JP2000144534A - Acrylic fiber yarn for producing carbon fiber and its production - Google Patents

Acrylic fiber yarn for producing carbon fiber and its production

Info

Publication number
JP2000144534A
JP2000144534A JP10317820A JP31782098A JP2000144534A JP 2000144534 A JP2000144534 A JP 2000144534A JP 10317820 A JP10317820 A JP 10317820A JP 31782098 A JP31782098 A JP 31782098A JP 2000144534 A JP2000144534 A JP 2000144534A
Authority
JP
Japan
Prior art keywords
acrylic fiber
joint
fiber yarn
yarn
acrylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10317820A
Other languages
Japanese (ja)
Other versions
JP3706754B2 (en
Inventor
Tomoyuki Kotani
知之 小谷
Takahiko Kunisawa
考彦 國澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP31782098A priority Critical patent/JP3706754B2/en
Publication of JP2000144534A publication Critical patent/JP2000144534A/en
Application granted granted Critical
Publication of JP3706754B2 publication Critical patent/JP3706754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H69/00Methods of, or devices for, interconnecting successive lengths of material; Knot-tying devices ;Control of the correct working of the interconnecting device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments
    • B65H2701/314Carbon fibres

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an acrylic fiber yarn for producing a carbon fiber having a connected part of mutually bonded end parts, capable of passing through both processes of a flameproof process having a high heating temperature and a high process tension and a carbonizing process having a high process tension and to provide a method for readily and surely providing the fiber yarn. SOLUTION: This acrylic fiber yarn for producing a carbon fiber having bonded parts is obtained by mutually entangling and integrating fireproof end parts having >=1.30 g/cm3 density. This method for producing an acrylic fiber yarn useful for producing a carbon fiber comprises subjecting the end parts of the acrylic fiber yarn to fireproof treatment to have >=1.30 g/cm3 density, mutually superimposing the end parts subjected to fireproof treatment, mutually entangling and integrating the fiber yarn of the end parts of the superimposed parts to form bonded parts.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は接合部を有する炭素
繊維製造用のアクリル系繊維糸条及び該繊維糸条の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acrylic fiber yarn having a joint portion for producing carbon fiber and a method for producing the fiber yarn.

【0002】[0002]

【従来の技術】アクリル系繊維糸条は炭素繊維を製造す
るための前駆体として広く利用されており、アクリル系
繊維糸条を200〜300℃の酸化性雰囲気中で加熱処
理する耐炎化工程によって耐炎化繊維にした後、引き続
いて1000℃以上の不活性雰囲気中で加熱処理する炭
素化工程によって炭素繊維にするのが一般的である。
2. Description of the Related Art Acrylic fiber yarns are widely used as precursors for producing carbon fibers. Acrylic fiber yarns are heat-treated in an oxidizing atmosphere at 200 to 300 ° C. by a flame-proofing process. Generally, the fiber is made into a carbon fiber by a carbonization step of heating in an inert atmosphere at 1000 ° C. or more after the fiber is made into an oxidized fiber.

【0003】そして、上記のようにして得られた炭素繊
維は、諸種の優れた物性を具備していることから、各種
の繊維強化樹脂複合材料等の強化用繊維として広く利用
されている。
[0003] The carbon fibers obtained as described above have various kinds of excellent physical properties, and thus are widely used as reinforcing fibers for various fiber-reinforced resin composite materials.

【0004】優れた物性を有する炭素繊維を高速生産す
るためには、多量のアクリル系繊維糸条を同時に短時間
のうちに耐炎化繊維にし、引き続いて炭素化して炭素繊
維にすることが必要である。このためには、耐炎化工程
での加熱温度及び工程張力を高くすると共に、炭素化工
程での工程張力も高くせざるを得ない。
In order to produce carbon fibers having excellent physical properties at high speed, it is necessary to simultaneously convert a large amount of acrylic fiber yarns into oxidized fibers in a short period of time and subsequently carbonize them into carbon fibers. is there. To this end, the heating temperature and the process tension in the flame-proofing step must be increased, and the process tension in the carbonization step must be increased.

【0005】又一般に、炭素繊維製造用のアクリル系繊
維糸条は、ボビンなどに巻き上げられた形態、或いは箱
の中に折りたたみ積層された形態で供給されている。従
ってこれらのアクリル系繊維糸条を耐炎化工程と炭素化
工程とからなる焼成工程に連続的に移して炭素繊維にす
るためには、上記の形態にあるアクリル系繊維糸条の末
端部を別のアクリル系繊維糸条の末端部と接続させる必
要がある。
In general, acrylic fiber yarns for producing carbon fibers are supplied in a form wound up on a bobbin or the like, or in a form folded and laminated in a box. Therefore, in order to continuously transfer these acrylic fiber yarns to a baking process comprising a flame-proofing process and a carbonization process to form carbon fibers, the end portions of the acrylic fiber yarns in the above-described form must be separated. Must be connected to the end of the acrylic fiber yarn.

【0006】しかしながら、アクリル系繊維糸条の末端
部同士を単に結んで形成した接合部は、耐炎化工程での
蓄熱が著しく、このことが次工程である炭素化工程中で
の糸切れなどのトラブルの原因となる。
However, the joint formed by simply tying the ends of the acrylic fiber yarns has a remarkable heat storage in the oxidization process, which may cause breakage in the subsequent carbonization process. It causes trouble.

【0007】上記のトラブルを回避して操業性を向上さ
せる手段として、特開昭54−50624号公報には、
アクリル系繊維糸条同士の接合部に耐炎性化合物を付与
する方法が、又特開昭56−37315号公報には、ア
クリル系繊維糸条の末端部同士を予め熱処理した後に特
殊な結び方で結んで接合部を形成する方法が、更に特公
平1−12850号公報には、アクリル系繊維糸条の末
端部同士を絡合させて接合部を形成する方法が、更に又
特開平4−214414号公報には、アクリル系繊維糸
条の末端部同士を絡合させて接合部を形成し、さらにこ
の接合部に酸化反応抑制剤を付着する方法がそれぞれ開
示されている。
As means for avoiding the above troubles and improving operability, Japanese Patent Application Laid-Open No. 54-50624 discloses
A method of imparting a flame-resistant compound to a joint between acrylic fiber yarns is disclosed in Japanese Patent Application Laid-Open No. 56-37315, and the ends of the acrylic fiber yarns are tied in a special manner after heat treatment in advance. Japanese Patent Publication No. 1-125050 discloses a method for forming a joint by entanglement the ends of an acrylic fiber yarn, and Japanese Patent Application Laid-Open No. 4-214414. The gazette discloses a method in which the ends of the acrylic fiber yarns are entangled with each other to form a joint, and an oxidation reaction inhibitor is attached to the joint.

【0008】しかるに上記の方法よる接合部を有するア
クリル系繊維糸条は、優れた物性を備えた炭素繊維を高
速生産するための製造条件に適合し得ない。すなわち上
記の方法よる接合部を有するアクリル系繊維糸条は、ア
クリル系繊維糸条を加熱温度及び工程張力の高い耐炎化
工程で耐炎化繊維にする工程と、工程張力の高い炭素化
工程で炭素繊維にする工程とをスムーズに通過し得な
い。
However, the acrylic fiber yarn having the joint according to the above method cannot be adapted to the production conditions for producing carbon fibers having excellent physical properties at high speed. That is, the acrylic fiber yarn having the bonding portion according to the above method is obtained by converting the acrylic fiber yarn into a flame-resistant fiber in a flame-resistant process with a high heating temperature and a high process tension, and a carbonization process with a high process tension. It cannot pass smoothly through the process of forming fibers.

【0009】このため、上記の方法よる接合部を有する
アクリル系繊維糸条が耐炎化工程と炭素化工程とを問題
なくスムーズに通過し得るようにするには、加熱温度及
び工程張力の高い耐炎化工程と、工程張力の高い炭素化
工程とのうちのいずれかの条件を緩和させなけらばなら
なく、高速生産での炭素繊維の製造は困難である。
[0009] Therefore, in order to allow the acrylic fiber yarn having the joint by the above-mentioned method to pass smoothly through the flame-proofing step and the carbonizing step without any problems, it is necessary to use a flame-resistant high-temperature and process-tension high-temperature fiber. Any of the conditions of the carbonization step and the carbonization step with a high process tension must be relaxed, and it is difficult to produce carbon fibers by high-speed production.

【0010】[0010]

【発明が解決しようとする課題】従って本発明が解決し
ようとする課題は、加熱温度及び工程張力の高い耐炎化
工程と工程張力の高い炭素化工程との両工程を、いずれ
も問題なく通過し得る接合部を有する炭素繊維製造用の
アクリル系繊維糸条、及び該繊維糸条の製造方法を提供
することにある。
Accordingly, an object to be solved by the present invention is to pass both a flame-proofing step having a high heating temperature and a process tension and a carbonization step having a high process tension without any problem. An object of the present invention is to provide an acrylic fiber yarn for producing carbon fiber having a joint to be obtained, and a method for manufacturing the fiber yarn.

【0011】[0011]

【課題を解決するための手段】上記の課題は、以下に説
明する本発明の炭素繊維製造用のアクリル系繊維糸条及
びその繊維糸条の製造方法によって解決される。すなわ
ち本発明は、末端部同士を接続した接合部を有する炭素
繊維製造用のアクリル系繊維糸条であって、該接合部が
密度1.30g/cm3 以上の耐炎化末端部同士を絡合
一体化させてなるものであるところの炭素繊維製造用の
アクリル系繊維糸条からなる。
The above-mentioned object is achieved by the acrylic fiber yarn for producing carbon fiber and the method for producing the fiber yarn of the present invention described below. That is, the present invention relates to an acrylic fiber yarn for producing carbon fiber having a joining portion in which end portions are connected to each other, wherein the joining portion entangles the oxidized end portions having a density of 1.30 g / cm 3 or more. It is made of an acrylic fiber yarn for carbon fiber production, which is an integrated product.

