommodated in a battery case 6.

【0007】電池ケース6は、厚さ0.3mm、内寸3
0.0×40.0×8.0mmの鉄製本体の表面に厚さ
5μmのニッケルメッキを施したものであり、側部上部
には電解液注入用の孔(図示せず)が設けられている。
7はケース蓋、8は安全弁、10は負極端子、11は負
極リードである。以上のようにして作製した、正極合剤
層の比表面積が0.1〜5.0m2/gである8種類の
電池を、それぞれ電池記号A1〜A8とし、これらの電
池を各5個づつ、5サイクル目までの充放電試験と過充
電試験をおこなった。充放電試験条件は、充電は、電流
1Cで4.1Vまで定電流充電、さらに4.1Vで定電
圧充電の合計3時間とし、放電は、電流1Cで終止電圧
を2.7Vとした。過充電試験は、電源電圧を10Vと
し、2Cの電流で連続的に充電し、充電開始後2時間目
の電池の状態を観察した。以上の試験結果を表1にまと
めた。
The battery case 6 has a thickness of 0.3 mm and an inner size of 3 mm.
The surface of an iron main body of 0.0 × 40.0 × 8.0 mm is nickel-plated with a thickness of 5 μm, and a hole (not shown) for injecting an electrolyte is provided at an upper side portion. I have.
7 is a case lid, 8 is a safety valve, 10 is a negative electrode terminal, and 11 is a negative electrode lead. The eight types of batteries produced as described above, each having a specific surface area of the positive electrode mixture layer of 0.1 to 5.0 m 2 / g, are referred to as battery symbols A1 to A8, and five of each of these batteries are provided. A charge / discharge test and an overcharge test up to the fifth cycle were performed. The charge / discharge test conditions were as follows: charging was performed at a constant current of 1 C at a constant current up to 4.1 V, and further constant voltage charging was performed at 4.1 V for a total of 3 hours. Discharging was performed at a current of 1 C and a final voltage of 2.7 V. In the overcharge test, the power supply voltage was set to 10 V, the battery was continuously charged with a current of 2 C, and the state of the battery two hours after the start of charging was observed. Table 1 summarizes the above test results.

【0008】[0008]

【表1】 [Table 1]

【0009】その結果、5サイクル目までの充放電試験
における平均放電容量は、電池記号A3〜A8ではいず
れも設計容量の900mAh以上であったのに対し、電
池記号A1とA2では設計容量を大幅に下廻った。ま
た、過充電試験では、電池記号A1〜A6では何ら変化
が見られなかったのに対し、電池記号A7とA8では、
電池から発煙が発生した。以上のように、正極合剤層の
比表面積が0.3m2/g以下の場合には、過充電試験
での発煙は見られなかったが、放電容量が小さく、ま
た、正極合剤層の比表面積が2.5m2/g以上の場合
には、放電容量は十分大きかったが、過充電試験では発
煙が見られ、過充電時の安全化が計れないことが示され
た。以上のように、本発明になる非水電解質二次電池に
おいては、正極合剤層の比表面積が0.5〜2.0m2
/gの範囲が適しているものである。
As a result, the average discharge capacity in the charge / discharge test up to the fifth cycle was 900 mAh or more of the design capacity in all of the battery symbols A3 to A8, whereas the design capacity was significantly increased in the battery symbols A1 and A2. It fell below. In the overcharge test, no change was observed in battery symbols A1 to A6, whereas in battery symbols A7 and A8,
The battery generated smoke. As described above, when the specific surface area of the positive electrode mixture layer was 0.3 m 2 / g or less, no smoke was found in the overcharge test, but the discharge capacity was small, and When the specific surface area was 2.5 m 2 / g or more, the discharge capacity was sufficiently large, but smoke was observed in the overcharge test, indicating that safety during overcharge could not be achieved. As described above, in the nonaqueous electrolyte secondary battery according to the present invention, the specific surface area of the positive electrode mixture layer is 0.5 to 2.0 m 2.
/ G range is suitable.

【0010】[0010]

【発明の効果】本発明になる非水電解質二次電池におい
ては、正極合剤層の比表面積を、目的の放電容量が得ら
れる程度に大きく、また、過充電時に発煙や発火等が起
こらない程度に小さくした、適当な範囲に限定すること
によって、放電容量が大きく、しかも安全性がさらに向
上した非水電解質二次電池を提供することができる。よ
って、本発明の工業的価値は極めて高い。
In the non-aqueous electrolyte secondary battery according to the present invention, the specific surface area of the positive electrode mixture layer is large enough to obtain a desired discharge capacity, and no smoke or ignition occurs during overcharge. By limiting the size to an appropriate range, the non-aqueous electrolyte secondary battery having a large discharge capacity and further improved safety can be provided. Therefore, the industrial value of the present invention is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明になる実施例の非水電解質二次電池の断
面図である。
FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 非水電解質二次電池 2 電極群 3 負極板 4 正極板 5 セパレータ 6 ケース 7 蓋 9 安全弁 10 負極端子 11 負極リード DESCRIPTION OF SYMBOLS 1 Non-aqueous electrolyte secondary battery 2 Electrode group 3 Negative electrode plate 4 Positive electrode plate 5 Separator 6 Case 7 Lid 9 Safety valve 10 Negative electrode terminal 11 Negative electrode lead

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極合剤層の比表面積を0.5〜2.0m
2/gとする正極板を備えたことを特徴とする、非水電
解質二次電池。
1. The specific surface area of the positive electrode mixture layer is 0.5 to 2.0 m
A non-aqueous electrolyte secondary battery, comprising a positive electrode plate of 2 / g.
JP10327205A 1998-11-17 1998-11-17 Nonaqueous electrolyte secondary battery Pending JP2000156231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10327205A JP2000156231A (en) 1998-11-17 1998-11-17 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10327205A JP2000156231A (en) 1998-11-17 1998-11-17 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000156231A true JP2000156231A (en) 2000-06-06

Family

ID=18196497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10327205A Pending JP2000156231A (en) 1998-11-17 1998-11-17 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000156231A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009151959A (en) * 2007-12-19 2009-07-09 Hitachi Maxell Ltd Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and electronic apparatus
JP2014139892A (en) * 2013-01-21 2014-07-31 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2015012375A1 (en) * 2013-07-24 2015-01-29 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using same
JP5928591B2 (en) * 2012-07-26 2016-06-01 Tdk株式会社 Lithium ion secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009151959A (en) * 2007-12-19 2009-07-09 Hitachi Maxell Ltd Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and electronic apparatus
JP5928591B2 (en) * 2012-07-26 2016-06-01 Tdk株式会社 Lithium ion secondary battery
US9570744B2 (en) 2012-07-26 2017-02-14 Tdk Corporation Lithium ion secondary battery
JP2014139892A (en) * 2013-01-21 2014-07-31 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2015012375A1 (en) * 2013-07-24 2015-01-29 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using same
CN105580165A (en) * 2013-07-24 2016-05-11 日产自动车株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using same
JPWO2015012375A1 (en) * 2013-07-24 2017-03-02 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
CN105580165B (en) * 2013-07-24 2018-08-14 日产自动车株式会社 Positive electrode for nonaqueous electrolyte secondary battery and the non-aqueous electrolyte secondary battery for having used the anode
US10439224B2 (en) 2013-07-24 2019-10-08 Nissan Motor Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Similar Documents

Publication Publication Date Title
JP4101435B2 (en) Positive electrode active material composition for lithium secondary battery and method for producing positive electrode using the same
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JP2004296256A (en) Nonaqueous electrolyte secondary battery
JPH07235291A (en) Secondary battery
JP4843848B2 (en) Non-aqueous electrolyte secondary battery
JP2000195513A (en) Nonaqueous electrolyte secondary battery
JP3885227B2 (en) Non-aqueous secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JP3533893B2 (en) Non-aqueous electrolyte secondary battery
JP3402237B2 (en) Non-aqueous electrolyte secondary battery
JP2004259485A (en) Nonaqueous electrolyte secondary battery
JP2005135634A (en) Nonaqueous electrolyte secondary battery
JP5052712B2 (en) Nonaqueous electrolyte secondary battery
JP2008021538A (en) Nonaqueous electrolyte secondary battery
JP3921836B2 (en) Organic electrolyte secondary battery
JP2000156231A (en) Nonaqueous electrolyte secondary battery
JP2002203555A (en) Non-aqueous electrolyte secondary battery
JP2000188132A (en) Nonaqueous electrode secondary battery
JP2001357851A (en) Nonaqueous electrolyte secondary battery
JP3402233B2 (en) Non-aqueous electrolyte secondary battery
JP3660853B2 (en) Nonaqueous electrolyte secondary battery
JP2000188132A5 (en)
JP2003282143A (en) Nonaqueous electrolyte secondary battery
JP2003077478A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041217