JP3324392B2 - Heat storage material - Google Patents

Heat storage material

Info

Publication number
JP3324392B2
JP3324392B2 JP10562596A JP10562596A JP3324392B2 JP 3324392 B2 JP3324392 B2 JP 3324392B2 JP 10562596 A JP10562596 A JP 10562596A JP 10562596 A JP10562596 A JP 10562596A JP 3324392 B2 JP3324392 B2 JP 3324392B2
Authority
JP
Japan
Prior art keywords
heat storage
storage material
hydrate
heat
supercooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10562596A
Other languages
Japanese (ja)
Other versions
JPH09291272A (en
Inventor
寛 木村
慎一 若本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10562596A priority Critical patent/JP3324392B2/en
Publication of JPH09291272A publication Critical patent/JPH09291272A/en
Application granted granted Critical
Publication of JP3324392B2 publication Critical patent/JP3324392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えば、夏季、
ビルなどの冷房用に用いられる蓄熱材に関するものであ
り、氷よりも融点が幾分高く、その分冷凍機の成績係数
(COP:冷房能力(kw)/冷凍機動力(kw))を向上させ
ることができ、省エネルギー効果が大きく、氷に替わっ
て使用されるに好適な水和物を蓄熱主剤とする蓄熱材に
関するものである。
The present invention relates to, for example,
This is a heat storage material used for cooling of buildings, etc., which has a somewhat higher melting point than ice and improves the coefficient of performance (COP: cooling capacity (kw) / cooler power (kw)) of the refrigerator. The present invention relates to a heat storage material which has a large energy saving effect and has a heat storage agent of a hydrate suitable for being used instead of ice.

【0002】[0002]

【従来の技術】氷は融解熱が大きく(80cal/g)、蓄熱
材として優れた物質である。氷を蓄熱材として用いる場
合、普通は安い夜間電力を利用して氷を製造し、昼間の
冷房需要に備えている。一方、氷は融点が0℃であるた
め、それを固化させるためには、マイナス5℃程度に冷
却する必要がある。しかし冷凍機をそのように運転させ
ると、成績係数(COP)があまり高く取れない(0℃で
運転する場合に比べてCOPが20%低下)ので、省エ
ネルギーという観点からみて好ましいものではなかっ
た。また、氷を蓄熱材に用いると言っても、従来は塊の
氷を冷却管上に成長させたりしていたが、この方式では
氷の成長に伴い、熱通過率の大幅な低下は避けられず、
連続運転の効率が悪かった。そこで、最近はその問題点
を解決するため、氷を蓄熱槽内でシャーベット状態に成
長させ、熱交換は冷凍機の熱交換機と流体の水を過冷却
させて行う『過冷却方式』もいろいろと試みられてい
る。例えば発明者らの解説『過冷却水を利用した氷蓄熱
装置』(日本結晶成長学会誌 Vol.19.No.3,235(1992))が
ある。この方式では常に熱通過率が初期値のままで保た
れるため、塊の氷を成長させる方式に比べて運転効率を
高くできる。しかしそれにもかかわらず、COPをそれ
ほど上げることはできなかった。
2. Description of the Related Art Ice has a large heat of fusion (80 cal / g) and is an excellent heat storage material. When using ice as a heat storage material, ice is usually produced using cheap nighttime electricity to prepare for daytime cooling demand. On the other hand, since ice has a melting point of 0 ° C., it is necessary to cool it to about −5 ° C. in order to solidify it. However, when the refrigerator is operated in such a manner, the coefficient of performance (COP) cannot be so high (the COP is reduced by 20% as compared with the case where the refrigerator is operated at 0 ° C.), which is not preferable from the viewpoint of energy saving. In addition, although ice was used as a heat storage material, lump of ice was conventionally grown on cooling tubes.However, in this method, a drastic decrease in heat transfer rate due to ice growth can be avoided. Without
The efficiency of continuous operation was poor. Therefore, recently, in order to solve the problem, there are various `` supercooling methods '' where ice is grown in a sherbet state in a heat storage tank and heat exchange is performed by supercooling the heat exchanger of the refrigerator and the water of the fluid. Attempted. For example, there is a commentary of the inventors, "ice heat storage device using supercooled water" (Japanese Society for Crystal Growth Vol.19.No.3,235 (1992)). In this method, since the heat transfer rate is always kept at the initial value, the operation efficiency can be increased as compared with the method of growing a block of ice. However, nonetheless, the COP could not be raised much.

【0003】そのため、従来から冷房用蓄熱材として、
融点が5〜8℃の物質が探索されてきた。しかし、単一
物質でその温度域に融点を持つのはパラフィン系のテト
ラデカン(融解熱 50cal/g)しか無かった。しかも、工
業製品としては純粋なテトラデカンを製造することはコ
スト的に困難であるので、融解熱の低いものしか入手で
きなかった。その上、パラフィン類の特徴として、熱伝
導度が低いこと、液体の密度が低いこと、また可燃性で
あり、消防法の規制に触れることなどから、多量に用い
ることが困難であった。従って、テトラデカンを主成分
とするパラフィン類は冷房用蓄熱材としては実用化され
ていない。
[0003] Therefore, conventionally, as a heat storage material for cooling,
Materials with a melting point of 5-8 ° C have been sought. However, the only substance that had a melting point in that temperature range was paraffin-based tetradecane (heat of fusion: 50 cal / g). Moreover, it is difficult to produce pure tetradecane as an industrial product in terms of cost, so that only products having a low heat of fusion were available. In addition, paraffins are difficult to use in large quantities because of their low thermal conductivity, low liquid density, flammability, and compliance with the Fire Service Law. Therefore, paraffins containing tetradecane as a main component have not been put to practical use as a heat storage material for cooling.

【0004】これに替わるものとして、ぼう硝(Na2SO4
10H2O)系の混合物が開発されてきた。融点5〜8℃のも
のが作られているが、もともと無理に融点を下げている
ので、その融点はコングルエント(調和)融点ではなく、
しかもその融点よりも高温融点の成分と、その融点より
も低温融点の成分とを含む複雑な混合物に過ぎず、とう
てい冷房用蓄熱材としての需要に答えることができない
ものである。また、ぼう硝以外の水化物で、融点を下げ
る試みがいろいろと為されているとは言え、発明者らの
先願(特開昭59−109578号公報『蓄熱材』)にあるとお
り、最も実用的な可能性の高い塩化カルシウム六水塩で
も15〜20℃どまりである。こうした塩類水化物を用
いて冷房用蓄熱材を作製できる可能性はほとんど無い。
[0004] As an alternative, sodium sulfate (Na 2 SO 4.
Mixtures based on 10H 2 O) have been developed. Although a melting point of 5-8 ° C is made, the melting point is not a congruent (harmonic) melting point because it was forcibly lowered.
Moreover, it is merely a complex mixture containing a component having a higher melting point than its melting point and a component having a lower melting point than its melting point, and cannot meet the demand as a heat storage material for cooling. In addition, although various attempts have been made to lower the melting point of hydrates other than sodium sulfate, as described in the prior application of the inventors (JP-A-59-109578, `` heat storage material ''), Calcium chloride hexahydrate, which has a high possibility of practical use, stays at 15 to 20 ° C. There is little possibility that a cooling heat storage material can be produced using such a salt hydrate.

【0005】さらに、気体水化物として知られるフロン
化合物の水化物の中に、融点が 8.5℃、融解熱は 6
5cal/gであり、冷房用蓄熱材として好適なトリクロル
フルオロメタン(フロン11)の17水化物があるが、
フロン問題のために実用化することができない。また、
テトラハイドロフランの17水化物はその融点が4℃程
度であり、冷房用蓄熱材として好適な化合物であるが、
テトラハイドロフラン自体の強い引火性のため、実用化
が難しい。
Further, among hydrates of CFC compounds known as gaseous hydrates, the melting point is 8.5 ° C. and the heat of fusion is 6
There are 17 hydrates of trichlorofluoromethane (CFC 11) which is 5 cal / g and is suitable as a heat storage material for cooling.
It cannot be put to practical use due to the Freon problem. Also,
17-hydrate of tetrahydrofuran has a melting point of about 4 ° C. and is a compound suitable as a heat storage material for cooling.
Practical application is difficult due to the strong flammability of tetrahydrofuran itself.

【0006】一方、テトラアルキルアンモニウム塩の水
和物はその融点が0℃以上にあることが知られていた
が、10℃以上にその融点を持つものが多く、冷房用蓄
熱材の候補材料とはいいがたかった。ところが最近、テ
トラブチル硝酸アンモニウムの水和物が5〜7℃に融点
を持つことが報告された(中山ら、Bull.Chem.Soc.Japa
n,Vol.56,877(1983))。しかし、その融解熱がいくらで
あるかは報告が無かった。そこで、発明者らはDSC
(差動走査型熱量計)を用いて、融解熱の検討をし、お
よそ 50cal/gであることを見いだした。図6のグラフ
にその測定結果を氷(比較例)とともに示す。実線の特
性曲線がテトラブチル硝酸アンモニウム(融点6.5
℃、融解熱50cal/g)の測定結果、破線の特性曲線が
氷(融点0℃、融解熱 80cal/g)の測定結果である。
この値は先に上げたテトラデカンの融解熱に重量あたり
では近いが、体積あたりでは勝っている。これにより、
融点および融解熱の点からテトラブチル硝酸アンモニウ
ムの水和物は冷房用蓄熱材として適していることがわか
った。その上、テトラデカンとは異なり、水溶液である
ので引火性が無く、消防法の規制にも触れない。しか
し、この物質は過冷却が大きく、DSCを用いて検討し
たところ、マイナス15℃程度まで冷却しないと固化し
ないことがわかった。そこで、氷用の核生成材であるよ
う化銀(AgI)などを加えて、過冷却防止効果を調べ
てみたが、全然効き目が無かった。表1にその実験結果
を示した。なお、よう化銀は氷に対しては−6℃で固化
が生じ、氷に対する過冷却防止効果を持っていることが
確認された。
On the other hand, it has been known that the hydrate of a tetraalkylammonium salt has a melting point of 0 ° C. or higher, but many have a melting point of 10 ° C. or higher. It was nice. Recently, however, it has been reported that the hydrate of tetrabutylammonium nitrate has a melting point at 5 to 7 ° C (Nakayama et al., Bull. Chem. Soc. Japa).
n, Vol. 56, 877 (1983)). However, there was no report on the heat of fusion. Therefore, the inventors have proposed DSC
Using a (differential scanning calorimeter), the heat of fusion was examined and found to be approximately 50 cal / g. The graph of FIG. 6 shows the measurement results together with ice (comparative example). The characteristic curve of the solid line shows that tetrabutyl ammonium nitrate (melting point 6.5)
° C, heat of fusion 50 cal / g), and the characteristic curve indicated by the broken line is the result of measurement of ice (melting point 0 ° C, heat of fusion 80 cal / g).
This value is close to the above-mentioned heat of fusion of tetradecane by weight, but is superior by volume. This allows
From the viewpoint of the melting point and heat of fusion, it was found that hydrate of tetrabutylammonium nitrate was suitable as a heat storage material for cooling. Furthermore, unlike tetradecane, since it is an aqueous solution, it has no flammability and does not touch the regulations of the Fire Service Law. However, this substance has a large degree of supercooling and was examined using DSC. As a result, it was found that the substance did not solidify unless cooled to about -15 ° C. Then, silver superoxide (AgI) or the like was added as a nucleation material for ice, and the effect of preventing supercooling was examined. However, no effect was found. Table 1 shows the experimental results. In addition, it was confirmed that silver iodide solidified with respect to ice at −6 ° C. and had an effect of preventing supercooling with respect to ice.

【0007】[0007]

【表1】 [Table 1]

【0008】また、Na2HPO4・12H2Oに対する代表的な過
冷却防止剤であるAl2O3、CaCl2・6H2Oに対する代表的な
過冷却防止剤であるBaZrO3も、何の過冷却防止効果も持
たなかった。これは、テトラブチルアンモニウム塩水溶
液の独自構造が液中に存在しているためであると考えら
れる。
Further, Al 2 O 3 , a typical supercooling inhibitor for Na 2 HPO 4 .12H 2 O, and BaZrO 3 , a typical supercooling inhibitor for CaCl 2 .6H 2 O, It did not have the effect of preventing supercooling. This is presumably because the unique structure of the aqueous solution of tetrabutylammonium salt exists in the solution.

【0009】[0009]

【発明が解決しようとする課題】融点が冷房用蓄熱材と
して好適な温度域にあるテトラブチル硝酸アンモニウム
の水和物が、融解熱も大きいことを見いだしたが、過冷
却が大きく、有効な過冷却防止剤が見当たらないかぎ
り、実用化が難しいという問題点があった。この発明は
上記のような問題点を解決するため鋭意研究の結果、有
効に過冷却防止効果を発揮する過冷却防止剤を見いだし
なされたもので、数度の過冷却で固化し、順調に相変化
を繰り返す、テトラブチル硝酸アンモニウム水和物を蓄
熱主剤とする冷房用蓄熱材を提供することを目的とす
る。
It has been found that a hydrate of tetrabutylammonium nitrate having a melting point in a temperature range suitable for a heat storage material for cooling has a large heat of fusion. There is a problem that practical application is difficult unless an agent is found. The present invention has been made as a result of intensive studies to solve the above problems, and has found a supercooling inhibitor which effectively exerts an effect of preventing supercooling. It is an object of the present invention to provide a heat storage material for cooling, in which tetrabutyl ammonium nitrate hydrate is repeatedly used as a heat storage agent.

【0010】[0010]

【課題を解決するための手段】この発明の蓄熱材は、テ
トラブチル硝酸アンモニウム水和物を蓄熱主剤とし、こ
の蓄熱主剤の過冷却を抑制する過冷却防止剤として融点
が20℃以上のテトラアルキルアンモニウム塩水和物を
用いるものである。
The heat storage material of the present invention comprises tetrabutylammonium nitrate hydrate as a heat storage agent, and a tetraalkylammonium salt solution having a melting point of 20 ° C. or more as a supercooling inhibitor for suppressing supercooling of the heat storage agent. It uses a Japanese product.

【0011】また、この発明の他の蓄熱材は、テトラブ
チル硝酸アンモニウム水和物を主成分としテトラアルキ
ルアンモニウム塩を加えた混合水和物を蓄熱主剤として
用いるものである。
Another heat storage material of the present invention uses a mixed hydrate containing tetrabutylammonium nitrate hydrate as a main component and a tetraalkylammonium salt as a main heat storage material.

【0012】そして、過冷却防止剤は多孔質物質中に含
浸して用いる。
The supercooling inhibitor is used by impregnating the porous material.

【0013】さらに、過冷却防止剤を含浸した多孔質物
質を小孔を有する皮膜で被覆する。
Further, a porous material impregnated with a supercooling inhibitor is coated with a film having small pores.

【0014】[0014]

【発明の実施の形態】この発明の蓄熱材は、蓄熱主剤と
してテトラブチル硝酸アンモニウムの水和物(水のモル
数30〜35/モル)、あるいはこれを主成分としテト
ラアルキルアンモニウム塩を小量加えた混合水和物を用
い、過冷却防止剤として融点20℃以上のテトラアルキ
ルアンモニウム塩水和物を 微量(0.1重量%以下)用い
るものである。
BEST MODE FOR CARRYING OUT THE INVENTION The heat storage material of the present invention is obtained by adding a hydrate of tetrabutylammonium nitrate (mol number of water: 30 to 35 / mol) or a small amount of a tetraalkylammonium salt containing this as a main component as a heat storage agent. A mixed hydrate is used, and a trace amount (0.1% by weight or less) of tetraalkylammonium salt hydrate having a melting point of 20 ° C. or more is used as a supercooling inhibitor.

【0015】上述したように、通常の過冷却防止剤とし
て用いられる物質類は、蓄熱主剤であるこのテトラブチ
ル硝酸アンモニウム水和物に対して、全く過冷却防止効
果を持っていない。しかし、テトラブチル弗化アンモニ
ウム水和物などのテトラアルキルアンモニウム塩水和物
は類縁物質であるので、過冷却防止効果を持っており、
テトラブチル硝酸アンモニウム水和物の過冷却をそれほ
ど大きく生じさせることなく、固化させることができ
る。過冷却防止剤としては、テトラブチル弗化アンモニ
ウム水和物(融点25℃)の他に、テトライソアミルハ
ロゲン化アンモニウム水和物(テトライソアミル弗化ア
ンモニウム水和物:融点31℃、テトライソアミル塩化
アンモニウム水和物:融点30℃)など、その他の多く
の類縁物質類が用いられる。しかし、実用的にはその融
点がテトラブチル硝酸アンモニウム水和物の融点に近い
ものは用いることが難しい。なぜなら、過冷却防止剤と
して用いる水和物の方が、蓄熱主剤としての水和物より
も先に固化していることが必要前提条件であるからであ
る。
As described above, the substances used as ordinary supercooling inhibitors have no supercooling-preventing effect on tetrabutylammonium nitrate hydrate, which is the main heat storage agent. However, since tetraalkylammonium salt hydrates such as tetrabutylammonium fluoride hydrate are related substances, they have an effect of preventing supercooling,
The solidification of the tetrabutylammonium nitrate hydrate can be achieved without causing excessive cooling. Examples of the supercooling inhibitor include tetrabutylammonium fluoride hydrate (melting point: 25 ° C.), tetraisoamyl ammonium halide hydrate (tetraisoamyl ammonium fluoride hydrate: melting point: 31 ° C., tetraisoamyl ammonium chloride aqueous solution) Many other related substances are used, for example, a hydrate (melting point: 30 ° C.). However, practically, it is difficult to use those having a melting point close to that of tetrabutylammonium nitrate hydrate. This is because it is a necessary precondition that the hydrate used as the supercooling inhibitor is solidified before the hydrate used as the heat storage main agent.

【0016】また、いくら融点が20℃以上であるから
と言っても、蓄熱材の蓄熱主剤の中に、これら過冷却防
止剤としての水和物を液体状態のままで加えることはで
きない。両者が液体状態のままでは、混合がおき、蓄熱
主剤に取り込まれてしまい、過冷却防止剤としての効能
が消えうせるからである。しかし、過冷却防止剤である
水和物を、有機物あるいは無機物の多孔質物質中に含浸
しておけば、蓄熱主剤中に溶解することを防止すること
ができる。また通常、冷房用蓄熱材は20℃以下に保た
れているため、その状態では過冷却防止剤成分は固体状
態であり、更に蓄熱主剤への溶解速度が低下し、蓄熱主
剤中への溶解をより低減できる。また、その効果を長期
に渡って持続させるため、多孔質物質の表面をある種の
有機物皮膜で被覆して、その皮膜の数箇所に小さな穴を
設けておけば良い。蓄熱主剤である蓄熱材との接触面積
が更に限定されるため、両者の混合が有効に防止される
からである。なお、20℃以上に長期間保たれた場合、
過冷却防止剤である水和物も融解し、液体状態となる
が、その場合にも上記水和物の過冷却防止剤としての効
果は下記のように再現する。即ち、これら過冷却防止剤
の水和物はその融点が20℃以上であり、また上述した
ように他の類縁水和物に比べて比較的過冷却度の大きい
テトラブチル硝酸アンモニウム水和物でさえ、20℃以
上過冷却した後固化する。従って0℃程度まで冷却され
た場合、これらの水和物の過冷却度は20℃以上とな
り、蓄熱主剤である蓄熱材より先に固化し、蓄熱主剤の
固化の核として作用し過冷却を防止する。一般に硝酸塩
水和物はハロゲン化物水和物よりも過冷却度が大きい。
従って、常に過冷却度の小さいハロゲン化物水和物の方
が先に固化し、過冷却防止効果が発揮される。
Even if the melting point is 20 ° C. or more, these hydrates as a supercooling inhibitor cannot be added to the heat storage base material of the heat storage material in a liquid state. If both are in a liquid state, mixing occurs and is taken into the heat storage agent, so that the effect as the supercooling inhibitor disappears. However, if a hydrate as a supercooling inhibitor is impregnated in an organic or inorganic porous material, it can be prevented from dissolving in the heat storage agent. Also, since the heat storage material for cooling is usually kept at a temperature of 20 ° C. or less, the supercooling inhibitor component is in a solid state in that state. It can be further reduced. In order to maintain the effect over a long period of time, the surface of the porous substance may be covered with a certain kind of organic film, and small holes may be provided in several places of the film. This is because the contact area with the heat storage material, which is the main heat storage agent, is further limited, and the mixing of the two is effectively prevented. In addition, when kept at 20 ° C or more for a long time,
The hydrate, which is a supercooling inhibitor, also melts and becomes a liquid state. In this case, the effect of the hydrate as a supercooling inhibitor is reproduced as follows. That is, the hydrates of these supercooling inhibitors have a melting point of 20 ° C. or higher, and even as described above, tetrabutylammonium nitrate hydrate having a relatively high degree of supercooling compared to other related hydrates, After supercooling at 20 ° C or more, it solidifies. Therefore, when cooled to about 0 ° C., the degree of supercooling of these hydrates becomes 20 ° C. or more, and solidifies before the heat storage material, which is the main heat storage agent, acts as a nucleus for solidifying the heat storage main agent and prevents overcooling. I do. In general, nitrate hydrate has a higher degree of supercooling than halide hydrate.
Therefore, the halide hydrate having a small degree of supercooling always solidifies first, and the effect of preventing supercooling is exhibited.

【0017】また、蓄熱材、即ち蓄熱主剤の融点をいく
らか下げたい場合、テトラブチル硝酸アンモニウムの水
和物にテトラアルキルアンモニウム塩のハロゲン化物を
少量加えることにより行うことができる。これは、発明
者らの知見による硝酸イオンとハロゲンイオンとの強い
相互作用に基づくものである。加える化合物としては、
テトラブチル臭化アンモニウム水和物(融点13℃)や
テトラブチル塩化アンモニウム水和物(融点16℃)な
どである。テトラブチルアンモニウム塩に限定されず、
他のテトラアルキルアンモニウム塩も加えることができ
る。例えば、テトラアミルアンモニウム塩、テトラプロ
ピルアンモニウム塩、テトラエチルアンモニウム塩、テ
トラメチルアンモニウム塩などである。なお、テトラブ
チル硝酸アンモニウム水和物は図6に示すように、コン
グルエント(調和)融点を持っており、その融解−固化の
相変化に際しては、なんらの不都合を生じることもな
い。この点は先に述べたように、ぼう硝系混合物蓄熱材
の複雑な固化挙動にくらべて、きわめて優れた点であ
る。以上のように、この発明によれば、テトラブチル硝
酸アンモニウム水和物を蓄熱主剤として用い、その大き
な過冷却を常に有効に防止する手段を確立したので、信
頼性の高い冷房用蓄熱材として用いることができる。次
に実施の形態に基づき具体的に説明する。
When it is desired to lower the melting point of the heat storage material, that is, the heat storage base material, it is possible to add a small amount of a halide of a tetraalkylammonium salt to a hydrate of tetrabutylammonium nitrate. This is based on the strong interaction between nitrate ions and halogen ions based on the knowledge of the inventors. As the compound to be added,
Examples include tetrabutyl ammonium bromide hydrate (melting point 13 ° C.) and tetrabutyl ammonium chloride hydrate (melting point 16 ° C.). Not limited to tetrabutylammonium salt,
Other tetraalkyl ammonium salts can also be added. For example, tetraamyl ammonium salt, tetrapropyl ammonium salt, tetraethyl ammonium salt, tetramethyl ammonium salt, and the like. As shown in FIG. 6, tetrabutylammonium nitrate hydrate has a congruent (harmonic) melting point, and does not cause any inconvenience in the melting-solidification phase change. As described above, this point is extremely superior to the complicated solidification behavior of the glass-glass-based mixture heat storage material. As described above, according to the present invention, tetrabutylammonium nitrate hydrate is used as a heat storage main agent, and a means for constantly and effectively preventing its large supercooling has been established, so that it can be used as a highly reliable cooling heat storage material. it can. Next, a specific description will be given based on the embodiment.

【0018】実施の形態1.図1は、この発明の実施の
形態1の冷房用蓄熱材を利用した冷房システムの構成図
である。図において、1は蓄熱主剤であるテトラブチル
硝酸アンモニウム水和物に、過冷却防止剤として融点2
0℃以上のテトラブチル弗化アンモニウム水和物を少量
用いた冷房用蓄熱材、2はこの蓄熱材を冷却する第一の
熱交換器、3はこの熱交換器に蓄熱材を冷却するための
熱媒体を供給する冷凍機、4は冷房用蓄熱材を封入し、
熱交換器を内部に設置した蓄熱器、5は冷凍機3で冷却
された熱媒体を蓄熱器4に送る第1の輸送手段の第1の
ポンプ、6は室内を冷房するための空調機、7は蓄熱器
4内に設けられ、空調機6に送る冷媒を冷房用蓄熱材と
の熱交換により冷却する第二の熱交換器、8は第二の熱
交換器7で冷却された熱媒体を空調機6に送る第二の輸
送手段の第2のポンプを示す。
Embodiment 1 FIG. 1 is a configuration diagram of a cooling system using a heat storage material for cooling according to Embodiment 1 of the present invention. In the figure, reference numeral 1 denotes tetrabutylammonium nitrate hydrate as a heat storage agent, and a melting point of 2 as a supercooling inhibitor.
Heat storage material for cooling using a small amount of tetrabutylammonium fluoride hydrate at 0 ° C. or more, 2 is the first heat exchanger for cooling this heat storage material, 3 is the heat for cooling the heat storage material in this heat exchanger. The refrigerator 4 for supplying the medium, the heat storage material for cooling is enclosed,
A regenerator in which a heat exchanger is installed, 5 is a first pump of a first transport means for sending the heat medium cooled by the refrigerator 3 to the regenerator 4, 6 is an air conditioner for cooling the room, Reference numeral 7 denotes a second heat exchanger that is provided in the heat storage unit 4 and cools the refrigerant sent to the air conditioner 6 by heat exchange with the cooling heat storage material. Reference numeral 8 denotes a heat medium cooled by the second heat exchanger 7. 2 shows a second pump of the second transportation means for sending air to the air conditioner 6.

【0019】次に動作について説明する。このシステム
は冷凍機3を動作させて蓄熱器4に冷熱を蓄える蓄熱運
転と蓄熱器4に蓄えられた冷熱を空調機6に送る放熱運
転とがある。蓄熱運転では、蓄熱器4に蓄えられた冷房
用蓄熱材1は、冷凍機3で冷却され第1のポンプ5によ
って送られる熱媒体と熱交換して冷却され、過冷却防止
剤を核として凝固熱を放出しながら固化する。放熱運転
では、蓄熱器4に蓄えられた冷房用蓄熱材1は、第二の
熱交換器7を介して熱媒体を冷却し、融解熱を吸収しな
がら融解する。冷却された熱媒体は空調機6で吸熱し、
再び蓄熱器4に送られる。これにより、冷房用蓄熱材1
が過冷却することなく6℃程度で凝固および融解する
(相変化を繰り返す)ため、冷凍機を効率良く運転でき
る。
Next, the operation will be described. This system includes a heat storage operation in which the refrigerator 3 is operated to store cold heat in the heat storage device 4 and a heat dissipation operation in which the cold heat stored in the heat storage device 4 is sent to the air conditioner 6. In the heat storage operation, the cooling heat storage material 1 stored in the heat storage device 4 is cooled by the refrigerator 3 and cooled by exchanging heat with the heat medium sent by the first pump 5, and solidified using the supercooling inhibitor as a core. Solidifies while releasing heat. In the heat dissipation operation, the cooling heat storage material 1 stored in the heat storage device 4 cools the heat medium through the second heat exchanger 7 and melts while absorbing the heat of fusion. The cooled heat medium absorbs heat in the air conditioner 6,
It is sent to the regenerator 4 again. Thereby, the heat storage material for cooling 1
Solidifies and melts (repeatedly changes phase) at about 6 ° C. without overcooling, so that the refrigerator can be operated efficiently.

【0020】また、図2の蓄熱器4部分の拡大断面図に
示すように、鉄、アルミニウム、銅、ニッケルまたはこ
れらの合金で製造された金属細線9を蓄熱器4の内部に
蓄熱材1とともに封入することにより、上記冷凍機の成
績係数向上、省エネルギー効果に加えて、熱媒体と冷房
用蓄熱材とが効率良く熱交換するので、蓄熱器の小型化
が可能となる。矢印は熱媒体の流れを表す。
As shown in an enlarged sectional view of the heat storage unit 4 in FIG. 2, a thin metal wire 9 made of iron, aluminum, copper, nickel or an alloy thereof is placed inside the heat storage unit 4 together with the heat storage material 1. By enclosing, the heat transfer between the heat medium and the heat storage material for cooling is efficiently performed in addition to the improvement of the coefficient of performance of the refrigerator and the energy saving effect, so that the heat storage device can be downsized. Arrows indicate the flow of the heating medium.

【0021】また、図3の蓄熱器4部分の拡大断面図に
示すように、冷房用蓄熱材1を封入した有機高分子材料
系球形容器10を、水などの熱媒体とともに蓄熱器4内
に入れることにより、上記の高効率な冷凍機の運転の効
果に加えて、蓄熱材の取り替え作業が簡便になる。
As shown in an enlarged sectional view of the heat storage unit 4 in FIG. 3, the organic polymer material-based spherical container 10 enclosing the cooling heat storage material 1 is placed in the heat storage unit 4 together with a heat medium such as water. By adding the heat storage material, the operation of replacing the heat storage material is simplified in addition to the effect of the operation of the high-efficiency refrigerator described above.

【0022】さらに、本実施の形態では、冷凍機3から
蓄熱器4に送られる熱媒体と蓄熱器4から空調機6に送
られる熱媒体を別々の経路を通るように構成したが、図
4の構成図に示すように、流路切り替え手段11を用い
て蓄熱運転と放熱運転との流路を切り替え、蓄熱器4内
に設けた一つの熱交換器を用いて蓄熱材1の凝固および
融解を行うシステムでも同様の効果がある。
Further, in the present embodiment, the heat medium sent from the refrigerator 3 to the regenerator 4 and the heat medium sent from the regenerator 4 to the air conditioner 6 pass through different paths. As shown in the configuration diagram, the flow path between the heat storage operation and the heat radiation operation is switched by using the flow path switching means 11, and the solidification and melting of the heat storage material 1 are performed using one heat exchanger provided in the heat storage device 4. The same effect can be obtained in a system that performs the above.

