JPH0410216Y2 - - Google Patents

Info

Publication number
JPH0410216Y2
JPH0410216Y2 JP1988019540U JP1954088U JPH0410216Y2 JP H0410216 Y2 JPH0410216 Y2 JP H0410216Y2 JP 1988019540 U JP1988019540 U JP 1988019540U JP 1954088 U JP1954088 U JP 1954088U JP H0410216 Y2 JPH0410216 Y2 JP H0410216Y2
Authority
JP
Japan
Prior art keywords
heat source
storage tank
source water
heat storage
limestone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1988019540U
Other languages
Japanese (ja)
Other versions
JPH01125365U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1988019540U priority Critical patent/JPH0410216Y2/ja
Publication of JPH01125365U publication Critical patent/JPH01125365U/ja
Application granted granted Critical
Publication of JPH0410216Y2 publication Critical patent/JPH0410216Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は蓄熱槽内の熱源水中に溶存する遊離炭
酸による配管系統の腐食を防止する装置に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a device for preventing corrosion of a piping system due to free carbon dioxide dissolved in heat source water in a heat storage tank.

〔従来の技術〕[Conventional technology]

蓄熱槽内面の防水仕上工法として古くは、防水
モルタル工法がある。この工法は使用始めにアル
カリ成分等を溶出するので最初に1,2回の水替
えを行うが、その後も徐々に水質が変化する。
An old waterproofing method for finishing the inner surface of a heat storage tank is the waterproofing mortar method. Since this method elutes alkaline components etc. at the beginning of use, the water is changed once or twice at first, but the water quality gradually changes even after that.

そこで、近年は水質に変化を及ぼさない合成ゴ
ムや合成樹脂のシート防水または合成樹脂塗膜防
水が行なわれるようになつた。
Therefore, in recent years, synthetic rubber or synthetic resin sheet waterproofing or synthetic resin coating waterproofing that does not affect water quality has been used.

しかしながら、この合成樹脂塗膜防水の水質に
変化を及ぼさないということは、配管系統の防食
という点では問題となる。すなわち、蓄熱槽の補
給水である水道水の飽和指数はかなりの負であ
り、腐食性を有するものであるが、合成樹脂塗膜
は、その補給水の状態をほとんどそのまま維持し
ている。
However, the fact that this synthetic resin waterproof coating does not change the water quality poses a problem in terms of corrosion protection for piping systems. That is, although tap water, which is make-up water for the heat storage tank, has a significantly negative saturation index and is corrosive, the synthetic resin coating maintains almost the same state of the make-up water.

したがつて、そのままでは配管系統の鉄や亜鉛
を腐食させるので、何らかの水質改善が必要であ
り、例えば、ソーダ灰(炭酸ナトリウム)や消石
灰(水酸化カルシウム)等のアルカリ性薬剤を投
入して、飽和指数の正への転化を行うことが推奨
されてきた。
Therefore, if left as is, it will corrode the iron and zinc in the piping system, so it is necessary to improve the water quality in some way. It has been recommended to perform a positive conversion of the index.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかしながら、このアルカリ性薬剤による熱源
水の改質は投入濃度に依存して進むため、予め水
質調査を行なつて投入濃度を算定しなければなら
ず、薬剤の取り扱い、さらに、蓄熱槽内全体に行
き渡らせなければならないなど、面倒な操作を必
要とするものであつた。
However, since the modification of the heat source water by this alkaline chemical depends on the input concentration, it is necessary to conduct a water quality survey and calculate the input concentration in advance, which requires handling of the chemical, and also prevents it from being distributed throughout the heat storage tank. This required troublesome operations, such as having to set the

そこで、前記事項に鑑み、本件出願人は、昭和
62年12月29日に、操作が容易で、行き過ぎのない
適性な、蓄熱槽の熱源水の改質と、その維持を行
なうことのできる装置を特許出願した。
Therefore, in view of the above matters, the present applicant
On December 29, 1962, the company applied for a patent for a device that is easy to operate and can properly reform and maintain heat source water in a heat storage tank without overshooting.

本考案は、前記装置を、さらに効果的に熱源水
の改質のできる装置を簡単な構成でできるように
することを技術的課題とする。
The technical problem of the present invention is to make the above-mentioned device capable of more effectively reforming heat source water with a simple configuration.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は、蓄熱槽1内に二重籠20を設置し、
この二重籠20の内籠21と外籠22の間に石灰
石24を充填するとともに、内籠21内には、空
調機器10と蓄熱槽1内とを接続する移送管11
の開口12を配置したことを特徴とする蓄熱槽の
熱源水中に存在する遊離炭酸とカルシウムイオン
を平衡させて配管系統の腐食を防止する装置とし
た。
The present invention installs a double cage 20 inside the heat storage tank 1,
Limestone 24 is filled between the inner basket 21 and the outer basket 22 of this double cage 20, and a transfer pipe 11 is provided inside the inner basket 21 to connect the air conditioner 10 and the inside of the heat storage tank 1.
This device prevents corrosion of a piping system by balancing free carbonic acid and calcium ions present in the heat source water of a heat storage tank.

また、蓄熱槽1を隔壁2によつて多数の隔室4
に仕切り、この隔壁2の上下方向の端部付近に片
寄つて流通口3を設けるとともに、隔壁2の一方
の側面に、前記流通口3を覆う覆い30を設けて
上下方向の接触流路31を形成し、そして、この
接触流路31は前記片寄つた流通口3の、上下方
向の反対側の端部付近に設けた通路口32により
隔室4内と連通するように形成した蓄熱槽1にお
いて、 流通口3と通路口32間の覆い30内の接触流
路31に、多数の小孔を設けた載置体35を設
け、この載置体35の上部の接触流路31に石灰
石24を充填して蓄熱槽の熱源水中に存在する遊
離炭酸とカルシウムイオンを平衡させる配管系統
の腐食を防止する装置とした。
In addition, the heat storage tank 1 is divided into a large number of compartments 4 by partition walls 2.
A communication port 3 is provided near the vertical end of the partition wall 2, and a cover 30 covering the communication port 3 is provided on one side of the partition wall 2 to form a contact flow path 31 in the vertical direction. In the heat storage tank 1, this contact flow path 31 is formed so as to communicate with the inside of the compartment 4 through a passage port 32 provided near the end on the opposite side in the vertical direction of the offset distribution port 3. A mounting body 35 having a large number of small holes is provided in the contact passage 31 in the cover 30 between the communication port 3 and the passage opening 32, and limestone 24 is placed in the contact passage 31 on the upper part of this mounting body 35. The device is designed to prevent corrosion of piping systems that are filled to balance the free carbonate and calcium ions present in the heat source water of the heat storage tank.

〔作用〕[Effect]

請求項1記載の考案は、空調機器10に接続す
る移送管11の開口12から熱源水を汲み上げ、
又は吐出すると、蓄熱槽1内の熱源水は、二重籠
20間の間隙を通つて二重籠20内部に流入し、
又は内部から流出する。
The invention according to claim 1 pumps up heat source water from the opening 12 of the transfer pipe 11 connected to the air conditioner 10,
Or when discharged, the heat source water in the heat storage tank 1 flows into the double cage 20 through the gap between the double cages 20,
Or leak from inside.

また、請求項2に記載した考案は、蓄熱槽1を
冷水槽として使用した場合、第4図の一次回路ポ
ンプ14で隔室4(図の右端)から熱源水を汲み
上げ熱源機器10aに送入し、熱源水を冷却して
一次回路11aの吐出口12bから隔室4(図の
左端)内に吐出する。
Furthermore, in the invention described in claim 2, when the heat storage tank 1 is used as a cold water tank, the primary circuit pump 14 in FIG. Then, the heat source water is cooled and discharged into the compartment 4 (left end in the figure) from the discharge port 12b of the primary circuit 11a.

隔室4(図の左端)に吐出された冷水は隔室4
の底部より貯められ、未冷却の熱源水を上方に押
上げる。この未冷却の熱源水は、さらに、通路口
32、接触流路31、流通口3を通つて隣接する
隔室4に押し出される。
Cold water discharged into compartment 4 (left end of the diagram)
The uncooled heat source water is stored at the bottom of the tank and pushed upward. This uncooled heat source water is further pushed out to the adjacent compartment 4 through the passage port 32, the contact channel 31, and the communication port 3.

こうして、隔室4(図の左端)に充満した冷却
された熱源水は、通路口32、接触流路31、流
通口3を通つて隣接する隔室4の底部に流入し、
各隔室4は次に冷却された熱源水で満たされる。
In this way, the cooled heat source water filling the compartment 4 (left end in the figure) flows into the bottom of the adjacent compartment 4 through the passage port 32, the contact flow path 31, and the distribution port 3.
Each compartment 4 is then filled with cooled heat source water.

そして、冷却された熱源水は二次回路ポンプ1
5で隔室4(図の右端)から汲み上げ負荷装置1
0bに送入し、空気を冷却して二次回路11bの
吐出口12aから隔室4(図の左端)内に吐出さ
れ、さらに、流通口3、接触流路31、通路口3
2を通つて隣接する隔室4の上部に流入し、隣接
する隔室4内の冷却した熱源水を押し下げて移動
する。
The cooled heat source water is then pumped into the secondary circuit pump 1.
5 pumps up load device 1 from compartment 4 (right end of the diagram)
0b, the air is cooled and discharged from the discharge port 12a of the secondary circuit 11b into the compartment 4 (left end in the figure), and further includes the flow port 3, the contact flow path 31, and the passage port 3.
2 into the upper part of the adjacent compartment 4, and moves by pushing down the cooled heat source water in the adjacent compartment 4.

このように、隔室4内の冷却した熱源水と未冷
却の熱源水とは温度成層を形成して混合すること
なく移動する。
In this way, the cooled heat source water and the uncooled heat source water in the compartment 4 form temperature stratification and move without mixing.

そして、二重籠20内に充填した石灰石24及
び載置体35上の接触流路31に充填した石灰石
24(炭酸カルシウムCaCO3を主成分とする)
が熱源水の遊離炭酸(水に溶けている二酸化炭素
CO2)に接触すると、下記式1に記載する平衡反
応が生じてCaCO3は炭酸水素カルシウムCa
(HCO32となつて熱源水中に溶け出し、水中の
CO2とCa(HCO32との間であるバランスを保つ
ような状態となつて平衡に達する。
The limestone 24 filled in the double cage 20 and the limestone 24 filled in the contact channel 31 on the mounting body 35 (mainly composed of calcium carbonate CaCO 3 )
is the free carbon dioxide in the heat source water (carbon dioxide dissolved in the water)
When CaCO 3 comes into contact with calcium bicarbonate ( Ca
(HCO 3 ) 2 and dissolves into the heat source water,
Equilibrium is reached when a certain balance is maintained between CO 2 and Ca(HCO 3 ) 2 .

CaCO3+CO2+H2O→Ca2+ +2HCO- 3 ……(1) すなわち、遊離炭酸を多く含む熱源水は、それ
だけ多くのCaCO3をCa(HCO32として熱源水中
に溶かし出すことができる。熱源水中の遊離炭酸
は炭酸水素イオンHCO- 3とともに、次のように熱
源水中のPH値を決めているので、遊離炭酸の多い
熱源水はPHも低くなる。
CaCO 3 + CO 2 + H 2 O → Ca 2+ + 2HCO - 3 ...(1) In other words, heat source water containing a large amount of free carbonate can dissolve as much CaCO 3 into the heat source water as Ca(HCO 3 ) 2 . can. Free carbonic acid in heat source water, together with bicarbonate ion HCO - 3 , determines the PH value in heat source water as follows, so heat source water with a large amount of free carbonate has a low PH.

PH(25℃)=6.31+logHCO-3当量濃度
〔CaCO3mg/〕/遊離炭酸〔CO2mg/〕……(2) すなわち、CO2を多く含む熱源水はPHも下が
り、併せてCaCO3の熱源水中溶解度を増す。
PH (25℃) = 6.31 + logHCO - / 3 equivalent concentration [CaCO 3 mg/] / Free carbonic acid [CO 2 mg/]... (2) In other words, heat source water that contains a lot of CO 2 will have a lower PH and will also have a lower CaCO 3 increases the solubility in heat source water.

ところで、水道水などの天然水由来の水は、カ
ルシウムイオンCa2+と、炭酸水素イオンHCO- 3
ほぼ同一当量づつ含んでいるが、さらに、式(1)の
平衡状態を保つのに必要なCO2に比べてずつと多
くのCO2を含んでいるのが普通である。すなわ
ち、一般の水道水は、それが溶かし込むことが可
能なCaCO3に比べて、ずつと少ないCaCO3しか
溶け込んでおらず、CaCO3は未飽和の状態とな
つている。
By the way, water derived from natural water such as tap water contains approximately the same equivalent amount of calcium ion Ca 2+ and hydrogen carbonate ion HCO - 3 , but in addition, water that is necessary to maintain the equilibrium state of formula (1) Normally, it contains much more CO 2 than the average amount of CO 2 . That is, compared to the CaCO 3 that can be dissolved in ordinary tap water, only a small amount of CaCO 3 is dissolved in it, and CaCO 3 is in an unsaturated state.

このような水を熱源水に用いた場合、例えば
CO2を減らすために何らかの方法を講ずることに
よつて、そのPHを上昇させれば、元々溶け込んで
いるCa2+とHCO- 3の濃度において飽和溶解度に達
し、式(1)の平衡状態にすることができる。
When such water is used as heat source water, for example,
If some method is taken to reduce CO 2 and its pH is increased, saturation solubility will be reached at the concentration of originally dissolved Ca 2+ and HCO - 3 , and the equilibrium state of equation (1) will be reached. can do.

ある水について、それに溶けているCa2+
HCO- 3の状態で式(1)の平衡状態、すなわち、飽和
溶解度に達するはずのPHを「飽和PH」といい、一
般にPHsと表記する。また、このPHsに対する実
際のPH−PHsを「飽和指数」という。
For a certain water, the Ca 2+ dissolved in it and
The PH that should reach the equilibrium state of formula (1), that is, the saturated solubility in the state of HCO - 3 , is called "saturated PH" and is generally expressed as PHs. Further, the actual PH−PHs for this PHs is called a “saturation index”.

この飽和指数は、その水が接する金属に対する
腐食性を評価するための重要な指標となつてい
る。
This saturation index is an important index for evaluating the corrosiveness of metals in contact with water.

すなわち、熱源水のPHsに対して実際のPHが低
い、つまり、飽和指数PH−PHsが負となつている
場合は、熱源水中のCa2+とHCO- 3は未飽和状態
で、式(1)の平衡には遠く(左辺のCO2が右辺の
Ca2+とHCO- 3に対して相対的に高濃度)、CaCO3
は析出しない。
In other words, if the actual PH is lower than the PHs of the heat source water, that is, if the saturation index PH−PHs is negative, Ca 2+ and HCO - 3 in the heat source water are in an unsaturated state, and the equation (1 ) is far from equilibrium (CO 2 on the left side is
(relatively high concentration relative to Ca 2+ and HCO - 3 ), CaCO 3
does not precipitate.

一方、PHsよりも実際のPHの方が大きく、飽和
指数が正の熱源水では、式(1)の平衡が過ぎ(右辺
の濃度が相対的に高い)、Ca2+とHCO- 3は過飽和
となつていてCaCO3として析出しようとする。
On the other hand, in heat source water where the actual PH is larger than PHs and the saturation index is positive, the equilibrium of equation (1) has passed (the concentration on the right side is relatively high), and Ca 2+ and HCO - 3 are supersaturated. and tries to precipitate as CaCO 3 .

このように、飽和指数が正の熱源水では
CaCO3が過飽和となつているが、CaCO3は、過
飽和でも結晶の核となるものがないときは析出せ
ず、いつまでも水溶液のままでいる。一方溶存酸
素を含む熱源水中で金属が腐食しているとき、そ
れとともに、次のようにして酸素の水酸化物イオ
ンOH-への還元反応を生じている。
In this way, heat source water with a positive saturation index
CaCO 3 is supersaturated, but even if CaCO 3 is supersaturated, if there is no crystal nucleus, it will not precipitate and will remain in an aqueous solution forever. On the other hand, when a metal corrodes in heat source water containing dissolved oxygen, a reduction reaction of oxygen to hydroxide ion OH - occurs as follows.

腐食反応 酸化反応:Fe→Fe2++2e- 還元反応:1/2O2+H2O+2e-→2OH- このOH-の生成によつて金属表面に接する熱
源水のPHは上昇し、それによる平衡からのずれの
拡大による析出力が働いて、過飽和を保つていた
CaCO3析出が生ずるようになる。
Corrosion reaction Oxidation reaction: Fe→Fe 2+ + 2e -Reduction reaction: 1/2O 2 +H 2 O+2e - →2OH -The PH of the heat source water in contact with the metal surface increases due to the generation of this OH - , which causes the equilibrium to drop. The separation force due to the expansion of the deviation worked to maintain supersaturation.
CaCO 3 precipitation begins to occur.

このような作用によつて、飽和指数が正の熱源
水中でその表面にCaCO3の皮膜が析出されうる
実用金属は亜鉛と鉄である。他方、不動態化によ
つて酸素を含む熱源水中でも腐食しない金属の銅
やその合金、ステンレス鋼等では、CaCO3の析
出は実質的に生じない。
Practical metals on which a CaCO 3 film can be deposited on the surface of heat source water with a positive saturation index due to this action are zinc and iron. On the other hand, CaCO 3 precipitation does not substantially occur in copper, its alloys, stainless steel, etc., which are metals that do not corrode even in oxygen-containing heat source water due to passivation.

こうして、酸素を含み飽和指数が正乃至負でも
0に近い熱源水中では、亜鉛や鉄の表面に
CaCO3の皮膜が形成されて防食されるようにな
る。
In this way, in heat source water that contains oxygen and has a saturation index close to 0, whether positive or negative, the surface of zinc and iron
A film of CaCO 3 is formed to prevent corrosion.

しかし、前記の如く、通常の水道水などでは、
それに溶けているCa2+やHCO- 3に平衡する濃度に
比べてかなり過剰な遊離炭酸CO2を溶かし込んで
いる。そのため、式(2)で律せられるPHは低目で前
記のPHs(飽和PH)よりも小さく、従つて飽和指
数PH−PHsはかなりの大きさで負の値となつてお
り、亜鉛や鉄の表面にCaCO3を析出させること
はできず、それらの金属は腐食されることにな
る。
However, as mentioned above, with regular tap water,
It dissolves a considerable excess of free carbonate CO 2 compared to the equilibrium concentration of dissolved Ca 2+ and HCO - 3 . Therefore, the PH determined by equation (2) is low and smaller than the above-mentioned PHs (saturated PH), and therefore the saturation index PH - PHs is quite large and negative, and zinc and iron CaCO 3 cannot be deposited on the surface of the metals, and those metals will be corroded.

〔実施例〕〔Example〕

第1図・第2図は、請求項1記載の本考案の一
実施例の蓄熱槽の熱源水中に存在する遊離炭酸と
カルシウムイオンを平衡させて配管系統の腐食を
防止する装置である。
FIGS. 1 and 2 show an apparatus for preventing corrosion of piping systems by balancing free carbonic acid and calcium ions present in heat source water of a heat storage tank according to an embodiment of the present invention as defined in claim 1.

第1図の蓄熱槽1は、縦方向及び横方向に設け
られた隔壁2によつて多数の隔室4に仕切られた
ものを、模式的に展開して図示したものであり、
各隔壁2には流通口3が設けてあつて連通してお
り、また、隔壁2の上部には通気孔5が設けてあ
る。
The heat storage tank 1 shown in FIG. 1 is a schematic expanded view of a large number of compartments 4 partitioned by partition walls 2 provided in the vertical and horizontal directions.
Each partition wall 2 is provided with a communication port 3 to communicate with the partition wall 2, and a ventilation hole 5 is provided in the upper part of the partition wall 2.

そして、一方の端部の隔室4と他方の端部の隔
室4には、それぞれ2個の二重籠20が設置して
あり、この二重籠20の内籠21と外籠22間に
は石灰石24が充填してあり、上部には蓋23が
嵌着されている。
Two double cages 20 are installed in each of the compartments 4 at one end and the compartment 4 at the other end, and between the inner basket 21 and the outer basket 22 of the double cages 20. is filled with limestone 24, and a lid 23 is fitted to the top.

この蓄熱槽1は、例えば冷凍機、ボイラー等の
熱源機器10aと例えばフアインコイルユニツト
等の負荷装置10bからなる空調機器10に付設
されるものであり、熱源機器10aと負荷装置1
0bは、一次回路11aと二次回路11bからな
る移送管11で蓄熱槽1の両端部の隔室4,4内
と接続している。
The heat storage tank 1 is attached to an air conditioner 10 that includes a heat source device 10a such as a refrigerator or a boiler, and a load device 10b such as a fine coil unit.
0b is connected to the compartments 4, 4 at both ends of the heat storage tank 1 through a transfer pipe 11 consisting of a primary circuit 11a and a secondary circuit 11b.

そして、一次回路11aと二次回路11bから
なる移送管11の汲上口12aと吐出口12bか
らなる開口12は、両端部の隔室4,4に設置し
た二重籠20の内籠21内にそれぞれ配置されて
いる。
The opening 12 consisting of the pumping port 12a and the discharge port 12b of the transfer pipe 11 consisting of the primary circuit 11a and the secondary circuit 11b is inserted into the inner basket 21 of the double basket 20 installed in the compartments 4, 4 at both ends. each is placed.

そして、熱源機器10aは、一次回路ポンプ1
4により汲上口12aで一方の端部の隔室4から
熱源水を汲み上げるが、この汲み上げられる熱源
水は、二重籠20内の石灰石24に接触し、熱源
水中の遊離炭酸(水に溶けている二酸化炭素
CO2)に石灰石24の炭酸カルシウムCaCO3が接
触し、平衡反応が生じ、CaCO3は炭酸水素カル
シウムCa(HCO32となつて熱源水中に溶け出す。
The heat source device 10a is the primary circuit pump 1.
4 pumps up heat source water from the compartment 4 at one end at the pumping port 12a, but this pumped up heat source water comes into contact with the limestone 24 in the double cage 20, and free carbonate (dissolved in water) in the heat source water is removed. carbon dioxide
Calcium carbonate CaCO 3 of the limestone 24 comes into contact with CO 2 ), an equilibrium reaction occurs, and CaCO 3 becomes calcium bicarbonate Ca(HCO 3 ) 2 and dissolves into the heat source water.

この一次回路ポンプ14で熱源機器10aに送
入した熱源水は、熱源機器10aにより加熱又は
冷却されて、他方の端部の隔室4内に設置された
二重籠20内に吐出口12bから吐出する。
The heat source water sent to the heat source device 10a by the primary circuit pump 14 is heated or cooled by the heat source device 10a, and then flows from the discharge port 12b into the double cage 20 installed in the compartment 4 at the other end. Exhale.

吐出した熱源水は二重籠20内の石灰石24に
接触して平衡反応が生じ、隔室4内に流出し、流
通口3を通つて隣接する隔室4内に次々に移動す
る。
The discharged heat source water contacts the limestone 24 in the double cage 20 to cause an equilibrium reaction, flows out into the compartment 4, and moves into adjacent compartments 4 one after another through the communication port 3.

また、二次回路ポンプ15を作動させると、他
方の端部の隔室4内の熱源水は、二重籠20内の
石灰石24に接触して、平衡反応が生じ、負荷装
置10bに送入されて熱を放出し、又は吸収して
他方の端部の隔室4内に設置された二重籠20内
に吐出口12bから吐出される。そして、二重籠
20の設置は、金網を巻回して作つた籠を用いる
が、槽内での作業において巻回し、その後石灰石
24を積み上げれば既設の蓄熱槽にも適用でき
る。
Furthermore, when the secondary circuit pump 15 is operated, the heat source water in the compartment 4 at the other end comes into contact with the limestone 24 in the double cage 20, an equilibrium reaction occurs, and the water is sent to the load device 10b. The heat is emitted or absorbed and is discharged from the discharge port 12b into the double cage 20 installed in the compartment 4 at the other end. The double cage 20 is installed by using a cage made by winding a wire mesh, but it can also be applied to an existing heat storage tank by winding it during work inside the tank and then piling up the limestone 24.

第3図は別の実施例を示すものであり、この実
施例では、一つの二重籠20の内籠21内に、熱
源機器10aに接続する一次回路11aの汲上口
12aと、負荷装置10bに接続する二次回路1
1bの吐出口12bを配置したものである。
FIG. 3 shows another embodiment. In this embodiment, the pumping port 12a of the primary circuit 11a connected to the heat source device 10a and the load device 10b are placed in the inner cage 21 of one double cage 20. Secondary circuit 1 connected to
1b and discharge ports 12b are arranged.

汲上口12aと吐出口12bは、それぞれ別の
二重籠20に配置するのが理想的であるが、スペ
ース上の制約などにより、その両方を一つの二重
籠20で囲む場合で、一次回路11aと二次回路
11bの両方を同時に運転しているときは、吐出
量と、汲上量の差の水量だけが石灰石24の充填
槽を通過することになるため、熱源水と石灰石2
4の接触が必ずしも十分ではない。
Ideally, the pumping port 12a and the discharge port 12b should be placed in separate double cages 20, but due to space constraints, it is sometimes necessary to surround both of them with one double cage 20, and the primary circuit When both the secondary circuit 11a and the secondary circuit 11b are operated at the same time, only the amount of water equal to the difference between the discharge amount and the pumped amount passes through the limestone 24 filling tank, so that the heat source water and the limestone 24
4 contact is not necessarily sufficient.

しかしながら、一般に蓄熱槽を設ける理由とし
て、安価な夜間電力を経済的に活用することにあ
るので。一次回路11aのみ、或は一次回路11
aを主体に運転する夜間においては、石灰石24
と熱源水との接触が十分に行なわれる。また、一
次回路11aは夜間を主体に運転するシステムで
あれば、二次回路11bが運転される昼間におい
ても、石灰石24と熱源水の接触が十分に行なわ
れる。
However, the reason for providing a heat storage tank is generally to economically utilize cheap nighttime electricity. Primary circuit 11a only or primary circuit 11
At night when driving mainly on a, limestone 24
sufficient contact with the heat source water. In addition, if the primary circuit 11a is a system that operates mainly at night, the limestone 24 and the heat source water can sufficiently come into contact even during the daytime when the secondary circuit 11b is operated.

以上の実施例において、二重籠20の上部が熱
源水の上面に突出している場合は、蓋23は必要
としない。
In the above embodiment, if the upper part of the double basket 20 protrudes above the heat source water, the lid 23 is not required.

また、第1図の実施例では蓄熱槽1の両方の端
部の隔室4,4に二重籠20を設置したが、これ
は、いずれか一方の隔室4にのみ設置してもよ
い。
Further, in the embodiment shown in FIG. 1, the double cage 20 is installed in the compartments 4, 4 at both ends of the heat storage tank 1, but it may also be installed in only one of the compartments 4. .

第4図乃至第6図は、請求項2記載の本考案の
一実施例の蓄熱槽の熱源水中に存在する遊離炭酸
カルシウムイオンを平衡させて配管系統の腐食を
防止する装置である。
4 to 6 show an apparatus for preventing corrosion of piping systems by balancing free calcium carbonate ions present in heat source water of a heat storage tank according to an embodiment of the present invention as defined in claim 2.

第4図の蓄熱槽1は、第1図の蓄熱槽と同様に
縦方向及び横方向に設けられた隔壁2によつて多
数の隔室4に仕切られたものを、模式的に展開し
て図示したものであり、この各隔壁2の上下方向
の端部付近である下端部近くに片寄つて流通口3
を設けるとともに、隔壁2の一方の側面である左
側面に、前記流通口3を覆う覆い30が設けてあ
り、この覆い30は上面よりみてコ字形であり、
下端が蓄熱槽1の底部に接し、両側端が隔壁2の
側面に接して取り付けられることにより、上下方
向の接触流路31を形成し、そして、この覆い3
0の上部を開放して通路口32を形成することに
より、通路口32を、前記片寄つた流通口3の上
下方向の反対側の端部付近に形成したものであ
る。
The heat storage tank 1 in FIG. 4 is a schematic development of a large number of compartments 4 partitioned by partition walls 2 provided in the vertical and horizontal directions, similar to the heat storage tank in FIG. 1. As shown in the figure, the flow ports 3 are located near the lower end, which is near the end in the vertical direction of each partition wall 2.
In addition, a cover 30 is provided on the left side, which is one side of the partition wall 2, to cover the flow port 3, and this cover 30 is U-shaped when viewed from the top.
The lower end is attached to the bottom of the heat storage tank 1 and the both ends are attached to the side surfaces of the partition wall 2 to form a contact flow path 31 in the vertical direction.
By opening the upper part of 0 to form a passage opening 32, the passage opening 32 is formed near the opposite end in the vertical direction of the offset distribution opening 3.

さらに、流通口3と通路口32間の覆い30内
の接触流路31には、金網製の載置体35を設
け、この載置体35の上部の接触流路31に石灰
石24を充填し、さらに、右端の隔壁2を除い
て、他の隔壁2の右側面には、前記流通口3を覆
つて第2覆い40を取り付け、第2覆い開口41
を隔室4の底部近くに開口させている。
Furthermore, a mounting body 35 made of wire mesh is provided in the contact flow path 31 in the cover 30 between the flow port 3 and the passage port 32, and the contact flow path 31 above the mounting body 35 is filled with limestone 24. Furthermore, a second cover 40 is attached to the right side surface of the other partition walls 2 except for the partition wall 2 at the right end, covering the communication port 3, and a second cover opening 41 is installed.
is opened near the bottom of compartment 4.

また、前記載置体35の別の実施例としてパン
チングメタルが考えられる。
Moreover, punching metal can be considered as another example of the mounting body 35.

第7図は他の実施例を示すものであり、この実
施例では流通口3を隔壁2の上部に設け、通路口
32を隔室4の底部近くに設けたものである。
FIG. 7 shows another embodiment, in which the flow port 3 is provided in the upper part of the partition wall 2, and the passage port 32 is provided near the bottom of the partition chamber 4.

〔考案の効果〕[Effect of idea]

本考案の二重籠20は、空調機器10の汲上水
及び吐出水が蓄熱槽1から出入する際すべて石灰
石24の充填層を通過するので、熱源水と石灰石
24の接触が確実に行なわれ、石灰石24の量も
少なくてすみ、二重籠20も小さいものとするこ
とが可能である。また、二重籠20自体が自立性
があるので、特別な架台等を必要とせず、装置を
低コストとすることができる。
In the double cage 20 of the present invention, the pumped water and discharged water of the air conditioner 10 pass through the packed bed of limestone 24 when entering and leaving the heat storage tank 1, so that the heat source water and the limestone 24 are surely in contact with each other. The amount of limestone 24 is also small, and the double cage 20 can also be made smaller. Moreover, since the double cage 20 itself is self-supporting, no special mount or the like is required, and the cost of the device can be reduced.

覆い30で形成した接触流路31に石灰石24
を充填した場合も、熱源水は石灰石24の充填層
を通過するので、熱源水と石灰石24の接触が確
実に行なわれ石灰石24の量が少なくてすみ、さ
らに、覆い30で形成された接触流路31に石灰
石24を充填する場合は、温度成層を形成するた
めに設けた既設の覆い30に多数の小孔を設けた
載置体35を取り付けることにより形成できるの
で装置を低コストとすることができる。
Limestone 24 is placed in the contact channel 31 formed by the cover 30.
Even when the heat source water is filled with limestone 24, the heat source water passes through the packed bed of limestone 24, so the contact between the heat source water and the limestone 24 is ensured, and the amount of limestone 24 can be reduced. When the channel 31 is filled with limestone 24, it can be formed by attaching a mounting body 35 with a large number of small holes to the existing cover 30 provided for forming temperature stratification, so that the cost of the device can be reduced. I can do it.

また、両考案とも構成が極めて簡単であるの
で、工事期間を短期間とすることができる。
Furthermore, since both designs have extremely simple configurations, the construction period can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は請求項1記載の本考案の一実施例を模
式的に示す展開図、第2図はその要部の斜視図、
第3図はその要部の別の実施例の斜視図、第4図
は請求項2記載の本考案の一実施例を模式的に示
す展開図、第5図はその要部の斜視図、第6図は
その要部の断面図、第7図は他の実施例を示す断
面図である。 1……蓄熱層、2……隔壁、3……流通口、4
……隔室、10……空調機器、10a……熱源機
器、10b……負荷装置、11……移送管、12
……開口、20……二重籠、21……内籠、22
……外籠、24……石灰石、30……覆い、31
……接触流路、32……通路口、35……載置
体。
FIG. 1 is a developed view schematically showing an embodiment of the present invention as claimed in claim 1, FIG. 2 is a perspective view of the main parts thereof,
FIG. 3 is a perspective view of another embodiment of the main part thereof, FIG. 4 is a developed view schematically showing an embodiment of the present invention as claimed in claim 2, and FIG. 5 is a perspective view of the main part. FIG. 6 is a sectional view of the main part thereof, and FIG. 7 is a sectional view showing another embodiment. 1... Heat storage layer, 2... Partition wall, 3... Distribution port, 4
... Compartment, 10 ... Air conditioning equipment, 10a ... Heat source equipment, 10b ... Load device, 11 ... Transfer pipe, 12
...Opening, 20...Double basket, 21...Inner basket, 22
... Outer basket, 24 ... Limestone, 30 ... Cover, 31
... Contact channel, 32 ... Passage opening, 35 ... Placement body.

Claims (1)

【実用新案登録請求の範囲】 (1) 蓄熱槽1内に二重籠20を設置し、この二重
籠20の内籠21と外籠22の間に石灰石24
を充填するとともに、内籠21内には、空調機
器10と蓄熱槽1内とを接続する移送管11の
開口12を配置したことを特徴とする蓄熱槽の
熱源水中に存在する遊離炭酸とカルシウムイオ
ンを平衡させて配管系統の腐食を防止する装
置。 (2) 蓄熱槽1を隔壁2によつて多数の隔室4に仕
切り、この隔壁2の上下方向の端部付近に片寄
つて流通口3を設けるとともに、隔壁2の一方
の側面に、前記流通口3を覆う覆い30を設け
て上下方向の接触流路31を形成し、そして、
この接触流路31は前記片寄つた流通口3の、
上下方向の反対側の端部付近に設けた通路口3
2により隔室4内と連通するように形成した蓄
熱槽1において、 流通口3と通路口32間の覆い30内の接触
流路31に、多数の小孔を設けた載置体35を
設け、この載置体35の上部の接触流路31に
石灰石24を充填したことを特徴とする蓄熱槽
の熱源水中に存在する遊離炭酸とカルシウムイ
オンを平衡させて配管系統の腐食を防止する装
置。
[Scope of claim for utility model registration] (1) A double cage 20 is installed in the heat storage tank 1, and limestone 24 is installed between the inner cage 21 and outer cage 22 of this double cage 20.
The inner basket 21 is filled with free carbonate and calcium present in the heat source water of the heat storage tank. A device that balances ions and prevents corrosion in piping systems. (2) The heat storage tank 1 is partitioned into a large number of compartments 4 by partition walls 2, and the communication ports 3 are provided near the ends of the partition walls 2 in the vertical direction. A cover 30 covering the mouth 3 is provided to form a vertical contact flow path 31, and
This contact flow path 31 is connected to the offset flow port 3.
Passage opening 3 provided near the opposite end in the vertical direction
In the heat storage tank 1 formed to communicate with the inside of the compartment 4 by 2, a mounting body 35 with a large number of small holes is provided in the contact flow path 31 in the cover 30 between the communication port 3 and the passage port 32. A device for preventing corrosion of a piping system by balancing free carbonate and calcium ions present in the heat source water of a heat storage tank, characterized in that the contact channel 31 at the upper part of the mounting body 35 is filled with limestone 24.
JP1988019540U 1988-02-17 1988-02-17 Expired JPH0410216Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988019540U JPH0410216Y2 (en) 1988-02-17 1988-02-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988019540U JPH0410216Y2 (en) 1988-02-17 1988-02-17

Publications (2)

Publication Number Publication Date
JPH01125365U JPH01125365U (en) 1989-08-25
JPH0410216Y2 true JPH0410216Y2 (en) 1992-03-13

Family

ID=31235141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988019540U Expired JPH0410216Y2 (en) 1988-02-17 1988-02-17

Country Status (1)

Country Link
JP (1) JPH0410216Y2 (en)

Also Published As

Publication number Publication date
JPH01125365U (en) 1989-08-25

Similar Documents

Publication Publication Date Title
CN104211187B (en) The method of operation of steam boiler
CN101191298B (en) Water feeding device for washing machine
US20110042036A1 (en) Chemical heat-storage apparatus
JP2008272654A (en) Neutralization apparatus for drain and neutralization system for drain
CN109638317A (en) Metal air fuel cell electrolyte total management system and method
JPH0410216Y2 (en)
KR101303228B1 (en) Equipment-protective compound of a closed heat-system
JP5033323B2 (en) Fuel cell device
JPH07109585A (en) Treatment of circulating water
JPH01176083A (en) Device for preventing corrosion of pipeline by keeping free carbon dioxide and calcium ion in heat-source water in heat storage tank in equilibrium
Jones Corrosion of central heating systems
Larson Chemical control of corrosion
JPH0418919A (en) Method and device for electrodialysis
JPH0112107Y2 (en)
US4120760A (en) Surface treatment of metals
JP3005069U (en) Anticorrosion device for piping system connected to heat storage tank
JP3227058B2 (en) Corrosion protection method for piping system connected to heat storage tank
Von Fraunhofer Corrosion in hot water central heating
JP3162192B2 (en) Corrosion protection method and equipment for water supply pipeline
GB1579217A (en) Her closed circuit water system composition for addition to a central heating system or ot
JPS645706Y2 (en)
CN219888245U (en) Cooling system for phosphoric acid ammonia washing pump and phosphoric acid ammonia washing system
US4290868A (en) Iron plumbing corrosion minimizing method
JP2502411B2 (en) Heat storage device and anticorrosion method thereof
CN209675414U (en) Metal air fuel cell electrolyte total management system