【0012】上記の構成を備えてなる本発明の炭素繊維
製造用のアクリル系繊維糸条においては、耐炎化末端部
同士を絡合一体化させてなる接合部は、250℃での引
張強度が20mN/Tex以上であることが好ましい。
In the acrylic fiber yarn for producing carbon fiber of the present invention having the above-mentioned structure, the joint formed by entanglement and integrating the oxidized end portions has a tensile strength at 250 ° C. It is preferably at least 20 mN / Tex.

【0013】又、上記の本発明の炭素繊維製造用のアク
リル系繊維糸条における接合部は、その長さが50mm
以上であり、幅W(mm)が下記の式(1)を満足する
ものであることが好ましい。 0.12×A1/2 ≦W≦0.22×A1/2 ・・・・(1) (式中、Aは使用したアクリル系繊維糸条の繊度(Te
x)を表わす。)
[0013] The joining portion of the acrylic fiber yarn for producing carbon fiber of the present invention has a length of 50 mm.
As described above, the width W (mm) preferably satisfies the following expression (1). 0.12 × A 1/2 ≦ W ≦ 0.22 × A 1/2 (1) (where A is the fineness of the used acrylic fiber yarn (Te
x). )

【0014】更に本発明の炭素繊維製造用のアクリル系
繊維糸条の製造方法は、アクリル系繊維糸条の末端部を
密度1.30g/cm3 以上に耐炎化処理した後、この
耐炎化処理した末端部同士を相互に重ね合わせ、更に重
ね合わせた部分の繊維糸条を互いに絡合一体化して接合
部を形成することによって、接合部を有する炭素繊維製
造用のアクリル系繊維糸条を得るものである。
Further, in the method for producing an acrylic fiber yarn for producing carbon fiber according to the present invention, the end portion of the acrylic fiber yarn is subjected to a flame resistance treatment at a density of 1.30 g / cm 3 or more, and then the flame resistance treatment is carried out. The acrylic fiber yarns for producing carbon fibers having a joint portion are obtained by overlapping the end portions with each other and further entanglement and integrating the fiber yarns of the overlapped portion with each other to form a joint portion. Things.

【0015】上記の構成を備えてなる本発明の炭素繊維
製造用のアクリル系繊維糸条の製造方法においては、重
ね合わせた部分の繊維糸条を互いに絡合一体化して接合
部を形成する手段として、高速流体を使用する手段を採
ることが好ましい。
In the method for producing an acrylic fiber yarn for producing carbon fiber according to the present invention having the above-mentioned structure, the means for forming a joined portion by intertwining and integrating the fiber yarns of the overlapped portions with each other. It is preferable to employ a means using a high-speed fluid.

【0016】又、重ね合わせた部分の繊維糸条を互いに
絡合一体化して形成した接合部の250℃での引張強度
が、20mN/Tex以上になるようにすることが好ま
しい。
Further, it is preferable that the tensile strength at 250 ° C. of the joint formed by entanglement and joining the fiber yarns of the overlapped portion is 20 mN / Tex or more.

【0017】更に、重ね合わせた部分の繊維糸条を互い
に絡合一体化して形成した接合部の長さが50mm以上
で、幅W(mm)が下記の式(1)を満足するようにす
ることが好ましい。 0.12×A1/2 ≦W≦0.22×A1/2 ・・・・(1) (式中、Aは使用したアクリル系繊維糸条の繊度(Te
x)を表わす。)
Further, the length of the bonded portion formed by entanglement and integration of the fiber yarns of the overlapped portion is 50 mm or more, and the width W (mm) satisfies the following expression (1). Is preferred. 0.12 × A 1/2 ≦ W ≦ 0.22 × A 1/2 (1) (where A is the fineness of the used acrylic fiber yarn (Te
x). )

【0018】[0018]

【発明の実施の形態】本発明の耐炎化末端部同士を接続
した接合部を有する炭素繊維製造用のアクリル系繊維糸
条にするには、通常の炭素繊維の製造に用いられるアク
リル系繊維糸条を使用すればよく、アクリル系繊維糸条
の組成や形態等は制限されない。
BEST MODE FOR CARRYING OUT THE INVENTION In order to obtain an acrylic fiber yarn for producing carbon fiber having a joint in which the oxidized end portions of the present invention are connected to each other, an acrylic fiber yarn used for producing ordinary carbon fiber is used. A filament may be used, and the composition and form of the acrylic fiber yarn are not limited.

【0019】末端部が耐炎化されたアクリル系繊維糸条
にするための耐炎化処理は、該耐炎化処理によってアク
リル系繊維糸条の末端部の密度が1.30g/cm3
上になればよく、それ以外の耐炎化処理についての格別
の制限はなく、例えば空気、オゾン、その他の酸化性雰
囲気中で、200〜300℃程度の加熱処理を行なうこ
とにより、密度が1.30g/cm3 以上に耐炎化され
た末端部を有するアクリル系繊維糸条にすればよい。
The flame-proofing treatment for forming the acrylic fiber yarn whose end portion is made flame-resistant is performed when the density of the end portion of the acrylic fiber yarn becomes 1.30 g / cm 3 or more by the flame-proofing treatment. There is no particular limitation on the other flame-proofing treatment. For example, by performing a heat treatment at about 200 to 300 ° C. in air, ozone, or another oxidizing atmosphere, the density becomes 1.30 g / cm 3. An acrylic fiber yarn having a flame-resistant end portion may be used.

【0020】本発明の炭素繊維製造用のアクリル系繊維
糸条にあっては、密度1.30g/cm3 以上に耐炎化
されている末端部同士を接続した接合部にしたことによ
り、このアクリル系繊維糸条を焼成して炭素繊維にする
ときの耐炎化工程での蓄熱がないために、炭素化工程で
の反応熱の放熱が良好に行われ、これによって該炭素化
工程でのアクリル系繊維糸条の融着や切断が効果的に防
止される。
In the acrylic fiber yarn for producing carbon fiber of the present invention, the acrylic fiber yarns are joined by connecting the end portions which are oxidized to a density of 1.30 g / cm 3 or more. Since there is no heat storage in the flameproofing step when firing the system fiber yarn into carbon fibers, the heat of reaction heat in the carbonization step is satisfactorily radiated. The fusion or cutting of the fiber yarn is effectively prevented.

【0021】これに対して、耐炎化末端部同士を絡合一
体化させてなる接合部を有するアクリル系繊維糸条であ
っても、該耐炎化末端部の密度が1.30g/cm3
満たないときには、これを焼成して炭素繊維にするとき
の焼成工程での反応熱の放熱が不十分になることがあ
り、炭素化工程中に接合部が切断することがある。
On the other hand, even in the case of an acrylic fiber yarn having a joint formed by entanglement and integration of the oxidized end portions, the density of the oxidized end portion is 1.30 g / cm 3 . If it is less than this, the heat of the reaction heat in the firing step of firing this into carbon fibers may be insufficient, and the joint may be cut during the carbonization step.

【0022】本発明の炭素繊維製造用のアクリル系繊維
糸条の接合部、つまり耐炎化末端部同士を絡合一体化さ
せた接合部は、耐炎化末端部同士を相互に重ね合わせた
後、重ね合わせた部分の繊維糸条を、空気などの高速流
体処理により互いに絡合させて一体化する方法、或いは
ニードルパンチにより互いに絡合させて一体化する方法
等によって形成することができる。
The joint portion of the acrylic fiber yarn for producing carbon fiber of the present invention, that is, the joint portion in which the oxidized end portions are entangled and integrated, after the oxidized end portions are overlapped with each other, The fiber yarns in the overlapped portion can be formed by a method of being entangled and integrated by a high-speed fluid treatment with air or a method of being entangled and integrated by a needle punch.

【0023】重ね合わせた部分の繊維糸条をニードルパ
ンチにより互いに絡合一体化して接合部を形成する方法
を採ると、耐炎化末端部を形成している糸条の一部が切
断することがあり、又絡合一体化のために要する時間が
長くなる。従って、耐炎化末端部同士を絡合一体化させ
た接合部の形成は、ニードルパンチ方式よりも空気など
の高速流体処理による方法を利用して行なうのが好まし
い。
When a method is employed in which the overlapped portions of the fiber yarns are entangled and integrated with each other by a needle punch to form a joint, a part of the yarns forming the flame-resistant end portions may be cut. In addition, the time required for entanglement integration becomes longer. Therefore, it is preferable that the formation of the joint portion in which the flame-resistant end portions are entangled and integrated with each other is performed by using a method of high-speed fluid treatment with air or the like rather than the needle punch method.

【0024】重ね合わせた部分の繊維糸条を互いに絡合
一体化して形成した接合部は、炭素繊維にする焼成工程
を高速度で行なうときの工程張力に耐え得る接合強度に
なる。つまり、耐炎化末端部同士を接続した接合部にす
ることによって、炭素繊維にするときの炭素化工程での
反応熱の放熱が良好に行われるような接合部にしても、
該接合部を絡合一体化による接合部にしないと、耐炎化
工程や炭素化工程を高速度で行なうときの工程張力に耐
え得る接合強度にはならない。
The joined portion formed by intertwining and integrating the fiber yarns of the overlapped portion with each other has a joint strength that can withstand the process tension when the firing step of forming carbon fibers is performed at a high speed. In other words, by making the flame-resistant end portions connected to each other, even in a bonded portion in which the heat radiation of the reaction heat in the carbonization step when the carbon fiber is formed is preferably performed.
If the joint is not formed by entanglement and integration, the joining strength will not be sufficient to withstand the process tension when performing the flameproofing step or the carbonizing step at a high speed.

【0025】更に、耐炎化工程や炭素化工程からなる焼
成工程での接合部の切断を防ぐより好ましい形態の接合
部にするには、均一な絡合一体化による接合部にすれば
よく、単糸レベルでの絡合によって一体化してなる接合
部にすることがより好ましい。
Further, in order to prevent the joint from being cut in the firing step including the flame-proofing step and the carbonizing step, a more preferable form of the joint may be formed by uniform entanglement and integration. It is more preferable to form a joint united by entanglement at the yarn level.

【0026】炭素繊維製造用のアクリル系繊維糸条は、
焼成工程のうちの耐炎化工程中にて加熱下での特に高い
工程張力を長時間に亙って受ける。このために、本発明
の炭素繊維製造用のアクリル系繊維糸条の接合部は、そ
の条件に近い250℃での引張強度が20mN/Tex
以上であることが特に好ましく、引張強度が20mN/
Tex未満になると、工程張力の高い耐炎化工程を採る
と切断することがある。
The acrylic fiber yarn for producing carbon fiber is as follows:
During the flameproofing step of the firing step, a particularly high process tension under heating is applied for a long time. For this reason, the joint part of the acrylic fiber yarn for carbon fiber production of the present invention has a tensile strength at 250 ° C. close to the condition of 20 mN / Tex.
Is particularly preferable, and the tensile strength is 20 mN /
If the temperature is less than Tex, cutting may be performed when a flameproofing process having a high process tension is employed.

【0027】更に接合部の長さが50mmより短かい
と、端糸の一部が接合部を形成するための絡合時に切断
したり、或いは絡合が不均一になったりすることがあ
る。従って、接合部の長さは50mm以上であることが
好ましい。
Further, if the length of the joining portion is shorter than 50 mm, a part of the end yarn may be cut at the time of entanglement to form the joining portion, or the entanglement may be uneven. Therefore, it is preferable that the length of the joint is 50 mm or more.

【0028】なお、接合部の長さは以下のようにして測
定した数値である。すなわち、耐炎化処理した末端部を
有するアクリル系繊維糸条の該末端部同士を絡合一体化
して接合部を形成したアクリル系繊維糸条(サンプル糸
条)の一方の端部に、単位繊度当たり0.15g/Te
xの荷重の掛けて垂下させる。次いで、接合部の上方の
糸条の絡合していない部分の繊維糸条内に、単位繊度当
たり0.03g/Texの錘を有する直径1mmの表面
が滑らかな針金によるフックを挿入して降下させ、フッ
クの移動が止まった点をマークした後、サンプル糸条を
上下逆にして、同様にフックを挿入して降下させ、フッ
クの移動が止まった点をマークする。かくして得られた
これらの二つのマーク同士の間隔を、接合部の長さとす
る。
The length of the joint is a value measured as follows. That is, one end of an acrylic fiber yarn (sample yarn) in which the ends of an acrylic fiber yarn having an end portion subjected to a flame-proof treatment are entangled and integrated to form a joint portion, is attached to a unit fineness. 0.15g / Te
Hang under a load of x. Next, a hook made of a wire having a smoothness of 1 mm in diameter and having a weight of 0.03 g / Tex per unit fineness is inserted into a portion of the fiber yarn at a portion where the yarn is not entangled above the joint, and the hook is lowered. Then, after marking the point where the movement of the hook has stopped, the sample yarn is turned upside down, and the hook is similarly inserted and lowered to mark the point where the movement of the hook has stopped. The distance between these two marks thus obtained is defined as the length of the joint.

【0029】又接合部の幅(mm)が、使用したアクリ
ル系繊維糸条、つまり密度1.30g/cm3 以上の耐
炎化末端部を形成するのに使用したアクリル系繊維糸条
の繊度(Tex)をAとしたときに、0.12×A1/2
よりも小さいと、耐炎化末端部の一部が高速流体によっ
て切断したり或いは絡合が不均一になったりして、特に
工程張力の高い焼成工程を採ると、接合部が切断するこ
とがある。更に、接合部の幅(mm)が、0.22×A
1/2 を超えると、多錘焼成を行なうときに隣接する糸条
同士が擦れ合って、以降の工程でローラの巻付きなどの
トラブルを生じることがある。
The fineness of the acrylic fiber yarn used to form the oxidized fiber yarn having a joint portion width (mm), ie, the oxidized fiber yarn having a density of 1.30 g / cm 3 or more, is used. When Tex) is A, 0.12 × A 1/2
If it is smaller than that, a part of the oxidized end portion may be cut by the high-speed fluid or the entanglement may be non-uniform, and the joint may be cut particularly when a firing process with a high process tension is employed. . Further, the width (mm) of the joint is 0.22 × A
If it exceeds 1/2 , adjacent yarns rub against each other when performing multi-spindle firing, which may cause troubles such as winding of rollers in the subsequent steps.

【0030】従って、接合部のW(mm)は、使用した
アクリル系繊維糸条の繊度(Tex)をAとしたとき
に、下記の式(1)の範囲にあることが好ましい。 0.12×A1/2 ≦W≦0.22×A1/2 ・・・・(1)
Therefore, the W (mm) of the joint portion is preferably in the range of the following formula (1) when the fineness (Tex) of the used acrylic fiber yarn is A. 0.12 × A 1/2 ≦ W ≦ 0.22 × A 1/2 (1)

【0031】なお、接合部の幅は以下のようにして測定
した数値である。すなわち、耐炎化処理した末端部を有
するアクリル系繊維糸条の該末端部同士を絡合一体化し
て接合部を形成したサンプルを、単位繊度当たり1.5
g/Texの張力をかけて直径100mmのロールに1
80度巻き付け、そのロール上での接合部の幅の測定を
5回行なったときの平均値である。
The width of the joint is a numerical value measured as follows. That is, a sample in which the end portions of the acrylic fiber yarn having the end portions subjected to the flameproofing treatment were entangled and integrated with each other to form a joint portion was 1.5% per unit fineness.
g / Tex with a tension of 100 mm
The average value is obtained by winding the film 80 degrees and measuring the width of the joint on the roll five times.

【0032】一般に炭素繊維製造用のアクリル系繊維糸
条を製造する工程の速度と、該アクリル系繊維糸条を焼
成して炭素繊維にする焼成工程の速度とは大幅に異なる
ために、アクリル系繊維糸条はボビンに巻き上げられた
状態から焼成工程に供給されるか、又は箱の中に折りた
たみ積層されて収容された状態から焼成工程に供給され
る。このような状態にあるアクリル系繊維糸条を引き出
すときの取り扱い性向上のために、捲縮をかけて収束性
を持たせることがあるが、本発明の炭素繊維製造用のア
クリル系繊維糸条は、このような捲縮糸条であってもよ
いことは勿論である。
In general, the speed of the step of producing an acrylic fiber yarn for producing carbon fibers and the speed of the firing step of firing the acrylic fiber yarn into carbon fibers are significantly different. The fiber yarn is supplied to the firing step from a state of being wound up on a bobbin, or supplied to the firing step from a state of being folded and laminated in a box and stored. In order to improve the handleability when pulling out the acrylic fiber yarn in such a state, it may be crimped to give convergence, but the acrylic fiber yarn for carbon fiber production of the present invention. May of course be such a crimped yarn.

【0033】更に、本発明の密度1.30g/cm3
上の耐炎化末端部同士を絡合一体化させてなる接合部を
有する炭素繊維製造用のアクリル系繊維糸条において
は、該接合部をトリミングして、このアクリル系繊維糸
条から炭素繊維を製造する際の糸条の通りをスムーズに
しておくことが好ましい。
Further, in the acrylic fiber yarn for carbon fiber production according to the present invention having a joint formed by entanglement-integrating the oxidized end portions having a density of 1.30 g / cm 3 or more, the joint portion Is preferably trimmed to keep the yarns smooth when producing carbon fibers from the acrylic fiber yarns.

【0034】又、2糸条同士の末端部同士を絡合一体化
させてなる接合部を形成するときには、十分に余裕をも
った長さで末端部同士を重ね合わせた後、この重ね合わ
せた部分の繊維糸条を互いに絡合一体化して接合部を形
成することになるので、接合部の両側には数cm〜十数
cmのフリーの部分が残る。従って、はさみなどによっ
て接合部から0.2cm〜0.8cmの長さのフリーの
部分を切断除去して、糸条の枝分かれによるローラ巻付
きのないものにしておくことが好ましい。
Further, when forming a joined portion in which the end portions of two yarns are entangled and integrated, the end portions are overlapped with each other with a sufficient length, and then the overlapped portions are formed. Since the fiber yarns of the portions are entangled and integrated with each other to form a joint, a free portion of several cm to several tens of cm remains on both sides of the joint. Therefore, it is preferable to cut and remove a free portion having a length of 0.2 cm to 0.8 cm from the joint portion with scissors or the like so that the roller is not wrapped due to branching of the yarn.

【0035】[0035]

【実施例】以下、本発明の炭素繊維製造用のアクリル系
繊維糸条及びその製造方法の具体的な構成を、実施例に
基づいて説明する。
EXAMPLES Specific examples of the acrylic fiber yarn for producing carbon fibers and the method for producing the same according to the present invention will be described below with reference to examples.

【0036】なお、本実施例及び比較例中にて説明する
工程通過率は、接合部を有するアクリル系繊維糸条を耐
炎化工程及び炭素化工程に通して炭素繊維にしたとき
に、それぞれの工程で切断することなしに通過した接合
部の数を、試験した糸条の全接合部の数に対する百分率
(%)により表わしたものである。
It should be noted that the process pass rates described in the present embodiment and the comparative example are different from each other when the acrylic fiber yarn having the joint portion is converted into carbon fiber through the oxidizing step and the carbonizing step. The number of joints passed without cutting in the process is expressed as a percentage (%) of the total number of joints of the yarn tested.

【0037】又工程張力(mN/Tex)は、接合部を
有するアクリル系繊維糸条による炭素繊維の製造を行な
ったときの耐炎化工程及び炭素化工程でのアクリル系繊
維糸条の張力を、単位繊度当たりに換算した数値であ
る。
The process tension (mN / Tex) is the tension of the acrylic fiber yarn in the flame-proofing step and the carbonization step when carbon fibers are produced from the acrylic fiber yarn having the joint. It is a numerical value converted per unit fineness.

【0038】実施例1 単糸繊度1.2dTex/フィラメント、フィラメント
数12000のアクリル繊維糸条の巻き始め側の末端部
を、240℃の熱風が循環している耐炎化炉中にて5m
N/texの張力下に70分間の耐炎化処理を施すこと
によって密度1.36g/cm3 の耐炎化末端部にして
ある巻き取りボビンAと、同じく単糸繊度1.2dTe
x/フィラメント、フィラメント数12000のアクリ
ル繊維糸条の巻き終わり側の末端部を、240℃の熱風
が循環している耐炎化炉中にて5mN/texの張力下
に70分間の耐炎化処理を施すことによって密度1.3
6g/cm3 の耐炎化末端部にしてある巻き取りボビン
Bとを用意した。
Example 1 The end of the winding start side of an acrylic fiber yarn having a single yarn fineness of 1.2 dTex / filament and the number of filaments of 12000 was measured for 5 m in a flameproofing furnace in which hot air of 240 ° C. was circulated.
A wind-up bobbin A having a density of 1.36 g / cm 3 as a flame-resistant end portion by performing a flame-proof treatment for 70 minutes under a tension of N / tex, and a single yarn fineness of 1.2 dTe
x / filament, the end of the winding end side of the acrylic fiber yarn having 12,000 filaments was subjected to a flame-proof treatment for 70 minutes under a tension of 5 mN / tex in a flame-proof furnace in which hot air of 240 ° C. was circulating. 1.3 density by applying
A take-up bobbin B having a flame-resistant end portion of 6 g / cm 3 was prepared.

【0039】次いで、上記のボビンAから巻き始め側の
末端部を引き出して、これを他方のボビンBから引き出
した巻き終わり側の末端部と相互に重ね合わせた後、こ
の重ね合わせた部分の繊維糸条を、図1に示す絡合処理
装置1を利用して互いに絡合一体化させ、接合部を形成
した。
Next, the end portion on the winding start side is pulled out from the bobbin A, and this is overlapped with the end portion on the winding end side drawn out from the other bobbin B. The yarns were entangled and integrated with each other using the entanglement processing apparatus 1 shown in FIG. 1 to form a joint.

【0040】すなわち、図1において、ボビンAからの
巻き始め側の末端部2と、ボビンBからの巻き終わり側
の末端部3とを相互に重ね合わせた後、エアー噴出用の
貫通孔7がその略中央に形成されている底部4と、開閉
自在に取り付けられている蓋5とを有する絡合処理空間
6内に載置した後、これらの巻き始め側の末端部2と巻
き終わり側の末端部3との重ね合わせ部分に、エアー噴
出用の貫通孔7から圧力500kPaの空気を2秒間吹
き付けることにより、該部分の繊維糸条を互いに絡合一
体化させ、接合部を形成した。
That is, in FIG. 1, after the end portion 2 on the winding start side from the bobbin A and the end portion 3 on the winding end side from the bobbin B are overlapped with each other, a through hole 7 for air ejection is formed. After being placed in the entanglement processing space 6 having a bottom 4 formed substantially at the center thereof and a lid 5 that can be freely opened and closed, these ends 2 on the winding start side and those on the winding end side are wound. By blowing air at a pressure of 500 kPa for 2 seconds from the through hole 7 for air ejection to the overlapped portion with the end portion 3, the fiber yarns of the portion were entangled and integrated with each other to form a joint.

【0041】この接合部の250℃での引張強度は25
mN/Tex以上であり、又該接合部の長さは60m
m、幅は5.5mmである。なお、本実施例における
0.12×A1/2 は4.55であり、0.22×A1/2
は8.35である。
The joint at 250 ° C. has a tensile strength of 25
mN / Tex or more, and the length of the joint is 60 m
m, width is 5.5 mm. Note that 0.12 × A 1/2 in the present embodiment is 4.55, and 0.22 × A 1/2
Is 8.35.

【0042】次いで、上記の接合部を有するアクリル繊
維糸条を230〜270℃の熱風が循環している耐炎化
炉中にて、工程張力14mN/Texにしてアクリル繊
維糸条の収縮を制限しながら、30分間の耐炎化処理に
付し、続いて300〜1300℃の温度分布を有する窒
素雰囲気からなる炭素化炉中にて、同じく工程張力7m
N/Texにして該アクリル繊維糸条の収縮を制限しな
がら、2分間の炭素化処理に付すことにより、炭素繊維
を製造した。この炭素繊維製造工程中の耐炎化工程及び
炭素化工程での工程通過率は、表1に示す通りである。
Next, the acrylic fiber yarn having the above-mentioned joint portion is subjected to a process tension of 14 mN / Tex in a stabilization furnace in which hot air of 230 to 270 ° C. is circulated to restrict shrinkage of the acrylic fiber yarn. While subjecting it to a flame-resistant treatment for 30 minutes, followed by a process tension of 7 m in a carbonization furnace consisting of a nitrogen atmosphere having a temperature distribution of 300-1300 ° C.
Carbon fiber was produced by subjecting the acrylic fiber thread to carbonization treatment for 2 minutes while limiting the shrinkage of the acrylic fiber thread to N / Tex. Table 1 shows the process pass rates in the flameproofing step and the carbonization step in the carbon fiber production step.

【0043】実施例2 実施例1で使用したものと同じアクリル繊維糸条の末端
部を、240℃の熱風が循環している耐炎化炉中にて5
mN/texの張力下に35分間の耐炎化処理を施すこ
とによって、密度1.31g/cm3 の耐炎化末端部に
した後、巻き始め側の末端部をこの耐炎化末端部にして
巻き取ってあるボビンCと、巻き終わり側の末端部をこ
の耐炎化末端部にして巻き取ってあるボビンDとを用意
した。
Example 2 The end of the same acrylic fiber yarn used in Example 1 was placed in a flame-proof furnace in which hot air of 240 ° C. was circulated for 5 minutes.
After performing the oxidization resistance treatment under the tension of mN / tex for 35 minutes to obtain the oxidization resistance end having a density of 1.31 g / cm 3 , the winding end is set to the oxidization resistance end and wound up. A bobbin C which has been wound and a bobbin D which has been wound up with the end portion on the winding end side as the flame-resistant end portion are prepared.

【0044】上記のボビンCとボビンDとにより、実施
例1と同様にして繊維糸条を互いに絡合一体化させた接
合部を形成した。この接合部の250℃での引張強度は
21.5mN/Texであり、又該接合部の長さは60
mm、幅は5.6mmである。
The bobbin C and the bobbin D were used to form a joint in which the fiber yarns were entangled and integrated with each other in the same manner as in Example 1. The tensile strength of this joint at 250 ° C. is 21.5 mN / Tex, and the length of the joint is 60
mm and width are 5.6 mm.

【0045】次いで、上記の接合部を有するアクリル繊
維糸条を、実施例1と同様の焼成工程に付すことによ
り、炭素繊維を製造した。この炭素繊維製造工程中の耐
炎化工程及び炭素化工程での工程通過率は、表1に示す
通りである。
Next, the acrylic fiber yarn having the above-mentioned joint was subjected to the same sintering step as in Example 1 to produce a carbon fiber. Table 1 shows the process pass rates in the flameproofing step and the carbonization step in the carbon fiber production step.

【0046】比較例1 実施例1で使用したものと同じアクリル繊維糸条の末端
部を、240℃の熱風が循環している耐炎化炉中にて5
mN/texの張力下に20分間の耐炎化処理を施すこ
とによって、密度1.28g/cm3 の耐炎化末端部に
した後、巻き始め側の末端部をこの耐炎化末端部にして
巻き取ってあるボビンEと、巻き終わり側の末端部をこ
の耐炎化末端部にして巻き取ってあるボビンFとを用意
した。
Comparative Example 1 The end of the same acrylic fiber yarn as used in Example 1 was placed in a flame-resistant furnace in which hot air of 240 ° C. was circulated.
By applying a flame-proof treatment for 20 minutes under a tension of mN / tex to obtain a flame-proof end having a density of 1.28 g / cm 3 , the winding start side is made to be the flame-resistant end and wound up. A bobbin E and a bobbin F wound up with the end on the winding end side as the flame-resistant end.

【0047】上記のボビンEとボビンFとにより、実施
例1と同様にして繊維糸条を互いに絡合一体化させた接
合部を形成した。この接合部の250℃での引張強度は
18mN/Texであり、又該接合部の長さは60m
m、幅は5.8mmである。
The bobbin E and the bobbin F formed a joint in which the fiber yarns were entangled and integrated with each other in the same manner as in Example 1. The tensile strength at 250 ° C. of this joint is 18 mN / Tex, and the length of the joint is 60 mN / Tex.
m, width is 5.8 mm.

【0048】次いで、上記の接合部を有するアクリル繊
維糸条を、実施例1と同様の焼成工程に付すことによ
り、炭素繊維を製造した。この炭素繊維製造工程中の耐
炎化工程及び炭素化工程での工程通過率は、表1に示す
通りである。
Next, the acrylic fiber yarn having the above-mentioned joint was subjected to the same sintering step as in Example 1 to produce a carbon fiber. Table 1 shows the process pass rates in the flameproofing step and the carbonization step in the carbon fiber production step.

【0049】実施例3 実施例1で使用したものと同じ巻き始め側の末端部を密
度1.36g/cm3の耐炎化末端部にして巻き取って
あるボビンAと、巻き終わり側の末端部を密度1.36
g/cm3 の耐炎化末端部にして巻き取ってあるボビン
Bとを用意した。
Example 3 The same bobbin A as used in Example 1 was wound with the end portion on the winding start side being an oxidation-resistant end portion having a density of 1.36 g / cm 3 , and the end portion on the winding end side. With a density of 1.36
A bobbin B wound up as a g / cm 3 flame-resistant end was prepared.

【0050】上記のボビンAとボビンBとにより、実施
例1と同様にして繊維糸条を互いに絡合一体化させた接
合部を形成した。この接合部の250℃での引張強度は
17.5mN/Texであり、又該接合部の長さは40
mm、幅は5.5mmである。
The bobbin A and the bobbin B formed a joint in which the fiber yarns were entangled and integrated with each other in the same manner as in Example 1. The tensile strength of this joint at 250 ° C. is 17.5 mN / Tex, and the length of the joint is 40
mm and the width is 5.5 mm.

【0051】次いで、上記の接合部を有するアクリル繊
維糸条を230〜270℃の熱風が循環している耐炎化
炉中にて、工程張力10mN/Texにして該アクリル
繊維糸条に5%の収縮を与えながら30分間の耐炎化処
理に付し、続いて300〜1300℃の温度分布を有す
る窒素雰囲気からなる炭素化炉中にて、工程張力7mN
/Texにして該アクリル繊維糸条の収縮を制限しなが
ら、2分間の炭素化処理に付すことにより、炭素繊維を
製造した。この炭素繊維製造工程中の耐炎化工程での工
程通過率は、表1に示す通りである。
Next, the acrylic fiber yarn having the above-mentioned joint portion is set to a process tension of 10 mN / Tex in a flame stabilizing furnace in which hot air of 230 to 270 ° C. is circulated, and the acrylic fiber yarn is added to the acrylic fiber yarn by 5%. It is subjected to a flame-proofing treatment for 30 minutes while giving shrinkage, and subsequently, a process tension of 7 mN in a carbonization furnace consisting of a nitrogen atmosphere having a temperature distribution of 300 to 1300 ° C.
The carbon fiber was manufactured by subjecting the acrylic fiber thread to carbonization treatment for 2 minutes while limiting the shrinkage of the acrylic fiber thread to / Tex. Table 1 shows the process pass rates in the flame-proofing step in the carbon fiber production step.

【0052】実施例4 実施例1で使用したものと同じ巻き始め側の末端部を密
度1.36g/cm3の耐炎化末端部にして巻き取って
あるボビンAと、巻き終わり側の末端部を密度1.36
g/cm3 の耐炎化末端部にして巻き取ってあるボビン
Bとを用意した。
Example 4 The same bobbin A as used in Example 1 was wound with the end portion on the winding start side being an oxidized end portion having a density of 1.36 g / cm 3 , and the end portion on the winding end side. With a density of 1.36
A bobbin B wound up as a g / cm 3 flame-resistant end was prepared.

【0053】上記のボビンAとボビンBとにより、上記
のボビンAの巻き始め側の末端部をボビンから引き出し
て、他方のボビンBから引き出した巻き終わり側の末端
部と相互に重ね合わせた後、重ね合わせた部分の繊維糸
条に、図1に示した装置を使用して、圧力600kPa
の空気を4秒間吹き付けることにより、繊維糸条を互い
に絡合一体化させた接合部を形成した。この接合部の2
50℃での引張強度は16mN/Texであり、又該接
合部の長さは60mm、幅は4.3mmである。
After the bobbin A and the bobbin B are used, the end of the bobbin A on the winding start side is pulled out from the bobbin, and the bobbin A is overlapped with the end on the winding end side drawn from the other bobbin B. A pressure of 600 kPa is applied to the overlapped fiber yarn using the apparatus shown in FIG.
Was blown for 4 seconds to form a joint where the fiber yarns were entangled and integrated with each other. 2 of this joint
The tensile strength at 50 ° C. is 16 mN / Tex, and the joint has a length of 60 mm and a width of 4.3 mm.

【0054】次いで、上記の接合部を有するアクリル繊
維糸条を、実施例3と同様の焼成工程に付すことによ
り、炭素繊維を製造した。この炭素繊維製造工程中の耐
炎化工程及び炭素化工程での工程通過率は、表1に示す
通りである。
Next, the acrylic fiber yarn having the above-mentioned joint was subjected to the same sintering step as in Example 3 to produce a carbon fiber. Table 1 shows the process pass rates in the flameproofing step and the carbonization step in the carbon fiber production step.

【0055】比較例2 実施例1で使用したものと同じ巻き始め側の末端部を密
度1.36g/cm3の耐炎化末端部にして巻き取って
あるボビンAと、実施例1で使用したアクリル繊維糸
条、つまり末端部の耐炎化処理を行なっていないアクリ
ル繊維糸条を巻き取ってあるボビンB’とを用意した。
Comparative Example 2 The same bobbin A as used in Example 1 was wound with the end portion on the winding start side being the oxidized end portion having a density of 1.36 g / cm 3 , and used in Example 1. An acrylic fiber yarn, that is, a bobbin B 'wound with an acrylic fiber yarn whose terminal portion was not subjected to the flame-proof treatment was prepared.

【0056】上記のボビンAとボビンB’とにより、実
施例1と同様にして繊維糸条を互いに絡合一体化させた
接合部を形成した。この接合部の250℃での引張強度
は16.5mN/Texであり、又該接合部の長さは6
0mm、幅は6.0mmである。
The bobbin A and the bobbin B ′ were used to form a joint in which the fiber yarns were entangled and integrated with each other in the same manner as in Example 1. The tensile strength at 250 ° C. of this joint is 16.5 mN / Tex, and the length of the joint is 6
0 mm and a width of 6.0 mm.

【0057】次いで、上記の接合部を有するアクリル繊
維糸条を、実施例1と同様の焼成工程に付すことによ
り、炭素繊維を製造した。この炭素繊維製造工程中の耐
炎化工程及び炭素化工程での工程通過率は、表1に示す
通りである。
Next, the acrylic fiber yarn having the above-mentioned joint was subjected to the same sintering step as in Example 1 to produce a carbon fiber. Table 1 shows the process pass rates in the flameproofing step and the carbonization step in the carbon fiber production step.

【0058】比較例3 実施例1で使用したアクリル繊維糸条と同一のアクリル
繊維糸条、つまり末端部の耐炎化処理を行なっていない
アクリル繊維糸条を巻き取ってあるボビンA’とボビン
B’とを用意した。
Comparative Example 3 The same acrylic fiber yarn as the acrylic fiber yarn used in Example 1, that is, the bobbin A 'and the bobbin B wound with the acrylic fiber yarn having not been subjected to the oxidizing treatment of the end portion. 'And prepared.

【0059】上記のボビンA’とボビンB’とにより、
実施例1と同様にして繊維糸条を互いに絡合一体化させ
た接合部を形成した。この接合部の250℃での引張強
度は12mN/Texであり、又該接合部の長さは60
mm、幅は6.0mmである。
With the above-described bobbin A ′ and bobbin B ′,
In the same manner as in Example 1, a joined portion in which the fiber yarns were entangled and integrated with each other was formed. The tensile strength of this joint at 250 ° C. is 12 mN / Tex, and the length of the joint is 60
mm and the width is 6.0 mm.

【0060】次いで、上記の接合部を有するアクリル繊
維糸条を、実施例1と同様の焼成工程に付したところ、
耐炎化工程で接合部が切断してしまい、炭素繊維の製造
を行なえなかった。
Next, the acrylic fiber yarn having the above-mentioned joint was subjected to the same sintering process as in Example 1.
The joint part was cut in the flame-proofing step, and carbon fiber could not be manufactured.

【0061】比較例4 実施例1で使用したものと同じ巻き始め側の末端部を密
度1.36g/cm3の耐炎化末端部にして巻き取って
あるボビンAと、巻き終わり側の末端部を密度1.36
g/cm3 の耐炎化末端部にして巻き取ってあるボビン
Bとを用意した。
Comparative Example 4 The same bobbin A as used in Example 1 was wound with the end portion on the winding start side being an oxidation-resistant end portion having a density of 1.36 g / cm 3 , and the end portion on the winding end side. With a density of 1.36
A bobbin B wound up as a g / cm 3 flame-resistant end was prepared.

【0062】上記のボビンAの巻き始め側の末端部と他
方のボビンBから引き出した巻き終わり側の末端部とを
二重結びで結んで、接合部を形成した。この接合部の2
50℃での引張強度は13mN/Texである。
The terminal end of the bobbin A on the winding start side and the terminal end on the winding end side pulled out from the other bobbin B were tied by a double knot to form a joint. 2 of this joint
The tensile strength at 50 ° C. is 13 mN / Tex.

【0063】次いで、上記の接合部を有するアクリル繊
維糸条を、実施例1と同様の焼成工程に付したところ、
耐炎化工程で接合部が切断してしまい、炭素繊維の製造
を行なえなかった。
Next, the acrylic fiber yarn having the above-mentioned joint was subjected to the same sintering process as in Example 1.
The joint part was cut in the flame-proofing step, and carbon fiber could not be manufactured.

【0064】比較例5 実施例1で使用したものと同じ巻き始め側の末端部を密
度1.36g/cm3の耐炎化末端部にして巻き取って
あるボビンAと、巻き終わり側の末端部を密度1.36
g/cm3 の耐炎化末端部にして巻き取ってあるボビン
Bとを用意した。
COMPARATIVE EXAMPLE 5 The same bobbin A as used in Example 1 was wound with the end portion on the winding start side being an oxidation-resistant end portion having a density of 1.36 g / cm 3 , and the end portion on the winding end side. With a density of 1.36
A bobbin B wound up as a g / cm 3 flame-resistant end was prepared.

【0065】上記のボビンAの巻き始め側の末端部と他
方のボビンBから引き出した巻き終わり側の末端部と
を、特開昭56−37315号公報に記載されている特
殊な結び方で結びんで、接合部を形成した。この接合部
の250℃での引張強度は14mN/Texである。
The terminal end on the winding start side of the bobbin A and the terminal end on the winding end side pulled out from the other bobbin B are connected by a special knotting method described in Japanese Patent Application Laid-Open No. 56-37315. , To form a joint. The tensile strength of this joint at 250 ° C. is 14 mN / Tex.

【0066】次いで、上記の接合部を有するアクリル繊
維糸条を、実施例1と同様の焼成工程に付したところ、
耐炎化工程で接合部が切断してしまい、炭素繊維の製造
を行なえなかった。
Next, the acrylic fiber yarn having the above-mentioned joint was subjected to the same sintering step as in Example 1.
The joint part was cut in the flame-proofing step, and carbon fiber could not be manufactured.

【0067】比較例6 単糸繊度1.2dTex/フィラメント、フィラメント
数12000のアクリル繊維糸条の末端部同士を相互に
重ね合わせた後、重ね合わせた部分の繊維糸条に、図1
に示した装置を使用して、圧力500kPaの空気を2
秒間吹き付けることにより、繊維糸条を互いに絡合一体
化させた接合部を形成した。
Comparative Example 6 The ends of acrylic fiber yarns having a single yarn fineness of 1.2 dTex / filament and the number of filaments of 12,000 were overlapped with each other, and then the fiber yarn of the overlapped portion was subjected to FIG.
Using the device shown in (1), air with a pressure of 500 kPa
By spraying for 2 seconds, a joined portion where the fiber yarns were entangled and integrated with each other was formed.

【0068】続いてこの接合部に、該接合部の繊維重量
の1.3重量%のホウ酸が付着するようにしてホウ酸水
溶液を塗布し、乾燥した。この接合部の250℃での引
張強度は18mN/Texであり、又該接合部の長さは
60mm、幅は5.8mmである。
Subsequently, an aqueous boric acid solution was applied to the joint so that 1.3% by weight of boric acid based on the fiber weight of the joint adhered thereto, and the joint was dried. The tensile strength of this joint at 250 ° C. is 18 mN / Tex, and the length of the joint is 60 mm and the width is 5.8 mm.

【0069】次いで、上記の接合部を有するアクリル繊
維糸条を、実施例1と同様の焼成工程に付したところ、
炭素化工程で接合部が切断してしまい、炭素繊維の製造
を行なえなかった。なおこの炭素繊維製造工程中の耐炎
化工程の工程通過率は、表1に示す通りである。
Next, the acrylic fiber yarn having the above-mentioned joint was subjected to the same sintering step as in Example 1.
In the carbonization step, the joints were cut, and carbon fibers could not be produced. In addition, the process passage rate of the flame-proofing process in the carbon fiber manufacturing process is as shown in Table 1.

【0070】実施例5 単糸繊度1.2dTex/フィラメント、フィラメント
数24000のアクリル繊維糸条の巻き始め側の末端部
を、240℃の熱風が循環している耐炎化炉中にて5m
N/texの張力下に70分間の耐炎化処理を施すこと
によって密度1.36g/cm3 の耐炎化末端部にして
ある巻き取りボビンGと、同じく単糸繊度1.2dTe
x/フィラメント、フィラメント数24000のアクリ
ル繊維糸条の巻き終わり側の末端部を、240℃の熱風
が循環している耐炎化炉中にて5mN/texの張力下
に70分間の耐炎化処理を施すことによって密度1.3
6g/cm3 の耐炎化末端部にしてある巻き取りボビン
Hとを用意した。
Example 5 The end of the winding start side of an acrylic fiber yarn having a single yarn fineness of 1.2 dTex / filament and the number of filaments of 24000 was measured for 5 m in a flame-proof furnace in which hot air of 240 ° C. was circulating.
A winding bobbin G having a density of 1.36 g / cm 3 as a flame-resistant end portion by performing a flame-proof treatment under tension of N / tex for 70 minutes, and a single-fiber fineness of 1.2 dTe
x / filament, the end of the winding end side of the acrylic fiber yarn having 24000 filaments was subjected to an oxidation treatment for 70 minutes under a tension of 5 mN / tex in an oxidation furnace in which hot air of 240 ° C. was circulating. 1.3 density by applying
A take-up bobbin H having a flame-proofed end portion of 6 g / cm 3 was prepared.

【0071】上記のボビンGとボビンHとにより、実施
例1と同様にして繊維糸条を互いに絡合一体化させた接
合部を形成した。この接合部の250℃での引張強度は
25mN/Tex以上であり、又該接合部の長さは60
mm、幅は9.2mmである。
The bobbin G and the bobbin H formed a joint in which the fiber yarns were entangled and integrated with each other in the same manner as in Example 1. The joint has a tensile strength at 250 ° C. of 25 mN / Tex or more, and the length of the joint is 60 mN / Tex.
mm and the width is 9.2 mm.

【0072】次いで、上記の接合部を有するアクリル繊
維糸条を230〜270℃の熱風が循環している耐炎化
炉中にて、工程張力14mN/Texにしてアクリル繊
維糸条の収縮を制限しながら40分間の耐炎化処理に付
し、続いて300〜1300℃の温度分布を有する窒素
雰囲気からなる炭素化炉中にて、同じく工程張力7mN
/Texにして該アクリル繊維糸条の収縮を制限しなが
ら、2分間の炭素化処理に付すことにより、炭素繊維を
製造した。この炭素繊維製造工程中の耐炎化工程及び炭
素化工程での工程通過率は、表1に示す通りである。
Next, the shrinkage of the acrylic fiber yarn is restricted by setting the process tension to 14 mN / Tex in an oxidation furnace in which hot air of 230 to 270 ° C. is circulated. For 40 minutes, followed by a process tension of 7 mN in a carbonization furnace consisting of a nitrogen atmosphere having a temperature distribution of 300 to 1300 ° C.
The carbon fiber was manufactured by subjecting the acrylic fiber thread to carbonization treatment for 2 minutes while limiting the shrinkage of the acrylic fiber thread to / Tex. Table 1 shows the process pass rates in the flameproofing step and the carbonization step in the carbon fiber production step.

【0073】実施例6 単糸繊度1.2dTex/フィラメント、フィラメント
数48000のアクリル繊維糸条の巻き始め側の末端部
を、240℃の熱風が循環している耐炎化炉中にて5m
N/texの張力下に70分間の耐炎化処理を施すこと
によって密度1.36g/cm3 の耐炎化末端部にして
ある巻き取りボビンJと、同じく単糸繊度1.2dTe
x/フィラメント、フィラメント数24000のアクリ
ル繊維糸条の巻き終わり側の末端部を、240℃の熱風
が循環している耐炎化炉中にて5mN/texの張力下
に70分間の耐炎化処理を施すことによって密度1.3
6g/cm3 の耐炎化末端部にしてある巻き取りボビン
Kとを用意した。
Example 6 The winding start end of an acrylic fiber yarn having a single yarn fineness of 1.2 dTex / filament and 48000 filaments was measured for 5 m in a flame-proof furnace in which hot air of 240 ° C. was circulating.
A wind-up bobbin J having a density of 1.36 g / cm 3 as a flame-proof end by performing a flame-proof treatment for 70 minutes under a tension of N / tex, and a single yarn fineness of 1.2 dTe
x / filament, the end of the winding end side of the acrylic fiber yarn having 24000 filaments was subjected to an oxidation treatment for 70 minutes under a tension of 5 mN / tex in an oxidation furnace in which hot air of 240 ° C. was circulating. 1.3 density by applying
A take-up bobbin K having a flame-resistant end portion of 6 g / cm 3 was prepared.

【0074】上記のボビンJとボビンKとにより、実施
例1と同様にして繊維糸条を互いに絡合一体化させた接
合部を形成した。この接合部の250℃での引張強度は
24.5mN/Tex以上であり、又該接合部の長さは
80mm、幅は11mmである。
The bobbin J and the bobbin K were used to form a joint in which the fiber yarns were entangled and integrated with each other in the same manner as in Example 1. The tensile strength of this joint at 250 ° C. is 24.5 mN / Tex or more, and the length of the joint is 80 mm and the width is 11 mm.

【0075】次いで、上記の接合部を有するアクリル繊
維糸条を230〜270℃の熱風が循環している耐炎化
炉中にて、工程張力14mN/Texにしてアクリル繊
維糸条の収縮を制限しながら50分間の耐炎化処理に付
し、続いて300〜1300℃の温度分布を有する窒素
雰囲気からなる炭素化炉中にて、同じく工程張力7mN
/Texにして該アクリル繊維糸条の収縮を制限しなが
ら、2分間の炭素化処理に付すことにより、炭素繊維を
製造した。この炭素繊維製造工程中の耐炎化工程及び炭
素化工程での工程通過率は、表1に示す通りである。
Next, the shrinkage of the acrylic fiber yarn is restricted by setting the process tension to 14 mN / Tex in an oxidation furnace in which hot air of 230 to 270 ° C. is circulated. For 50 minutes, followed by a process tension of 7 mN in a carbonization furnace consisting of a nitrogen atmosphere having a temperature distribution of 300 to 1300 ° C.
The carbon fiber was manufactured by subjecting the acrylic fiber thread to carbonization treatment for 2 minutes while limiting the shrinkage of the acrylic fiber thread to / Tex. Table 1 shows the process pass rates in the flameproofing step and the carbonization step in the carbon fiber production step.

【0076】実施例7 捲縮をかけて箱内に折りたたみ積層された状態で収容し
てある単糸繊度1.2dTex/フィラメント、フィラ
メント数48000のアクリル繊維糸条の2箱を用意
し、一方の箱内のアクリル繊維糸条の始端である末端部
と他方の箱内のアクリル繊維糸条の終端である末端部と
を、実施例1に記載したのと同様の耐炎化処理を施すこ
とによって、これらの末端部を密度1.36g/cm3
の耐炎化末端部にした。
Example 7 Two boxes of a single fiber fineness of 1.2 dTex / filament and 48000 filaments of an acrylic fiber thread, which are housed in a state of being folded and laminated in a box after being crimped, are prepared. By subjecting the terminal end of the acrylic fiber yarn in the box to the beginning and the terminal end of the acrylic fiber yarn in the other box to the same flame-resistant treatment as described in Example 1, These ends were polished at a density of 1.36 g / cm 3.
Of the flame-resistant end.

【0077】次いで、上記の一方の箱内のアクリル繊維
糸条の始端と、他方の箱内のアクリル繊維糸条の終端と
を箱内から引き出して、それぞれの末端部と相互に重ね
合わせた後、実施例1と同じ方法によって繊維糸条を互
いに絡合一体化させた接合部を形成した。この接合部の
250℃での引張強度は23.5mN/Texであり、
又該接合部の長さは80mm、幅は12mmである。
Next, the starting end of the acrylic fiber yarn in one of the boxes and the end of the acrylic fiber yarn in the other box are drawn out of the box and overlapped with their respective ends. In the same manner as in Example 1, a joint was formed in which the fiber yarns were entangled and integrated with each other. The tensile strength of this joint at 250 ° C. is 23.5 mN / Tex,
The length of the joint is 80 mm and the width is 12 mm.

【0078】次いで、上記の接合部を有するアクリル繊
維糸条を実施例6と同様の焼成工程に付すことにより、
炭素繊維を製造した。この炭素繊維製造工程中の耐炎化
工程及び炭素化工程での工程通過率は、表1に示す通り
である。
Next, the acrylic fiber yarn having the above-mentioned joint is subjected to the same sintering step as in Example 6,
Carbon fiber was manufactured. Table 1 shows the process pass rates in the flameproofing step and the carbonization step in the carbon fiber production step.

【0079】実施例8 捲縮をかけて箱内に折りたたみ積層された状態で収容し
てある単糸繊度1.2dTex/フィラメント、フィラ
メント数72000のアクリル繊維糸条の2箱を用意
し、実施例7と同様にして、末端部が密度1.36g/
cm3 の耐炎化末端部になっているアクリル繊維糸条に
した。
Example 8 Two boxes of a single fiber fineness of 1.2 dTex / filament and 72,000 filaments of acrylic fiber yarn were stored in a state of being folded and laminated in a box with crimping. 7, the end portion has a density of 1.36 g /
and acrylic fiber yarn that is a flame-resistant end of cm 3.

【0080】次いで、実施例7と同様にして、耐炎化末
端部同士の繊維糸条を互いに絡合一体化させた接合部を
形成した。この接合部の250℃での引張強度は21m
N/Texであり、又該接合部の長さは80mm、幅は
18mmである。
Next, in the same manner as in Example 7, a joint portion was formed in which the fiber yarns of the oxidized end portions were entangled and integrated with each other. The tensile strength of this joint at 250 ° C. is 21 m
N / Tex, and the length of the joint is 80 mm and the width is 18 mm.

【0081】次いで、上記の接合部を有するアクリル繊
維糸条を230〜270℃の熱風が循環している耐炎化
炉中にて、工程張力14mN/Texにしてアクリル繊
維糸条の収縮を制限しながら60分間の耐炎化処理に付
し、続いて300〜1300℃の温度分布を有する窒素
雰囲気からなる炭素化炉中にて、同じく工程張力7mN
/Texにして該アクリル繊維糸条の収縮を制限しなが
ら、2分間の炭素化処理に付すことにより、炭素繊維を
製造した。この炭素繊維製造工程中の耐炎化工程及び炭
素化工程での工程通過率は、表1に示す通りである。
Next, the shrinkage of the acrylic fiber yarn is restricted by setting the process tension to 14 mN / Tex in an oxidation-resistant furnace in which hot air of 230 to 270 ° C. is circulated. For 60 minutes, followed by a process tension of 7 mN in a carbonization furnace consisting of a nitrogen atmosphere having a temperature distribution of 300 to 1300 ° C.
The carbon fiber was manufactured by subjecting the acrylic fiber thread to carbonization treatment for 2 minutes while limiting the shrinkage of the acrylic fiber thread to / Tex. Table 1 shows the process pass rates in the flameproofing step and the carbonization step in the carbon fiber production step.

【0082】[0082]

【表1】 なお、表中の*は、耐炎化工程を通過できず、炭素繊維
の製造を行なえなかったことを示す。
[Table 1] In addition, * in a table | surface shows that it was not able to pass through the flame-proof process and was not able to manufacture carbon fiber.

【0083】[0083]

【発明の効果】本発明の炭素繊維製造用のアクリル系繊
維糸条は、密度1.30g/cm3 以上の耐炎化末端部
同士を接続させて接合部を形成してあるので、このアク
リル系繊維糸条を焼成して炭素繊維にするときの耐炎化
時に接合部に蓄熱が激しくなることがない。
The acrylic fiber yarn for producing carbon fiber of the present invention is formed by connecting the oxidized ends having a density of 1.30 g / cm 3 or more to form a joint. Heat storage does not become intense at the joint portion during the flame resistance when the fiber yarn is baked into carbon fiber.

【0084】又、本発明の炭素繊維製造用のアクリル系
繊維糸条は、アクリル系繊維糸条の末端部同士を絡合一
体化させてなる接合部を形成してあるので、引張強度の
高い接合部になっている。
The acrylic fiber yarn for producing carbon fiber of the present invention has a high tensile strength because it forms a joined portion in which the ends of the acrylic fiber yarn are entangled and integrated. Has become a joint.

【0085】このために本発明の接合部を有する炭素繊
維製造用のアクリル系繊維糸条は、工程張力と加熱温度
の高い耐炎化工程と工程張力の高い炭素化工程とによる
炭素繊維の製造過程を通っても、接合部が耐炎化工程で
耐炎化不足になることがないので、炭素化工程での接合
部に反応熱の放熱不良が起こることがなく、炭素化工程
で単繊維同士の融着による糸切れを生じることがない。
For this reason, the acrylic fiber yarn having a joint according to the present invention for producing carbon fiber is produced by a process of producing carbon fiber by a flame-proofing process having a high process tension and a heating temperature and a carbonizing process having a high process tension. The joint does not become insufficient in flame resistance in the flame-proofing process even after passing through, so there is no poor heat dissipation of reaction heat in the joint in the carbonization process, and the fusion of single fibers in the carbonization process. No yarn breakage due to wearing.

【0086】従って本発明の接合部を有する炭素繊維製
造用のアクリル系繊維糸条によれば、工程張力と加熱温
度の高い耐炎化工程と工程張力の高い炭素化工程とによ
る炭素繊維の製造過程を通しても、これらの両工程中に
糸切れなどのトラブルを起こすことがなく、優れた物性
を有する炭素繊維を高速生産することが可能である。
Therefore, according to the acrylic fiber yarn for producing carbon fibers having a joint according to the present invention, the process of producing carbon fibers by the flame-proofing process with high process tension and heating temperature and the carbonization process with high process tension is performed. Through these processes, it is possible to produce carbon fibers having excellent physical properties at high speed without causing troubles such as yarn breakage during both of these steps.

【0087】更に、本発明の炭素繊維製造用のアクリル
系繊維糸条の製造方法は、アクリル系繊維糸条の末端部
を密度1.30g/cm3 以上に耐炎化処理した後、こ
の耐炎化処理した末端部同士を相互に重ね合わせ、更に
重ね合わせた部分の繊維糸条を互いに絡合一体化して接
合部を形成する工程からなるものであり、かかる工程に
よる本発明方法によれば、工程張力と加熱温度の高い耐
炎化工程と工程張力の高い炭素化工程とによる炭素繊維
の製造過程を通しても、これらの両工程中に糸切れなど
のトラブルを起こすことがなく、優れた物性を有する炭
素繊維を高速生産することが可能な上記の炭素繊維製造
用のアクリル系繊維糸条を容易、かつ的確に得ることが
できる。
Further, according to the method for producing an acrylic fiber yarn for producing carbon fibers of the present invention, the end portion of the acrylic fiber yarn is subjected to a flameproof treatment to a density of 1.30 g / cm 3 or more, and then the flameproof treatment is performed. The treated end portions are overlapped with each other, and the fiber yarns of the overlapped portions are entangled and integrated with each other to form a joint. Even during the process of producing carbon fiber by the flame-proofing process with high tension and heating temperature and the carbonization process with high process tension, carbon fiber with excellent physical properties does not cause troubles such as yarn breakage during both processes. The above-mentioned acrylic fiber yarn for carbon fiber production capable of producing fibers at high speed can be obtained easily and accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アクリル系繊維糸条の接合部の形成に使用した
絡合処理装置の概略を示す斜面図である。
FIG. 1 is a perspective view schematically showing an entanglement processing apparatus used for forming a joint portion of an acrylic fiber yarn.

【符号の説明】[Explanation of symbols]

1・・・・絡合処理装置 2・・・・巻き始め側の末端部 3・・・・巻き終わり側の末端部 4・・・・略中央にエアー噴出用の貫通孔7が形成されてい
る底部 5・・・・開閉自在に取り付けられている蓋 6・・・・絡合処理空間
1 entanglement processing device 2 end terminal on the winding start side 3 end terminal on the winding end 4 through hole 7 for air ejection is formed at approximately the center Bottom part 5... Lid that can be opened and closed 6.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3B154 AA09 AB02 BA48 BA49 BB02 BB13 BB35 BB61 BF06 BF07 BF11 BF18 BF29 DA03 DA06 DA21 DA30 4L037 CS03 CT10 FA03 PA53 PC03 PC09 PC15 PS00 PS02 PS19 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3B154 AA09 AB02 BA48 BA49 BB02 BB13 BB35 BB61 BF06 BF07 BF11 BF18 BF29 DA03 DA06 DA21 DA30 4L037 CS03 CT10 FA03 PA53 PC03 PC09 PC15 PS00 PS02 PS19

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 末端部同士を接続した接合部を有する炭
素繊維製造用のアクリル系繊維糸条であって、該接合部
が密度1.30g/cm3 以上の耐炎化末端部同士を絡
合一体化させてなるものであることを特徴とする炭素繊
維製造用のアクリル系繊維糸条。
1. An acrylic fiber yarn for producing carbon fiber having a joining portion in which end portions are connected to each other, wherein the joining portion entangles the oxidized end portions having a density of 1.30 g / cm 3 or more. Acrylic fiber yarn for carbon fiber production, characterized by being integrated.
【請求項2】 接合部の250℃での引張強度が20m
N/Tex以上であることを特徴とする請求項1に記載
の炭素繊維製造用のアクリル系繊維糸条。
2. The joint has a tensile strength at 250 ° C. of 20 m.
The acrylic fiber yarn for producing carbon fiber according to claim 1, wherein the yarn is N / Tex or more.
【請求項3】 接合部の長さが50mm以上であり、幅
W(mm)が下記の式(1)を満足する請求項1又は請
求項2に記載の炭素繊維製造用のアクリル系繊維糸条。 0.12×A1/2 ≦W≦0.22×A1/2 ・・・・(1) (式中、Aは使用したアクリル系繊維糸条の繊度(Te
x)を表わす。)
3. The acrylic fiber yarn for producing carbon fibers according to claim 1, wherein the length of the joint is 50 mm or more, and the width W (mm) satisfies the following expression (1). Article. 0.12 × A 1/2 ≦ W ≦ 0.22 × A 1/2 (1) (where A is the fineness of the used acrylic fiber yarn (Te
x). )
【請求項4】 アクリル系繊維糸条の末端部を密度1.
30g/cm3 以上に耐炎化処理した後、この耐炎化処
理した末端部同士を相互に重ね合わせ、更に重ね合わせ
た部分の繊維糸条を互いに絡合一体化して接合部を形成
することを特徴とする炭素繊維製造用のアクリル系繊維
糸条の製造方法。
4. An end portion of an acrylic fiber yarn having a density of 1.
After treatment oxidization to 30 g / cm 3 or more, characterized in that the flame treatment was terminated portions superimposed on each other to form a joint by intertwiningly integrated together fiber yarns were further superimposed portions A method for producing an acrylic fiber yarn for producing carbon fiber.
【請求項5】 重ね合わせた部分の繊維糸条を互いに絡
合一体化して接合部を形成する手段に高速流体を使用す
ることを特徴とする請求項4に記載の炭素繊維製造用の
アクリル系繊維糸条の製造方法。
5. The acrylic fiber for carbon fiber production according to claim 4, wherein a high-speed fluid is used as a means for entanglement-integrating the fiber yarns of the overlapped portion with each other to form a joint. Manufacturing method of fiber yarn.
【請求項6】 重ね合わせた部分の繊維糸条を互いに絡
合一体化して形成した接合部の250℃での引張強度が
20mN/Tex以上になるようにすることを特徴とす
る請求項4又は請求項5に記載の炭素繊維製造用のアク
リル系繊維糸条の製造方法。
6. The tensile strength at 250 ° C. of a joint formed by intertwining and joining together fiber yarns of the overlapped portion is set to 20 mN / Tex or more. A method for producing an acrylic fiber yarn for producing carbon fiber according to claim 5.
【請求項7】 重ね合わせた部分の繊維糸条を互いに絡
合一体化して形成した接合部の長さが50mm以上であ
り、幅W(mm)が下記の式(1)を満足するようにす
ることを特徴とする請求項4、請求項5又は請求項6に
記載の炭素繊維製造用のアクリル系繊維糸条の製造方
法。 0.12×A1/2 ≦W≦0.22×A1/2 ・・・・(1) (式中、Aは使用したアクリル系繊維糸条の繊度(Te
x)を表わす。)
7. A bonding portion formed by intertwining and integrating the fiber yarns of the overlapped portion with each other so that the length is 50 mm or more, and the width W (mm) satisfies the following expression (1). The method for producing an acrylic fiber yarn for producing carbon fibers according to claim 4, wherein the method is performed. 0.12 × A 1/2 ≦ W ≦ 0.22 × A 1/2 (1) (where A is the fineness of the used acrylic fiber yarn (Te
x). )
JP31782098A 1998-11-09 1998-11-09 Acrylic fiber yarn for producing carbon fiber and method for producing the same Expired - Fee Related JP3706754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31782098A JP3706754B2 (en) 1998-11-09 1998-11-09 Acrylic fiber yarn for producing carbon fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31782098A JP3706754B2 (en) 1998-11-09 1998-11-09 Acrylic fiber yarn for producing carbon fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000144534A true JP2000144534A (en) 2000-05-26
JP3706754B2 JP3706754B2 (en) 2005-10-19

Family

ID=18092423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31782098A Expired - Fee Related JP3706754B2 (en) 1998-11-09 1998-11-09 Acrylic fiber yarn for producing carbon fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP3706754B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190068A (en) * 2007-02-02 2008-08-21 Mitsubishi Rayon Co Ltd Method for producing yarn of carbon fiber bundle
WO2009128541A1 (en) 2008-04-18 2009-10-22 三菱レイヨン株式会社 Production system and production method of carbon fiber thread
JP2009256836A (en) * 2008-04-18 2009-11-05 Mitsubishi Rayon Co Ltd Carbon fiber production facility
WO2010053170A1 (en) 2008-11-10 2010-05-14 東レ株式会社 Fiber bundle with pieced part, process for producing same, and process for producing carbon fiber
WO2013154178A1 (en) 2012-04-12 2013-10-17 三菱レイヨン株式会社 Carbon-fiber-precursor acrylic fiber bundle, method for thermally oxidizing some thereof, thermal oxidation furnace, and process for producing carbon fiber bundle
US9884740B2 (en) 2009-11-09 2018-02-06 Toray Industries, Inc. Fiber bundle with pieced part, process for producing same, and process for producing carbon fiber
JP2020133092A (en) * 2019-02-20 2020-08-31 帝人株式会社 Method for manufacturing flameproof fiber bundle, method for manufacturing carbon fiber bundle and joining apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5087267B2 (en) * 2006-12-15 2012-12-05 三菱レイヨン株式会社 Flameproofing method for carbon fiber precursor
CN107385531A (en) * 2017-06-21 2017-11-24 兰州蓝星纤维有限公司 A kind of processing method of big tow precursor joint

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190068A (en) * 2007-02-02 2008-08-21 Mitsubishi Rayon Co Ltd Method for producing yarn of carbon fiber bundle
WO2009128541A1 (en) 2008-04-18 2009-10-22 三菱レイヨン株式会社 Production system and production method of carbon fiber thread
JP2009256836A (en) * 2008-04-18 2009-11-05 Mitsubishi Rayon Co Ltd Carbon fiber production facility
US8603429B2 (en) 2008-04-18 2013-12-10 Mitsubishi Rayon Co., Ltd. Production system and production method for carbon fiber thread
WO2010053170A1 (en) 2008-11-10 2010-05-14 東レ株式会社 Fiber bundle with pieced part, process for producing same, and process for producing carbon fiber
US9884740B2 (en) 2009-11-09 2018-02-06 Toray Industries, Inc. Fiber bundle with pieced part, process for producing same, and process for producing carbon fiber
JP5541414B2 (en) * 2012-04-12 2014-07-09 三菱レイヨン株式会社 Carbon fiber precursor acrylic fiber bundle, part of the thermal oxidation treatment method, thermal oxidation treatment furnace, and method of producing carbon fiber bundle
CN104220654A (en) * 2012-04-12 2014-12-17 三菱丽阳株式会社 Carbon-fiber-precursor acrylic fiber bundle, method for thermally oxidizing some thereof, thermal oxidation furnace, and process for producing carbon fiber bundle
KR101609502B1 (en) 2012-04-12 2016-04-05 미쯔비시 레이온 가부시끼가이샤 Carbon-fiber-precursor acrylic fiber bundle, method for thermally oxidizing some thereof, thermal oxidation furnace, and process for producing carbon fiber bundle
US9738994B2 (en) 2012-04-12 2017-08-22 Mitsubishi Chemical Corporation Carbon fiber precursor acrylic fiber bundle, method for thermally oxidizing part thereof, thermal oxidation oven, and process for producing carbon fiber bundle
WO2013154178A1 (en) 2012-04-12 2013-10-17 三菱レイヨン株式会社 Carbon-fiber-precursor acrylic fiber bundle, method for thermally oxidizing some thereof, thermal oxidation furnace, and process for producing carbon fiber bundle
JP2020133092A (en) * 2019-02-20 2020-08-31 帝人株式会社 Method for manufacturing flameproof fiber bundle, method for manufacturing carbon fiber bundle and joining apparatus
JP7408406B2 (en) 2019-02-20 2024-01-05 帝人株式会社 Method for manufacturing flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and connection device

Also Published As

Publication number Publication date
JP3706754B2 (en) 2005-10-19

Similar Documents

Publication Publication Date Title
WO2010053170A1 (en) Fiber bundle with pieced part, process for producing same, and process for producing carbon fiber
JP3722323B2 (en) Carbon fiber, manufacturing method and manufacturing apparatus thereof
JP2000144534A (en) Acrylic fiber yarn for producing carbon fiber and its production
US20170191194A1 (en) Method of producing carbon fibers from multipurpose commercial fibers
US4466949A (en) Process for continuously producing carbon fibers
US4850186A (en) Thread of carbon fiber
US4335089A (en) Process for producing carbon fibers
EP0147005A2 (en) Oxidation of pitch fibers
JP4541583B2 (en) Yarn splicer and carbon fiber manufacturing method
JP5515957B2 (en) Carbon fiber manufacturing method
JP5515652B2 (en) A method for producing a carbon fiber having a yarn splicing joint and a yarn splicing joint.
US5701730A (en) Incandescent mantles
JPH11124741A (en) Production of continuous carbon fiber
EP0098025B1 (en) Process for producing polyacrylonitrile-based carbon fiber
JP2002038335A (en) Method for continuous production of carbon fiber
JP2000073230A (en) Production of polyester fiber
JP2590620B2 (en) Carbon fiber production method
JPS6170016A (en) Production of carbon yarn
JP2008174846A (en) Method for continuously producing carbon fiber
JP3333464B2 (en) Thermoplastic resin composite glass fiber base material and method for producing the same
JP2002302342A (en) Fibrous yarn connecting method
JPH11131348A (en) Production of carbon fiber and device therefor
JPS58208420A (en) Continuous production of carbon fiber
JPH0323657B2 (en)
JPH07237820A (en) Roving package and its manufacture

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees