JP3706754B2 - Acrylic fiber yarn for producing carbon fiber and method for producing the same - Google Patents

Acrylic fiber yarn for producing carbon fiber and method for producing the same Download PDF

Info

Publication number
JP3706754B2
JP3706754B2 JP31782098A JP31782098A JP3706754B2 JP 3706754 B2 JP3706754 B2 JP 3706754B2 JP 31782098 A JP31782098 A JP 31782098A JP 31782098 A JP31782098 A JP 31782098A JP 3706754 B2 JP3706754 B2 JP 3706754B2
Authority
JP
Japan
Prior art keywords
acrylic fiber
fiber yarn
joint
yarn
tex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31782098A
Other languages
Japanese (ja)
Other versions
JP2000144534A (en
Inventor
知之 小谷
考彦 國澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP31782098A priority Critical patent/JP3706754B2/en
Publication of JP2000144534A publication Critical patent/JP2000144534A/en
Application granted granted Critical
Publication of JP3706754B2 publication Critical patent/JP3706754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H69/00Methods of, or devices for, interconnecting successive lengths of material; Knot-tying devices ;Control of the correct working of the interconnecting device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments
    • B65H2701/314Carbon fibres

Description

【0001】
【発明の属する技術分野】
本発明は接合部を有する炭素繊維製造用のアクリル系繊維糸条及び該繊維糸条の製造方法に関する。
【0002】
【従来の技術】
アクリル系繊維糸条は炭素繊維を製造するための前駆体として広く利用されており、アクリル系繊維糸条を200〜300℃の酸化性雰囲気中で加熱処理する耐炎化工程によって耐炎化繊維にした後、引き続いて1000℃以上の不活性雰囲気中で加熱処理する炭素化工程によって炭素繊維にするのが一般的である。
【0003】
そして、上記のようにして得られた炭素繊維は、諸種の優れた物性を具備していることから、各種の繊維強化樹脂複合材料等の強化用繊維として広く利用されている。
【0004】
優れた物性を有する炭素繊維を高速生産するためには、多量のアクリル系繊維糸条を同時に短時間のうちに耐炎化繊維にし、引き続いて炭素化して炭素繊維にすることが必要である。このためには、耐炎化工程での加熱温度及び工程張力を高くすると共に、炭素化工程での工程張力も高くせざるを得ない。
【0005】
又一般に、炭素繊維製造用のアクリル系繊維糸条は、ボビンなどに巻き上げられた形態、或いは箱の中に折りたたみ積層された形態で供給されている。従ってこれらのアクリル系繊維糸条を耐炎化工程と炭素化工程とからなる焼成工程に連続的に移して炭素繊維にするためには、上記の形態にあるアクリル系繊維糸条の末端部を別のアクリル系繊維糸条の末端部と接続させる必要がある。
【0006】
しかしながら、アクリル系繊維糸条の末端部同士を単に結んで形成した接合部は、耐炎化工程での蓄熱が著しく、このことが次工程である炭素化工程中での糸切れなどのトラブルの原因となる。
【0007】
上記のトラブルを回避して操業性を向上させる手段として、特開昭54−50624号公報には、アクリル系繊維糸条同士の接合部に耐炎性化合物を付与する方法が、又特開昭56−37315号公報には、アクリル系繊維糸条の末端部同士を予め熱処理した後に特殊な結び方で結んで接合部を形成する方法が、更に特公平1−12850号公報には、アクリル系繊維糸条の末端部同士を絡合させて接合部を形成する方法が、更に又特開平4−214414号公報には、アクリル系繊維糸条の末端部同士を絡合させて接合部を形成し、さらにこの接合部に酸化反応抑制剤を付着する方法がそれぞれ開示されている。
【0008】
しかるに上記の方法よる接合部を有するアクリル系繊維糸条は、優れた物性を備えた炭素繊維を高速生産するための製造条件に適合し得ない。すなわち上記の方法よる接合部を有するアクリル系繊維糸条は、アクリル系繊維糸条を加熱温度及び工程張力の高い耐炎化工程で耐炎化繊維にする工程と、工程張力の高い炭素化工程で炭素繊維にする工程とをスムーズに通過し得ない。
【0009】
このため、上記の方法よる接合部を有するアクリル系繊維糸条が耐炎化工程と炭素化工程とを問題なくスムーズに通過し得るようにするには、加熱温度及び工程張力の高い耐炎化工程と、工程張力の高い炭素化工程とのうちのいずれかの条件を緩和させなけらばならなく、高速生産での炭素繊維の製造は困難である。
【0010】
【発明が解決しようとする課題】
従って本発明が解決しようとする課題は、加熱温度及び工程張力の高い耐炎化工程と工程張力の高い炭素化工程との両工程を、いずれも問題なく通過し得る接合部を有する炭素繊維製造用のアクリル系繊維糸条、及び該繊維糸条の製造方法を提供することにある。
【0011】
【課題を解決するための手段】
上記の課題は、以下に説明する本発明の炭素繊維製造用のアクリル系繊維糸条及びその繊維糸条の製造方法によって解決される。
すなわち本発明は、末端部同士を接続した接合部を有する炭素繊維製造用のアクリル系繊維糸条であって、該接合部が密度1.30g/cm3 以上の耐炎化末端部同士を絡合一体化させてなるものであるところの炭素繊維製造用のアクリル系繊維糸条からなる。
【0012】
上記の構成を備えてなる本発明の炭素繊維製造用のアクリル系繊維糸条においては、耐炎化末端部同士を絡合一体化させてなる接合部は、250℃での引張強度が20mN/Tex以上であることが好ましい。
【0013】
又、上記の本発明の炭素繊維製造用のアクリル系繊維糸条における接合部は、その長さが50mm以上であり、幅W(mm)が下記の式(1)を満足するものであることが好ましい。
0.12×A1/2 ≦W≦0.22×A1/2 ・・・・(1)
(式中、Aは使用したアクリル系繊維糸条の繊度(Tex)を表わす。)
【0014】
更に本発明の炭素繊維製造用のアクリル系繊維糸条の製造方法は、アクリル系繊維糸条の末端部を密度1.30g/cm3 以上に耐炎化処理した後、この耐炎化処理した末端部同士を相互に重ね合わせ、更に重ね合わせた部分の繊維糸条を互いに絡合一体化して接合部を形成することによって、接合部を有する炭素繊維製造用のアクリル系繊維糸条を得るものである。
【0015】
上記の構成を備えてなる本発明の炭素繊維製造用のアクリル系繊維糸条の製造方法においては、重ね合わせた部分の繊維糸条を互いに絡合一体化して接合部を形成する手段として、高速流体を使用する手段を採ることが好ましい。
【0016】
又、重ね合わせた部分の繊維糸条を互いに絡合一体化して形成した接合部の250℃での引張強度が、20mN/Tex以上になるようにすることが好ましい。
【0017】
更に、重ね合わせた部分の繊維糸条を互いに絡合一体化して形成した接合部の長さが50mm以上で、幅W(mm)が下記の式(1)を満足するようにすることが好ましい。
0.12×A1/2 ≦W≦0.22×A1/2 ・・・・(1)
(式中、Aは使用したアクリル系繊維糸条の繊度(Tex)を表わす。)
【0018】
【発明の実施の形態】
本発明の耐炎化末端部同士を接続した接合部を有する炭素繊維製造用のアクリル系繊維糸条にするには、通常の炭素繊維の製造に用いられるアクリル系繊維糸条を使用すればよく、アクリル系繊維糸条の組成や形態等は制限されない。
【0019】
末端部が耐炎化されたアクリル系繊維糸条にするための耐炎化処理は、該耐炎化処理によってアクリル系繊維糸条の末端部の密度が1.30g/cm3 以上になればよく、それ以外の耐炎化処理についての格別の制限はなく、例えば空気、オゾン、その他の酸化性雰囲気中で、200〜300℃程度の加熱処理を行なうことにより、密度が1.30g/cm3 以上に耐炎化された末端部を有するアクリル系繊維糸条にすればよい。
【0020】
本発明の炭素繊維製造用のアクリル系繊維糸条にあっては、密度1.30g/cm3 以上に耐炎化されている末端部同士を接続した接合部にしたことにより、このアクリル系繊維糸条を焼成して炭素繊維にするときの耐炎化工程での蓄熱がないために、炭素化工程での反応熱の放熱が良好に行われ、これによって該炭素化工程でのアクリル系繊維糸条の融着や切断が効果的に防止される。
【0021】
これに対して、耐炎化末端部同士を絡合一体化させてなる接合部を有するアクリル系繊維糸条であっても、該耐炎化末端部の密度が1.30g/cm3 に満たないときには、これを焼成して炭素繊維にするときの焼成工程での反応熱の放熱が不十分になることがあり、炭素化工程中に接合部が切断することがある。
【0022】
本発明の炭素繊維製造用のアクリル系繊維糸条の接合部、つまり耐炎化末端部同士を絡合一体化させた接合部は、耐炎化末端部同士を相互に重ね合わせた後、重ね合わせた部分の繊維糸条を、空気などの高速流体処理により互いに絡合させて一体化する方法、或いはニードルパンチにより互いに絡合させて一体化する方法等によって形成することができる。
【0023】
重ね合わせた部分の繊維糸条をニードルパンチにより互いに絡合一体化して接合部を形成する方法を採ると、耐炎化末端部を形成している糸条の一部が切断することがあり、又絡合一体化のために要する時間が長くなる。従って、耐炎化末端部同士を絡合一体化させた接合部の形成は、ニードルパンチ方式よりも空気などの高速流体処理による方法を利用して行なうのが好ましい。
【0024】
重ね合わせた部分の繊維糸条を互いに絡合一体化して形成した接合部は、炭素繊維にする焼成工程を高速度で行なうときの工程張力に耐え得る接合強度になる。つまり、耐炎化末端部同士を接続した接合部にすることによって、炭素繊維にするときの炭素化工程での反応熱の放熱が良好に行われるような接合部にしても、該接合部を絡合一体化による接合部にしないと、耐炎化工程や炭素化工程を高速度で行なうときの工程張力に耐え得る接合強度にはならない。
【0025】
更に、耐炎化工程や炭素化工程からなる焼成工程での接合部の切断を防ぐより好ましい形態の接合部にするには、均一な絡合一体化による接合部にすればよく、単糸レベルでの絡合によって一体化してなる接合部にすることがより好ましい。
【0026】
炭素繊維製造用のアクリル系繊維糸条は、焼成工程のうちの耐炎化工程中にて加熱下での特に高い工程張力を長時間に亙って受ける。このために、本発明の炭素繊維製造用のアクリル系繊維糸条の接合部は、その条件に近い250℃での引張強度が20mN/Tex以上であることが特に好ましく、引張強度が20mN/Tex未満になると、工程張力の高い耐炎化工程を採ると切断することがある。
【0027】
更に接合部の長さが50mmより短かいと、端糸の一部が接合部を形成するための絡合時に切断したり、或いは絡合が不均一になったりすることがある。従って、接合部の長さは50mm以上であることが好ましい。
【0028】
なお、接合部の長さは以下のようにして測定した数値である。
すなわち、耐炎化処理した末端部を有するアクリル系繊維糸条の該末端部同士を絡合一体化して接合部を形成したアクリル系繊維糸条(サンプル糸条)の一方の端部に、単位繊度当たり0.15g/Texの荷重の掛けて垂下させる。
次いで、接合部の上方の糸条の絡合していない部分の繊維糸条内に、単位繊度当たり0.03g/Texの錘を有する直径1mmの表面が滑らかな針金によるフックを挿入して降下させ、フックの移動が止まった点をマークした後、サンプル糸条を上下逆にして、同様にフックを挿入して降下させ、フックの移動が止まった点をマークする。
かくして得られたこれらの二つのマーク同士の間隔を、接合部の長さとする。
【0029】
又接合部の幅(mm)が、使用したアクリル系繊維糸条、つまり密度1.30g/cm3 以上の耐炎化末端部を形成するのに使用したアクリル系繊維糸条の繊度(Tex)をAとしたときに、0.12×A1/2 よりも小さいと、耐炎化末端部の一部が高速流体によって切断したり或いは絡合が不均一になったりして、特に工程張力の高い焼成工程を採ると、接合部が切断することがある。更に、接合部の幅(mm)が、0.22×A1/2 を超えると、多錘焼成を行なうときに隣接する糸条同士が擦れ合って、以降の工程でローラの巻付きなどのトラブルを生じることがある。
【0030】
従って、接合部のW(mm)は、使用したアクリル系繊維糸条の繊度(Tex)をAとしたときに、下記の式(1)の範囲にあることが好ましい。
0.12×A1/2 ≦W≦0.22×A1/2 ・・・・(1)
【0031】
なお、接合部の幅は以下のようにして測定した数値である。
すなわち、耐炎化処理した末端部を有するアクリル系繊維糸条の該末端部同士を絡合一体化して接合部を形成したサンプルを、単位繊度当たり1.5g/Texの張力をかけて直径100mmのロールに180度巻き付け、そのロール上での接合部の幅の測定を5回行なったときの平均値である。
【0032】
一般に炭素繊維製造用のアクリル系繊維糸条を製造する工程の速度と、該アクリル系繊維糸条を焼成して炭素繊維にする焼成工程の速度とは大幅に異なるために、アクリル系繊維糸条はボビンに巻き上げられた状態から焼成工程に供給されるか、又は箱の中に折りたたみ積層されて収容された状態から焼成工程に供給される。このような状態にあるアクリル系繊維糸条を引き出すときの取り扱い性向上のために、捲縮をかけて収束性を持たせることがあるが、本発明の炭素繊維製造用のアクリル系繊維糸条は、このような捲縮糸条であってもよいことは勿論である。
【0033】
更に、本発明の密度1.30g/cm3 以上の耐炎化末端部同士を絡合一体化させてなる接合部を有する炭素繊維製造用のアクリル系繊維糸条においては、該接合部をトリミングして、このアクリル系繊維糸条から炭素繊維を製造する際の糸条の通りをスムーズにしておくことが好ましい。
【0034】
又、2糸条同士の末端部同士を絡合一体化させてなる接合部を形成するときには、十分に余裕をもった長さで末端部同士を重ね合わせた後、この重ね合わせた部分の繊維糸条を互いに絡合一体化して接合部を形成することになるので、接合部の両側には数cm〜十数cmのフリーの部分が残る。従って、はさみなどによって接合部から0.2cm〜0.8cmの長さのフリーの部分を切断除去して、糸条の枝分かれによるローラ巻付きのないものにしておくことが好ましい。
【0035】
【実施例】
以下、本発明の炭素繊維製造用のアクリル系繊維糸条及びその製造方法の具体的な構成を、実施例に基づいて説明する。
【0036】
なお、本実施例及び比較例中にて説明する工程通過率は、接合部を有するアクリル系繊維糸条を耐炎化工程及び炭素化工程に通して炭素繊維にしたときに、それぞれの工程で切断することなしに通過した接合部の数を、試験した糸条の全接合部の数に対する百分率(%)により表わしたものである。
【0037】
又工程張力(mN/Tex)は、接合部を有するアクリル系繊維糸条による炭素繊維の製造を行なったときの耐炎化工程及び炭素化工程でのアクリル系繊維糸条の張力を、単位繊度当たりに換算した数値である。
【0038】
実施例1
単糸繊度1.2dTex/フィラメント、フィラメント数12000のアクリル繊維糸条の巻き始め側の末端部を、240℃の熱風が循環している耐炎化炉中にて5mN/texの張力下に70分間の耐炎化処理を施すことによって密度1.36g/cm3 の耐炎化末端部にしてある巻き取りボビンAと、同じく単糸繊度1.2dTex/フィラメント、フィラメント数12000のアクリル繊維糸条の巻き終わり側の末端部を、240℃の熱風が循環している耐炎化炉中にて5mN/texの張力下に70分間の耐炎化処理を施すことによって密度1.36g/cm3 の耐炎化末端部にしてある巻き取りボビンBとを用意した。
【0039】
次いで、上記のボビンAから巻き始め側の末端部を引き出して、これを他方のボビンBから引き出した巻き終わり側の末端部と相互に重ね合わせた後、この重ね合わせた部分の繊維糸条を、図1に示す絡合処理装置1を利用して互いに絡合一体化させ、接合部を形成した。
【0040】
すなわち、図1において、ボビンAからの巻き始め側の末端部2と、ボビンBからの巻き終わり側の末端部3とを相互に重ね合わせた後、エアー噴出用の貫通孔7がその略中央に形成されている底部4と、開閉自在に取り付けられている蓋5とを有する絡合処理空間6内に載置した後、これらの巻き始め側の末端部2と巻き終わり側の末端部3との重ね合わせ部分に、エアー噴出用の貫通孔7から圧力500kPaの空気を2秒間吹き付けることにより、該部分の繊維糸条を互いに絡合一体化させ、接合部を形成した。
【0041】
この接合部の250℃での引張強度は25mN/Tex以上であり、又該接合部の長さは60mm、幅は5.5mmである。なお、本実施例における0.12×A1/2 は4.55であり、0.22×A1/2 は8.35である。
【0042】
次いで、上記の接合部を有するアクリル繊維糸条を230〜270℃の熱風が循環している耐炎化炉中にて、工程張力14mN/Texにしてアクリル繊維糸条の収縮を制限しながら、30分間の耐炎化処理に付し、続いて300〜1300℃の温度分布を有する窒素雰囲気からなる炭素化炉中にて、同じく工程張力7mN/Texにして該アクリル繊維糸条の収縮を制限しながら、2分間の炭素化処理に付すことにより、炭素繊維を製造した。
この炭素繊維製造工程中の耐炎化工程及び炭素化工程での工程通過率は、表1に示す通りである。
【0043】
実施例2
実施例1で使用したものと同じアクリル繊維糸条の末端部を、240℃の熱風が循環している耐炎化炉中にて5mN/texの張力下に35分間の耐炎化処理を施すことによって、密度1.31g/cm3 の耐炎化末端部にした後、巻き始め側の末端部をこの耐炎化末端部にして巻き取ってあるボビンCと、巻き終わり側の末端部をこの耐炎化末端部にして巻き取ってあるボビンDとを用意した。
【0044】
上記のボビンCとボビンDとにより、実施例1と同様にして繊維糸条を互いに絡合一体化させた接合部を形成した。この接合部の250℃での引張強度は21.5mN/Texであり、又該接合部の長さは60mm、幅は5.6mmである。
【0045】
次いで、上記の接合部を有するアクリル繊維糸条を、実施例1と同様の焼成工程に付すことにより、炭素繊維を製造した。この炭素繊維製造工程中の耐炎化工程及び炭素化工程での工程通過率は、表1に示す通りである。
【0046】
比較例1
実施例1で使用したものと同じアクリル繊維糸条の末端部を、240℃の熱風が循環している耐炎化炉中にて5mN/texの張力下に20分間の耐炎化処理を施すことによって、密度1.28g/cm3 の耐炎化末端部にした後、巻き始め側の末端部をこの耐炎化末端部にして巻き取ってあるボビンEと、巻き終わり側の末端部をこの耐炎化末端部にして巻き取ってあるボビンFとを用意した。
【0047】
上記のボビンEとボビンFとにより、実施例1と同様にして繊維糸条を互いに絡合一体化させた接合部を形成した。この接合部の250℃での引張強度は18mN/Texであり、又該接合部の長さは60mm、幅は5.8mmである。
【0048】
次いで、上記の接合部を有するアクリル繊維糸条を、実施例1と同様の焼成工程に付すことにより、炭素繊維を製造した。この炭素繊維製造工程中の耐炎化工程及び炭素化工程での工程通過率は、表1に示す通りである。
【0049】
実施例3
実施例1で使用したものと同じ巻き始め側の末端部を密度1.36g/cm3 の耐炎化末端部にして巻き取ってあるボビンAと、巻き終わり側の末端部を密度1.36g/cm3 の耐炎化末端部にして巻き取ってあるボビンBとを用意した。
【0050】
上記のボビンAとボビンBとにより、実施例1と同様にして繊維糸条を互いに絡合一体化させた接合部を形成した。この接合部の250℃での引張強度は17.5mN/Texであり、又該接合部の長さは40mm、幅は5.5mmである。
【0051】
次いで、上記の接合部を有するアクリル繊維糸条を230〜270℃の熱風が循環している耐炎化炉中にて、工程張力10mN/Texにして該アクリル繊維糸条に5%の収縮を与えながら30分間の耐炎化処理に付し、続いて300〜1300℃の温度分布を有する窒素雰囲気からなる炭素化炉中にて、工程張力7mN/Texにして該アクリル繊維糸条の収縮を制限しながら、2分間の炭素化処理に付すことにより、炭素繊維を製造した。
この炭素繊維製造工程中の耐炎化工程での工程通過率は、表1に示す通りである。
【0052】
実施例4
実施例1で使用したものと同じ巻き始め側の末端部を密度1.36g/cm3 の耐炎化末端部にして巻き取ってあるボビンAと、巻き終わり側の末端部を密度1.36g/cm3 の耐炎化末端部にして巻き取ってあるボビンBとを用意した。
【0053】
上記のボビンAとボビンBとにより、上記のボビンAの巻き始め側の末端部をボビンから引き出して、他方のボビンBから引き出した巻き終わり側の末端部と相互に重ね合わせた後、重ね合わせた部分の繊維糸条に、図1に示した装置を使用して、圧力600kPaの空気を4秒間吹き付けることにより、繊維糸条を互いに絡合一体化させた接合部を形成した。この接合部の250℃での引張強度は16mN/Texであり、又該接合部の長さは60mm、幅は4.3mmである。
【0054】
次いで、上記の接合部を有するアクリル繊維糸条を、実施例3と同様の焼成工程に付すことにより、炭素繊維を製造した。この炭素繊維製造工程中の耐炎化工程及び炭素化工程での工程通過率は、表1に示す通りである。
【0055】
比較例2
実施例1で使用したものと同じ巻き始め側の末端部を密度1.36g/cm3 の耐炎化末端部にして巻き取ってあるボビンAと、実施例1で使用したアクリル繊維糸条、つまり末端部の耐炎化処理を行なっていないアクリル繊維糸条を巻き取ってあるボビンB’とを用意した。
【0056】
上記のボビンAとボビンB’とにより、実施例1と同様にして繊維糸条を互いに絡合一体化させた接合部を形成した。この接合部の250℃での引張強度は16.5mN/Texであり、又該接合部の長さは60mm、幅は6.0mmである。
【0057】
次いで、上記の接合部を有するアクリル繊維糸条を、実施例1と同様の焼成工程に付すことにより、炭素繊維を製造した。この炭素繊維製造工程中の耐炎化工程及び炭素化工程での工程通過率は、表1に示す通りである。
【0058】
比較例3
実施例1で使用したアクリル繊維糸条と同一のアクリル繊維糸条、つまり末端部の耐炎化処理を行なっていないアクリル繊維糸条を巻き取ってあるボビンA’とボビンB’とを用意した。
【0059】
上記のボビンA’とボビンB’とにより、実施例1と同様にして繊維糸条を互いに絡合一体化させた接合部を形成した。この接合部の250℃での引張強度は12mN/Texであり、又該接合部の長さは60mm、幅は6.0mmである。
【0060】
次いで、上記の接合部を有するアクリル繊維糸条を、実施例1と同様の焼成工程に付したところ、耐炎化工程で接合部が切断してしまい、炭素繊維の製造を行なえなかった。
【0061】
比較例4
実施例1で使用したものと同じ巻き始め側の末端部を密度1.36g/cm3 の耐炎化末端部にして巻き取ってあるボビンAと、巻き終わり側の末端部を密度1.36g/cm3 の耐炎化末端部にして巻き取ってあるボビンBとを用意した。
【0062】
上記のボビンAの巻き始め側の末端部と他方のボビンBから引き出した巻き終わり側の末端部とを二重結びで結んで、接合部を形成した。この接合部の250℃での引張強度は13mN/Texである。
【0063】
次いで、上記の接合部を有するアクリル繊維糸条を、実施例1と同様の焼成工程に付したところ、耐炎化工程で接合部が切断してしまい、炭素繊維の製造を行なえなかった。
【0064】
比較例5
実施例1で使用したものと同じ巻き始め側の末端部を密度1.36g/cm3 の耐炎化末端部にして巻き取ってあるボビンAと、巻き終わり側の末端部を密度1.36g/cm3 の耐炎化末端部にして巻き取ってあるボビンBとを用意した。
【0065】
上記のボビンAの巻き始め側の末端部と他方のボビンBから引き出した巻き終わり側の末端部とを、特開昭56−37315号公報に記載されている特殊な結び方で結びんで、接合部を形成した。この接合部の250℃での引張強度は14mN/Texである。
【0066】
次いで、上記の接合部を有するアクリル繊維糸条を、実施例1と同様の焼成工程に付したところ、耐炎化工程で接合部が切断してしまい、炭素繊維の製造を行なえなかった。
【0067】
比較例6
単糸繊度1.2dTex/フィラメント、フィラメント数12000のアクリル繊維糸条の末端部同士を相互に重ね合わせた後、重ね合わせた部分の繊維糸条に、図1に示した装置を使用して、圧力500kPaの空気を2秒間吹き付けることにより、繊維糸条を互いに絡合一体化させた接合部を形成した。
【0068】
続いてこの接合部に、該接合部の繊維重量の1.3重量%のホウ酸が付着するようにしてホウ酸水溶液を塗布し、乾燥した。この接合部の250℃での引張強度は18mN/Texであり、又該接合部の長さは60mm、幅は5.8mmである。
【0069】
次いで、上記の接合部を有するアクリル繊維糸条を、実施例1と同様の焼成工程に付したところ、炭素化工程で接合部が切断してしまい、炭素繊維の製造を行なえなかった。なおこの炭素繊維製造工程中の耐炎化工程の工程通過率は、表1に示す通りである。
【0070】
実施例5
単糸繊度1.2dTex/フィラメント、フィラメント数24000のアクリル繊維糸条の巻き始め側の末端部を、240℃の熱風が循環している耐炎化炉中にて5mN/texの張力下に70分間の耐炎化処理を施すことによって密度1.36g/cm3 の耐炎化末端部にしてある巻き取りボビンGと、同じく単糸繊度1.2dTex/フィラメント、フィラメント数24000のアクリル繊維糸条の巻き終わり側の末端部を、240℃の熱風が循環している耐炎化炉中にて5mN/texの張力下に70分間の耐炎化処理を施すことによって密度1.36g/cm3 の耐炎化末端部にしてある巻き取りボビンHとを用意した。
【0071】
上記のボビンGとボビンHとにより、実施例1と同様にして繊維糸条を互いに絡合一体化させた接合部を形成した。この接合部の250℃での引張強度は25mN/Tex以上であり、又該接合部の長さは60mm、幅は9.2mmである。
【0072】
次いで、上記の接合部を有するアクリル繊維糸条を230〜270℃の熱風が循環している耐炎化炉中にて、工程張力14mN/Texにしてアクリル繊維糸条の収縮を制限しながら40分間の耐炎化処理に付し、続いて300〜1300℃の温度分布を有する窒素雰囲気からなる炭素化炉中にて、同じく工程張力7mN/Texにして該アクリル繊維糸条の収縮を制限しながら、2分間の炭素化処理に付すことにより、炭素繊維を製造した。
この炭素繊維製造工程中の耐炎化工程及び炭素化工程での工程通過率は、表1に示す通りである。
【0073】
実施例6
単糸繊度1.2dTex/フィラメント、フィラメント数48000のアクリル繊維糸条の巻き始め側の末端部を、240℃の熱風が循環している耐炎化炉中にて5mN/texの張力下に70分間の耐炎化処理を施すことによって密度1.36g/cm3 の耐炎化末端部にしてある巻き取りボビンJと、同じく単糸繊度1.2dTex/フィラメント、フィラメント数24000のアクリル繊維糸条の巻き終わり側の末端部を、240℃の熱風が循環している耐炎化炉中にて5mN/texの張力下に70分間の耐炎化処理を施すことによって密度1.36g/cm3 の耐炎化末端部にしてある巻き取りボビンKとを用意した。
【0074】
上記のボビンJとボビンKとにより、実施例1と同様にして繊維糸条を互いに絡合一体化させた接合部を形成した。この接合部の250℃での引張強度は24.5mN/Tex以上であり、又該接合部の長さは80mm、幅は11mmである。
【0075】
次いで、上記の接合部を有するアクリル繊維糸条を230〜270℃の熱風が循環している耐炎化炉中にて、工程張力14mN/Texにしてアクリル繊維糸条の収縮を制限しながら50分間の耐炎化処理に付し、続いて300〜1300℃の温度分布を有する窒素雰囲気からなる炭素化炉中にて、同じく工程張力7mN/Texにして該アクリル繊維糸条の収縮を制限しながら、2分間の炭素化処理に付すことにより、炭素繊維を製造した。
この炭素繊維製造工程中の耐炎化工程及び炭素化工程での工程通過率は、表1に示す通りである。
【0076】
実施例7
捲縮をかけて箱内に折りたたみ積層された状態で収容してある単糸繊度1.2dTex/フィラメント、フィラメント数48000のアクリル繊維糸条の2箱を用意し、一方の箱内のアクリル繊維糸条の始端である末端部と他方の箱内のアクリル繊維糸条の終端である末端部とを、実施例1に記載したのと同様の耐炎化処理を施すことによって、これらの末端部を密度1.36g/cm3 の耐炎化末端部にした。
【0077】
次いで、上記の一方の箱内のアクリル繊維糸条の始端と、他方の箱内のアクリル繊維糸条の終端とを箱内から引き出して、それぞれの末端部と相互に重ね合わせた後、実施例1と同じ方法によって繊維糸条を互いに絡合一体化させた接合部を形成した。この接合部の250℃での引張強度は23.5mN/Texであり、又該接合部の長さは80mm、幅は12mmである。
【0078】
次いで、上記の接合部を有するアクリル繊維糸条を実施例6と同様の焼成工程に付すことにより、炭素繊維を製造した。この炭素繊維製造工程中の耐炎化工程及び炭素化工程での工程通過率は、表1に示す通りである。
【0079】
実施例8
捲縮をかけて箱内に折りたたみ積層された状態で収容してある単糸繊度1.2dTex/フィラメント、フィラメント数72000のアクリル繊維糸条の2箱を用意し、実施例7と同様にして、末端部が密度1.36g/cm3 の耐炎化末端部になっているアクリル繊維糸条にした。
【0080】
次いで、実施例7と同様にして、耐炎化末端部同士の繊維糸条を互いに絡合一体化させた接合部を形成した。この接合部の250℃での引張強度は21mN/Texであり、又該接合部の長さは80mm、幅は18mmである。
【0081】
次いで、上記の接合部を有するアクリル繊維糸条を230〜270℃の熱風が循環している耐炎化炉中にて、工程張力14mN/Texにしてアクリル繊維糸条の収縮を制限しながら60分間の耐炎化処理に付し、続いて300〜1300℃の温度分布を有する窒素雰囲気からなる炭素化炉中にて、同じく工程張力7mN/Texにして該アクリル繊維糸条の収縮を制限しながら、2分間の炭素化処理に付すことにより、炭素繊維を製造した。
この炭素繊維製造工程中の耐炎化工程及び炭素化工程での工程通過率は、表1に示す通りである。
【0082】
【表1】

Figure 0003706754
なお、表中の*は、耐炎化工程を通過できず、炭素繊維の製造を行なえなかったことを示す。
【0083】
【発明の効果】
本発明の炭素繊維製造用のアクリル系繊維糸条は、密度1.30g/cm3 以上の耐炎化末端部同士を接続させて接合部を形成してあるので、このアクリル系繊維糸条を焼成して炭素繊維にするときの耐炎化時に接合部に蓄熱が激しくなることがない。
【0084】
又、本発明の炭素繊維製造用のアクリル系繊維糸条は、アクリル系繊維糸条の末端部同士を絡合一体化させてなる接合部を形成してあるので、引張強度の高い接合部になっている。
【0085】
このために本発明の接合部を有する炭素繊維製造用のアクリル系繊維糸条は、工程張力と加熱温度の高い耐炎化工程と工程張力の高い炭素化工程とによる炭素繊維の製造過程を通っても、接合部が耐炎化工程で耐炎化不足になることがないので、炭素化工程での接合部に反応熱の放熱不良が起こることがなく、炭素化工程で単繊維同士の融着による糸切れを生じることがない。
【0086】
従って本発明の接合部を有する炭素繊維製造用のアクリル系繊維糸条によれば、工程張力と加熱温度の高い耐炎化工程と工程張力の高い炭素化工程とによる炭素繊維の製造過程を通しても、これらの両工程中に糸切れなどのトラブルを起こすことがなく、優れた物性を有する炭素繊維を高速生産することが可能である。
【0087】
更に、本発明の炭素繊維製造用のアクリル系繊維糸条の製造方法は、アクリル系繊維糸条の末端部を密度1.30g/cm3 以上に耐炎化処理した後、この耐炎化処理した末端部同士を相互に重ね合わせ、更に重ね合わせた部分の繊維糸条を互いに絡合一体化して接合部を形成する工程からなるものであり、かかる工程による本発明方法によれば、工程張力と加熱温度の高い耐炎化工程と工程張力の高い炭素化工程とによる炭素繊維の製造過程を通しても、これらの両工程中に糸切れなどのトラブルを起こすことがなく、優れた物性を有する炭素繊維を高速生産することが可能な上記の炭素繊維製造用のアクリル系繊維糸条を容易、かつ的確に得ることができる。
【図面の簡単な説明】
【図1】アクリル系繊維糸条の接合部の形成に使用した絡合処理装置の概略を示す斜面図である。
【符号の説明】
1・・・・絡合処理装置
2・・・・巻き始め側の末端部
3・・・・巻き終わり側の末端部
4・・・・略中央にエアー噴出用の貫通孔7が形成されている底部
5・・・・開閉自在に取り付けられている蓋
6・・・・絡合処理空間[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an acrylic fiber yarn for producing carbon fiber having a joint and a method for producing the fiber yarn.
[0002]
[Prior art]
Acrylic fiber yarns are widely used as precursors for producing carbon fibers, and the acrylic fiber yarns are made into flameproof fibers by a flameproofing process in which heat treatment is performed in an oxidizing atmosphere at 200 to 300 ° C. Thereafter, the carbon fiber is generally converted into a carbon fiber by a carbonization step in which heat treatment is performed in an inert atmosphere at 1000 ° C. or higher.
[0003]
The carbon fibers obtained as described above are widely used as reinforcing fibers for various fiber-reinforced resin composite materials because they have various excellent physical properties.
[0004]
In order to produce carbon fibers having excellent physical properties at high speed, it is necessary to simultaneously convert a large amount of acrylic fiber yarns into flame-resistant fibers in a short time, and then carbonize them into carbon fibers. For this purpose, the heating temperature and process tension in the flameproofing process must be increased, and the process tension in the carbonization process must be increased.
[0005]
In general, acrylic fiber yarns for producing carbon fibers are supplied in a form wound on a bobbin or the like, or folded in a box. Therefore, in order to continuously transfer these acrylic fiber yarns to a firing process consisting of a flameproofing process and a carbonization process to make carbon fibers, the end parts of the acrylic fiber yarns in the above form are separately provided. It is necessary to connect with the terminal part of the acrylic fiber yarn.
[0006]
However, the joint formed by simply connecting the end portions of the acrylic fiber yarns has a significant heat storage in the flameproofing process, which causes troubles such as thread breakage in the carbonization process, which is the next process. It becomes.
[0007]
As a means for improving the operability by avoiding the above-mentioned trouble, Japanese Patent Laid-Open No. 54-50624 discloses a method of applying a flame resistant compound to the joint portion of acrylic fiber yarns. JP-A-37315 discloses a method in which end portions of acrylic fiber yarns are heat-treated in advance and then joined by a special knotting method, and Japanese Patent Publication No. 1-18505 discloses an acrylic fiber yarn. The method of entangled the end portions of the strips to form the joint portion, and further in JP-A-4-214414, the end portions of the acrylic fiber yarns are entangled to form the joint portion, Further, a method of attaching an oxidation reaction inhibitor to the joint is disclosed.
[0008]
However, the acrylic fiber yarn having a joint portion by the above method cannot be adapted to the production conditions for high-speed production of carbon fibers having excellent physical properties. In other words, the acrylic fiber yarn having the joint portion by the above method is a carbon fiber in the process of making the acrylic fiber yarn into flame resistant fiber in the flame resistant process with high heating temperature and process tension and in the carbonizing process with high process tension. It cannot pass smoothly through the process of making fibers.
[0009]
For this reason, in order to allow the acrylic fiber yarn having the joint portion by the above method to pass smoothly through the flameproofing step and the carbonization step without any problem, a flameproofing step with high heating temperature and process tension, One of the conditions of the carbonization process with high process tension must be relaxed, and it is difficult to produce carbon fiber at high speed production.
[0010]
[Problems to be solved by the invention]
Therefore, the problem to be solved by the present invention is for producing carbon fiber having a joint that can pass through both the heating temperature and the flameproofing process having a high process tension and the carbonizing process having a high process tension without any problem. An acrylic fiber yarn of the present invention and a method for producing the fiber yarn are provided.
[0011]
[Means for Solving the Problems]
Said subject is solved by the acrylic fiber yarn for carbon fiber manufacture of this invention demonstrated below, and the manufacturing method of the fiber yarn.
That is, the present invention is an acrylic fiber yarn for producing carbon fiber having a joint part in which end parts are connected, and the joint part has a density of 1.30 g / cm. Three It consists of an acrylic fiber yarn for producing carbon fibers, which is formed by entanglement and integration of the above flameproofing end portions.
[0012]
In the acrylic fiber yarn for producing carbon fiber of the present invention having the above-described configuration, the joint portion formed by entanglement and integration of the flameproof end portions has a tensile strength at 250 ° C. of 20 mN / Tex. The above is preferable.
[0013]
Moreover, the joint part in the above-mentioned acrylic fiber yarn for producing carbon fiber of the present invention has a length of 50 mm or more and a width W (mm) satisfying the following formula (1). Is preferred.
0.12 x A 1/2 ≦ W ≦ 0.22 × A 1/2 (1)
(In the formula, A represents the fineness (Tex) of the acrylic fiber yarn used.)
[0014]
Furthermore, in the method for producing an acrylic fiber yarn for producing carbon fiber according to the present invention, the end portion of the acrylic fiber yarn has a density of 1.30 g / cm. Three After the flameproofing treatment as described above, the flameproofing end portions are overlapped with each other, and the joined portions are formed by intertwining and integrating the fiber yarns of the overlapped portions with each other. An acrylic fiber yarn for producing carbon fiber is obtained.
[0015]
In the method for producing an acrylic fiber yarn for producing carbon fiber of the present invention having the above-described configuration, as a means for forming a joint portion by intertwining and integrating the fiber yarns of the overlapped portions, a high speed It is preferable to adopt a means of using a fluid.
[0016]
Moreover, it is preferable that the tensile strength at 250 ° C. of the joint portion formed by intertwining and integrating the fiber yarns of the overlapped portions is 20 mN / Tex or more.
[0017]
Furthermore, it is preferable that the length of the joint formed by intertwining and integrating the fiber yarns of the overlapped portions is 50 mm or more and the width W (mm) satisfies the following formula (1). .
0.12 x A 1/2 ≦ W ≦ 0.22 × A 1/2 (1)
(In the formula, A represents the fineness (Tex) of the acrylic fiber yarn used.)
[0018]
DETAILED DESCRIPTION OF THE INVENTION
To make an acrylic fiber yarn for carbon fiber production having a joint connecting the flame-resistant end portions of the present invention, an acrylic fiber yarn used for the production of ordinary carbon fiber may be used, The composition and form of the acrylic fiber yarn are not limited.
[0019]
The flameproofing treatment for forming an acrylic fiber yarn having a flame resistant end portion has a density of 1.30 g / cm at the end portion of the acrylic fiber yarn by the flameproofing treatment. Three There is no particular restriction on the flameproofing treatment other than that, and the density is 1. by performing heat treatment at about 200 to 300 ° C. in air, ozone or other oxidizing atmosphere. 30 g / cm Three What is necessary is just to make it the acrylic fiber yarn which has the end part flame-resistant above.
[0020]
In the acrylic fiber yarn for producing the carbon fiber of the present invention, the density is 1.30 g / cm. Three Since there is no heat storage in the flameproofing process when this acrylic fiber yarn is baked into carbon fiber by connecting the end parts that are flameproofed above, the carbonization process The heat of reaction at is radiated satisfactorily, and this effectively prevents the acrylic fiber yarn from being fused or cut in the carbonization step.
[0021]
On the other hand, even in the case of an acrylic fiber yarn having a joint formed by entanglement and integration of the flame-resistant end portions, the density of the flame-resistant end portion is 1.30 g / cm. Three When the amount is less than 1, the heat radiation of the reaction heat in the firing step when firing the carbon fiber may be insufficient, and the joint may be cut during the carbonization step.
[0022]
The joint part of the acrylic fiber yarn for producing the carbon fiber of the present invention, that is, the joint part in which the flame-resistant end parts are entangled and integrated is overlapped after the flame-resistant end parts are overlapped with each other. It can be formed by a method in which the fiber yarns of a part are entangled with each other by high-speed fluid treatment such as air, or a method in which they are entangled with each other by a needle punch.
[0023]
If the method of forming a joint by entanglement and integration of the overlapped fiber yarns with a needle punch, a part of the yarn forming the flameproof end may be cut, or The time required for entanglement integration becomes longer. Therefore, it is preferable to form the joint portion in which the flameproof end portions are intertwined and integrated using a method using high-speed fluid processing such as air rather than the needle punch method.
[0024]
The joint portion formed by intertwining and integrating the overlapped fiber yarns has a joint strength that can withstand the process tension when performing the firing process of carbon fiber at a high speed. In other words, by forming a joined part in which the flame-resistant end parts are connected to each other, even if the joined part is such that the heat of reaction in the carbonization process when the carbon fiber is made is well radiated, the joined part is entangled. If the joint portion is not integrated, the joint strength cannot withstand the process tension when the flameproofing process and the carbonization process are performed at high speed.
[0025]
Furthermore, in order to make the joint part in a more preferable form to prevent the joint part from being cut in the firing process including the flameproofing process and the carbonization process, the joint part may be formed by uniform entanglement and integration at the single yarn level. It is more preferable to form a joint portion that is integrated by entanglement.
[0026]
Acrylic fiber yarns for producing carbon fibers are subjected to a particularly high process tension under heating for a long time during the flameproofing process in the firing process. For this reason, it is particularly preferable that the joint portion of the acrylic fiber yarn for producing the carbon fiber of the present invention has a tensile strength at 250 ° C. close to that condition of 20 mN / Tex or more, and the tensile strength is 20 mN / Tex. If it is less than that, it may be cut if a flameproofing step having a high process tension is taken.
[0027]
Further, if the length of the joint portion is shorter than 50 mm, a part of the end yarn may be cut at the time of entanglement for forming the joint portion, or the entanglement may become uneven. Therefore, the length of the joint is preferably 50 mm or more.
[0028]
In addition, the length of a junction part is the numerical value measured as follows.
That is, the unit fineness at one end of the acrylic fiber yarn (sample yarn) in which the end portions of the acrylic fiber yarns having flame-resistant end portions are intertwined and integrated to form a joint portion. It hangs down with a load of 0.15 g / Tex per hit.
Next, a hook with a smooth wire with a diameter of 1 mm having a weight of 0.03 g / Tex per unit fineness is inserted into the fiber yarn in the portion where the yarn above the joint is not entangled and lowered. After marking the point where the movement of the hook has stopped, the sample thread is turned upside down, the hook is inserted and lowered in the same manner, and the point where the movement of the hook has stopped is marked.
The interval between these two marks thus obtained is defined as the length of the joint.
[0029]
Also, the width of the joint (mm) is the acrylic fiber yarn used, that is, the density is 1.30 g / cm. Three 0.12 × A, where A is the fineness (Tex) of the acrylic fiber yarn used to form the above flameproof end. 1/2 If it is smaller than that, a part of the flame-resistant end portion may be cut by a high-speed fluid, or the entanglement may become non-uniform, and the joint may be cut particularly when a firing process with high process tension is taken. . Furthermore, the joint width (mm) is 0.22 × A. 1/2 Exceeding may cause the adjacent yarns to rub against each other when performing multi-spin firing, and troubles such as winding of the roller may occur in subsequent steps.
[0030]
Therefore, it is preferable that W (mm) of the bonded portion is in the range of the following formula (1), where A is the fineness (Tex) of the acrylic fiber yarn used.
0.12 x A 1/2 ≦ W ≦ 0.22 × A 1/2 (1)
[0031]
In addition, the width | variety of a junction part is the numerical value measured as follows.
That is, a sample in which the end portions of the acrylic fiber yarns having end portions subjected to flame resistance treatment are entangled and integrated to form a joined portion is applied with a tension of 1.5 g / Tex per unit fineness and a diameter of 100 mm. It is an average value when the roll is wound 180 degrees and the width of the joint portion on the roll is measured five times.
[0032]
In general, the speed of the process for producing an acrylic fiber yarn for carbon fiber production and the speed of the firing process for firing the acrylic fiber thread to carbon fiber are significantly different. Is supplied to the firing process from the state wound up on the bobbin, or is supplied to the firing process from a state of being folded and stacked in a box. In order to improve the handleability when pulling out the acrylic fiber yarn in such a state, it may be crimped to have convergence, but the acrylic fiber yarn for carbon fiber production of the present invention may be used. Of course, such a crimped yarn may be used.
[0033]
Furthermore, the density of the present invention is 1.30 g / cm. Three In the acrylic fiber yarn for carbon fiber production having a joint portion obtained by entanglement and integration of the above flameproof end portions, the joint portion is trimmed, and carbon fiber is trimmed from the acrylic fiber yarn. It is preferable to keep the streets of the yarn during production smooth.
[0034]
In addition, when forming a joint portion in which the end portions of two yarns are entangled and integrated, the end portions are overlapped with a length having a sufficient margin, and then the fibers of the overlapped portion Since the yarns are entangled and integrated with each other to form a joined portion, free portions of several cm to several tens of cm remain on both sides of the joined portion. Therefore, it is preferable to cut and remove a free portion having a length of 0.2 cm to 0.8 cm from the joint portion with scissors or the like so as not to wind the roller due to branching of the yarn.
[0035]
【Example】
Hereinafter, the concrete structure of the acrylic fiber yarn for carbon fiber manufacture of this invention and its manufacturing method is demonstrated based on an Example.
[0036]
In addition, the process pass rate demonstrated in a present Example and a comparative example is cut | disconnected by each process, when the acrylic fiber yarn which has a junction part is made into a carbon fiber through a flame-proofing process and a carbonization process. The number of joints passed without being expressed as a percentage (%) of the total number of joints tested.
[0037]
In addition, the process tension (mN / Tex) is the tension per unit fineness of the acrylic fiber yarn in the flameproofing process and the carbonization process when the carbon fiber is produced by the acrylic fiber yarn having the joint. It is a numerical value converted into.
[0038]
Example 1
The end portion on the winding start side of an acrylic fiber yarn having a single yarn fineness of 1.2 dTex / filament and a filament number of 12000 is 70 minutes under a tension of 5 mN / tex in a flameproof furnace in which hot air of 240 ° C. is circulating. A density of 1.36 g / cm by applying a flameproofing treatment Three 240 ° C. hot air circulates through the winding bobbin A, which is the flame-resistant end portion, and the end portion on the winding end side of an acrylic fiber yarn having a single yarn fineness of 1.2 dTex / filament and a filament number of 12,000. A density of 1.36 g / cm is obtained by applying a flameproofing treatment for 70 minutes under a tension of 5 mN / tex in a flameproofing furnace. Three And a take-up bobbin B having a flameproof end portion.
[0039]
Next, after pulling out the end portion on the winding start side from the bobbin A and superimposing it on the end portion on the winding end side pulled out from the other bobbin B, the fiber yarn of this overlapped portion is 1 was entangled and integrated with each other using the entanglement processing apparatus 1 shown in FIG.
[0040]
That is, in FIG. 1, after the end portion 2 on the winding start side from the bobbin A and the end portion 3 on the winding end side from the bobbin B are overlapped with each other, the through-hole 7 for air ejection is formed at its substantially center. After being placed in the entanglement processing space 6 having the bottom 4 formed on the cover 4 and the lid 5 attached so as to be freely opened and closed, the end 2 on the winding start side and the end 3 on the winding end side are placed. The air yarn having a pressure of 500 kPa was blown for 2 seconds from the air jetting through-hole 7 to the overlapped portion, and the fiber yarns of the portion were intertwined and integrated with each other to form a joint portion.
[0041]
The joint has a tensile strength at 250 ° C. of 25 mN / Tex or more, and the joint has a length of 60 mm and a width of 5.5 mm. In this embodiment, 0.12 × A 1/2 Is 4.55, 0.22 × A 1/2 Is 8.35.
[0042]
Next, the acrylic fiber yarn having the above-mentioned joint portion is subjected to a process tension of 14 mN / Tex in a flameproofing furnace in which hot air of 230 to 270 ° C. is circulating, while limiting the shrinkage of the acrylic fiber yarn, 30 In a carbonization furnace consisting of a nitrogen atmosphere having a temperature distribution of 300 to 1300 ° C., with a process tension of 7 mN / Tex, while limiting the shrinkage of the acrylic fiber yarn. Carbon fibers were produced by subjecting to a carbonization treatment for 2 minutes.
The process pass rate in the flameproofing process and the carbonization process in the carbon fiber manufacturing process is as shown in Table 1.
[0043]
Example 2
By subjecting the end of the same acrylic fiber yarn used in Example 1 to a flameproofing treatment for 35 minutes under a tension of 5 mN / tex in a flameproofing furnace circulating hot air at 240 ° C. , Density 1.31 g / cm Three The bobbin C is wound with the end portion on the winding start side as the flameproof end portion, and the bobbin is wound with the end portion on the winding end side as the flameproof end portion. D was prepared.
[0044]
The above-described bobbin C and bobbin D formed a joint portion in which fiber yarns were entangled and integrated with each other in the same manner as in Example 1. The joint has a tensile strength at 250 ° C. of 21.5 mN / Tex, and the joint has a length of 60 mm and a width of 5.6 mm.
[0045]
Subsequently, carbon fiber was manufactured by attaching | subjecting the acrylic fiber yarn which has said junction part to the baking process similar to Example 1. FIG. The process pass rate in the flameproofing process and the carbonization process in the carbon fiber manufacturing process is as shown in Table 1.
[0046]
Comparative Example 1
By subjecting the end of the same acrylic fiber yarn used in Example 1 to a flameproofing treatment for 20 minutes under a tension of 5 mN / tex in a flameproofing furnace circulating hot air at 240 ° C. , Density 1.28 g / cm Three The bobbin E is wound with the end portion on the winding start side as the flameproof end portion, and the bobbin is wound with the end portion on the winding end side as the flameproof end portion. F was prepared.
[0047]
The above-described bobbin E and bobbin F formed a joint portion in which fiber yarns were entangled and integrated with each other in the same manner as in Example 1. The joint has a tensile strength at 250 ° C. of 18 mN / Tex, and the joint has a length of 60 mm and a width of 5.8 mm.
[0048]
Subsequently, carbon fiber was manufactured by attaching | subjecting the acrylic fiber yarn which has said junction part to the baking process similar to Example 1. FIG. The process pass rate in the flameproofing process and the carbonization process in the carbon fiber manufacturing process is as shown in Table 1.
[0049]
Example 3
The same end portion on the winding start side as used in Example 1 has a density of 1.36 g / cm. Three The bobbin A wound up as a flame-resistant end portion of the wire and the end portion on the winding end side have a density of 1.36 g / cm Three And a bobbin B wound up as a flameproof end.
[0050]
The above-described bobbin A and bobbin B formed a joint portion in which fiber yarns were entangled and integrated with each other in the same manner as in Example 1. The joint has a tensile strength at 250 ° C. of 17.5 mN / Tex, and the joint has a length of 40 mm and a width of 5.5 mm.
[0051]
Next, the acrylic fiber yarn having the above-mentioned joint portion is contracted by 5% to the acrylic fiber yarn at a process tension of 10 mN / Tex in a flameproof furnace in which hot air of 230 to 270 ° C. is circulating. In the carbonization furnace consisting of a nitrogen atmosphere having a temperature distribution of 300 to 1300 ° C., the shrinkage of the acrylic fiber yarn is restricted to a process tension of 7 mN / Tex. However, carbon fiber was produced by subjecting it to a carbonization treatment for 2 minutes.
The process pass rate in the flameproofing process in the carbon fiber manufacturing process is as shown in Table 1.
[0052]
Example 4
The same end portion on the winding start side as used in Example 1 has a density of 1.36 g / cm. Three The bobbin A wound up as a flame-resistant end portion of the wire and the end portion on the winding end side have a density of 1.36 g / cm Three And a bobbin B wound up as a flameproof end.
[0053]
The bobbin A and the bobbin B are used to pull out the end portion on the winding start side of the bobbin A from the bobbin and superimpose the end portion on the winding end side pulled out from the other bobbin B. Using the apparatus shown in FIG. 1, air at a pressure of 600 kPa was blown for 4 seconds to form a joint portion in which the fiber yarns were intertwined and integrated with each other. The joint has a tensile strength at 250 ° C. of 16 mN / Tex, and the joint has a length of 60 mm and a width of 4.3 mm.
[0054]
Subsequently, carbon fiber was manufactured by attaching | subjecting the acrylic fiber yarn which has said joining part to the baking process similar to Example 3. FIG. The process pass rate in the flameproofing process and the carbonization process in the carbon fiber manufacturing process is as shown in Table 1.
[0055]
Comparative Example 2
The same end portion on the winding start side as used in Example 1 has a density of 1.36 g / cm. Three Bobbin A wound up as a flame-resistant end portion of the above, and bobbin B ′ wound up with the acrylic fiber yarn used in Example 1, that is, the acrylic fiber yarn not subjected to flameproofing treatment at the end portion, Prepared.
[0056]
The above-described bobbin A and bobbin B ′ formed a joint portion in which fiber yarns were entangled and integrated with each other in the same manner as in Example 1. The joint has a tensile strength at 250 ° C. of 16.5 mN / Tex, and the joint has a length of 60 mm and a width of 6.0 mm.
[0057]
Subsequently, carbon fiber was manufactured by attaching | subjecting the acrylic fiber yarn which has said junction part to the baking process similar to Example 1. FIG. The process pass rate in the flameproofing process and the carbonization process in the carbon fiber manufacturing process is as shown in Table 1.
[0058]
Comparative Example 3
Bobbin A ′ and bobbin B ′ were prepared by winding the same acrylic fiber yarn as the acrylic fiber yarn used in Example 1, ie, the acrylic fiber yarn not subjected to flameproofing treatment at the end.
[0059]
The above-described bobbin A ′ and bobbin B ′ formed a joint portion in which fiber yarns were entangled and integrated with each other in the same manner as in Example 1. The joint has a tensile strength at 250 ° C. of 12 mN / Tex, and the joint has a length of 60 mm and a width of 6.0 mm.
[0060]
Subsequently, when the acrylic fiber yarn having the above-mentioned joint portion was subjected to the firing step similar to that of Example 1, the joint portion was cut in the flameproofing step, and carbon fiber could not be produced.
[0061]
Comparative Example 4
The same end portion on the winding start side as used in Example 1 has a density of 1.36 g / cm. Three The bobbin A wound up as a flame-resistant end portion of the wire and the end portion on the winding end side have a density of 1.36 g / cm Three And a bobbin B wound up as a flameproof end.
[0062]
The end portion on the winding start side of the bobbin A and the end portion on the winding end side pulled out from the other bobbin B were connected with a double knot to form a joint portion. This joint has a tensile strength at 250 ° C. of 13 mN / Tex.
[0063]
Subsequently, when the acrylic fiber yarn having the above-mentioned joint portion was subjected to the firing step similar to that of Example 1, the joint portion was cut in the flameproofing step, and carbon fiber could not be produced.
[0064]
Comparative Example 5
The same end portion on the winding start side as used in Example 1 has a density of 1.36 g / cm. Three The bobbin A wound up as a flame-resistant end portion of the wire and the end portion on the winding end side have a density of 1.36 g / cm Three And a bobbin B wound up as a flameproof end.
[0065]
The end portion on the winding start side of the bobbin A and the end portion on the winding end side pulled out from the other bobbin B are connected by a special method described in JP-A-56-37315. Formed. The joint has a tensile strength at 250 ° C. of 14 mN / Tex.
[0066]
Next, when the acrylic fiber yarn having the above-described joint portion was subjected to the same firing step as in Example 1, the joint portion was cut in the flameproofing step, and carbon fiber could not be produced.
[0067]
Comparative Example 6
After the end portions of acrylic fiber yarns having a single yarn fineness of 1.2 dTex / filament and a filament number of 12000 are superposed on each other, using the apparatus shown in FIG. By blowing air with a pressure of 500 kPa for 2 seconds, a joint portion in which the fiber yarns were entangled and integrated with each other was formed.
[0068]
Subsequently, an aqueous boric acid solution was applied to the joined portion so that 1.3% by weight of boric acid of the fiber weight of the joined portion was adhered and dried. The joint has a tensile strength at 250 ° C. of 18 mN / Tex, and the joint has a length of 60 mm and a width of 5.8 mm.
[0069]
Next, when the acrylic fiber yarn having the above-mentioned joint portion was subjected to the same firing step as in Example 1, the joint portion was cut in the carbonization step, and carbon fiber could not be produced. In addition, the process passage rate of the flameproofing process in this carbon fiber manufacturing process is as shown in Table 1.
[0070]
Example 5
The end portion on the winding start side of an acrylic fiber yarn having a single yarn fineness of 1.2 dTex / filament and a filament number of 24,000 is 70 minutes under a tension of 5 mN / tex in a flameproofing furnace in which hot air of 240 ° C. is circulating. A density of 1.36 g / cm by applying a flameproofing treatment Three 240 ° C. hot air circulates through the winding bobbin G, which is the flame-resistant end portion, and the end portion on the winding end side of an acrylic fiber yarn having a single yarn fineness of 1.2 dTex / filament and a filament number of 24,000. A density of 1.36 g / cm was obtained by applying a flameproofing treatment for 70 minutes under a tension of 5 mN / tex in a flameproofing furnace. Three And a take-up bobbin H having a flameproof end portion.
[0071]
The above-described bobbin G and bobbin H formed a joint portion in which fiber yarns were entangled and integrated with each other in the same manner as in Example 1. The joint has a tensile strength at 250 ° C. of 25 mN / Tex or more, and the joint has a length of 60 mm and a width of 9.2 mm.
[0072]
Next, the acrylic fiber yarn having the above-mentioned joint portion is placed in a flame resistant furnace in which hot air at 230 to 270 ° C. is circulating for 40 minutes while limiting the shrinkage of the acrylic fiber yarn to a process tension of 14 mN / Tex. In the carbonization furnace consisting of a nitrogen atmosphere having a temperature distribution of 300 to 1300 ° C., while restricting the shrinkage of the acrylic fiber yarn, with a process tension of 7 mN / Tex, Carbon fibers were produced by subjecting to a carbonization treatment for 2 minutes.
The process pass rate in the flameproofing process and the carbonization process in the carbon fiber manufacturing process is as shown in Table 1.
[0073]
Example 6
The end portion on the winding start side of an acrylic fiber yarn having a single yarn fineness of 1.2 dTex / filament and a filament number of 48,000 is 70 minutes under a tension of 5 mN / tex in a flame resistant furnace in which hot air of 240 ° C. is circulating. A density of 1.36 g / cm by applying a flameproofing treatment Three 240 ° C. hot air circulates through the winding bobbin J, which is the flame-resistant end portion, and the end portion on the winding end side of the acrylic fiber yarn having a single yarn fineness of 1.2 dTex / filament and a filament number of 24,000. A density of 1.36 g / cm by applying a flameproofing treatment for 70 minutes under a tension of 5 mN / tex in a flameproofing furnace. Three And a take-up bobbin K having a flameproof end.
[0074]
The above-described bobbin J and bobbin K were used to form a joint portion in which fiber yarns were entangled and integrated with each other in the same manner as in Example 1. The joint has a tensile strength at 250 ° C. of 24.5 mN / Tex or more, and the joint has a length of 80 mm and a width of 11 mm.
[0075]
Next, the acrylic fiber yarn having the above-mentioned joint portion is placed in a flame resistant furnace in which hot air of 230 to 270 ° C. is circulating for 50 minutes while limiting the shrinkage of the acrylic fiber yarn to a process tension of 14 mN / Tex. In the carbonization furnace consisting of a nitrogen atmosphere having a temperature distribution of 300 to 1300 ° C., while restricting the shrinkage of the acrylic fiber yarn, with a process tension of 7 mN / Tex, Carbon fibers were produced by subjecting to a carbonization treatment for 2 minutes.
The process pass rate in the flameproofing process and the carbonization process in the carbon fiber manufacturing process is as shown in Table 1.
[0076]
Example 7
Prepare two boxes of acrylic fiber yarn with a single yarn fineness of 1.2dTex / filament and filament number of 48000, accommodated in a folded and laminated state in a box with crimping, and acrylic fiber yarn in one box By applying the same flameproofing treatment as described in Example 1 to the end portion that is the start end of the strip and the end portion that is the end of the acrylic fiber yarn in the other box, these end portions are density-added. 1.36 g / cm Three It was made into the flame-proof end part.
[0077]
Then, after starting the acrylic fiber yarn start end in the one box and the end of the acrylic fiber yarn in the other box from the inside of the box, and overlapping with the respective end portions, Example 1 was used to form a joint portion in which the fiber yarns were intertwined and integrated with each other. The joint has a tensile strength at 250 ° C. of 23.5 mN / Tex, and the joint has a length of 80 mm and a width of 12 mm.
[0078]
Subsequently, carbon fiber was manufactured by attaching | subjecting the acrylic fiber yarn which has said junction part to the baking process similar to Example 6. FIG. The process pass rate in the flameproofing process and the carbonization process in the carbon fiber manufacturing process is as shown in Table 1.
[0079]
Example 8
Prepare two boxes of acrylic fiber yarns with a single yarn fineness of 1.2 dTex / filament and filament number of 72,000 accommodated in a state of being folded and laminated in a box with crimping, as in Example 7, The end is 1.36 g / cm in density Three Acrylic fiber yarn at the end of flameproofing.
[0080]
Next, in the same manner as in Example 7, a joined portion in which the fiber yarns of the flameproof end portions were entangled and integrated with each other was formed. The joint has a tensile strength at 250 ° C. of 21 mN / Tex, and the joint has a length of 80 mm and a width of 18 mm.
[0081]
Next, the acrylic fiber yarn having the above-mentioned joint portion is subjected to a process tension of 14 mN / Tex in a flameproof furnace in which hot air of 230 to 270 ° C. is circulating for 60 minutes while limiting the shrinkage of the acrylic fiber yarn. In the carbonization furnace consisting of a nitrogen atmosphere having a temperature distribution of 300 to 1300 ° C., while restricting the shrinkage of the acrylic fiber yarn, with a process tension of 7 mN / Tex, Carbon fibers were produced by subjecting to a carbonization treatment for 2 minutes.
The process pass rate in the flameproofing process and the carbonization process in the carbon fiber manufacturing process is as shown in Table 1.
[0082]
[Table 1]
Figure 0003706754
In addition, * in a table | surface shows that it was not able to pass a flame-proofing process and carbon fiber could not be manufactured.
[0083]
【The invention's effect】
The acrylic fiber yarn for producing carbon fiber of the present invention has a density of 1.30 g / cm. Three Since the above-mentioned flame-resistant end portions are connected to each other to form a joint portion, heat storage does not become intense at the joint portion when the acrylic fiber yarn is fired to make carbon fiber.
[0084]
In addition, the acrylic fiber yarn for producing carbon fiber of the present invention is formed with a joint portion formed by entanglement and integration of the end portions of the acrylic fiber yarn, so that the joint portion with high tensile strength is formed. It has become.
[0085]
For this purpose, the acrylic fiber yarn for producing carbon fiber having the joint part of the present invention passes through the production process of carbon fiber by the process of heating, the flame resistance process with high heating temperature and the carbonization process with high process tension. However, since the joined portion does not become insufficiently flame resistant in the flameproofing process, there is no heat radiation failure of the reaction heat in the joined part in the carbonizing process, and the yarn is formed by fusing single fibers in the carbonizing process. There is no cutting.
[0086]
Therefore, according to the acrylic fiber yarn for carbon fiber production having the joint of the present invention, even through the production process of carbon fiber by the process of heating and the flame resistance process with a high heating temperature and the carbonization process with a high process tension, It is possible to produce carbon fibers having excellent physical properties at high speed without causing troubles such as yarn breakage during both of these steps.
[0087]
Furthermore, in the method for producing an acrylic fiber yarn for producing carbon fiber of the present invention, the end portion of the acrylic fiber yarn has a density of 1.30 g / cm. Three After the above flameproofing treatment, the flameproofing end portions are overlapped with each other, further comprising a step of forming a joint portion by intertwining and integrating the overlapping fiber yarns. According to the method of the present invention by such a process, troubles such as yarn breakage are caused during both processes, even through the carbon fiber production process by the flame resistance process having a high process tension and heating temperature and the carbonization process having a high process tension. It is possible to easily and accurately obtain the above-described acrylic fiber yarn for producing carbon fibers that can produce carbon fibers having excellent physical properties at high speed without causing them.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an outline of an entanglement processing apparatus used for forming a joint portion of acrylic fiber yarns.
[Explanation of symbols]
1 ... Tangle processing device
2 ... End of winding side
3 ... End of winding end
4... Bottom portion in which a through hole 7 for air ejection is formed in the approximate center
5... Lid that can be freely opened and closed
6 ... Tangle processing space

Claims (7)

末端部同士を接続した接合部を有する炭素繊維製造用のアクリル系繊維糸条であって、該接合部が密度1.30g/cm3 以上の耐炎化末端部同士を絡合一体化させてなるものであることを特徴とする炭素繊維製造用のアクリル系繊維糸条。Acrylic fiber yarn for carbon fiber production having a joint part where end parts are connected to each other, wherein the joint part entangles and integrates flameproof end parts having a density of 1.30 g / cm 3 or more. Acrylic fiber yarn for producing carbon fiber, characterized by being a thing. 接合部の250℃での引張強度が20mN/Tex以上であることを特徴とする請求項1に記載の炭素繊維製造用のアクリル系繊維糸条。2. The acrylic fiber yarn for producing carbon fiber according to claim 1, wherein the joint has a tensile strength at 250 ° C. of 20 mN / Tex or more. 接合部の長さが50mm以上であり、幅W(mm)が下記の式(1)を満足する請求項1又は請求項2に記載の炭素繊維製造用のアクリル系繊維糸条。
0.12×A1/2 ≦W≦0.22×A1/2 ・・・・(1)
(式中、Aは使用したアクリル系繊維糸条の繊度(Tex)を表わす。)
The acrylic fiber yarn for producing carbon fibers according to claim 1 or 2, wherein the length of the joint is 50 mm or more and the width W (mm) satisfies the following formula (1).
0.12 × A 1/2 ≦ W ≦ 0.22 × A 1/2 (1)
(In the formula, A represents the fineness (Tex) of the acrylic fiber yarn used.)
アクリル系繊維糸条の末端部を密度1.30g/cm3 以上に耐炎化処理した後、この耐炎化処理した末端部同士を相互に重ね合わせ、更に重ね合わせた部分の繊維糸条を互いに絡合一体化して接合部を形成することを特徴とする炭素繊維製造用のアクリル系繊維糸条の製造方法。The end portions of the acrylic fiber yarns are flame-resistant to a density of 1.30 g / cm 3 or more, then the flame-resistant end portions are overlapped with each other, and the overlapped portions of the fiber yarns are entangled with each other. A method for producing an acrylic fiber yarn for producing carbon fibers, characterized in that the joint portions are formed integrally. 重ね合わせた部分の繊維糸条を互いに絡合一体化して接合部を形成する手段に高速流体を使用することを特徴とする請求項4に記載の炭素繊維製造用のアクリル系繊維糸条の製造方法。5. The production of an acrylic fiber yarn for producing carbon fibers according to claim 4, wherein a high-speed fluid is used as means for forming a joint portion by intertwining the fiber yarns of the overlapped portions with each other. Method. 重ね合わせた部分の繊維糸条を互いに絡合一体化して形成した接合部の250℃での引張強度が20mN/Tex以上になるようにすることを特徴とする請求項4又は請求項5に記載の炭素繊維製造用のアクリル系繊維糸条の製造方法。6. The tensile strength at 250 ° C. of a joined portion formed by intertwining and integrating the fiber yarns of the overlapped portions is set to 20 mN / Tex or more. 6. Of acrylic fiber yarns for the production of carbon fiber. 重ね合わせた部分の繊維糸条を互いに絡合一体化して形成した接合部の長さが50mm以上であり、幅W(mm)が下記の式(1)を満足するようにすることを特徴とする請求項4、請求項5又は請求項6に記載の炭素繊維製造用のアクリル系繊維糸条の製造方法。
0.12×A1/2 ≦W≦0.22×A1/2 ・・・・(1)
(式中、Aは使用したアクリル系繊維糸条の繊度(Tex)を表わす。)
The length of the joint part formed by intertwining and integrating the fiber yarns of the overlapped part is 50 mm or more, and the width W (mm) satisfies the following formula (1): The manufacturing method of the acrylic fiber yarn for carbon fiber manufacture of Claim 4, Claim 5 or Claim 6 to do.
0.12 × A 1/2 ≦ W ≦ 0.22 × A 1/2 (1)
(In the formula, A represents the fineness (Tex) of the acrylic fiber yarn used.)
JP31782098A 1998-11-09 1998-11-09 Acrylic fiber yarn for producing carbon fiber and method for producing the same Expired - Fee Related JP3706754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31782098A JP3706754B2 (en) 1998-11-09 1998-11-09 Acrylic fiber yarn for producing carbon fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31782098A JP3706754B2 (en) 1998-11-09 1998-11-09 Acrylic fiber yarn for producing carbon fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000144534A JP2000144534A (en) 2000-05-26
JP3706754B2 true JP3706754B2 (en) 2005-10-19

Family

ID=18092423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31782098A Expired - Fee Related JP3706754B2 (en) 1998-11-09 1998-11-09 Acrylic fiber yarn for producing carbon fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP3706754B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150733A (en) * 2006-12-15 2008-07-03 Mitsubishi Rayon Co Ltd Method for treating carbon fiber precursor as flame retardant
CN107385531A (en) * 2017-06-21 2017-11-24 兰州蓝星纤维有限公司 A kind of processing method of big tow precursor joint

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4796517B2 (en) * 2007-02-02 2011-10-19 三菱レイヨン株式会社 Carbon fiber bundle yarn manufacturing method
KR101164753B1 (en) 2008-04-18 2012-07-12 미츠비시 레이온 가부시키가이샤 Production system and production method of carbon fiber thread
JP5103257B2 (en) * 2008-04-18 2012-12-19 三菱レイヨン株式会社 Carbon fiber production equipment
KR101564801B1 (en) 2008-11-10 2015-10-30 도레이 카부시키가이샤 Fiber bundle with pieced part, process for producing same, and process for producing carbon fiber
US9884740B2 (en) 2009-11-09 2018-02-06 Toray Industries, Inc. Fiber bundle with pieced part, process for producing same, and process for producing carbon fiber
TWI527946B (en) 2012-04-12 2016-04-01 三菱麗陽股份有限公司 Carbon fiber precursor acrylic fiber bundle and method for producing the same, thermal oxide treatment furnace and method for producing carbon fiber
JP7408406B2 (en) * 2019-02-20 2024-01-05 帝人株式会社 Method for manufacturing flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and connection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150733A (en) * 2006-12-15 2008-07-03 Mitsubishi Rayon Co Ltd Method for treating carbon fiber precursor as flame retardant
CN107385531A (en) * 2017-06-21 2017-11-24 兰州蓝星纤维有限公司 A kind of processing method of big tow precursor joint

Also Published As

Publication number Publication date
JP2000144534A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
JP3706754B2 (en) Acrylic fiber yarn for producing carbon fiber and method for producing the same
JP3722323B2 (en) Carbon fiber, manufacturing method and manufacturing apparatus thereof
WO2010053170A1 (en) Fiber bundle with pieced part, process for producing same, and process for producing carbon fiber
JPWO2002101129A1 (en) Apparatus and method for producing carbon fiber
JPH0112850B2 (en)
US4335089A (en) Process for producing carbon fibers
US9884740B2 (en) Fiber bundle with pieced part, process for producing same, and process for producing carbon fiber
JP5541414B2 (en) Carbon fiber precursor acrylic fiber bundle, part of the thermal oxidation treatment method, thermal oxidation treatment furnace, and method of producing carbon fiber bundle
JP4541583B2 (en) Yarn splicer and carbon fiber manufacturing method
JP2010255168A5 (en)
JP2010255168A (en) Process for producing carbon fiber
EP0141490A1 (en) Spool for use in carbon fiber oxidation and method for manufacturing same
DE3413472C2 (en)
JP2002038335A (en) Method for continuous production of carbon fiber
JP4669343B2 (en) Method for producing flame resistant fiber
JP2010133074A (en) Fiber pieced part and method for producing carbon fiber having the pieced part
JPH11124741A (en) Production of continuous carbon fiber
JPS602407B2 (en) Continuous production method of carbon fiber
JPH11131348A (en) Production of carbon fiber and device therefor
JP2590620B2 (en) Carbon fiber production method
JPS58208420A (en) Continuous production of carbon fiber
JP2002302342A (en) Fibrous yarn connecting method
JP5274044B2 (en) Carbon fiber sheet and manufacturing method thereof
JP3899649B2 (en) Carbon fiber manufacturing method
JPH11200159A (en) Production of carbon fiber and device therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees