JP2000144460A - Method for preventing pitting corrosion of copper heat transfer tube - Google Patents

Method for preventing pitting corrosion of copper heat transfer tube

Info

Publication number
JP2000144460A
JP2000144460A JP10318574A JP31857498A JP2000144460A JP 2000144460 A JP2000144460 A JP 2000144460A JP 10318574 A JP10318574 A JP 10318574A JP 31857498 A JP31857498 A JP 31857498A JP 2000144460 A JP2000144460 A JP 2000144460A
Authority
JP
Japan
Prior art keywords
heat storage
heat
storage tank
copper
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10318574A
Other languages
Japanese (ja)
Inventor
Kazuhiro Miya
一普 宮
Takeshi Yoshida
武司 吉田
Tetsuo Mitani
徹男 三谷
Hisakatsu Kawarai
久勝 瓦井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10318574A priority Critical patent/JP2000144460A/en
Publication of JP2000144460A publication Critical patent/JP2000144460A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Prevention Of Electric Corrosion (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preventing pitting corrosion of a copper heat transfer tube, free from periodic addition of chemical agents and requiring no space for corrosion protection, such as a water quality improving device incident to a heat storage tank. SOLUTION: A regenerative air conditioner has a heat storage tank 8 for string a heat storage medium 9 and a heat exchanger consisting of a copper heat transfer tube 1 disposed inside the heat storage tank 8 and is provided with a cold circuit where heat exchange is carried out between the heat storage medium 9 stored in the heat storage tank 8 and a cold medium by making the cold medium to pass through the copper heat transfer tube 1. The water quality of the heat storage medium 9 is regulated to pH 9-10 by adding, as alkalizing agents, at least 10 g of magnesium hydroxide and 0.4-4 g of sodium hydroxide or 0.56-5.6 g of potassium hydroxide, per ton of the heat storage medium, to the heat storage tank of the regenerative air conditioner.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蓄熱媒体を内蔵し
た蓄熱槽を備え、昼間電力の消費抑制と夜間電力の有効
利用による電力消費の負荷平準化に貢献し得る蓄熱式空
気調和装置に関するものであり、蓄熱槽中の熱交換器の
腐食対策に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage type air conditioner having a heat storage tank containing a heat storage medium and capable of contributing to the suppression of daytime power consumption and the leveling of power consumption by effective use of nighttime power. The present invention relates to measures against corrosion of a heat exchanger in a heat storage tank.

【0002】[0002]

【従来の技術】図6は、蓄熱式空気調和装置の蓄熱槽の
概略を示す図であり、図7はこの蓄熱式空気調和装置の
システム全体の構成を示す図である。図において、8は
蓄熱媒体9で満たされた蓄熱槽、1は銅伝熱管、13は
室外ユニットで、冷熱媒体を循環させるポンプ10と冷
熱媒体の冷却または加熱を行う圧縮機11と室外熱交換
器12からなる。14は室内の冷房または暖房を行う室
内ユニットである。蓄熱は、例えば氷蓄熱を行う場合、
室外ユニット13で冷却した冷熱媒体をポンプ10で蓄
熱槽8内の銅伝熱管1に循環させ、蓄熱槽8内の蓄熱媒
体9、例えば水を冷却し氷にすることによって行う。こ
の蓄熱媒体9への蓄熱を夜間電力を用いて行う。日中
は、ポンプ10によって冷熱媒体を室内ユニット14と
蓄熱槽8の間を循環させ、夜間に蓄熱槽8に蓄えられた
氷からなる蓄熱媒体9によって冷やされた冷熱媒体で冷
房を行う。したがって、蓄熱槽8内の蓄熱媒体9は循環
することはない。
2. Description of the Related Art FIG. 6 is a diagram schematically showing a heat storage tank of a regenerative air conditioner, and FIG. 7 is a diagram showing a configuration of an entire system of the regenerative air conditioner. In the figure, 8 is a heat storage tank filled with a heat storage medium 1, 1 is a copper heat transfer tube, 13 is an outdoor unit, and a pump 10 for circulating a cooling medium and a compressor 11 for cooling or heating the cooling medium, and outdoor heat exchange. It comprises a vessel 12. An indoor unit 14 performs cooling or heating of the room. Heat storage, for example, when performing ice heat storage,
The cooling medium cooled by the outdoor unit 13 is circulated by the pump 10 to the copper heat transfer tube 1 in the heat storage tank 8, and the heat storage medium 9, for example, water in the heat storage tank 8 is cooled to ice. The heat storage in the heat storage medium 9 is performed using nighttime electric power. During the day, a cooling medium is circulated between the indoor unit 14 and the heat storage tank 8 by the pump 10, and cooling is performed by the cooling medium cooled by the heat storage medium 9 made of ice stored in the heat storage tank 8 at night. Therefore, the heat storage medium 9 in the heat storage tank 8 does not circulate.

【0003】このように、蓄熱槽8中に蓄熱媒体9を入
れ、蓄熱媒体9中に銅伝熱管1を入れて銅伝熱管1中に
冷熱媒体を流し、蓄熱媒体9と冷熱媒体の間で熱交換を
行うことで蓄熱媒体9に熱エネルギーを貯めたり、蓄熱
媒体9から熱エネルギーを取り出したりする。蓄熱媒体
9として水を利用する蓄熱式空気調和装置の場合、蓄熱
槽8中の銅伝熱管1が蓄熱媒体9である蓄熱水によって
孔食を起こし、貫通孔が開くことによって冷熱媒体漏れ
が発生する問題があった。この問題を解決するために、
従来の技術は、特開平6−287776号公報で示され
るように、腐食防止剤の定期的な蓄熱槽への添加によっ
て、銅伝熱管に発生する孔食を防止するものであった。
また、特開平7−331466号公報で示されるよう
な、蓄熱水(蓄熱媒体)の水質を改善するための装置を
蓄熱槽に設置するものであった。
[0003] As described above, the heat storage medium 9 is put in the heat storage tank 8, the copper heat transfer tube 1 is put in the heat storage medium 9, and the cold heat medium flows through the copper heat transfer tube 1, so that the heat storage medium 9 and the cold heat medium are interposed. By performing heat exchange, heat energy is stored in the heat storage medium 9 or heat energy is extracted from the heat storage medium 9. In the case of the heat storage type air conditioner using water as the heat storage medium 9, the copper heat transfer tube 1 in the heat storage tank 8 causes pitting corrosion by the heat storage water as the heat storage medium 9, and the through-hole opens to cause a cooling medium leak. There was a problem to do. to solve this problem,
In the prior art, as shown in JP-A-6-287776, pitting corrosion generated in a copper heat transfer tube is prevented by periodically adding a corrosion inhibitor to a heat storage tank.
In addition, a device for improving the quality of heat storage water (heat storage medium), as disclosed in Japanese Patent Application Laid-Open No. 7-331466, is installed in a heat storage tank.

【0004】[0004]

【発明が解決しようとする課題】特開平6−28777
6号公報のような、定期的に腐食防止剤を添加する方法
では、蓄熱式空気調和装置の利用者は、腐食防止剤を定
期的に購入し、添加しなければならず、また、添加を怠
った場合には、孔食の発生を免れることはできないとい
った問題があった。特開平7−331466号公報のよ
うな腐食防止のための水質改善装置を設置する技術で
は、スペースが限られるビルの屋上などでの適用が困難
であるという問題があった。
SUMMARY OF THE INVENTION Japanese Patent Application Laid-Open No. Hei 6-28777
In the method of periodically adding a corrosion inhibitor as in JP-A-6, users of the regenerative air conditioner must purchase and add the corrosion inhibitor regularly, and If neglected, there is a problem that pitting cannot be avoided. The technology of installing a water quality improvement device for preventing corrosion as disclosed in Japanese Patent Application Laid-Open No. 7-331466 has a problem that it is difficult to apply the technology to a rooftop of a building where space is limited.

【0005】本発明は、上記のような問題を解決するも
ので、銅伝熱管の孔食を防止するに当たって、定期的な
薬剤の添加を伴わず、且つ蓄熱槽に付随する水質改善装
置のような防食のためのスペースを必要としない銅伝熱
管の孔食防止法を提供することを目的とするものであ
る。
[0005] The present invention solves the above-mentioned problems. In preventing pitting of a copper heat transfer tube, the present invention does not involve the periodic addition of chemicals, and is similar to a water quality improvement device attached to a heat storage tank. It is an object of the present invention to provide a method for preventing pitting corrosion of a copper heat transfer tube, which does not require a space for preventing corrosion.

【0006】[0006]

【課題を解決するための手段】本発明に係る第1の発明
は、蓄熱可能な蓄熱媒体である水を貯留する蓄熱槽と、
この蓄熱槽に内設した銅伝熱管からなる熱交換器とを備
え、上記銅伝熱管内に冷熱媒体が流れることによって上
記蓄熱槽に貯留された蓄熱媒体と上記冷熱媒体との間で
熱交換を行う冷熱回路を設けてなる蓄熱式空気調和装置
における銅伝熱管の孔食防止法であって、上記蓄熱媒体
1トン当たり、アルカリ化剤として、少なくとも10g
の水酸化マグネシウムと水酸化ナトリウム0.4〜4g
または水酸化カリウム0.56〜5.6gとを添加して、
上記蓄熱媒体の水質をpH9〜10に調整する銅伝熱管
の孔食防止法である。
According to a first aspect of the present invention, there is provided a heat storage tank for storing water as a heat storage medium capable of storing heat,
A heat exchanger comprising a copper heat transfer tube provided in the heat storage tank, wherein the heat exchange between the heat storage medium stored in the heat storage tank and the cold heat medium is performed by flowing the cooling medium through the copper heat transfer tube. Pitting corrosion of a copper heat transfer tube in a heat storage type air conditioner provided with a cooling / heating circuit for performing at least 10 g of an alkalizing agent per tonne of the heat storage medium.
Of magnesium hydroxide and sodium hydroxide 0.4-4g
Or 0.56 to 5.6 g of potassium hydroxide,
This is a method for preventing pitting corrosion of a copper heat transfer tube in which the water quality of the heat storage medium is adjusted to pH 9 to 10.

【0007】本発明に係る第2の発明は、蓄熱可能な蓄
熱媒体である水を貯留する蓄熱槽と、この蓄熱槽に内設
した銅伝熱管からなる熱交換器とを備え、上記銅伝熱管
内に冷熱媒体が流れることによって上記蓄熱槽に貯留さ
れた蓄熱媒体と上記冷熱媒体との間で熱交換を行う冷熱
回路を設けてなる蓄熱式空気調和装置における銅伝熱管
の孔食防止法であって、上記蓄熱媒体1トン当たり、ア
ルカリ化剤として、亜鉛21g及びマグネシウム顆粒
4.1gの両方若しくはいずれか一方と水酸化ナトリウ
ム0.4〜4gまたは水酸化カリウム0.56〜5.6g
とを添加して、上記蓄熱媒体の水質をpH9〜10に調
整する銅伝熱管の孔食防止法である。
According to a second aspect of the present invention, there is provided a heat storage tank for storing water, which is a heat storage medium capable of storing heat, and a heat exchanger including a copper heat transfer tube provided in the heat storage tank. Method for preventing pitting corrosion of copper heat transfer tubes in a heat storage type air conditioner provided with a cooling circuit for performing heat exchange between the heat storage medium stored in the heat storage tank and the cooling medium by flowing the cooling medium into the heat tubes And per 1 ton of the heat storage medium, as an alkalizing agent, 21 g of zinc and / or 4.1 g of magnesium granules and 0.4 to 4 g of sodium hydroxide or 0.56 to 5.6 g of potassium hydroxide.
To prevent the pitting corrosion of the copper heat transfer tube in which the water quality of the heat storage medium is adjusted to pH 9 to 10.

【0008】本発明に係る第3の発明は、上記第1の発
明または第2の発明において、アルカリ化剤を水が浸透
可能な容器にいれて蓄熱槽内に吊すものである。
According to a third aspect of the present invention, in the first or second aspect, the alkalizing agent is placed in a container through which water can penetrate and suspended in a heat storage tank.

【0009】本発明に係る第4の発明は、上記第2の発
明において、亜鉛が、内壁と銅伝熱管の両方またはいず
れか一方に施した亜鉛めっきであるものである。
According to a fourth aspect of the present invention, in the second aspect, the zinc is zinc plating applied to both or one of the inner wall and the copper heat transfer tube.

【0010】本発明に係る第5の発明は、上記第2の発
明において、亜鉛が、内壁と銅伝熱管の両方またはいず
れか一方に塗った亜鉛含有塗料であるものである。
According to a fifth aspect of the present invention, in the second aspect of the invention, zinc is a zinc-containing paint applied to the inner wall and / or the copper heat transfer tube.

【0011】本発明に係る第6の発明は、上記第1の発
明または第2の発明において、水溶性のカプセルまたは
袋に一定量のアルカリ剤を入れ、このカプセルまたは袋
を蓄熱槽内に投入するものである。
According to a sixth aspect of the present invention, in the first or second aspect, a fixed amount of an alkali agent is put into a water-soluble capsule or bag, and the capsule or bag is put into a heat storage tank. Is what you do.

【0012】本発明に係る第7の発明は、上記第1の発
明または第2の発明において、水溶性樹脂シートにアル
カリ剤を挟み込み、この水溶性樹脂シートを蓄熱槽の底
もしくは壁面に設置するものである。
According to a seventh aspect of the present invention, in the first or second aspect, an alkali agent is sandwiched between water-soluble resin sheets, and the water-soluble resin sheet is placed on the bottom or wall of the heat storage tank. Things.

【0013】[0013]

【発明の実施の形態】図1は、銅酸化皮膜CuO,Cu
(OH)2の水溶液中平衡反応を、pHと、溶解してい
る銅イオン種Cu2+,HCuO2-,CuO2 2-の濃度と
の関係で表したものである(Atlas of ele
ctrochemical equilibrium
in aqueous solutions p38
9(1966))。図中の丸1及び丸3はそれぞれ銅イ
オン種の変移するpHを表わし、線分丸1は、Cu2+
HCuO2 -の変移がpH=8.91であることを示し、
線分丸3は、HCuO2 -/CuO2 2-の変移がpH=1
3.15であることを示している。また、丸11、丸1
2及び丸13の線分は水溶液中での下記式(1)ないし
(3)の化学平衡を意味する。 線分丸11:Cu2++H2O=CuO+2H+…(1) 線分丸12:CuO+H2O=HCuO2 -+2H+…(2) 線分丸13:CuO+H2O=CuO2 2-+2H+…(3)
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a copper oxide film CuO, Cu
The equilibrium reaction of (OH) 2 in an aqueous solution is represented by the relationship between pH and the concentration of dissolved copper ion species Cu 2+ , HCuO 2− , and CuO 2 2- (Atlas of element).
trochemical equilibrium
in aqueous solutions p38
9 (1966)). In the figure, circles 1 and 3 represent the pH at which the copper ion species change, respectively, and the circle 1 represents the Cu 2+ /
HCuO 2 - transition indicates that the pH = 8.91, and
The line 3 indicates that the transition of HCuO 2 / CuO 2 2- is pH = 1.
3.15. In addition, circle 11, circle 1
Lines 2 and 13 represent the chemical equilibrium of the following formulas (1) to (3) in an aqueous solution. Line segment 11: Cu 2+ + H 2 O = CuO + 2H + (1) Line segment 12: CuO + H 2 O = HCuO 2 + 2H + (2) Line segment 13: CuO + H 2 O = CuO 2 2- + 2H + … (3)

【0014】銅の酸化は、表面に形成される酸化皮膜に
よって抑制されるが、停止しているわけではなく、徐々
に酸化反応が進行し、銅は皮膜を通して溶解する。この
溶解における銅イオン種は上記丸1及び丸3のpHを境
に異なることが、図1からわかる。また、図1で注目す
べき点は、pH=8.91を境として、平衡反応に関わ
るH+の役割が変化することである。ここで、上記丸1
1、丸12及び丸13の平衡反応式を、左辺に銅イオン
種、右辺に銅酸化物の形で示すと下記式(4)ないし
(6)と表わされる。 丸11:Cu2++H2O=CuO+2H+…(4) 丸12:HCuO2-+H+=CuO+H2O…(5) 丸13:CuO2 2-+2H+=CuO+H2O…(6)
The oxidation of copper is suppressed by the oxide film formed on the surface, but is not stopped, the oxidation reaction proceeds gradually, and the copper dissolves through the film. It can be seen from FIG. 1 that the copper ion species in this dissolution differs at the pH of the circles 1 and 3. It should be noted in FIG. 1 that the role of H + involved in the equilibrium reaction changes at pH = 8.91. Here, the circle 1
1, the equilibrium reaction formulas of circles 12 and 13 are represented by the following formulas (4) to (6) in the form of copper ion species on the left side and copper oxide on the right side. Circle 11: Cu 2+ + H 2 O = CuO + 2H + (4) Circle 12: HCuO 2− + H + = CuO + H 2 O (5) Circle 13: CuO 2 2- + 2H + = CuO + H 2 O (6)

【0015】上記平衡反応式(4)ないし(6)は、銅
イオン種の濃度が上昇した際に反応が右辺に進むことを
表している。これらの平衡反応式を比較すると、H
+は、丸11の反応では酸化皮膜形成の副産物であるの
に対して、丸12及び丸13の反応では酸化皮膜形成に
必要なイオンである。このことは、酸化反応の進行によ
る銅イオン種濃度の上昇により銅酸化皮膜が形成される
とき、pH=8.91を境として、低いpH側ではpH
の低下が起こり(H+濃度の上昇)、高いpHではそれ
とは逆に、pHの上昇を招くことを意味する。したがっ
て、pHが8.91よりも低い水質では、銅酸化物表面
で、pHの低下が起こり、銅酸化皮膜自体が局部的に酸
溶解して孔食が形成されると考えられる。
The above-mentioned equilibrium reaction equations (4) to (6) indicate that the reaction proceeds to the right side when the concentration of the copper ion species increases. Comparing these equilibrium reaction equations, H
+ Is an ion necessary for forming an oxide film in the reactions of the circles 12 and 13, while + is a by-product of forming an oxide film in the reaction of the circle 11. This means that when a copper oxide film is formed due to an increase in the concentration of copper ions due to the progress of the oxidation reaction, the pH is lower on the lower pH side than pH = 8.91.
(Increase in H + concentration), and conversely at high pH means an increase in pH. Therefore, it is considered that when the pH is lower than 8.91, the pH is lowered on the copper oxide surface, and the copper oxide film itself is locally dissolved in acid to form pitting corrosion.

【0016】このように、銅の孔食は局部的な酸化皮膜
の酸溶解によって発生すると考えられるため、境界pH
である8.91よりも高いpHに液性を調整すること
で、酸化溶解の促進による局部的な低pH発生を阻止
し、酸化皮膜の局部的な酸溶解を防ぐことで孔食の発生
を防止できると考えられる。
As described above, since the pitting corrosion of copper is considered to be caused by the acid dissolution of the local oxide film, the boundary pH
By adjusting the liquid property to a pH higher than 8.91, the local low pH generation due to the promotion of oxidative dissolution is prevented, and the occurrence of pitting corrosion is prevented by preventing the local acid dissolution of the oxide film. It is thought that it can be prevented.

【0017】また、pH>8.91では銅イオン種の溶
解が酸化皮膜の形成を経て(丸12及び丸13の反応を
経由)起こるため、孔食の起点が形成されないうえ、溶
解速度もCu2+の溶出と比較して遅いと考えられる。
At pH> 8.91, since the dissolution of the copper ion species occurs through the formation of an oxide film (via the reaction of circles 12 and 13), the starting point of pitting corrosion is not formed, and the dissolution rate is Cu. It is considered to be slow compared to 2+ elution.

【0018】このように、pHを9以上に調整すること
で、銅の孔食を抑えることができる。また、蓄熱水を放
出する場合の環境へ与える影響を考慮して中和を実施す
る必要があるため、pHの上限を10とする。したがっ
て、蓄熱水の水質は、中和が容易であり且つ銅の孔食が
防止できるpH9〜10の範囲に調整する。
As described above, by adjusting the pH to 9 or more, pitting corrosion of copper can be suppressed. In addition, since it is necessary to carry out the neutralization in consideration of the effect on the environment when releasing the heat storage water, the upper limit of the pH is set to 10. Therefore, the water quality of the heat storage water is adjusted to a pH range of 9 to 10 where neutralization is easy and copper pitting can be prevented.

【0019】pHの調整は蓄熱水を入れ替えない限り、
蓄熱槽設置時の1回のみとする。このためには、難溶性
のアルカリ化剤であり、且つpH10近傍に解離平衡が
存在する水酸化マグネシウムが最適であり、また、金属
マグネシウムは水中で容易に酸化され水酸化マグネシウ
ムとなるため、金属マグネシウムを添加することも有効
である。下記式(7)及び(8)にそれらの化学反応を
示す。 2Mg+4H2O+O2→2Mg(OH)2 …(7) 2Mg(OH)2= Mg2++2OH-… (8)
Adjustment of the pH, unless the heat storage water is replaced,
Only once when the heat storage tank is installed. For this purpose, magnesium hydroxide, which is a poorly soluble alkalizing agent and has a dissociation equilibrium near pH 10, is most suitable. In addition, since magnesium metal is easily oxidized in water to form magnesium hydroxide, magnesium hydroxide is preferred. It is also effective to add magnesium. The following formulas (7) and (8) show their chemical reactions. 2Mg + 4H 2 O + O 2 → 2Mg (OH) 2 (7) 2Mg (OH) 2 = Mg 2+ + 2OH (8)

【0020】添加量は、水酸化マグネシウムの飽和濃度
以上となるようにするために、少なくとも蓄熱水1t当
たり水酸化マグネシウムの場合10g、金属マグネシウ
ムの場合4.08gが必要である。難溶性である水酸化
マグネシウムもしくは金属マグネシウムで蓄熱水として
用いる水のpHを9〜10の範囲にするには時間がかか
るので、迅速にpHを上昇させるためには、強アルカリ
化剤を添加する方法が有効であり、添加量は添加する強
アルカリ化剤が1×10-5〜1×10-4mol/lの濃
度となるようにする。この強アルカリ化剤を添加するこ
とで、pHは9〜10に迅速に調整することができる。
亜鉛はアルカリ水溶液中で酸化し、Zn2+になるが、こ
の際、炭酸ガスが蓄熱水中にとけ込むによって生ずる炭
酸が解離して発生する水素イオンの還元反応を伴い、空
気中の炭酸ガスが水中にとけ込むことによって起こるp
Hの低下を抑えることができる。下記式(9)ないし
(11)にその際の反応を示す。 CO2+H2O=H2CO3…(9) H2CO3=H++HCO3-…(10) Zn+2H+→Zn2++H2…(11)
At least 10 g of magnesium hydroxide and 4.08 g of metallic magnesium per 1 t of heat storage water are required so that the amount of addition is equal to or higher than the saturation concentration of magnesium hydroxide. Since it takes time to adjust the pH of water used as heat storage water to be in the range of 9 to 10 with sparingly soluble magnesium hydroxide or metallic magnesium, a strong alkalizing agent is added to quickly raise the pH. The method is effective, and the amount added is such that the strong alkalizing agent to be added has a concentration of 1 × 10 −5 to 1 × 10 −4 mol / l. The pH can be quickly adjusted to 9 to 10 by adding the strong alkalizing agent.
Zinc is oxidized in an aqueous alkaline solution to become Zn 2+ , and at this time, a reduction reaction of hydrogen ions generated by dissociation of carbon dioxide generated by dissolution of carbon dioxide gas in the heat storage water causes carbon dioxide gas in the air to dissolve in the water. P caused by melting into
H can be suppressed from decreasing. The following formulas (9) to (11) show the reactions at that time. CO 2 + H 2 O = H 2 CO 3 (9) H 2 CO 3 = H + + HCO 3- (10) Zn + 2H + → Zn 2+ + H 2 (11)

【0021】基本的に、蓄熱槽中の蓄熱水は入れ替えら
れることはない。したがって、上記のアルカリ化剤及び
金属によってpH9〜10の範囲に調整したならば、そ
の後は化学平衡反応によって、pHは調整値の範囲で維
持できる。
Basically, the heat storage water in the heat storage tank is not replaced. Therefore, after the pH is adjusted to the range of 9 to 10 by the above alkalizing agent and metal, the pH can be maintained within the range of the adjusted value by the chemical equilibrium reaction thereafter.

【0022】[0022]

【実施例】実施例1.蓄熱水1tあたり、水酸化マグネ
シウム10gと水酸化ナトリウム4gを蓄熱水に浸水さ
せるために布などの水が染み込む袋状の容器3に入れ、
蓄熱槽内の伝熱管支持枠2に吊した(図2)。この袋状
の容器3が蓄熱水に浸ることによって容器3中の水酸化
マグネシウムと水酸化ナトリウムの混合粉体4から、水
酸化物イオン、マグネシウムイオン、ナトリウムイオン
が蓄熱水に溶けだし、pHが上昇し、その後pH10近
傍を推移する。このことによって先に述べたように孔食
を防止することができる。
[Embodiment 1] For 1 t of heat storage water, put 10 g of magnesium hydroxide and 4 g of sodium hydroxide in a bag-like container 3 into which water such as cloth is soaked to immerse the water in the heat storage water,
It was hung on the heat transfer tube support frame 2 in the heat storage tank (FIG. 2). When the bag-shaped container 3 is immersed in the heat storage water, hydroxide ions, magnesium ions, and sodium ions are dissolved in the heat storage water from the mixed powder 4 of magnesium hydroxide and sodium hydroxide in the container 3, and the pH rises. Then, the pH changes to around 10. This makes it possible to prevent pitting as described above.

【0023】図2に示した袋と同じように内容物を蓄熱
槽に溶かすことができれば、容器3の形状は篭状でもよ
い。
As long as the contents can be melted in the heat storage tank as in the bag shown in FIG. 2, the shape of the container 3 may be a basket.

【0024】実施例2.蓄熱水1tあたり、マグネシウ
ム顆粒5gと水酸化ナトリウム4gを蓄熱水に浸水させ
るために布などの水が染み込む袋状の容器3に入れ、実
施例1と同様に蓄熱槽内に吊した。水酸化ナトリウムが
蓄熱槽に溶け出すと共にマグネシウム顆粒は酸化反応を
起こし、pHを9〜10に維持する。このことによって
孔食が防止できる。図2に示した袋状の容器3と同じよ
うに内容物を蓄熱槽に溶かすことができれば、容器3の
形状は篭状でもよい。
Embodiment 2 FIG. 5 g of magnesium granules and 4 g of sodium hydroxide per 1 t of the heat storage water were put into a bag-shaped container 3 into which water such as cloth soaked to be immersed in the heat storage water, and suspended in the heat storage tank as in Example 1. As the sodium hydroxide dissolves in the heat storage tank, the magnesium granules undergo an oxidation reaction to maintain the pH at 9-10. This can prevent pitting. As long as the contents can be melted in the heat storage tank in the same manner as the bag-shaped container 3 shown in FIG. 2, the shape of the container 3 may be a basket shape.

【0025】上記実施例1及び2において、アルカリ化
剤を予め袋または篭などに収納しておくことによって、
蓄熱槽を設置する作業者が安全に設置作業を行うことが
できる。
In the above Examples 1 and 2, by storing the alkalizing agent in a bag or basket in advance,
An operator who installs the heat storage tank can safely perform the installation work.

【0026】実施例3.図6の蓄熱槽8の内壁および銅
伝熱管1に亜鉛めっきを施し、図2で示した方法で、蓄
熱水1トンあたり4gの水酸化ナトリウムを蓄熱槽内に
吊して蓄熱水を貯めた。この方法により銅伝熱管1の亜
鉛めっきが蓄熱水にとけ込む間、銅伝熱管は亜鉛の犠牲
陽極効果で腐食が進行しないうえ、さらに、アルカリ化
剤で調整したpH、は亜鉛が水素発生型の酸化反応を起
こすことによって抑制する。また、蓄熱槽8内壁のみに
亜鉛めっきした場合は、pH維持効果のみによる孔食防
止が期待できる。
Embodiment 3 FIG. Zinc plating was applied to the inner wall of the heat storage tank 8 and the copper heat transfer tube 1 in FIG. 6, and 4 g of sodium hydroxide was suspended in the heat storage tank per 4 tons of the heat storage water to store the heat storage water by the method shown in FIG. 2. . While the zinc plating of the copper heat transfer tube 1 dissolves in the heat storage water by this method, the copper heat transfer tube does not corrode due to the sacrificial anode effect of the zinc, and further, the pH adjusted with the alkalizing agent is a hydrogen generation type. It is suppressed by causing an oxidation reaction. When only the inner wall of the heat storage tank 8 is galvanized, pitting corrosion can be expected to be prevented only by the pH maintaining effect.

【0027】実施例4.図6の蓄熱槽8の内壁および銅
伝熱管1に亜鉛含有塗料(アマジンク:大日本塗料
(株)製)を塗布し、図2で示した方法で蓄熱水1トン
あたり4gの水酸化ナトリウムを蓄熱槽内に吊して蓄熱
水をためる。このことにより、実施例2と同様の効果を
得ることができる。
Embodiment 4 FIG. A zinc-containing paint (Amazing: manufactured by Dainippon Paint Co., Ltd.) is applied to the inner wall of the heat storage tank 8 and the copper heat transfer tube 1 in FIG. 6, and 4 g of sodium hydroxide per ton of the heat storage water is applied by the method shown in FIG. Suspended in a heat storage tank to store heat storage water. Thus, the same effect as that of the second embodiment can be obtained.

【0028】実施例5.水酸化ナトリウム4gに対して
水酸化マグネシウム10gの割合で合わせた粉末4を作
り、水溶性であるデンプン質で作った袋5に図3のよう
に2.8gづつ詰めて、この袋5を5個投入して1tの
蓄熱水分をpH10に調整できるようにし、蓄熱槽の容
量に応じて、この袋5の投入個数を調整した。3.8t
の蓄熱水量を蓄えることができる蓄熱槽の場合、19個
の袋5を投入することでpHを10近傍に調整すること
ができる。この方法によって、蓄熱層の設置作業者が水
酸化ナトリウム等のアルカリ剤に触れることなく安全に
作業を進めることが可能となる。
Embodiment 5 FIG. Powder 4 was prepared by combining 10 g of magnesium hydroxide with 4 g of sodium hydroxide, and packed in bags 5 made of water-soluble starch as shown in FIG. The heat storage moisture of 1 t was adjusted to pH 10 by adding the bags, and the number of bags 5 to be charged was adjusted according to the capacity of the heat storage tank. 3.8t
In the case of a heat storage tank capable of storing the amount of heat storage water, the pH can be adjusted to around 10 by charging 19 bags 5. According to this method, the worker who installs the heat storage layer can safely proceed without touching an alkaline agent such as sodium hydroxide.

【0029】実施例6.水溶性の高分子であるポリビニ
ルアルコールで1m2の大きさのシート6を作り、この
シート2枚を使ってサンドイッチ状に水酸化ナトリウム
4gと水酸化マグネシウム10gの混合粉体4を挟み込
み、四辺を塞いだもの(図4)を作製する。このサンド
イッチ状シート7を蓄熱槽8の容量に合わせて内壁もし
くは底に製造時に張り付ける(図5)。このことによっ
て、蓄熱槽8を客先に設置するときにpHを調整するた
めの作業をすることなく、水を蓄熱槽8に溜めるだけで
蓄熱水の水質をpH10近傍に保つことができる。
Embodiment 6 FIG. A sheet 6 having a size of 1 m 2 is made of polyvinyl alcohol, which is a water-soluble polymer, and a mixed powder 4 of 4 g of sodium hydroxide and 10 g of magnesium hydroxide is sandwiched between these two sheets, and the four sides are formed. The closed one (FIG. 4) is produced. The sandwich sheet 7 is attached to the inner wall or the bottom at the time of manufacture according to the capacity of the heat storage tank 8 (FIG. 5). Thus, the quality of the heat storage water can be maintained at around pH 10 only by storing the water in the heat storage tank 8 without performing the operation for adjusting the pH when the heat storage tank 8 is installed at the customer site.

【0030】[0030]

【発明の効果】本発明に係る第1及び第2の発明によれ
ば、、水酸化ナトリウムまたは水酸化カリウムによって
迅速にpHを上昇させ、その後難溶性のアルカリ化剤に
より長期間、高pHを維持し、長期間にわたって銅伝熱
管の孔食を防止することができる。
According to the first and second aspects of the present invention, the pH is rapidly raised by sodium hydroxide or potassium hydroxide, and thereafter, the high pH is maintained for a long time by a poorly soluble alkalizing agent. Maintain and prevent pitting of copper heat transfer tubes for a long period of time.

【0031】本発明に係る第3の発明によれば、アルカ
リ化剤を水が浸透可能な容器に予めいれておくことによ
って、蓄熱層の設置作業者が、アルカリ化剤に直接触れ
ること無く蓄熱槽内に吊すことができ、安全に作業を行
うことができる。
According to the third aspect of the present invention, by placing the alkalizing agent in a water-permeable container in advance, the operator of the heat storage layer can store heat without directly touching the alkalizing agent. It can be hung in a tank and can work safely.

【0032】本発明に係る第4及び第5の発明によれ
ば、蓄熱槽に強アルカリのみを投入すればよくなるの
で、蓄熱層の設置作業者の作業時間が短縮できる。
According to the fourth and fifth aspects of the present invention, since only the strong alkali needs to be charged into the heat storage tank, the work time of the worker installing the heat storage layer can be reduced.

【0033】本発明に係る第6の発明によれば、水溶性
のカプセル若しくは袋に一定量のアルカリ剤を入れ、こ
のカプセルまたは袋を蓄熱槽内に投入することによっ
て、蓄熱層の水量に応じて所定の個数のカプセルまたは
袋を投入し、pHを調整することができる。また、蓄熱
層の設置作業者が、アルカリ化剤に直接触れること無
く、安全に作業を行うことができる。
According to the sixth aspect of the present invention, a fixed amount of an alkaline agent is put into a water-soluble capsule or bag, and the capsule or bag is put into a heat storage tank, whereby the amount of water in the heat storage layer can be adjusted. Thus, a predetermined number of capsules or bags can be charged to adjust the pH. In addition, the worker who installs the heat storage layer can safely work without directly touching the alkalizing agent.

【0034】本発明に係る第7の発明によれば、蓄熱層
の設置作業者は水を蓄熱槽に供給するだけでよいので、
作業時間が短縮される。
According to the seventh aspect of the present invention, since the operator of the heat storage layer only needs to supply water to the heat storage tank,
Work time is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 銅酸化皮膜溶解反応平衡のpHと銅イオン種
濃度との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the pH of the copper oxide film dissolution reaction equilibrium and the concentration of copper ion species.

【図2】 アルカリ化剤および金属顆粒を袋状容器に入
れて蓄熱槽に吊す概略図である。
FIG. 2 is a schematic diagram in which an alkalizing agent and metal granules are put in a bag-like container and suspended in a heat storage tank.

【図3】 アルカリ化剤を入れたデンプン質の袋の模式
図である。
FIG. 3 is a schematic view of a starch bag containing an alkalizing agent.

【図4】 ポリビニルアルコールシートでサンドイッチ
状にアルカリ化剤を挟んだサンドイッチ状シートの構造
図である。
FIG. 4 is a structural view of a sandwich sheet in which an alkalizing agent is sandwiched between polyvinyl alcohol sheets.

【図5】 サンドイッチ状ポリビニルアルコールシート
を蓄熱槽内に貼る模式図である。
FIG. 5 is a schematic diagram of attaching a sandwich-like polyvinyl alcohol sheet in a heat storage tank.

【図6】 蓄熱槽の概略構成図である。FIG. 6 is a schematic configuration diagram of a heat storage tank.

【図7】 蓄熱式空気調和システムの構成を示す図であ
る。
FIG. 7 is a diagram showing a configuration of a regenerative air conditioning system.

【符号の説明】[Explanation of symbols]

1 銅伝熱管、2 伝熱管支持枠、3 水が浸透する袋
状容器、4 水酸化マグネシウムと水酸化ナトリウムの
混合粉体、5 デンプン質の袋、6 ポリビニルシー
ト、7 サンドイッチ状シート、8 蓄熱槽、9 蓄熱
媒体、10 ポンプ、11 圧縮機、12 室外熱交換
器、13 室外ユニット、14 室内ユニット、15
室内熱交換器、16三方弁
Reference Signs List 1 copper heat transfer tube, 2 heat transfer tube support frame, 3 bag-shaped container through which water permeates, 4 mixed powder of magnesium hydroxide and sodium hydroxide, 5 starch-based bag, 6 polyvinyl sheet, 7 sandwich sheet, 8 heat storage Tank, 9 heat storage medium, 10 pump, 11 compressor, 12 outdoor heat exchanger, 13 outdoor unit, 14 indoor unit, 15
Indoor heat exchanger, 16 three-way valve

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F28F 19/06 F28D 20/00 B (72)発明者 三谷 徹男 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 瓦井 久勝 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 4K060 AA02 BA10 BA13 BA33 DA10 EA04 EA06 EB04 FA09 4K062 AA01 AA03 BA11 BA20 BC30 CA03 CA05 EA20 FA02 FA04 FA16 GA01 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) F28F 19/06 F28D 20/00 B (72) Inventor Tetsuo Mitani 2-3-2 Marunouchi 2-chome, Chiyoda-ku, Tokyo Mitsubishi Electric (72) Inventor Hisatsuka Kawai 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation F-term (reference) 4K060 AA02 BA10 BA13 BA33 DA10 EA04 EA06 EB04 FA09 4K062 AA01 AA03 BA11 BA20 BC30 CA03 CA05 EA20 FA02 FA04 FA16 GA01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 蓄熱可能な蓄熱媒体である水を貯留する
蓄熱槽と、この蓄熱槽に内設した銅伝熱管からなる熱交
換器とを備え、上記銅伝熱管内に冷熱媒体が流れること
によって上記蓄熱槽に貯留された蓄熱媒体と上記冷熱媒
体との間で熱交換を行う冷熱回路を設けてなる蓄熱式空
気調和装置における銅伝熱管の孔食防止法であって、上
記蓄熱媒体1トン当たり、アルカリ化剤として、少なく
とも10gの水酸化マグネシウムと水酸化ナトリウム
0.4〜4gまたは水酸化カリウム0.56〜5.6gと
を添加して、上記蓄熱媒体の水質をpH9〜10に調整
することを特徴とする銅伝熱管の孔食防止法。
1. A heat storage tank for storing water as a heat storage medium capable of storing heat, and a heat exchanger including a copper heat transfer tube provided in the heat storage tank, wherein a cooling medium flows through the copper heat transfer tube. A method for preventing pitting of copper heat transfer tubes in a heat storage type air conditioner comprising a cooling circuit for exchanging heat between the heat storage medium stored in the heat storage tank and the cold heat medium by the heat storage medium 1 Per ton, at least 10 g of magnesium hydroxide and 0.4 to 4 g of sodium hydroxide or 0.56 to 5.6 g of potassium hydroxide are added as an alkalizing agent, and the water quality of the heat storage medium is adjusted to pH 9 to 10. A method for preventing pitting corrosion of copper heat transfer tubes, characterized by adjusting.
【請求項2】 蓄熱可能な蓄熱媒体である水を貯留する
蓄熱槽と、この蓄熱槽に内設した銅伝熱管からなる熱交
換器とを備え、上記銅伝熱管内に冷熱媒体が流れること
によって上記蓄熱槽に貯留された蓄熱媒体と上記冷熱媒
体との間で熱交換を行う冷熱回路を設けてなる蓄熱式空
気調和装置における銅伝熱管の孔食防止法であって、上
記蓄熱媒体1トン当たり、アルカリ化剤として、亜鉛2
1g及びマグネシウム顆粒4.1gの両方若しくはいず
れか一方と水酸化ナトリウム0.4〜4gまたは水酸化
カリウム0.56〜5.6gとを添加して、上記蓄熱媒体
の水質をpH9〜10に調整することを特徴とする銅伝
熱管の孔食防止法。
2. A heat storage tank for storing water, which is a heat storage medium capable of storing heat, and a heat exchanger comprising a copper heat transfer tube provided in the heat storage tank, wherein a cooling medium flows through the copper heat transfer tube. A method for preventing pitting of copper heat transfer tubes in a heat storage type air conditioner comprising a cooling circuit for exchanging heat between the heat storage medium stored in the heat storage tank and the cold heat medium by the heat storage medium 1 Per ton, zinc 2 as alkalizing agent
1 g and / or 4.1 g of magnesium granules and 0.4 to 4 g of sodium hydroxide or 0.56 to 5.6 g of potassium hydroxide are added to adjust the water quality of the heat storage medium to pH 9 to 10. A method for preventing pitting of copper heat transfer tubes.
【請求項3】 アルカリ化剤を水が浸透可能な容器にい
れて蓄熱槽内に吊すことを特徴とする請求項1または2
記載の銅伝熱管の孔食防止法。
3. The method according to claim 1, wherein the alkalizing agent is placed in a container through which water can penetrate and suspended in the heat storage tank.
The method for preventing pitting corrosion of copper heat transfer tubes as described in the above.
【請求項4】 亜鉛が、内壁と銅伝熱管の両方またはい
ずれか一方に施した亜鉛めっきであることを特徴とする
請求項2記載の銅伝熱管の孔食防止法。
4. The method according to claim 2, wherein the zinc is zinc plating applied to at least one of the inner wall and the copper heat transfer tube.
【請求項5】 亜鉛が、内壁と銅伝熱管の両方またはい
ずれか一方に塗った亜鉛含有塗料であることを特徴とす
る請求項2記載の銅伝熱管の孔食防止法。
5. The method according to claim 2, wherein the zinc is a zinc-containing paint applied to at least one of the inner wall and the copper heat transfer tube.
【請求項6】 水溶性のカプセルまたは袋にアルカリ剤
を入れ、このカプセル若しくは袋を蓄熱槽内に投入する
ことを特徴とする請求項1または2記載の銅伝熱管の孔
食防止法。
6. The method for preventing pitting corrosion of a copper heat transfer tube according to claim 1, wherein an alkali agent is put in a water-soluble capsule or bag, and the capsule or bag is put into a heat storage tank.
【請求項7】 水溶性樹脂シートにアルカリ剤を挟み込
み、この水溶性樹脂シートを蓄熱槽の底もしくは壁面に
設置することを特徴とする請求項1または2記載の銅伝
熱管の孔食防止法。
7. The method for preventing pitting corrosion of a copper heat transfer tube according to claim 1, wherein an alkali agent is sandwiched between the water-soluble resin sheets, and the water-soluble resin sheet is placed on the bottom or the wall surface of the heat storage tank. .
JP10318574A 1998-11-10 1998-11-10 Method for preventing pitting corrosion of copper heat transfer tube Pending JP2000144460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10318574A JP2000144460A (en) 1998-11-10 1998-11-10 Method for preventing pitting corrosion of copper heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10318574A JP2000144460A (en) 1998-11-10 1998-11-10 Method for preventing pitting corrosion of copper heat transfer tube

Publications (1)

Publication Number Publication Date
JP2000144460A true JP2000144460A (en) 2000-05-26

Family

ID=18100663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10318574A Pending JP2000144460A (en) 1998-11-10 1998-11-10 Method for preventing pitting corrosion of copper heat transfer tube

Country Status (1)

Country Link
JP (1) JP2000144460A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275817A (en) * 2006-04-10 2007-10-25 Mitsubishi Electric Corp Water treatment method
JP4760994B1 (en) * 2010-09-28 2011-08-31 パナソニック株式会社 Heat storage device and air conditioner equipped with the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275817A (en) * 2006-04-10 2007-10-25 Mitsubishi Electric Corp Water treatment method
JP4760994B1 (en) * 2010-09-28 2011-08-31 パナソニック株式会社 Heat storage device and air conditioner equipped with the same
WO2012042694A1 (en) * 2010-09-28 2012-04-05 パナソニック株式会社 Thermal storage device and air conditioning apparatus provided therewith
EP2623913A1 (en) * 2010-09-28 2013-08-07 Panasonic Corporation Thermal storage device and air conditioning apparatus provided therewith
EP2623913A4 (en) * 2010-09-28 2015-04-22 Panasonic Corp Thermal storage device and air conditioning apparatus provided therewith

Similar Documents

Publication Publication Date Title
JP3324392B2 (en) Heat storage material
US20090020264A1 (en) Method of heat accumulation and heat accumulation system
CN108172950B (en) A kind of metal-air battery system and its operation method of automatic preparation electrolyte
JP2002015762A (en) Redox flow battery
TW201202485A (en) Process for production of steel sheet for container material which has reduced load on environments, steel sheet for container material which has reduced load on environments, and laminate steel sheet for container material and coated precoat steels
EP2927299A2 (en) Heat storage apparatus, method for storing heat, and method for producing heat storage apparatus
JP2000144460A (en) Method for preventing pitting corrosion of copper heat transfer tube
JPS6324555B2 (en)
CN110564373A (en) Inorganic hydrated salt composite phase-change heat storage material and preparation and use method thereof
JPS5956066A (en) Sealing circulation type absorption system refrigerator
Jones Corrosion of central heating systems
JP2006176674A (en) Cold heat transportation medium
JP3897330B2 (en) Heat transfer medium
JP3355025B2 (en) Corrosion inhibitor and solution composition for absorption liquid of absorption heat pump
WO2014119788A1 (en) Method for inhibiting corrosion in closed-circulation-type cooling water system
JP3411939B2 (en) Aqueous composition for absorption heat pump
JP2955474B2 (en) Operating method of absorption refrigerator and absorption liquid for absorption refrigerator
JP5571418B2 (en) Heat transfer medium and heat transfer system using the same
JP3082985B2 (en) Continuous electroplating equipment
JP2000282017A (en) Heat storage material composition and heating apparatus using the same
JPS5875783A (en) Metal halogen storage battery
JP2919765B2 (en) Underwater corrosion inhibitor
CN216171531U (en) CFD developer makes with agitator tank temperature control mechanism
JPH0410216Y2 (en)
RU120810U1 (en) INSTALLATION FOR DISPOSAL OF LOW-POTENTIAL HEAT OF THE COOLING SYSTEM OF COMPRESSORS ON THE MOUNTAIN COMPLEXES