【0023】実施の形態2.図5(a)(b)は、この発明
にの実施の形態2に係わる冷房用蓄熱材を封入する蓄熱
器を示す断面図である。図において、1aは蓄熱主剤
で、テトラブチル硝酸アンモニウムの水和物を主成分と
しテトラブチル臭化アンモニウムを2重量%含む、融点
を5℃に低下させた混合水和物である。13は蓄熱材を
冷却または加熱する熱交換器2の壁面の一部あるいは全
面に取り付けた、過冷却防止剤として融点30℃のテト
ライソアミル塩化アンモニウム水和物を含浸させたアル
ミナ系の多孔質材である。これにより、アルミナ系の多
孔質材13が熱交換器2の壁面を介して冷却され、過冷
却を効果的に防止でき、冷凍機を効率良く運転できる。
また、過冷却防止剤は多孔質材13に含浸させて添加し
ているので、蓄熱主剤1a中への溶解を防止することが
できる。さらに、多孔質材13を小孔を有する皮膜で被
覆すると、より効果的である。さらに、蓄熱材と接する
側の熱交換器2の壁面にフィン2aがある場合には、そ
の凹部を含む壁面に取り付けることにより、更に効果的
に過冷却の防止が可能となる。
Embodiment 2 FIG. 5 (a) and 5 (b) are cross-sectional views showing a heat storage device for enclosing a cooling heat storage material according to Embodiment 2 of the present invention. In the figure, reference numeral 1a denotes a heat storage agent, which is a mixed hydrate having a hydrate of tetrabutylammonium nitrate as a main component and containing 2% by weight of tetrabutylammonium bromide and having a melting point lowered to 5 ° C. 13 is an alumina porous material impregnated with tetraisoamyl ammonium chloride hydrate having a melting point of 30 ° C. as a supercooling inhibitor, which is attached to a part or the entire surface of the heat exchanger 2 for cooling or heating the heat storage material. It is. As a result, the alumina-based porous material 13 is cooled through the wall surface of the heat exchanger 2, so that supercooling can be effectively prevented, and the refrigerator can be operated efficiently.
In addition, since the supercooling inhibitor is impregnated and added to the porous material 13, it is possible to prevent the supercooling inhibitor from dissolving in the heat storage main agent 1a. Furthermore, it is more effective if the porous material 13 is covered with a film having small holes. Further, when the fins 2a are provided on the wall surface of the heat exchanger 2 on the side in contact with the heat storage material, by mounting the fins 2a on the wall surface including the concave portion, it is possible to more effectively prevent overcooling.

【0024】なお、上述したテトラアルキルアンモニウ
ム塩水和物のいくつかは、その融点域を5〜7℃に持つ
ものもある(中山ほか、Bull.Chem.Soc.Japan,Vol.57(19
84)171-4)が、これらの化合物はテトラブチル硝酸アン
モニウム水和物より複雑な化学式を持ち、製造コストも
高く、これを蓄熱主剤として用いることは実用的である
とは言いがたい。
Some of the above-mentioned tetraalkylammonium salt hydrates have a melting point range of 5 to 7 ° C. (Nakayama et al., Bull. Chem. Soc. Japan, Vol. 57 (19)
84) 171-4), however, these compounds have a more complicated chemical formula than tetrabutylammonium nitrate hydrate, and their production costs are high, and it is hard to say that it is practical to use them as a heat storage agent.

【0025】[0025]

【発明の効果】以上のように、この発明によれば、テト
ラブチル硝酸アンモニウム水和物を蓄熱主剤とし、この
蓄熱主剤の過冷却を抑制する過冷却防止剤として融点が
20℃以上のテトラアルキルアンモニウム塩水和物を用
いることにより、融点及び融解熱が冷房用蓄熱材として
好適な蓄熱主剤の過冷却を有効に防止でき、順調に相変
化を繰り返し、冷凍機の成績係数が高くとれ、省エネル
ギー化が可能な蓄熱材が得られる。
As described above, according to the present invention, tetrabutylammonium nitrate hydrate is used as a heat storage agent, and a tetraalkylammonium salt solution having a melting point of 20 ° C. or more is used as a supercooling inhibitor for suppressing supercooling of the heat storage agent. By using a Japanese product, the melting point and heat of fusion can effectively prevent the supercooling of the heat storage agent suitable as a heat storage material for cooling, repeat the phase change smoothly, increase the coefficient of performance of the refrigerator, and save energy. Heat storage material can be obtained.

【0026】また、蓄熱主剤として上記のテトラブチル
硝酸アンモニウム水和物にテトラアルキルアンモニウム
塩を小量加えた混合水和物を用いることにより、例えば
融点を下げる等、所望の融点が得られる。
Further, by using a mixed hydrate obtained by adding a small amount of a tetraalkylammonium salt to the above-mentioned tetrabutylammonium nitrate hydrate as the heat storage agent, a desired melting point can be obtained, for example, by lowering the melting point.

【0027】そして、過冷却防止剤は多孔質物質中に含
浸して用いることにより、蓄熱主剤との混合を防止で
き、長期信頼性が向上する。
When the supercooling inhibitor is used by impregnating the porous material, mixing with the heat storage agent can be prevented, and the long-term reliability is improved.

【0028】さらに、過冷却防止剤が含浸された多孔質
物質を小孔を有する皮膜で被覆することにより、蓄熱主
剤との混合をより効果的に防止できる。
Further, by coating the porous material impregnated with the supercooling inhibitor with a film having small pores, the mixing with the heat storage agent can be more effectively prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1の蓄熱材を用いた冷
房システムを示す構成図である。
FIG. 1 is a configuration diagram showing a cooling system using a heat storage material according to a first embodiment of the present invention.

【図2】 この発明の実施の形態1に係る蓄熱器の変形
例を示す拡大断面図である。
FIG. 2 is an enlarged sectional view showing a modification of the heat storage device according to Embodiment 1 of the present invention.

【図3】 この発明の実施の形態1に係る蓄熱器の他の
変形例を示す拡大断面図である。
FIG. 3 is an enlarged sectional view showing another modified example of the heat storage device according to Embodiment 1 of the present invention.

【図4】 この発明の実施の形態1の冷房システムの変
形例を示す構成図である。
FIG. 4 is a configuration diagram showing a modification of the cooling system according to the first embodiment of the present invention.

【図5】 この発明の実施の形態2の蓄熱材を用いた蓄
熱器を示す拡大断面図である。
FIG. 5 is an enlarged sectional view showing a heat storage device using a heat storage material according to a second embodiment of the present invention.

【図6】 この発明に係わる蓄熱主剤のテトラブチル硝
酸アンモニウムのDSC(差動走査型熱量計)による融
解熱測定結果を示すグラフである。
FIG. 6 is a graph showing a measurement result of heat of fusion of tetrabutylammonium nitrate as a thermal storage agent according to the present invention by DSC (differential scanning calorimeter).

【符号の説明】[Explanation of symbols]

1 冷房用蓄熱材、1a 蓄熱主剤、2,7 熱交換
器、2a フィン、3冷凍機、4 蓄熱器、5,8 ポ
ンプ、6空調機、9 金属細線、10 球形容器、11
流路切替え手段、13過冷却防止剤を含浸させた多孔
質材。
DESCRIPTION OF SYMBOLS 1 Heat storage material for cooling, 1a Main heat storage agent, 2,7 heat exchanger, 2a fin, 3 refrigerator, 4 heat storage, 5,8 pump, 6 air conditioner, 9 metal wire, 10 spherical container, 11
Flow path switching means, 13 A porous material impregnated with a supercooling inhibitor.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C09K 5/06 F24F 5/00 102 F28D 20/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) C09K 5/06 F24F 5/00 102 F28D 20/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 テトラブチル硝酸アンモニウム水和物を
蓄熱主剤とし、この蓄熱主剤の過冷却を抑制する過冷却
防止剤として融点が20℃以上のテトラアルキルアンモ
ニウム塩水和物を用いることを特徴とする蓄熱材。
1. A heat storage material characterized in that tetrabutylammonium nitrate hydrate is used as a heat storage agent, and a tetraalkylammonium salt hydrate having a melting point of 20 ° C. or more is used as a supercooling inhibitor that suppresses supercooling of the heat storage agent. .
【請求項2】 テトラブチル硝酸アンモニウム水和物を
主成分としテトラアルキルアンモニウム塩を加えた混合
水和物を蓄熱主剤とし、この蓄熱主剤の過冷却を抑制す
る過冷却防止剤として融点が20℃以上のテトラアルキ
ルアンモニウム塩水和物を用いることを特徴とする蓄熱
材。
2. A mixed hydrate containing tetrabutylammonium nitrate hydrate as a main component and a tetraalkylammonium salt as a main heat storage agent, and having a melting point of 20 ° C. or more as a supercooling inhibitor for suppressing supercooling of the heat storage main agent. A heat storage material characterized by using a tetraalkylammonium salt hydrate.
【請求項3】 過冷却防止剤は多孔質物質中に含浸され
ていることを特徴とする請求項1または2記載の蓄熱
材。
3. The heat storage material according to claim 1, wherein the supercooling inhibitor is impregnated in a porous substance.
【請求項4】 過冷却防止剤が含浸された多孔質物質は
小孔を有する皮膜で被覆されていることを特徴とする請
求項3記載の蓄熱材。
4. The heat storage material according to claim 3, wherein the porous substance impregnated with the supercooling inhibitor is coated with a film having small pores.
JP10562596A 1996-04-25 1996-04-25 Heat storage material Expired - Fee Related JP3324392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10562596A JP3324392B2 (en) 1996-04-25 1996-04-25 Heat storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10562596A JP3324392B2 (en) 1996-04-25 1996-04-25 Heat storage material

Publications (2)

Publication Number Publication Date
JPH09291272A JPH09291272A (en) 1997-11-11
JP3324392B2 true JP3324392B2 (en) 2002-09-17

Family

ID=14412678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10562596A Expired - Fee Related JP3324392B2 (en) 1996-04-25 1996-04-25 Heat storage material

Country Status (1)

Country Link
JP (1) JP3324392B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186667A (en) * 2005-06-08 2007-07-26 Jfe Engineering Kk Heat storable substance, heat storage agent, heat storage material, heat transfer medium, melting point controlling agent for heat storage agent, agent for prevention of supercooling for heat storage agent and method for producing main agent of heat storage agent or heat transfer medium
JP2008101115A (en) * 2006-10-19 2008-05-01 Jfe Engineering Kk Refrigerating agent and refrigerating material
EP2927299A2 (en) 2014-04-02 2015-10-07 Panasonic Intellectual Property Management Co., Ltd. Heat storage apparatus, method for storing heat, and method for producing heat storage apparatus

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1235046B1 (en) * 1999-11-26 2011-10-05 JFE Engineering Corporation Thermal storage material using hydrate and thermal storage device therefor, and production method of the thermal storage material
WO2003102474A1 (en) 2002-05-31 2003-12-11 Jfe Engineering Corporation Hydrate slurry manufacturing device
US7967999B2 (en) 2005-06-08 2011-06-28 Jfe Engineering Corporation Heat storage substance, heat storage agent, heat reservoir, heat transport medium, cold insulation agent, cold insulator, melting point control agent for heat storage agent and supercooling preventive agent for heat storage agent
JP4736776B2 (en) * 2005-12-14 2011-07-27 Jfeエンジニアリング株式会社 Coolant and cold insulation material
JP4839903B2 (en) * 2006-03-15 2011-12-21 Jfeエンジニアリング株式会社 Thermal storage agent and method for preparing thermal storage agent
JP4893036B2 (en) * 2006-03-17 2012-03-07 Jfeエンジニアリング株式会社 Thermal storage agent and method for preparing thermal storage agent
JP2007051867A (en) * 2006-11-20 2007-03-01 Jfe Engineering Kk Method for preventing water line in hydrate slurry, method for discharging hydrate slurry, and storage tank
JP5056072B2 (en) * 2007-03-02 2012-10-24 Jfeエンジニアリング株式会社 Tetra-n-butylammonium phosphate and method for producing latent heat storage medium
JP5003213B2 (en) * 2007-03-06 2012-08-15 Jfeエンジニアリング株式会社 Method to increase heat storage rate of heat storage agent, clathrate hydrate
JP2009051905A (en) * 2007-08-24 2009-03-12 Jfe Engineering Kk Aqueous solution having property for forming clathrate hydrate, clathrate hydrate containing quaternary ammonium salt as guest compound, slurry of the clathrate hydrate, method for producing clathrate hydrate, method for increasing rate of generating or growing clathrate hydrate, and method for preventing or reducing supercooling phenomenon caused when generating or growing clathrate hydrate
JP5125316B2 (en) * 2007-08-24 2013-01-23 Jfeエンジニアリング株式会社 Raw material for clathrate hydrate production, method for producing clathrate hydrate or slurry thereof, and method for reducing pressure loss generated when cooling an aqueous solution for clathrate hydrate production
CN101809113A (en) * 2007-09-26 2010-08-18 杰富意工程株式会社 Be used to form the aqueous solution, the heat-storage agent of clathrate hydrate, the method for preparing clathrate hydrate or its slurry, heat built-up and thermal-radiating method and preparation method in order to the aqueous solution of formation latent heat storage agent or its main ingredient
JP5104159B2 (en) * 2007-09-26 2012-12-19 Jfeエンジニアリング株式会社 Aqueous solution for producing clathrate hydrate, heat storage agent, clathrate hydrate or manufacturing method thereof, slurry storage method, and method for preparing aqueous solution for generating latent heat storage agent or main component thereof
JP2009079159A (en) * 2007-09-26 2009-04-16 Jfe Engineering Kk Aqueous solution for forming clathrate hydrate, heat storage agent, producing method of clathrate hydrate or its slurry, heat storing/radiating method, method for preparing aqueous solution for generating latent heat storage agent or its principal component
JP5104636B2 (en) * 2008-08-06 2012-12-19 Jfeエンジニアリング株式会社 Aqueous solution for producing clathrate hydrate, heat storage agent, clathrate hydrate or manufacturing method thereof, slurry storage method, and method for preparing aqueous solution for generating latent heat storage agent or main component thereof
JP2009079160A (en) * 2007-09-26 2009-04-16 Jfe Engineering Kk Aqueous solution for forming clathrate hydrate, heat storage agent, producing method of clathrate hydrate or its slurry, heat storing/radiating method, method for preparing aqueous solution for generating latent heat storage agent or its principal component
JP5104160B2 (en) * 2007-09-26 2012-12-19 Jfeエンジニアリング株式会社 Aqueous solution for producing clathrate hydrate, heat storage agent, clathrate hydrate or manufacturing method thereof, slurry storage method, and method for preparing aqueous solution for generating latent heat storage agent or main component thereof
JP5186944B2 (en) * 2007-12-10 2013-04-24 Jfeエンジニアリング株式会社 Heat storage method, supercooling suppression method, and heat storage device
JP5477364B2 (en) * 2011-12-01 2014-04-23 Jfeエンジニアリング株式会社 Method and apparatus for collecting and releasing gas using a hydrate containing a quaternary ammonium salt as a guest molecule
JP5590102B2 (en) * 2012-11-27 2014-09-17 Jfeエンジニアリング株式会社 Method of increasing the heat storage rate of clathrate hydrate, method of increasing the rate of clathrate hydrate formation or growth, clathrate hydrate and clathrate hydrate slurry
JP6630946B2 (en) * 2016-08-19 2020-01-15 国立大学法人東北大学 Latent heat storage device
JP6905386B2 (en) * 2017-04-27 2021-07-21 株式会社デンソー Supercooled release substance
US11884869B2 (en) * 2018-01-31 2024-01-30 Sharp Kabushiki Kaisha Latent heat storage material, and cold storage tool, logistic packaging container, food cold storage tool and cooling method each using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186667A (en) * 2005-06-08 2007-07-26 Jfe Engineering Kk Heat storable substance, heat storage agent, heat storage material, heat transfer medium, melting point controlling agent for heat storage agent, agent for prevention of supercooling for heat storage agent and method for producing main agent of heat storage agent or heat transfer medium
JP4497130B2 (en) * 2005-06-08 2010-07-07 Jfeエンジニアリング株式会社 Method for producing heat storage material, heat storage agent, heat storage material, heat transport medium, melting point adjusting agent for heat storage agent, supercooling inhibitor for heat storage agent and main agent of heat storage agent or heat transport medium
JP2008101115A (en) * 2006-10-19 2008-05-01 Jfe Engineering Kk Refrigerating agent and refrigerating material
EP2927299A2 (en) 2014-04-02 2015-10-07 Panasonic Intellectual Property Management Co., Ltd. Heat storage apparatus, method for storing heat, and method for producing heat storage apparatus

Also Published As

Publication number Publication date
JPH09291272A (en) 1997-11-11

Similar Documents

Publication Publication Date Title
JP3324392B2 (en) Heat storage material
CN101171318B (en) Heat storable substance, heat storage agent, heat storage material, heat transfer medium, cold insulation agent, cold insulation material, melting point controlling agent for heat storage agent, agent for prevention of overcooling for use in heat storage agent, heat storage agent, heat transfer medium and process for manufacturing any one of main agent of cool keeping agents
JP6832117B2 (en) Heat storage method, heat storage device, and manufacturing method of heat storage device
CA1036376A (en) Reversible latent heat storage method, and reversible latent heat accumulator
EP1235046B1 (en) Thermal storage material using hydrate and thermal storage device therefor, and production method of the thermal storage material
Gawron et al. Properties of some salt hydrates for latent heat storage
US4702853A (en) Phase change thermal energy storage material
JP2007186667A (en) Heat storable substance, heat storage agent, heat storage material, heat transfer medium, melting point controlling agent for heat storage agent, agent for prevention of supercooling for heat storage agent and method for producing main agent of heat storage agent or heat transfer medium
US4689164A (en) Eutectoid salt composition for coolness storage
US4360442A (en) Ethylene carbonate as a phase-change heat storage medium
JP7405684B2 (en) Heat storage material composition and heat storage system for heating and cooling buildings
KR910007090B1 (en) Reversible phase change composition for storing energy
US5037571A (en) Methods for storing coolness capacity
US4719028A (en) Thermal energy storage media
JP2981890B1 (en) Thermal storage device and thermal management method in the device
JP2594801B2 (en) Cool storage agent
JPH04327790A (en) Latent heat storage method
JPH11325769A (en) Heat storage type heat exchanger
JPH05331457A (en) Composition for heat storage
JPH0143796B2 (en)
JP2003021366A (en) Hydrate slurry cold using system
JPS58180579A (en) Heat storage material
JPH0792307B2 (en) Ice heat storage device
JP4549518B2 (en) Thermal storage tank and thermal storage device provided with the same
JPH1135930A (en) Cold storage material utilizing latent heat

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees