JP5515652B2 - A method for producing a carbon fiber having a yarn splicing joint and a yarn splicing joint. - Google Patents

A method for producing a carbon fiber having a yarn splicing joint and a yarn splicing joint. Download PDF

Info

Publication number
JP5515652B2
JP5515652B2 JP2009256773A JP2009256773A JP5515652B2 JP 5515652 B2 JP5515652 B2 JP 5515652B2 JP 2009256773 A JP2009256773 A JP 2009256773A JP 2009256773 A JP2009256773 A JP 2009256773A JP 5515652 B2 JP5515652 B2 JP 5515652B2
Authority
JP
Japan
Prior art keywords
fiber bundle
yarn splicing
fiber
splicing joint
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009256773A
Other languages
Japanese (ja)
Other versions
JP2010133074A (en
Inventor
公康 加藤
邦裕 三島
孝光 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2009256773A priority Critical patent/JP5515652B2/en
Publication of JP2010133074A publication Critical patent/JP2010133074A/en
Application granted granted Critical
Publication of JP5515652B2 publication Critical patent/JP5515652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、繊維束の末端部同士を接合する糸繋ぎ接合部およびその糸繋ぎ接合部を用いて繊維束を接合する炭素繊維の製造方法に関するものである。   The present invention relates to a yarn splicing joint that joins end portions of fiber bundles and a method for producing a carbon fiber that joins a fiber bundle using the yarn splicing joint.

一般に炭素繊維製造工程において、炭素繊維製造の前駆体となるポリアクリル系前駆体繊維束は、ボビンなどに巻き上げられた形態あるいは箱の中に折り畳み積層された形態を経て、焼成工程に供給されている。従って、これらの前駆体繊維束を連続的に焼成し、炭素繊維に転換していくためには、ボビンに巻き上げられた形態の前駆体繊維束あるいは箱体内に収容されている前駆体繊維束の始端部を、何らかの手段で焼成工程を通過中の前駆体繊維束の終端部に接合する必要がある。   In general, in a carbon fiber manufacturing process, a polyacrylic precursor fiber bundle that is a precursor of carbon fiber manufacturing is supplied to a firing process through a form wound on a bobbin or the like and folded in a box. Yes. Therefore, in order to continuously burn these precursor fiber bundles and convert them into carbon fibers, the precursor fiber bundles wound up on the bobbin or the precursor fiber bundles contained in the box It is necessary to join the start end to the end of the precursor fiber bundle that is passing through the firing step by some means.

この前駆体繊維束の末端部同士を接合することにより、前駆体繊維束を連続的に炭素繊維の製造工程に供給して操業性を向上させる手段として、炭素繊維の前駆体となるポリアクリル系前駆体繊維束の末端部同士を加圧流体により交絡させて接合する方法が知られている(特許文献1参照。)。   As a means to improve the operability by continuously supplying the precursor fiber bundle to the carbon fiber manufacturing process by joining the end portions of this precursor fiber bundle, a polyacrylic material that becomes a carbon fiber precursor A method is known in which end portions of precursor fiber bundles are entangled with a pressurized fluid to join them (see Patent Document 1).

しかしながら、この方法により炭素繊維の前駆体繊維束の末端部同士を接合させることは可能ではあるが、形成された糸繋ぎ接合部では繊維束密度が高くなるため、耐炎化工程で前駆体繊維束自身の発熱により酸化反応が暴走しやすいという問題があった。そのため、糸繋ぎ接合部が焼き切れたり焼損してしまうという課題があり、蓄熱による糸繋ぎ接合部の糸切れを防止するためには、耐炎化炉工程の温度を低下させなければない。この耐炎化工程温度の低下幅が大きいと熱処理時間が長くなりすぎてしまうため、生産性を著しく低下させるものであった。   However, it is possible to join the end portions of the carbon fiber precursor fiber bundles by this method, but the fiber bundle density is increased at the formed spliced joint portion, and therefore the precursor fiber bundle is used in the flameproofing step. There was a problem that the oxidation reaction was likely to run away due to its own heat generation. Therefore, there is a problem that the yarn splicing joint is burnt out or burns out. In order to prevent yarn splicing at the yarn splicing joint due to heat storage, the temperature of the flameproofing furnace process must be lowered. If this flameproofing process temperature drop is large, the heat treatment time will be too long, and the productivity will be significantly reduced.

また、前駆体繊維束のフィラメント数が多い場合、ノズルから噴射される加圧流体が前駆体繊維束全体に当たらなくなり、前駆体繊維束が単繊維レベルで混繊交絡せず、いくつかの小束に分かれて絡まるようになる。このような小束の絡まりが絡合部に不均一に生じると、局部的に前駆体繊維束密度が高い部分ができて蓄熱しやすくなるだけでなく、絡まりが不十分となり、結束強度も弱くなる。その結果、工程張力に耐えられず破断するか、糸繋ぎ接合部が素抜けてしまうという課題があった。   In addition, when the number of filaments in the precursor fiber bundle is large, the pressurized fluid ejected from the nozzle does not hit the entire precursor fiber bundle, and the precursor fiber bundle is not mixed and entangled at the single fiber level. It becomes entangled in a bundle. If entanglement of such small bundles occurs unevenly at the entangled part, not only does the precursor fiber bundle density become locally high, it becomes easy to store heat, but also entanglement becomes insufficient and the binding strength is weak. Become. As a result, there was a problem that the process tension could not be endured, and it was broken or the yarn splicing joint was removed.

これらに対する対策として、例えば、ポリアクリル系前駆体繊維束と接続媒体として耐炎化糸とで接合させる方法が講じられてきた(特許文献2参照。)。しかしながら、この方法においては、蓄熱量を低減させる効果はあるものの除熱が十分でないため、前駆体繊維束密度が高くなる接合部では、依然として糸切れなどが発生しやすい。従って、糸繋ぎ接合部が耐炎化工程を通過する際には、炉内温度を低下させなければならなかった。また、耐炎化糸とポリアクリル系前駆体繊維束は、繊維束の捌け具合が異なるため、ポリアクリル系前駆体繊維束と耐炎化糸が十分に混繊せず、均一に交絡されない。そのため、両者の繊維束同士が素抜けてしまい、防災のために耐炎化炉を停止させてしまうという問題があった。   As measures against these, for example, a method of joining with a polyacrylic precursor fiber bundle and a flameproof yarn as a connection medium has been taken (see Patent Document 2). However, in this method, although there is an effect of reducing the amount of stored heat, heat removal is not sufficient, and therefore, yarn breakage or the like still tends to occur at the joint where the precursor fiber bundle density is high. Therefore, when the yarn splicing joint passes through the flameproofing process, the furnace temperature has to be lowered. In addition, since the flame resistance yarn and the polyacrylic precursor fiber bundle are different in the degree of fiber bundle bundling, the polyacrylic precursor fiber bundle and the flameproof yarn are not sufficiently mixed and are not entangled uniformly. For this reason, there is a problem in that the fiber bundles of both of them are easily removed, and the flameproofing furnace is stopped for disaster prevention.

他にも、圧縮空気により形成される交絡接合ではなく、末端部同士を分割し、編み込んで接合する方法も講じられているが(特許文献3参照。)、この場合、接続方法がこぶ結びであるため、結び目が引き締められて繊維束密度が高くなり、蓄熱による糸切れが発生する。また、各接合部の結束強度がバラツキつくため、結束強度の弱い接続部には応力が集中し、結束強度の弱い接合部から順に破断してしまうという問題があった。   In addition to the entanglement joining formed by compressed air, there is also a method in which the end portions are divided and knitted to join (see Patent Document 3). In this case, the connection method is knotted. Therefore, the knot is tightened, the fiber bundle density is increased, and yarn breakage due to heat accumulation occurs. Further, since the binding strength of each joint portion varies, there is a problem that stress concentrates on a connection portion having a low binding strength and breaks in order from the joint portion having a low binding strength.

特開平6−206667号公報JP-A-6-206667 特開平10−226918号公報JP-A-10-226918 特開2007−46177号公報JP 2007-46177 A

そこで本発明の目的は、上述した問題点に鑑み、糸繋ぎ接合部の蓄熱を低減し、焼成工程において接合部が蓄熱により焼き切れたりすることなく、工程通過可能である糸繋ぎ接合部、およびその糸繋ぎ接合部を用いて繊維束を接合する炭素繊維の製造方法を提供することにある。   Therefore, in view of the above-mentioned problems, the object of the present invention is to reduce the heat storage of the yarn splicing joint, and in the firing process, the spliced joint can be passed through the process without being burned out by the heat storage, and It is providing the manufacturing method of the carbon fiber which joins a fiber bundle using the yarn splicing junction part.

本発明は、上記目的を達成せんとするものであって、本発明の糸繋ぎ接合部は、第1の繊維束の末端部と第2の繊維束の末端部とを長手方向に相互に重ね合わせ、接合されてなる糸繋ぎ接合部において、前記糸繋ぎ接合部は前記第1の繊維束と前記第2の繊維束とが互いに絡み合わされてなり、前記糸繋ぎ接合部は絡み合わされた繊維束が開繊されてなる放熱部と、前記放熱部の両端部に繊維束の幅方向に複数の部分絡合をもつ絡合部を備えていることを特徴とする糸繋ぎ接合部である。   The present invention is intended to achieve the above object, and the yarn splicing joint of the present invention overlaps the end portion of the first fiber bundle and the end portion of the second fiber bundle in the longitudinal direction. In the spliced and spliced yarn splicing portion, the splicing spliced portion is formed by entangled the first fiber bundle and the second spliced fiber bundle, and the spliced spliced joint portion is a tangled fiber bundle. A yarn joining portion characterized by comprising a heat dissipating portion formed by opening and an entangled portion having a plurality of partial entanglements in the width direction of the fiber bundle at both ends of the heat dissipating portion.

本発明の糸繋ぎ接合部の好ましい態様によれば、前記の第1の繊維束と第2の繊維束は炭素繊維前駆体繊維束であって、本発明では、その糸繋ぎ接合部を有する前駆体繊維束を焼成して炭素繊維とすることができる。   According to a preferred aspect of the yarn splicing joint portion of the present invention, the first fiber bundle and the second fiber bundle are carbon fiber precursor fiber bundles, and in the present invention, the precursor having the yarn splicing joint portion. A body fiber bundle can be baked into carbon fibers.

また、本発明の前駆体繊維束の製造方法は、炭素繊維の前駆体繊維束である第1の繊維束の末端部と第2の繊維束の末端部とを長手方向に相互に重ね合わせ、その重ね合わせ部に、繊維束の幅方向に直列に複数の流体噴射孔が開口され、前記流体噴射孔の列が繊維束方向に間隔をあけ2列配置された少なくとも1組の交絡処理手段により加圧流体を噴射して、前記第1の繊維束と前記第2の繊維束の単繊維を互いに絡み合わせ、絡み合わされた繊維束が開繊されてなる放熱部と、前記放熱部の両端部に繊維束の幅方向に複数の部分絡合をもつ絡合部を備えた糸繋ぎ接合部を形成させることを特徴とする前駆体繊維束の製造方法である。   Moreover, the method for producing a precursor fiber bundle of the present invention is such that the end portion of the first fiber bundle and the end portion of the second fiber bundle, which are carbon fiber precursor fiber bundles, are overlapped with each other in the longitudinal direction. A plurality of fluid ejection holes are opened in series in the width direction of the fiber bundle in the overlapped portion, and at least one set of entanglement processing means in which the rows of the fluid ejection holes are arranged at intervals in the fiber bundle direction. A heat-dissipating part formed by injecting a pressurized fluid, intertwining the single fibers of the first fiber bundle and the second fiber bundle, and opening the intertwined fiber bundle; and both ends of the heat dissipating part A method for producing a precursor fiber bundle, characterized in that a yarn splicing joint having an entangled portion having a plurality of partial entanglements in the width direction of the fiber bundle is formed.

本発明では、上記の前駆体繊維束の製造方法で得られた糸繋ぎ接合部を有する炭素繊維の前駆体繊維束を焼成することにより炭素繊維とすることができる。   In this invention, it can be set as carbon fiber by baking the precursor fiber bundle of the carbon fiber which has the yarn splicing junction obtained by the manufacturing method of said precursor fiber bundle.

また、本発明の糸繋ぎ接合部は、第1の繊維束と第2の繊維束を、接続媒体を介して接合されてなる糸繋ぎ接合部において、前記糸繋ぎ接合部は前記第1の繊維束と前記接続媒体、前記接続媒体と前記第2の繊維束とが互いに絡み合わされてなり、前記糸繋ぎ接合部は絡み合わされた繊維束が開繊されてなる放熱部と、前記放熱部の両端部に繊維束の幅方向に複数の部分絡合をもつ絡合部を備えていることを特徴とする糸繋ぎ接合部である。   Further, the yarn splicing joint portion of the present invention is a yarn splicing joint portion formed by joining the first fiber bundle and the second fiber bundle via a connecting medium, wherein the yarn splicing joint portion is the first fiber. A bundle and the connection medium, the connection medium and the second fiber bundle are entangled with each other, and the yarn splicing joint portion is a heat dissipation portion formed by opening the intertwined fiber bundle, and both ends of the heat dissipation portion A yarn splicing joint having a plurality of entanglements having a plurality of partial entanglements in the width direction of the fiber bundle.

本発明の糸繋ぎ接合部の好ましい態様によれば、前記の接続媒体は非発熱性でかつ熱伝導率が3W/m・K以上700W/m・K以下の接続媒体である。   According to a preferred aspect of the yarn splicing joint of the present invention, the connection medium is a connection medium that is non-exothermic and has a thermal conductivity of 3 W / m · K or more and 700 W / m · K or less.

本発明の糸繋ぎ接合部の好ましい態様によれば、前記の第1の繊維束と第2の繊維束は炭素繊維前駆体繊維束であって、本発明では、その糸繋ぎ接合部を有する前駆体繊維束を焼成して炭素繊維とすることができる。   According to a preferred aspect of the yarn splicing joint portion of the present invention, the first fiber bundle and the second fiber bundle are carbon fiber precursor fiber bundles, and in the present invention, the precursor having the yarn splicing joint portion. A body fiber bundle can be baked into carbon fibers.

また、本発明の前駆体繊維束の製造方法は、炭素繊維の前駆体繊維束である第1の繊維束の末端部と第2の繊維束の末端部を、接続媒体の長手方向にそれぞれ重ね合わせ、その重ね合わせ部に、繊維束の幅方向に直列に複数の流体噴射孔が開口され、前記流体噴射孔の列が繊維束方向に間隔をあけ2列配置された少なくとも1組の交絡処理手段により加圧流体を噴射して、前記第1の繊維束と前記前記接続媒体、前記接続媒体と前記第2の繊維束とを互いに絡み合わせ、絡み合わされた繊維束が開繊されてなる放熱部と、前記放熱部の両端部に繊維束の幅方向に複数の部分絡合をもつ絡合部を備えた糸繋ぎ接合部を形成させることを特徴とする前駆体繊維束の製造方法である。   In the method for producing a precursor fiber bundle of the present invention, the end portion of the first fiber bundle and the end portion of the second fiber bundle, which are carbon fiber precursor fiber bundles, are overlapped in the longitudinal direction of the connection medium. In addition, a plurality of fluid ejection holes are opened in series in the width direction of the fiber bundle in the overlapped portion, and at least one set of confounding processes in which the rows of the fluid ejection holes are arranged at intervals in the fiber bundle direction The heat dissipation is performed by injecting the pressurized fluid by the means, intertwining the first fiber bundle and the connection medium, the connection medium and the second fiber bundle, and opening the intertwined fiber bundle. And a yarn splicing joint having a plurality of entangled portions having a plurality of partial entanglements in the width direction of the fiber bundle at both ends of the heat radiating portion. .

本発明では、上記の前駆体繊維束の製造方法で得られた糸繋ぎ接合部を有する炭素繊維の前駆体繊維束を焼成することにより炭素繊維とすることができる。   In this invention, it can be set as carbon fiber by baking the precursor fiber bundle of the carbon fiber which has the yarn splicing junction obtained by the manufacturing method of said precursor fiber bundle.

本発明の糸繋ぎ接合部を有する繊維束によれば、焼成工程中において破断したり素抜けたりすることなく、糸繋ぎ束接合部の蓄熱を抑制し、さらには除熱することができる。これにより、焼成工程における炉内温度を低下させることなく接合部を通過させることができるため、連続的に炭素繊維を製造することが可能となり、操業性を大幅に向上させることができる。   According to the fiber bundle having the yarn splicing joint portion of the present invention, heat storage at the yarn splicing joint portion can be suppressed and heat can be further removed without breaking or falling off during the firing process. Thereby, since a junction part can be passed without reducing the furnace temperature in a baking process, it becomes possible to manufacture a carbon fiber continuously and can improve operativity significantly.

次に、本発明の望ましい形態について説明する。   Next, a desirable embodiment of the present invention will be described.

まず、本発明にかかる炭素繊維製造工程の一実施形態について説明する。炭素繊維製造用原糸であるポリアクリル系前駆体繊維束を製造する工程の速度と焼成工程の速度は大幅に異なるため、前駆体繊維束はボビンに巻き上げられるか、もしくは箱体内に折りたたみ積層されて収容され、その後焼成工程に供給される。以下、焼成工程を通過している前駆体繊維束を第1の繊維束、次に焼成工程を通過させようとする前駆体繊維束を第2の繊維束とし、各繊維束がボビンに巻き上げられた形態で供給される場合について説明する。   First, an embodiment of a carbon fiber manufacturing process according to the present invention will be described. Since the speed of the process for producing the polyacrylic precursor fiber bundle, which is the raw fiber for carbon fiber production, is significantly different from the speed of the firing process, the precursor fiber bundle is wound on a bobbin or folded and laminated in a box. And then supplied to the firing step. Hereinafter, the precursor fiber bundle passing through the firing process is referred to as a first fiber bundle, and then the precursor fiber bundle to be passed through the firing process is referred to as a second fiber bundle, and each fiber bundle is wound up on a bobbin. The case where it is supplied in a different form will be described.

ボビンに巻き上げられた第1の繊維束は、ボビンから引き出された後、焼成工程における耐炎化炉内にて耐炎化処理される。この耐炎化処理においては、第1の繊維束が酸化性雰囲気下に通常180〜400℃の温度で加熱処理され、耐炎化糸とされる。耐炎化糸は、炭化炉内で炭化処理され、炭素繊維とされる。炭素繊維には、表面処理工程で必要に応じてサイジング剤付与等の表面処理が施され、巻取工程で巻き取られて炭素繊維の製品とされる。ボビンに巻き取られた第1の繊維束が終端部にくると、この第1の繊維束の終端部に、次のボビンに巻き取られている第2の繊維束の始端部が接合される。すなわち、前駆体繊維束の末端部同士が接合され、接合された第2の繊維束が続けて焼成され、連続的に炭素繊維が製造される。   The first fiber bundle wound up on the bobbin is drawn out from the bobbin and then subjected to a flameproofing treatment in a flameproofing furnace in the firing step. In this flameproofing treatment, the first fiber bundle is usually heat-treated at a temperature of 180 to 400 ° C. in an oxidizing atmosphere to obtain a flameproof yarn. The flame resistant yarn is carbonized in a carbonization furnace to be carbon fiber. The carbon fiber is subjected to a surface treatment such as application of a sizing agent in the surface treatment step as necessary, and is taken up in the winding step to obtain a carbon fiber product. When the first fiber bundle wound around the bobbin comes to the end portion, the start end portion of the second fiber bundle wound around the next bobbin is joined to the end portion of the first fiber bundle. . That is, the end portions of the precursor fiber bundle are joined to each other, and the joined second fiber bundle is continuously fired to continuously produce carbon fibers.

本発明は、上記の耐炎化工程通過中での糸繋ぎ接合部の蓄熱による糸切れ、および工程通過中における繊維束の破断を防止するものであり、その糸繋ぎ接合部について次の2つの態様がある。   The present invention prevents yarn breakage due to heat accumulation in the yarn splicing joint during passage of the above-mentioned flameproofing process, and breakage of the fiber bundle during passage of the process. There is.

その1の態様は、第1の繊維束の末端部と第2の繊維束の末端部とを長手方向に相互に重ね合わせ、接合されてなる糸繋ぎ接合部において、前記糸繋ぎ接合部は前記第1の繊維束と前記第2の繊維束とが互いに絡み合わされてなり、前記糸繋ぎ接合部は絡み合わされた繊維束が開繊されてなる放熱部と、前記放熱部の両端部に繊維束の幅方向に複数の部分絡合をもつ絡合部を備えている糸繋ぎ接合部である。   In the first aspect, the end portion of the first fiber bundle and the end portion of the second fiber bundle are overlapped with each other in the longitudinal direction and joined to each other. The first fiber bundle and the second fiber bundle are intertwined with each other, and the yarn splicing joint portion is a heat dissipation portion formed by opening the intertwined fiber bundle, and the fiber bundle at both ends of the heat dissipation portion. It is the yarn splicing junction part provided with the entanglement part which has a some partial entanglement in the width direction.

このような糸繋ぎ接合部は、炭素繊維の前駆体繊維束の接合に好適である。このような前駆体繊維束は、炭素繊維の前駆体繊維束である第1の繊維束の末端部と第2の繊維束の末端部とを長手方向に相互に重ね合わせ、その重ね合わせ部に、繊維束の幅方向に直列に複数の流体噴射孔が開口され、前記流体噴射孔の列が繊維束方向に間隔をあけ2列配置された少なくとも1組の交絡処理手段により加圧流体を噴射して、前記第1の繊維束と前記第2の繊維束の単繊維を互いに絡み合わせ、絡み合わされた繊維束が開繊されてなる放熱部と、前記放熱部の両端部に繊維束の幅方向に複数の部分絡合をもつ絡合部を備えた糸繋ぎ接合部を形成させることにより製造することができる。   Such a yarn joining portion is suitable for joining precursor fiber bundles of carbon fibers. In such a precursor fiber bundle, the end portion of the first fiber bundle, which is a carbon fiber precursor fiber bundle, and the end portion of the second fiber bundle are overlapped in the longitudinal direction, and the overlap portion is A plurality of fluid ejection holes are opened in series in the width direction of the fiber bundle, and pressurized fluid is ejected by at least one pair of entanglement processing means in which the rows of the fluid ejection holes are arranged at intervals in the fiber bundle direction. And the single fiber of the first fiber bundle and the second fiber bundle are entangled with each other, the heat dissipation portion formed by opening the intertwined fiber bundle, and the width of the fiber bundle at both ends of the heat dissipation portion It can manufacture by forming the yarn splicing joint part provided with the entanglement part which has a some partial entanglement in the direction.

その2の態様は、第1の繊維束と第2の繊維束を、接続媒体を介して接合されてなる糸繋ぎ接合部であり、前記糸繋ぎ接合部は前記第1の繊維束と前記接続媒体、前記接続媒体と前記第2の繊維束とが互いに絡み合わされてなり、前記糸繋ぎ接合部は絡み合わされた繊維束が開繊されてなる放熱部と、前記放熱部の両端部に繊維束の幅方向に複数の部分絡合をもつ絡合部を備えている糸繋ぎ接合部である。   The second aspect is a yarn joining portion formed by joining the first fiber bundle and the second fiber bundle via a connection medium, and the yarn joining portion is connected to the first fiber bundle. Medium, the connection medium and the second fiber bundle are entangled with each other, the yarn joining joint portion is a heat dissipation portion formed by opening the intertwined fiber bundle, and fiber bundles at both ends of the heat dissipation portion It is the yarn splicing junction part provided with the entanglement part which has a some partial entanglement in the width direction.

この2の態様の糸繋ぎ接合部も、炭素繊維の前駆体繊維束の接合に好適である。このような前駆体繊維束は、炭素繊維の前駆体繊維束である第1の繊維束の末端部と第2の繊維束の末端部を、接続媒体の長手方向にそれぞれ重ね合わせ、その重ね合わせ部に、繊維束の幅方向に直列に複数の流体噴射孔が開口され、前記流体噴射孔の列が繊維束方向に間隔をあけ2列配置された少なくとも1組の交絡処理手段により加圧流体を噴射して、前記第1の繊維束と前記前記接続媒体、前記接続媒体と前記第2の繊維束とを互いに絡み合わせ、絡み合わされた繊維束が開繊されてなる放熱部と、前記放熱部の両端部に繊維束の幅方向に複数の部分絡合をもつ絡合部を備えた糸繋ぎ接合部を形成させることにより製造することができる。   The yarn splicing joint of the second aspect is also suitable for joining the precursor fiber bundle of carbon fibers. Such a precursor fiber bundle is obtained by superimposing the end portion of the first fiber bundle and the end portion of the second fiber bundle, which are carbon fiber precursor fiber bundles, in the longitudinal direction of the connection medium, respectively. A plurality of fluid ejection holes are opened in series in the width direction of the fiber bundle, and at least one set of the entanglement processing means in which the rows of the fluid ejection holes are arranged at intervals in the fiber bundle direction. A heat radiation portion formed by intertwining the first fiber bundle and the connection medium, the connection medium and the second fiber bundle, and opening the intertwined fiber bundle; It can manufacture by forming the yarn splicing joint part provided with the entanglement part which has a some partial entanglement in the width direction of the fiber bundle in the both ends of a part.

次に、本発明の糸繋ぎ接合部の好ましい態様について、図面を用いて説明する。   Next, the preferable aspect of the thread | yarn splicing junction part of this invention is demonstrated using drawing.

図1は、本発明の糸繋ぎ接合部の一例を示す概略平面図である。本発明の糸繋ぎ接合部Aでは、図1に示すように、2つの繊維束の末端部同士を重ね合わせ形成される糸繋ぎ接合部Aにおいて、2つの繊維束が開繊されてなり、熱を外部に放出させることができる放熱部Bと、その放熱部Bの両端部に、繊維束の幅方向に複数の部分絡合Dをもつ絡合部Cを備えている。   FIG. 1 is a schematic plan view showing an example of the yarn splicing joint of the present invention. In the yarn splicing joint A of the present invention, as shown in FIG. 1, the two fiber bundles are opened in the yarn splicing joint A formed by overlapping the end portions of the two fiber bundles. The heat dissipating part B can be discharged to the outside, and the entangled part C having a plurality of partial entanglements D in the width direction of the fiber bundle is provided at both ends of the heat dissipating part B.

この放熱部Bとは、後述する交絡処理手段から圧縮空気が直接繊維束にあたり、繊維束が単繊維レベルまで開繊され、2つの繊維束の末端部同士が交絡せずに混繊している領域のことを指し、単繊維同士が接着せず、外気と接する状態にあることが好ましい。図1において、放熱部Bの長さXは短すぎると、放熱効果が小さくなり、長すぎると糸繋ぎ装置全体が大型化されてしまうので、放熱部Bの長さXは30mm≦X≦100mmであることが好ましく、より好ましくは35mm≦X≦50mmである。また、開繊された放熱部Bの幅方向の長さは、開繊される前の繊維束の幅方向の長さの1.5倍以上2倍以下になるようにすることが好ましい。このとき、放熱部Bの幅方向の長さが、開繊前の繊維束の幅方向の長さの1.5倍未満であると、開繊不十分となり、十分な放熱効果が得られないことがある。また、放熱部Bの幅方向の長さが、開繊前の繊維束の幅方向の長さの2倍より大きい場合には、放熱部Bが大きくなりすぎて、工程通過中に隣糸同士で混繊してしまうことがある。   With this heat radiating part B, the compressed air directly hits the fiber bundle from the entanglement processing means described later, the fiber bundle is opened to the single fiber level, and the end parts of the two fiber bundles are mixed without being entangled. It refers to the region, and it is preferable that the single fibers do not adhere to each other and are in contact with the outside air. In FIG. 1, if the length X of the heat dissipating part B is too short, the heat dissipating effect is reduced, and if it is too long, the entire yarn splicing device is enlarged. Therefore, the length X of the heat dissipating part B is 30 mm ≦ X ≦ 100 mm. It is preferable that 35 mm ≦ X ≦ 50 mm. Moreover, it is preferable that the length in the width direction of the opened heat radiating part B is 1.5 times or more and 2 times or less the length in the width direction of the fiber bundle before being opened. At this time, if the length in the width direction of the heat radiating part B is less than 1.5 times the length in the width direction of the fiber bundle before opening, the opening is insufficient and a sufficient heat dissipation effect cannot be obtained. Sometimes. Moreover, when the length in the width direction of the heat radiating part B is larger than twice the length in the width direction of the fiber bundle before opening, the heat radiating part B becomes too large and the adjacent yarns pass through the process. May be mixed.

このように、放熱部Bを有することにより絡合部Cに蓄熱された熱を外部に放出させてやることができるため、糸繋ぎ接合部に蓄積される熱量を低減させてやることができ、蓄熱による糸切れを大幅に低減させることができる。   Thus, since the heat stored in the entangled portion C can be released to the outside by having the heat radiating portion B, the amount of heat accumulated in the yarn splicing joint can be reduced, Yarn breakage due to heat storage can be greatly reduced.

また絡合部Cとは、繊維束の幅方向に4個以上10個以下の複数の部分絡合Dを有する領域のことを指す。部分絡合Dとは、2つの繊維束が単繊維レベルで互いに絡み合い、巻き付いた部分のことを指し、図1では放熱部Bの両端部に存在する8つの編み目状に交絡したもののことをいう。図1において、絡合部Cの長さYは短すぎると、結束強度が小さくなり、長すぎると糸繋ぎ装置全体が大型化されてしまうので、絡合部Cの長さYは8mm≦Y≦30mmであることが好ましく、より好ましくは10≦Y≦18mmである。   In addition, the entangled portion C refers to a region having a plurality of partial entanglements D of 4 to 10 in the width direction of the fiber bundle. The partial entanglement D refers to a portion in which two fiber bundles are entangled with each other at the single fiber level and wound, and in FIG. 1, it is entangled in eight stitches existing at both ends of the heat radiation part B. . In FIG. 1, if the length Y of the entangled portion C is too short, the binding strength is reduced, and if it is too long, the entire yarn splicing device is enlarged. Therefore, the length Y of the entangled portion C is 8 mm ≦ Y It is preferable that ≦ 30 mm, and more preferably 10 ≦ Y ≦ 18 mm.

このような形態の絡合部Cを形成することにより、繊維束を細かく分割させた絡合部Cにすることができる。すなわち、4個以上の部分絡合Dがある場合には、各部分絡合Dに含まれるフィラメント数を総フィラメント数の1/4以下にすることができる。例えば、フィラメント数が12,000本である第1の繊維束と、フィラメント数が12,000本である第2の繊維束を接合させた場合、各部分絡合Dに含まれるフィラメント数は約6,000本となる。すなわち、各部分絡合Dにおける繊維束の高密度化を防ぐことができるため、蓄熱を抑制させることができる。部分絡合Dが11個以上である場合には、各部分絡合Dに含まれるフィラメント数が少なくなり、1つの部分絡合Dがもつ結束強度が低下してしまい、工程張力に耐えられず破断しやすくなる。   By forming the entangled portion C having such a form, the entangled portion C obtained by finely dividing the fiber bundle can be obtained. That is, when there are four or more partial entanglements D, the number of filaments included in each partial entanglement D can be made ¼ or less of the total number of filaments. For example, when the first fiber bundle having 12,000 filaments and the second fiber bundle having 12,000 filaments are joined, the number of filaments included in each partial entanglement D is about 6,000. That is, since it is possible to prevent the fiber bundles from being densified at each partial entanglement D, heat storage can be suppressed. When the partial entanglement D is 11 or more, the number of filaments included in each partial entanglement D is reduced, and the binding strength of one partial entanglement D is lowered, and the process tension cannot be endured. It becomes easy to break.

また、各部分絡合は均一な交絡であるため、本発明の糸繋ぎ接合部は十分な結束強度をもつことができる。   Moreover, since each partial entanglement is uniform entanglement, the yarn splicing joint of the present invention can have sufficient binding strength.

図2は、本発明で用いられる糸繋ぎ装置の一実施態様を示す概略側面図である。本発明の糸繋ぎ接合部を形成する糸繋ぎ装置としては、図2に示す構成の装置を挙げることができる。   FIG. 2 is a schematic side view showing an embodiment of the yarn joining device used in the present invention. An example of the yarn splicing device that forms the yarn splicing joint of the present invention is the device shown in FIG.

本発明の糸繋ぎ接合部の形成手段としては、ブラシ付の加圧ローラーにより、第1の繊維束の末端部と第2の繊維束の末端部を接合させたり、第1の繊維束の末端部と第2の繊維束の末端部を編み込み接合させてもよいが、これらの手法の場合、接合部が毛羽立ってしまい、糸繋ぎ接合部の結束強度が低下する。またこれらの手法では、繊維束の幅方向に均一な部分絡合を形成させることが困難である。そのため、本発明では、糸繋ぎ接合部の形成手段として、加圧流体を噴射させる交絡手法が用いられる。   As a means for forming the yarn splicing joint portion of the present invention, the end portion of the first fiber bundle is joined to the end portion of the first fiber bundle or the end portion of the first fiber bundle by a pressure roller with a brush. However, in the case of these methods, the joint portion becomes fuzzy and the binding strength of the yarn joining portion is lowered. Also, with these methods, it is difficult to form a uniform partial entanglement in the width direction of the fiber bundle. Therefore, in the present invention, an entanglement technique for injecting a pressurized fluid is used as the means for forming the yarn joining portion.

具体的に図2を用いて説明すると、上部交絡ノズル1aと下部交絡ノズル1bとが1組となった交絡処理手段1が、接合しようとする2つの繊維束4、5の長手方向に所定の間隔をおいて等間隔に並設されている。上部交絡ノズル1a下面および下部交絡ノズル1b上面には、複数の流体噴射孔が繊維束4、5の幅方向に直列で、かつ、繊維束方向に間隔をあけ2列並列して開口されている。交絡処理手段1の繊維束4、5の長手方向の両端には、繊維束4、5を把持するための一対のクランプ機構2が備わっており、その交絡処理手段1とクランプ機構2の間には、繊維束4、5を弛緩し、接合部の結束強度を上げるための弛緩機構3が備わっている。各クランプ機構2は交絡処理手段1から所定の間隔をおいて設置され、重ね合わされた繊維束4、5が滑り落ちたりしないよう把持されていればよい。弛緩機構3は、2本の繊維束4、5を弛緩させればよく、個々の弛緩量を規制しやすくするために重錘や棒で繊維束4、5を押し下げることが好ましい。   Specifically, with reference to FIG. 2, the entanglement processing means 1 in which the upper entanglement nozzle 1a and the lower entanglement nozzle 1b form a set is predetermined in the longitudinal direction of the two fiber bundles 4 and 5 to be joined. They are arranged in parallel at regular intervals. On the upper surface of the upper entanglement nozzle 1a and the upper surface of the lower entanglement nozzle 1b, a plurality of fluid ejection holes are opened in series in the width direction of the fiber bundles 4 and 5 and in two rows in parallel at intervals in the fiber bundle direction. . A pair of clamp mechanisms 2 for gripping the fiber bundles 4 and 5 are provided at both ends in the longitudinal direction of the fiber bundles 4 and 5 of the entanglement processing means 1, and between the entanglement processing means 1 and the clamp mechanism 2. Is provided with a relaxation mechanism 3 for relaxing the fiber bundles 4 and 5 and increasing the binding strength of the joint. Each clamp mechanism 2 may be installed at a predetermined interval from the entanglement processing means 1 and may be gripped so that the stacked fiber bundles 4 and 5 do not slide down. The relaxation mechanism 3 only needs to relax the two fiber bundles 4 and 5, and it is preferable to push down the fiber bundles 4 and 5 with a weight or a rod in order to easily regulate the amount of individual relaxation.

次に、この糸繋ぎ装置を用いた、2つの繊維束4、5を接続する方法について説明する。まず、焼成工程を通過中の第1の繊維束4の終端部と、次に焼成工程を通過させる第2の繊維束5の始端部とを重ね合わせて、交絡処理室内に設置する。各終端部はそれぞれ350mmから500mm重ね合わせることが好ましい。各繊維束4、5は、厚さが0.1mmから1.0mmの扁平状にして重ね合わせておくことにより、流体処理による接合部で、2つの繊維束4、5を単繊維レベルまで開繊させ、かつ十分に混繊し絡合させることができ好ましい。   Next, a method for connecting two fiber bundles 4 and 5 using this yarn splicing device will be described. First, the end portion of the first fiber bundle 4 passing through the firing step and the start end portion of the second fiber bundle 5 passing next through the firing step are overlapped and installed in the entanglement processing chamber. Each terminal portion is preferably overlapped by 350 mm to 500 mm. Each of the fiber bundles 4 and 5 is flattened with a thickness of 0.1 mm to 1.0 mm and overlapped so that the two fiber bundles 4 and 5 are opened to a single fiber level at a joint portion by fluid treatment. It is preferable because it can be finely mixed and sufficiently mixed and entangled.

次に、交絡処理手段1に隣接して設けられている弛緩機構3によって、交絡処理手段1の近傍にそれぞれ弛緩部分を形成する。具体的には、例えば重錘を用いて、その重みで2つの繊維束4、5を押し下げて緩ませる。このとき、弛緩程度としては5〜25%が好ましい。この弛緩程度が5%未満では、交絡の掛かり具合が弱くなるため、接合部の結束強度が低下してしまい、逆に弛緩程度が25%を超えると、絡合部が大きくなるため、蓄熱により糸切れが生じやすくなる。   Next, relaxation portions are formed in the vicinity of the entanglement processing means 1 by the relaxation mechanism 3 provided adjacent to the entanglement processing means 1. Specifically, for example, using a weight, the two fiber bundles 4 and 5 are pushed down and loosened with the weight. At this time, the relaxation degree is preferably 5 to 25%. If the degree of relaxation is less than 5%, the degree of entanglement will be weak, so the binding strength of the joint will be reduced, and conversely if the degree of relaxation exceeds 25%, the entangled part will become large, Thread breakage is likely to occur.

次に、クランプ機構2が2つの繊維束を把持して、2つの繊維束4、5の重なりが崩れないよう固定する。次に、さきほど繊維束4、5を弛緩させた重錘を外し、各交絡処理手段1の上部交絡ノズル1aと下部交絡ノズル1bから加圧流体を噴射する。すると、各クランプ機構2間で2つの繊維束4、5が交絡されて接合部が形成され、弛緩させた繊維束4、5の弛みがなくなる。また、噴射する流体には液体や気体など加圧して供給可能なものが用いられ、作業性と経済性の面で、通常は空気が好ましく用いられる。   Next, the clamp mechanism 2 grips the two fiber bundles and fixes the two fiber bundles 4 and 5 so as not to collapse. Next, the weight that loosened the fiber bundles 4 and 5 is removed, and pressurized fluid is ejected from the upper entanglement nozzle 1a and the lower entanglement nozzle 1b of each entanglement processing means 1. Then, the two fiber bundles 4 and 5 are entangled between the clamp mechanisms 2 to form a joint, and the loosened fiber bundles 4 and 5 are not loosened. In addition, as the fluid to be ejected, a fluid or gas that can be supplied under pressure is used, and usually air is preferably used in terms of workability and economy.

次に、本発明の糸繋ぎ接合部の形成方法の仕組みについて、図3と図4を用いて具体的に説明する。図3は、本発明の糸繋ぎ接合部を形成する方法にかかる複数の流体噴射孔を備えた交絡処理手段の概略部分縦断面図であり、図4は、本発明の糸繋ぎ接合部を形成する方法にかかる交絡処理手段の概略側面図である。   Next, the mechanism of the method for forming the yarn splicing joint of the present invention will be specifically described with reference to FIGS. FIG. 3 is a schematic partial longitudinal sectional view of an entanglement processing means having a plurality of fluid ejection holes according to the method for forming a yarn splicing joint according to the present invention, and FIG. 4 forms the yarn splicing joint according to the present invention. It is a schematic side view of the entanglement processing means concerning the method to do.

交絡処理手段1における上部交絡ノズル1aと下部交絡ノズル1bにより形成される交絡処理室内において、図3に示すように繊維束方向に垂直に交絡処理手段1の断面をみたとき、流体噴射孔は上部交絡ノズル1aの流体噴射孔と下部交絡ノズル1bの流体噴射孔が直列に複数開口されている。従って、この流体噴射孔から圧縮空気を噴射させると、細く強い線速をもった圧縮空気が得られ、交絡処理室内に均一な渦が複数発生する。これにより、2つの繊維束4、5を単繊維レベルまで細かく開繊させることができる。開繊された2つの繊維束4,5は、固定されているクランプ機構2を基点に交絡処理手段1に向かって交絡を形成していく。また、このような均一な複数の渦により、2つの繊維束4,5は小束に分割でき、絡合部には複数の部分絡合が形成される。また、繊維束4、5の幅方向に均等に細く強い線速をもつ圧縮空気を噴射することで、分割される小束に含まれるフィラメント数を同程度にすることができ、繊維束4、5の幅方向に均一の部分絡合が複数形成される。すなわち、結束強度のバラツキが少ない複数の部分絡合をもつ絡合部が形成できる。次に、熱を外部に放出できる放熱部を形成するためには、交絡処理手段1の流体噴射孔列が繊維束4、5の長手方向に間隔をあけ2列並列して開口されていることが必要である。この2列の噴射孔列の間では、交絡を形成させていく基点がないため、この列の間では交絡が掛からず、開繊された状態が維持される。つまり、2列の噴射孔列の間が無効空間となり、開繊されて放熱しやすい放熱部が形成される。したがって、図4に示すように2列の噴射孔列の間では放熱部、交絡処理手段1とクランプ機構2の間には、絡合部が形成される。   When the cross section of the entanglement processing means 1 is viewed in the entanglement processing chamber formed by the upper entanglement nozzle 1a and the lower entanglement nozzle 1b in the entanglement processing means 1 as shown in FIG. A plurality of fluid ejection holes of the entanglement nozzle 1a and a plurality of fluid ejection holes of the lower entanglement nozzle 1b are opened in series. Therefore, when compressed air is ejected from the fluid ejection hole, compressed air having a thin and strong linear velocity is obtained, and a plurality of uniform vortices are generated in the entanglement processing chamber. Thereby, the two fiber bundles 4 and 5 can be finely opened to the single fiber level. The two opened fiber bundles 4 and 5 form entanglement toward the entanglement processing means 1 with the clamp mechanism 2 fixed as a base point. Moreover, the two fiber bundles 4 and 5 can be divided into small bundles by such a plurality of uniform vortices, and a plurality of partial entanglements are formed at the entangled portion. In addition, the number of filaments contained in the small bundles to be divided can be made equal by injecting compressed air having a thin and strong linear velocity evenly in the width direction of the fiber bundles 4 and 5. A plurality of uniform partial entanglements are formed in the width direction of 5. That is, an entangled portion having a plurality of partial entanglements with little variation in binding strength can be formed. Next, in order to form a heat radiating part capable of releasing heat to the outside, the fluid ejection hole rows of the entanglement processing means 1 are opened in parallel in two rows at intervals in the longitudinal direction of the fiber bundles 4 and 5. is necessary. Since there is no base point for forming entanglement between the two rows of injection holes, entanglement is not applied between the rows and the opened state is maintained. That is, a space between the two rows of injection holes becomes an invalid space, and a heat radiating portion that is opened and easily radiates heat is formed. Therefore, as shown in FIG. 4, an entangled portion is formed between the heat radiation portion, the entanglement processing means 1 and the clamp mechanism 2 between the two rows of injection holes.

このように放熱部と絡合部を両有する糸繋ぎ接合部を得るためには、交絡処理手段1の流体噴射孔列が繊維束4、5の長手方向に間隔をあけ2列並列して開口されていることが必要である。上部交絡ノズル1a下面および下部交絡ノズル1b上面に開口される流体噴射孔列が1列である場合には、繊維束4、5を開繊された状態で維持することができない。したがって、クランプ機構2の間に挟まれた繊維束4、5の中央まで交絡が形成されるため、熱を外部に放出できる放熱部を形成することができない。また、流体噴射孔列が1列であっても交絡処理時間を短縮し、見掛け上放熱部を形成させることも可能であるが、この場合、交絡処理時間が短くなり、十分な結束強度をもつ絡合部が形成できず、工程通過中に破断しやすくなる。流体噴射孔列が3列以上ある場合には、圧縮空気量が増えてしまうだけでなく、放熱部の繊維束が圧縮空気により傷められ、工程通過中に破断しやすくなる。また、2列の流体噴射孔列間の長さLは、20mm≦L≦100mmであることが好ましく、より好ましくは25mm≦L≦55mmである。長さLが20mm未満の場合には、放熱部が小さくなり十分な放熱効果をもつ放熱部が得られ難く、長さLが100mmより大きい場合には放熱部が必要以上に大きくなってしまうことがある。   In this way, in order to obtain a yarn splicing joint portion having both a heat radiating portion and an entanglement portion, the fluid ejection hole rows of the entanglement processing means 1 are opened in parallel with two rows spaced in the longitudinal direction of the fiber bundles 4 and 5. It is necessary to be. When the fluid ejection hole array opened on the lower surface of the upper entanglement nozzle 1a and the upper surface of the lower entanglement nozzle 1b is one line, the fiber bundles 4 and 5 cannot be maintained in the opened state. Therefore, since the entanglement is formed up to the center of the fiber bundles 4 and 5 sandwiched between the clamp mechanisms 2, it is not possible to form a heat radiating portion that can release heat to the outside. It is also possible to shorten the entanglement processing time even if the number of fluid ejection hole arrays is one, and to form an apparent heat radiating portion. In this case, however, the entanglement processing time is shortened and sufficient binding strength is obtained. The entangled part cannot be formed, and breaks easily during the process. When there are three or more fluid ejection hole rows, not only the amount of compressed air increases, but also the fiber bundle of the heat radiating portion is damaged by the compressed air, and is easily broken during the process passage. Further, the length L between the two rows of fluid ejection holes is preferably 20 mm ≦ L ≦ 100 mm, more preferably 25 mm ≦ L ≦ 55 mm. When the length L is less than 20 mm, the heat radiating portion becomes small and it is difficult to obtain a heat radiating portion having a sufficient heat radiating effect. When the length L is larger than 100 mm, the heat radiating portion becomes larger than necessary. There is.

流体噴射孔のピッチは1.7mm〜4.5mmであることが好ましく、流体噴射孔の径はφ1.2〜2.5mmであることが好ましい。また、流体噴射孔の加工の精度を考えると、各噴射孔間には、ある程度の肉厚が必要であり、流体噴射孔の配列ピッチPは、孔径HDに対し、0.5mm以上大きいことが好ましい。流体噴射孔のピッチが1.7mmより狭い場合、細く強い線速をもつ圧縮空気が得られず、スリット状の圧縮空気となるため、繊維束を単繊維レベルまで開繊し、かつ交絡させることができないことがある。逆に流体噴射孔のピッチが4.5mmより広い場合には、各部分絡合が大きくなり、部分絡合に含まれるフィラメント数が増加するため、蓄熱を抑制することができないことがある。流体噴射孔の径についても、流体噴射孔の径が小さい場合には十分な線速をもつ圧縮空気が得られず、繊維束を開繊し、交絡させることができないことがある。逆に流体噴射孔の径が大きい場合には、各流体噴射孔から噴出される圧縮空気の線速が太くなるため、単繊維レベルまで開繊させることができず、開繊不十分となり、十分な放熱効果が得られないことがある。   The pitch of the fluid ejection holes is preferably 1.7 mm to 4.5 mm, and the diameter of the fluid ejection holes is preferably φ1.2 to 2.5 mm. Considering the accuracy of machining the fluid ejection holes, a certain thickness is required between the ejection holes, and the arrangement pitch P of the fluid ejection holes may be 0.5 mm or more larger than the hole diameter HD. preferable. When the pitch of the fluid injection holes is narrower than 1.7 mm, compressed air having a thin and strong linear velocity cannot be obtained, and it becomes slit-like compressed air, so that the fiber bundle is opened to the single fiber level and entangled. May not be possible. On the other hand, when the pitch of the fluid ejection holes is wider than 4.5 mm, each partial entanglement increases, and the number of filaments included in the partial entanglement increases, so that heat storage may not be suppressed. As for the diameter of the fluid ejection hole, when the diameter of the fluid ejection hole is small, compressed air having a sufficient linear velocity cannot be obtained, and the fiber bundle may not be opened and entangled. On the contrary, when the diameter of the fluid injection hole is large, the linear velocity of the compressed air ejected from each fluid injection hole becomes thick, so that the fiber cannot be opened up to the single fiber level, and the opening is insufficient. May not be effective.

圧縮空気のエア圧は、0.3〜0.6MPaであることが好ましい。エア圧が0.3MPaより低い場合には、繊維束4、5の開繊が不十分となり複数の部分絡合をもつ絡合部を形成させることが困難である。エア圧が0.6MPaを超える場合には、繊維束4、5が加圧流体により傷められて破断しやすくなってしまう。   The air pressure of the compressed air is preferably 0.3 to 0.6 MPa. When the air pressure is lower than 0.3 MPa, the fiber bundles 4 and 5 are not sufficiently opened, and it is difficult to form an entangled portion having a plurality of partial entanglements. When the air pressure exceeds 0.6 MPa, the fiber bundles 4 and 5 are easily damaged by the pressurized fluid.

また、本発明の1つの糸繋ぎ接合部は、2つの繊維束4、5を共に、予め幅方向に複数の繊維束に分割し、複数の交絡処理装置にて形成された接合部を合わせて得ることも可能である。しかしながら、作業性が悪化するだけでなく、繊維束を分割する際に繊維束が毛羽立ってしまい、接合強度が低下してしまうため、幅方向に一括で処理する交絡処理手段から形成されることが好ましい。   In addition, one yarn splicing joint of the present invention divides the two fiber bundles 4 and 5 into a plurality of fiber bundles in the width direction in advance, and combines the joints formed by a plurality of entanglement processing devices. It is also possible to obtain. However, not only the workability is deteriorated, but also the fiber bundle becomes fluffed when the fiber bundle is divided, and the bonding strength is lowered, so that it is formed from the entanglement processing means that collectively process in the width direction. preferable.

図5は、前駆体繊維束を接続媒体を介して接合させた本発明の他の糸繋ぎ接合部を例示説明する概略側面図である。   FIG. 5 is a schematic side view illustrating another example of the yarn splicing joint of the present invention in which precursor fiber bundles are joined via a connection medium.

図5に示すように、第1の繊維束4と第2の繊維束5の間に接続媒体として、150〜400℃の温度の雰囲気温度下において発熱量が好ましくは500cal/g以下で、かつ熱伝導率が好ましくは3W/m・K以上700W/m・Kである、第3の繊維束6を用い、本発明の糸繋ぎ接合部を形成することができる。この場合、例えば、第1の繊維束4の終端部と、接続媒体とを重ね合わせ、あるいは、接続媒体と第2の繊維束5の始端部とを重ね合わせて、交絡処理室内に設置する。各終端部と接続媒体はそれぞれ350mmから500mm重ね合わせることが好ましい。このとき、非発熱性で、かつ熱伝導率が3W/m・K以上700W/m・Kの接続媒体を使用することにより、耐炎化処理中における発熱量を大幅に低減させることができるだけでなく、耐炎化工程通過中に第1の繊維束4と第2の繊維束5の絡合部に蓄熱される熱量の除熱も促進させてやることができるため、蓄熱による糸切れを大幅に低減させてやることができる。接続媒体には炭素繊維などが好適に用いられる。   As shown in FIG. 5, as a connection medium between the first fiber bundle 4 and the second fiber bundle 5, the calorific value is preferably 500 cal / g or less at an ambient temperature of 150 to 400 ° C., and Using the third fiber bundle 6 having a thermal conductivity of preferably 3 W / m · K or more and 700 W / m · K, the yarn splicing joint of the present invention can be formed. In this case, for example, the terminal portion of the first fiber bundle 4 and the connection medium are overlapped, or the connection medium and the start end portion of the second fiber bundle 5 are overlapped and installed in the entanglement processing chamber. Each terminal portion and the connection medium are preferably overlapped with each other by 350 mm to 500 mm. At this time, by using a connection medium that is non-exothermic and has a thermal conductivity of 3 W / m · K or more and 700 W / m · K, not only can the heat generated during the flameproofing treatment be greatly reduced. Since the heat removal of the heat stored in the entangled portion of the first fiber bundle 4 and the second fiber bundle 5 during the flameproofing process can be promoted, yarn breakage due to heat storage is greatly reduced. I can let you do it. Carbon fiber or the like is preferably used for the connection medium.

本発明の糸繋ぎ接合部は、好ましくはフィラメント数12,000本以上60,000本以下であり、さらに単繊維繊度が好ましくは0.7デニール以上1.5デニール以下のポリアクリル系前駆体繊維束の糸繋ぎに特に有効であり、本発明の糸繋ぎ接合部が焼成工程を通過しても、蓄熱による糸切れを防止することができるため、耐炎化炉内の温度を低下させることなく、連続的に炭素繊維を製造することが可能となる。   The yarn splicing joint of the present invention preferably has a filament number of 12,000 or more and 60,000 or less, and further has a single fiber fineness of preferably 0.7 denier or more and 1.5 denier or less. Especially effective for tying a bundle of yarns, even if the yarn tying joint of the present invention passes through the firing step, it is possible to prevent yarn breakage due to heat storage, without reducing the temperature in the flameproofing furnace, It becomes possible to produce carbon fibers continuously.

以下、実施例をあげて本発明の効果を具体的に説明するが、本発明は、これらの実施例に限定されるものではない。   Hereinafter, the effects of the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

本発明の実施例では、先に炭素繊維の製造工程の一実施形態として説明した製造工程中の耐炎化炉を用いて、糸繋ぎ接合部が耐炎化炉を通過可能である炉内温度と、耐炎化炉内温度245℃における通過可能な工程張力を測定した。さらに、操業性の指標として、耐炎化炉内温度が245℃で、工程張力が5kg/st下における工程通過率を測定した。耐炎化時間はいずれも60分とし、各水準について耐炎化炉内温度は温度制御の変動幅を考慮して、1℃刻みとした。また、サンプル数20で工程を通過できた数を工程通過率とした。本発明の実施例において耐炎化した前駆体繊維束は、単繊維繊度が0.9デニールであり、フィラメント数が24,000本のポリアクリル系前駆体繊維束である。各実施例と各比較例について、結果を表1にまとめた。   In the examples of the present invention, using the flameproofing furnace in the manufacturing process described above as one embodiment of the carbon fiber manufacturing process, the temperature inside the furnace where the yarn splicing joint can pass through the flameproofing furnace, The process tension which can be passed at a temperature in the flameproofing furnace of 245 ° C. was measured. Furthermore, as an index of operability, the process passage rate was measured at a flameproof furnace temperature of 245 ° C. and a process tension of 5 kg / st. The flameproofing time was 60 minutes in all cases, and the flameproofing furnace temperature for each level was set in increments of 1 ° C. in consideration of the fluctuation range of temperature control. Further, the number of samples that could pass the process with 20 samples was defined as the process pass rate. In the examples of the present invention, the flame retardant precursor fiber bundle is a polyacrylic precursor fiber bundle having a single fiber fineness of 0.9 denier and a filament number of 24,000. The results are summarized in Table 1 for each example and each comparative example.

(実施例1)
第1と第2の前駆体繊維束の末端部同士の400mmを重ね合わせ、図2に示す糸繋ぎ装置を用いて、接合させた。このとき、交絡処理手段は3つ用い、交絡処理手段の各交絡ノズルのスペックは流体噴射孔径がφ1.5mm、孔ピッチが2.5mmで、流体噴射孔列が2列備わっており、その流体噴射孔列間の長さLは30mmである。また、第1と第2の繊維束には丸棒による弛緩機構により、9.0%の弛緩量を付与し、0.4MPaの圧縮空気を2秒間噴射した。これにより、形成された糸繋ぎ接合部は全部で3個であり、各糸繋ぎ接合部は1つの放熱部と2つの絡合部を備えている。各放熱部の長さXは42mm、放熱部の幅方向の長さは、開繊前の繊維束長さの1.6倍である。各絡合部には部分絡合を4個含み、絡合部の長さYは14mmである。その結果、表1に示すとおり、連続原糸と比較して、耐炎化炉通過可能な温度が10℃低下する程度で、低下幅を小さくすることができた。また、通過可能な工程張力も7kg/stで、工程通過率も95%であった。さらに、焼成後得られた接合部は扁平状で均一な接合であったため、隣接する繊維束に混繊するようなこともなかった。
Example 1
400 mm at the end portions of the first and second precursor fiber bundles were superposed and joined using the yarn joining device shown in FIG. At this time, three entanglement processing means are used, and the specifications of each entanglement nozzle of the entanglement processing means include a fluid ejection hole diameter of φ1.5 mm, a hole pitch of 2.5 mm, and two fluid ejection hole arrays. The length L between the injection hole arrays is 30 mm. The first and second fiber bundles were given a relaxation amount of 9.0% by a relaxation mechanism using a round bar, and 0.4 MPa compressed air was injected for 2 seconds. As a result, the total number of yarn splicing joints formed is three, and each yarn splicing joint is provided with one heat dissipating part and two intertwining parts. The length X of each heat radiation part is 42 mm, and the length of the heat radiation part in the width direction is 1.6 times the fiber bundle length before opening. Each entangled portion includes four partial entanglements, and the length Y of the entangled portion is 14 mm. As a result, as shown in Table 1, compared with the continuous raw yarn, the decrease width could be reduced to the extent that the temperature at which the flameproofing furnace can pass was decreased by 10 ° C. Moreover, the process tension which can be passed was 7 kg / st, and the process pass rate was 95%. Furthermore, since the joint obtained after firing was flat and uniform, there was no possibility of mixing with adjacent fiber bundles.

(実施例2)
第1と第2前駆体繊維束の末端部と、接続媒体である炭素繊維束をそれぞれ400mm重ね合わせ、図2に示す糸繋ぎ装置を用いて、第1の前駆体繊維束と炭素繊維束、炭素繊維束と第2の前駆体繊維束とを接合させた。接続媒体にはフィラメント数24,000本の炭素繊維束を用いた。また、この炭素繊維束の熱伝導率は55W/m・Kであった。このとき、用いた交絡処理手段は3つであり、交絡処理手段の各交絡ノズルのスペックは流体噴射孔径がφ1.5mm、孔ピッチが2.5mmで、流体噴射孔列が2列備わっており、その流体噴射孔列間の長さLは30mmである。また、第1の繊維束と炭素繊維束、炭素繊維束と第2の繊維束には、丸棒による弛緩機構により、9.0%の弛緩量を付与し、0.4MPaの圧縮空気を2秒間噴射した。これにより、第1の繊維束と炭素繊維束との間に3個の糸繋ぎ接合部、炭素繊維束と第2の繊維束との間に3個の糸繋ぎ接合部が形成された。各糸繋ぎ接合部は1つの放熱部と2つの絡合部を備えており、各放熱部の長さXは42mm、放熱部の幅方向の長さは、開繊前の繊維束長さの1.6倍である。各絡合部には部分絡合を4個含み、絡合部の長さYは14mmである。このとき、第1の繊維束と第2の繊維束は、図5に示すように500mmの距離を置いて離れており、この中間部分については圧縮空気が噴射されない。その結果、表1に示すとおり、連続原糸と同等の耐炎化炉通過可能な温度であり、耐炎化炉の炉内温度を低下させることなく、接合部を通過させることができた。また、通過可能な工程張力も7kg/stと十分な結束強度を有しており、さらには工程通過率も100%であり、接合部の状態も良好であった。
(Example 2)
The end portions of the first and second precursor fiber bundles and the carbon fiber bundle as the connection medium are overlapped by 400 mm, respectively, and the first precursor fiber bundle and the carbon fiber bundle are used by using the yarn joining device shown in FIG. The carbon fiber bundle and the second precursor fiber bundle were joined. A carbon fiber bundle having 24,000 filaments was used as the connection medium. The carbon fiber bundle had a thermal conductivity of 55 W / m · K. At this time, there were three entanglement processing means used, and the specifications of each entanglement nozzle of the entanglement processing means were a fluid injection hole diameter of φ1.5 mm, a hole pitch of 2.5 mm, and two fluid injection hole arrays. The length L between the fluid ejection hole arrays is 30 mm. Further, the first fiber bundle and the carbon fiber bundle, and the carbon fiber bundle and the second fiber bundle are given a relaxation amount of 9.0% by a relaxation mechanism using a round bar, and 0.4 MPa of compressed air is supplied to 2%. Sprayed for 2 seconds. As a result, three yarn joining portions were formed between the first fiber bundle and the carbon fiber bundle, and three yarn joining portions were formed between the carbon fiber bundle and the second fiber bundle. Each yarn splicing joint has one heat dissipating part and two entangled parts, the length X of each heat dissipating part is 42 mm, and the length in the width direction of the heat dissipating part is the fiber bundle length before opening. 1.6 times. Each entangled portion includes four partial entanglements, and the length Y of the entangled portion is 14 mm. At this time, the first fiber bundle and the second fiber bundle are separated by a distance of 500 mm as shown in FIG. 5, and compressed air is not injected to the intermediate portion. As a result, as shown in Table 1, the temperature was such that it could pass through a flameproofing furnace equivalent to that of continuous yarn, and the joint could be passed through without reducing the furnace temperature of the flameproofing furnace. In addition, the process tension that can be passed was 7 kg / st and the binding strength was sufficient, the process pass rate was 100%, and the state of the joint was good.

(比較例1)
フィラメント数24,000本のポリアクリル系前駆体繊維束の末端部同士の400mmを重ね合わせ、図2に示す糸繋ぎ装置を用いて、第1と第2の繊維束を接合させた。このとき、交絡処理手段は3つ用い、交絡処理手段の各交絡ノズルのスペックは流体噴射孔径がφ3.0mm、孔ピッチが6.0mmで、流体噴射孔列は1列である。第1と第2の繊維束には丸棒による弛緩機構により、7.0%の弛緩量を付与し、0.4MPaの圧縮空気を2秒間噴射した。これにより、形成された糸繋ぎ接合部は全部で3個であるが、各糸繋ぎ接合部には放熱部はなく、絡合部を1つずつ備えている。また、各絡合部には部分絡合を2個含み、絡合部の長さYは5mmである。その結果、接合部が除熱されないため焼損しやすく、耐炎化炉通過可能な温度が240℃となり、連続原糸と比較して大きく低下した。また、各部分絡合のバラツキが大きいため、通過可能な工程張力も5kg/stと低下し、工程通過率も80%と好ましいものではなかった。
(Comparative Example 1)
400 mm at the end portions of the polyacrylic precursor fiber bundle having 24,000 filaments were overlapped, and the first and second fiber bundles were joined using the yarn joining device shown in FIG. At this time, three entanglement processing means are used, and the specifications of each entanglement nozzle of the entanglement processing means are a fluid ejection hole diameter of φ3.0 mm, a hole pitch of 6.0 mm, and a fluid ejection hole row. The first and second fiber bundles were given a relaxation amount of 7.0% by a relaxation mechanism using a round bar, and 0.4 MPa compressed air was injected for 2 seconds. As a result, the total number of yarn splicing joints formed is three, but each yarn splicing joint does not have a heat radiating portion and includes one entanglement portion. Each entangled portion includes two partial entanglements, and the length Y of the entangled portion is 5 mm. As a result, since the heat of the joint was not removed, it was easy to burn out, and the temperature at which it could pass through the flameproofing furnace was 240 ° C., which was greatly reduced compared to the continuous raw yarn. Moreover, since the variation of each partial entanglement was large, the process tension which can be passed fell as 5 kg / st, and the process passage rate was also not preferable as 80%.

Figure 0005515652
Figure 0005515652

図1は、本発明の糸繋ぎ接合部の一例を示す概略平面図である。FIG. 1 is a schematic plan view showing an example of the yarn splicing joint of the present invention. 図2は、本発明で用いられる糸繋ぎ装置の一実施態様を示す概略側面図である。FIG. 2 is a schematic side view showing an embodiment of the yarn joining device used in the present invention. 図3は、本発明の糸繋ぎ接合部を形成する方法にかかる複数の流体噴射孔を備えた交絡処理手段の概略部分縦断面図である。FIG. 3 is a schematic partial longitudinal sectional view of the entanglement processing means provided with a plurality of fluid ejection holes according to the method for forming the yarn splicing joint of the present invention. 図4は、本発明の糸繋ぎ接合部を形成する方法にかかる交絡処理手段の概略側面図である。FIG. 4 is a schematic side view of the entanglement processing means according to the method for forming the yarn splicing joint of the present invention. 図5は、前駆体繊維束を接続媒体を介して接合させた本発明の他の糸繋ぎ接合部を例示する概略側面図である。FIG. 5 is a schematic side view illustrating another yarn splicing joint of the present invention in which precursor fiber bundles are joined via a connection medium.

A:糸繋ぎ接合部
B:放熱部
C:絡合部
D:部分絡合
X:放熱部の繊維束方向の長さ
Y:部分絡合の繊維束方向の長さ
1:交絡処理手段
1a:上部交絡ノズル
1b:下部交絡ノズル
2:クランプ機構
3:弛緩機構
4:第1の繊維束
5:第2の繊維束
6:第3の繊維束(接続媒体)
A: Yarn splicing joint B: Heat dissipating part C: Entangling part D: Partial intertwining X: Length in the fiber bundle direction of the heat dissipating part Y: Length in the fiber bundle direction of the partial intertwining 1: Entangling processing means 1a: Upper entanglement nozzle 1b: Lower entanglement nozzle 2: Clamp mechanism 3: Relaxation mechanism 4: First fiber bundle 5: Second fiber bundle 6: Third fiber bundle (connection medium)

Claims (11)

第1の繊維束の末端部と第2の繊維束の末端部とを長手方向に相互に重ね合わせ、接合されてなる糸繋ぎ接合部において、前記糸繋ぎ接合部は前記第1の繊維束と前記第2の繊維束とが互いに絡み合わされてなり、前記糸繋ぎ接合部は絡み合わされた繊維束が開繊されてなる放熱部と、前記放熱部の両端部に繊維束の幅方向に複数の部分絡合をもつ絡合部を備えていることを特徴とする糸繋ぎ接合部。   In the yarn splicing joint portion formed by overlapping and joining the end portion of the first fiber bundle and the end portion of the second fiber bundle in the longitudinal direction, the yarn splicing joint portion is connected to the first fiber bundle. The second fiber bundle is entangled with each other, and the yarn splicing joint portion has a heat radiating portion in which the entangled fiber bundle is opened, and a plurality of fibers in the width direction of the fiber bundle at both ends of the heat radiating portion. A yarn splicing joint comprising an intertwined portion having partial intertwining. 第1の繊維束と第2の繊維束が炭素繊維前駆体繊維束であって、請求項1記載の糸繋ぎ接合部を有する前駆体繊維束を焼成してなる炭素繊維。   The first fiber bundle and the second fiber bundle are carbon fiber precursor fiber bundles, and carbon fibers formed by firing the precursor fiber bundle having the yarn splicing joint portion according to claim 1. 炭素繊維の前駆体繊維束である第1の繊維束の末端部と第2の繊維束の末端部とを長手方向に相互に重ね合わせ、その重ね合わせ部に、繊維束の幅方向に直列に複数の流体噴射孔が開口され、前記流体噴射孔の列が繊維束方向に間隔をあけ2列配置された少なくとも1組の交絡処理手段により加圧流体を噴射して、前記第1の繊維束と前記第2の繊維束の単繊維を互いに絡み合わせ、絡み合わされた繊維束が開繊されてなる放熱部と、前記放熱部の両端部に繊維束の幅方向に複数の部分絡合をもつ絡合部を備えた糸繋ぎ接合部を形成させることを特徴とする前駆体繊維束の製造方法。   The end portion of the first fiber bundle and the end portion of the second fiber bundle, which are carbon fiber precursor fiber bundles, are overlapped with each other in the longitudinal direction, and the overlap portion is connected in series in the width direction of the fiber bundle. A plurality of fluid ejection holes are opened, and pressurized fluid is ejected by at least one set of entanglement processing means in which the rows of fluid ejection holes are arranged in two rows at intervals in the fiber bundle direction, and the first fiber bundle And the single fiber of the second fiber bundle are entangled with each other, the heat dissipation portion formed by opening the intertwined fiber bundle, and a plurality of partial intertwining in the width direction of the fiber bundle at both ends of the heat dissipation portion A method for producing a precursor fiber bundle, wherein a yarn splicing joint having an entanglement is formed. 前記2列に配置された流体噴射孔列の列間隔が、20〜100mmであり、流体噴射孔列における流体噴射孔の配列ピッチが、1.7〜4.5mmである請求項3に記載の前駆体繊維束の製造方法。   The row interval of the fluid ejection hole rows arranged in the two rows is 20 to 100 mm, and the arrangement pitch of the fluid ejection holes in the fluid ejection hole row is 1.7 to 4.5 mm. A method for producing a precursor fiber bundle. 請求項3もしくは4に記載の前駆体繊維束の製造方法で得られた糸繋ぎ接合部を有する炭素繊維の前駆体繊維束を焼成することを特徴とする炭素繊維の製造方法。   A carbon fiber precursor fiber bundle having a yarn splicing joint obtained by the precursor fiber bundle production method according to claim 3 or 4 is fired. 第1の繊維束と第2の繊維束を、接続媒体を介して接合されてなる糸繋ぎ接合部であって、前記糸繋ぎ接合部は前記第1の繊維束と前記接続媒体、前記接続媒体と前記第2の繊維束とが互いに絡み合わされてなり、前記糸繋ぎ接合部は絡み合わされた繊維束が開繊されてなる放熱部と、前記放熱部の両端部に繊維束の幅方向に複数の部分絡合をもつ絡合部を備えていることを特徴とする糸繋ぎ接合部。   A yarn joining portion formed by joining the first fiber bundle and the second fiber bundle via a connection medium, wherein the yarn joining portion is the first fiber bundle, the connection medium, and the connection medium. And the second fiber bundle are entangled with each other, and the yarn splicing joint portion has a heat radiating portion in which the entangled fiber bundle is opened, and a plurality of the heat radiating portions in the width direction of the fiber bundle at both ends. A yarn splicing joint comprising an intertwined portion having a partial intertwining of 接続媒体が非発熱性でかつ熱伝導率が3W/m・K以上700W/m・K以下の接続媒体であることを特徴とする請求項6記載の糸繋ぎ接合部。   The yarn splicing joint according to claim 6, wherein the connecting medium is non-exothermic and has a thermal conductivity of 3 W / m · K or more and 700 W / m · K or less. 第1の繊維束と第2の繊維束が炭素繊維前駆体繊維束であって、請求項7記載の糸繋ぎ接合部を有する前駆体繊維束を焼成してなる炭素繊維。   The first fiber bundle and the second fiber bundle are carbon fiber precursor fiber bundles, and carbon fibers formed by firing the precursor fiber bundle having the yarn splicing joint portion according to claim 7. 炭素繊維の前駆体繊維束である第1の繊維束の末端部と第2の繊維束の末端部を、接続媒体の長手方向にそれぞれ重ね合わせ、その重ね合わせ部に、繊維束の幅方向に直列に複数の流体噴射孔が開口され、前記流体噴射孔の列が繊維束方向に間隔をあけ2列配置された少なくとも1組の交絡処理手段により加圧流体を噴射して、前記第1の繊維束と前記前記接続媒体、前記接続媒体と前記第2の繊維束とを互いに絡み合わせ、絡み合わされた繊維束が開繊されてなる放熱部と、前記放熱部の両端部に繊維束の幅方向に複数の部分絡合をもつ絡合部を備えた糸繋ぎ接合部を形成させることを特徴とする前駆体繊維束の製造方法。   The end portion of the first fiber bundle and the end portion of the second fiber bundle, which are carbon fiber precursor fiber bundles, are overlapped in the longitudinal direction of the connection medium, and the overlap portion is overlapped in the width direction of the fiber bundle. A plurality of fluid ejection holes are opened in series, and pressurized fluid is ejected by at least one set of entanglement processing means in which two rows of fluid ejection holes are arranged in the fiber bundle direction at intervals. The fiber bundle and the connection medium, the connection medium and the second fiber bundle are entangled with each other, and the entangled fiber bundle is opened, and the width of the fiber bundle at both ends of the heat dissipation part A method for producing a precursor fiber bundle, comprising forming a yarn splicing joint having an entangled portion having a plurality of partial entanglements in a direction. 前記2列に配置された流体噴射孔列の列間隔が、20〜100mmであり、流体噴射孔列における流体噴射孔の配列ピッチが、1.7〜4.5mmである請求項9に記載の前駆体繊維束の製造方法。   The row interval between the fluid ejection hole rows arranged in the two rows is 20 to 100 mm, and the arrangement pitch of the fluid ejection holes in the fluid ejection hole row is 1.7 to 4.5 mm. A method for producing a precursor fiber bundle. 請求項9もしくは10に記載の前駆体繊維束の製造方法で得られた糸繋ぎ接合部を有する炭素繊維の前駆体繊維束を焼成することを特徴とする炭素繊維の製造方法。   A carbon fiber precursor fiber bundle having a yarn splicing joint obtained by the precursor fiber bundle production method according to claim 9 or 10 is fired.
JP2009256773A 2008-11-10 2009-11-10 A method for producing a carbon fiber having a yarn splicing joint and a yarn splicing joint. Active JP5515652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009256773A JP5515652B2 (en) 2008-11-10 2009-11-10 A method for producing a carbon fiber having a yarn splicing joint and a yarn splicing joint.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008287519 2008-11-10
JP2008287519 2008-11-10
JP2009256773A JP5515652B2 (en) 2008-11-10 2009-11-10 A method for producing a carbon fiber having a yarn splicing joint and a yarn splicing joint.

Publications (2)

Publication Number Publication Date
JP2010133074A JP2010133074A (en) 2010-06-17
JP5515652B2 true JP5515652B2 (en) 2014-06-11

Family

ID=42344607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009256773A Active JP5515652B2 (en) 2008-11-10 2009-11-10 A method for producing a carbon fiber having a yarn splicing joint and a yarn splicing joint.

Country Status (1)

Country Link
JP (1) JP5515652B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6294655B2 (en) * 2013-12-24 2018-03-14 東邦テナックス株式会社 Method for connecting fiber yarn and method for producing carbon fiber
JP6198864B2 (en) * 2016-02-03 2017-09-20 東邦テナックス株式会社 Carbon fiber manufacturing method
CN114262956B (en) * 2021-12-29 2023-11-14 吉林宝旌炭材料有限公司 Carbonization yarn splicing method for large-tow carbon fiber precursor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846122A (en) * 1981-09-16 1983-03-17 Toray Ind Inc Continuous process for producing carbon fiber
JP3722323B2 (en) * 1997-02-14 2005-11-30 東レ株式会社 Carbon fiber, manufacturing method and manufacturing apparatus thereof
JP2003321160A (en) * 2002-05-09 2003-11-11 Mitsubishi Rayon Co Ltd Fiber tow package, carbon fiber using the package, and manufacturing method for chopped fiber

Also Published As

Publication number Publication date
JP2010133074A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
KR101564801B1 (en) Fiber bundle with pieced part, process for producing same, and process for producing carbon fiber
JP3722323B2 (en) Carbon fiber, manufacturing method and manufacturing apparatus thereof
EP1420091B1 (en) Production device for carbon fibers and production method therefor
JP5515652B2 (en) A method for producing a carbon fiber having a yarn splicing joint and a yarn splicing joint.
JP6294655B2 (en) Method for connecting fiber yarn and method for producing carbon fiber
JPS5846122A (en) Continuous process for producing carbon fiber
US9884740B2 (en) Fiber bundle with pieced part, process for producing same, and process for producing carbon fiber
US10988862B2 (en) Method for manufacturing carbon fibers and fiber joining method
JP5515957B2 (en) Carbon fiber manufacturing method
JP5048988B2 (en) Yarn splicing device and yarn splicing method
JP2010255168A5 (en)
WO2013154178A1 (en) Carbon-fiber-precursor acrylic fiber bundle, method for thermally oxidizing some thereof, thermal oxidation furnace, and process for producing carbon fiber bundle
JP3890701B2 (en) Continuous carbon fiber manufacturing process
JP4669343B2 (en) Method for producing flame resistant fiber
JP5016890B2 (en) Yarn splicing device and yarn splicing method
JP5097377B2 (en) Yarn support device and yarn support method
JP2008174846A (en) Method for continuously producing carbon fiber
JP2002302342A (en) Fibrous yarn connecting method
JPS58208420A (en) Continuous production of carbon fiber
JPH04214414A (en) Production of carbon fiber
JP2004076234A (en) Continuous bundle of polyacrylonitrile-based oxidized fiber and method for producing the same
JP2003321160A (en) Fiber tow package, carbon fiber using the package, and manufacturing method for chopped fiber
JP2004076174A (en) Method for producing carbon fiber
JP2008144307A (en) Method for producing carbon fiber bundle
JP2002038335A (en) Method for continuous production of carbon fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R151 Written notification of patent or utility model registration

Ref document number: 5515652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151