JP2000138142A - Electric double layer capacitor - Google Patents

Electric double layer capacitor

Info

Publication number
JP2000138142A
JP2000138142A JP10311829A JP31182998A JP2000138142A JP 2000138142 A JP2000138142 A JP 2000138142A JP 10311829 A JP10311829 A JP 10311829A JP 31182998 A JP31182998 A JP 31182998A JP 2000138142 A JP2000138142 A JP 2000138142A
Authority
JP
Japan
Prior art keywords
electric double
double layer
layer capacitor
electrode
vanadium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10311829A
Other languages
Japanese (ja)
Inventor
Minoru Noguchi
実 野口
Tatsuya Suzuki
達也 鈴木
Yoshio Yamamoto
善夫 山本
Shigeki Koyama
茂樹 小山
Naohiko Oki
尚彦 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP10311829A priority Critical patent/JP2000138142A/en
Publication of JP2000138142A publication Critical patent/JP2000138142A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive, large-capacity, electric double layer capacitor. SOLUTION: A pair of positive and negative electrode elements respectively having solid-state electrodes 1 and 1 on the surfaces of collecting members 3 and 5 are opposed to each other through an insulating member 2, and sealed within a container together with an electrolytic solution. The electrode 1 is a composite electrode made from activated carbon and a lithium-vanadium oxide. The lithium-vanadium oxide is at least one kind selected from the group consisting of LiV3O8, LiV2O5 and Li2V2O5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層キャパ
シタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor.

【0002】[0002]

【従来の技術】従来、電気二重層を利用するキャパシタ
として、金属箔等の集電部材表面に比表面積の大きな物
質を固体電極として設けた電極素子を正負極を一対とし
てセパレータを介して対向配置したものが知られてい
る。前記電極素子は電解質溶液と共に容器内に密封さ
れ、該容器に前記集電部材と接続する端子を設けること
により電気二重層キャパシタとして作用する。
2. Description of the Related Art Conventionally, as a capacitor using an electric double layer, an electrode element in which a substance having a large specific surface area is provided as a solid electrode on the surface of a current collecting member such as a metal foil is opposed to a pair of positive and negative electrodes via a separator. Is known. The electrode element is sealed in a container together with an electrolyte solution, and functions as an electric double layer capacitor by providing a terminal connected to the current collecting member in the container.

【0003】前記従来の電気二重層キャパシタでは、前
記固体電極の材料として比表面積の大きな活性炭が用い
られている。しかし、前記活性炭を用いて作成した電気
二重層キャパシタのエネルギー密度は化学反応を利用す
る二次電池に比べ低いものであった。そこで、エネルギ
ー密度を向上させる目的で前記固体電極に、電気化学反
応により疑似容量を生じる物質を混合することが提案さ
れており、前記疑似容量を生じる物質として、酸化ルテ
ニウム等、種々の金属酸化物を使用することが検討され
ている。しかしながら、前記疑似容量を生じる物質はい
ずれも高価であるとの不都合がある。
In the conventional electric double layer capacitor, activated carbon having a large specific surface area is used as a material of the solid electrode. However, the energy density of the electric double-layer capacitor made using the activated carbon is lower than that of a secondary battery using a chemical reaction. Therefore, for the purpose of improving the energy density, it has been proposed to mix a substance that generates a pseudo capacitance by an electrochemical reaction with the solid electrode. As the substance that generates the pseudo capacitance, various metal oxides such as ruthenium oxide are used. The use of is being considered. However, there is an inconvenience that any of the substances that generate the pseudo capacitance is expensive.

【0004】[0004]

【発明が解決しようとする課題】本発明は、かかる事情
に鑑み、安価で大容量の電気二重層キャパシタを提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an inexpensive and large-capacity electric double layer capacitor in view of the above circumstances.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記電気
二重層キャパシタの固体電極の活性炭に混合して前記疑
似容量を生じる金属酸化物について検討を重ねた結果、
リチウムバナジウム酸化物を用いると、充電電圧が低電
圧のときにキャパシタの容量が大きくなるという新規な
特性が得られることを知見して本発明を完成した。
Means for Solving the Problems The present inventors have repeatedly studied a metal oxide which generates the pseudo capacitance by mixing it with activated carbon of a solid electrode of the electric double layer capacitor.
The inventors have found that the use of lithium vanadium oxide provides a novel characteristic of increasing the capacity of a capacitor when the charging voltage is low, and completed the present invention.

【0006】従って、本発明の電気二重層キャパシタ
は、前記目的を達成するために、各別に集電部材表面に
固体電極を備える電極素子を正負極を一対として絶縁部
材を介して対向配置し、電解質溶液と共に容器内に密封
した電気二重層キャパシタにおいて、該固体電極は活性
炭とリチウムバナジウム酸化物とからなる複合電極であ
ることを特徴とする。
Therefore, in order to achieve the above object, the electric double layer capacitor of the present invention comprises a pair of positive and negative electrode elements each having a solid electrode on the surface of a current collecting member, facing each other via an insulating member, In an electric double layer capacitor sealed in a container together with an electrolyte solution, the solid electrode is a composite electrode composed of activated carbon and lithium vanadium oxide.

【0007】前記リチウムバナジウム酸化物において、
バナジウムは酸化物として4価の状態と5価の状態とを
取ることができ、リチウムが介在することによりいずれ
の酸化状態でも安定に存在する。この結果、リチウムバ
ナジウム酸化物は、前記電解質溶液の存在下で電気化学
反応を生じ、電池的に働くので、キャパシタにおいて前
記疑似容量が得られるものと考えられる。
In the above-mentioned lithium vanadium oxide,
Vanadium can be in a tetravalent state or a pentavalent state as an oxide, and stably exists in any oxidation state due to the intervening lithium. As a result, the lithium vanadium oxide causes an electrochemical reaction in the presence of the electrolyte solution and acts as a battery, so that it is considered that the pseudo capacitance is obtained in the capacitor.

【0008】そこで、本発明の電気二重層キャパシタで
は、前記固体電極を活性炭とリチウムバナジウム酸化物
とからなる複合電極とすることにより、充電電圧が低い
ときに、前記固体電極を活性炭のみで構成するときより
も大容量を得ることができる。また、前記リチウムバナ
ジウム酸化物は電池の材料として安価に入手できるの
で、前記固体電極の活性炭の一部を前記リチウムバナジ
ウム酸化物とすることにより、製造コストを低減するこ
とができる。
Therefore, in the electric double layer capacitor of the present invention, the solid electrode is composed of activated carbon only when the charging voltage is low by forming the solid electrode as a composite electrode composed of activated carbon and lithium vanadium oxide. Larger capacity can be obtained than when. In addition, since the lithium vanadium oxide can be obtained at a low cost as a material for a battery, manufacturing cost can be reduced by using a part of the activated carbon of the solid electrode as the lithium vanadium oxide.

【0009】前記リチウムバナジウム酸化物は、前記の
ように前記電解質溶液の存在下で電気化学反応を生じて
電池的に働くために、バナジウムが酸化物として4価の
状態と5価の状態とを取ることできることが好ましく、
このようなリチウムバナジウム酸化物として、LiV3
8 、LiV2 5 、Li2 2 5 から成る群から選
択される少なくとも1種の酸化物を用いることができ
る。前記LiV3 8 のバナジウムは5価、LiV2
5 のバナジウムは4価と5価との混合物、Li22
5 のバナジウムは4価である。
Since the lithium vanadium oxide causes an electrochemical reaction in the presence of the electrolyte solution to function as a battery as described above, vanadium is converted into a tetravalent state and a pentavalent state as an oxide. Preferably can be taken,
As such a lithium vanadium oxide, LiV 3
At least one oxide selected from the group consisting of O 8 , LiV 2 O 5 , and Li 2 V 2 O 5 can be used. The vanadium of LiV 3 O 8 is pentavalent, and LiV 2 O
5 of vanadium mixture of tetravalent and pentavalent, Li 2 V 2 O
Vanadium in 5 is tetravalent.

【0010】[0010]

【発明の実施の形態】次に、添付の図面を参照しながら
本発明の実施の形態についてさらに詳しく説明する。図
1は電気二重層キャパシタの構成を示す説明的断面図、
図2は本発明の固体電極の充放電特性を示すグラフ、図
3は本発明の固体電極に用いる各種リチウムバナジウム
酸化物の充放電特性を示すグラフである。
Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an explanatory sectional view showing a configuration of an electric double layer capacitor,
FIG. 2 is a graph showing the charge / discharge characteristics of the solid electrode of the present invention, and FIG. 3 is a graph showing the charge / discharge characteristics of various lithium vanadium oxides used for the solid electrode of the present invention.

【0011】本実施形態の電気二重層キャパシタは、図
1示のように、固体電極1,1が絶縁部材であるセパレ
ータ2を介して対向配置されて、円盤状のアルミニウム
製容器3に収容されている。固体電極1,1とセパレー
タ2とは、図示しない電解質溶液と共にアルミニウム製
容器3に収容されており、容器3は合成樹脂からなるパ
ッキン4を介してアルミニウム製蓋体5により密封され
ている。
As shown in FIG. 1, the electric double layer capacitor of the present embodiment is arranged such that solid electrodes 1 and 1 are opposed to each other via a separator 2 which is an insulating member, and are housed in a disk-shaped aluminum container 3. ing. The solid electrodes 1 and 1 and the separator 2 are housed in an aluminum container 3 together with an electrolyte solution (not shown), and the container 3 is sealed with an aluminum lid 5 via a packing 4 made of a synthetic resin.

【0012】固体電極1,1は、導電性接着剤等により
容器3及び蓋体5の内面側に接着されている。これによ
り、容器3及び蓋体5はそれぞれの内面側で固体電極
1,1の集電部材となるとともに、それぞれの外面側を
互いに反対極の接続端子として用いることができる。
The solid electrodes 1 and 1 are adhered to the inner surfaces of the container 3 and the lid 5 with a conductive adhesive or the like. Thereby, the container 3 and the lid 5 can be used as current collecting members for the solid electrodes 1 and 1 on the respective inner surfaces, and the respective outer surfaces can be used as connection terminals of opposite poles.

【0013】本実施形態では、固体電極1は活性炭(大
阪ガス株式会社製、商品名:M−30)18重量部と、
リチウムバナジウム酸化物(LiV3 8 )10重量部
とからなり、重量が1gの複合電極である。前記リチウ
ムバナジウム酸化物は、リチウムプロポキシドの有機溶
媒溶液と、バナジウムプロポキシドの有機溶媒溶液とを
所定量づつ混合して、加水分解、縮合反応させるゾル−
ゲル法により製造することができる。
In this embodiment, the solid electrode 1 comprises 18 parts by weight of activated carbon (trade name: M-30, manufactured by Osaka Gas Co., Ltd.)
The composite electrode was composed of 10 parts by weight of lithium vanadium oxide (LiV 3 O 8 ) and weighing 1 g. The lithium vanadium oxide is prepared by mixing a predetermined amount of an organic solvent solution of lithium propoxide and an organic solvent solution of vanadium propoxide, and performing a hydrolysis and condensation reaction.
It can be produced by a gel method.

【0014】前記固体電極1は、前記活性炭と前記リチ
ウムバナジウム酸化物とを単に乳鉢等で混合した混合物
であってもよく、前記ゾル−ゲル法により前記リチウム
バナジウム酸化物を製造するときに、溶液中に前記活性
炭を介在させて、該活性炭表面に該リチウムバナジウム
酸化物を析出させた複合物であってもよい。
The solid electrode 1 may be a mixture obtained by simply mixing the activated carbon and the lithium vanadium oxide in a mortar or the like. When the lithium vanadium oxide is produced by the sol-gel method, a solution may be used. A composite in which the activated carbon is interposed and the lithium vanadium oxide is deposited on the surface of the activated carbon may be used.

【0015】また、本実施形態では、前記電解質溶液は
塩化リチウムのプロピレンカーボネート溶液であり、そ
の濃度は1モル/リットルである。ただし、前記電解質
溶液はこれに限定されるものではなく、他の公知の電解
質溶液を用いることもできる。
Further, in the present embodiment, the electrolyte solution is a propylene carbonate solution of lithium chloride, and its concentration is 1 mol / liter. However, the electrolyte solution is not limited to this, and other known electrolyte solutions can be used.

【0016】次に、本実施形態の電気二重層キャパシタ
を、2.0Vで満充電し、1mAの負荷に接続したとき
の放電時間を図2に示す。また、図1に示す構成におい
て、固体電極1を活性炭(大阪ガス株式会社製、商品
名:M−30)のみで重量1gに構成し、電解質溶液と
してテトラエチルアンモニウムテトラフルオロボレート
((C2 5 4 NBF4 )のプロピレンカーボネート
溶液(1モル/リットル)を用いた電気二重層キャパシ
タ(比較例)を2.0Vで満充電し、1mAの負荷に接
続したときの放電時間を図2に併せて示す。
Next, FIG. 2 shows the discharge time when the electric double layer capacitor of this embodiment is fully charged at 2.0 V and connected to a load of 1 mA. In addition, in the configuration shown in FIG. 1, the solid electrode 1 is composed of only activated carbon (trade name: M-30, manufactured by Osaka Gas Co., Ltd.) and weighs 1 g, and tetraethylammonium tetrafluoroborate ((C 2 H 5 ) is used as an electrolyte solution. 2) A discharge time when an electric double layer capacitor (comparative example) using a propylene carbonate solution (1 mol / liter) of 4 NBF 4 ) was fully charged at 2.0 V and connected to a load of 1 mA is shown in FIG. Shown.

【0017】図2から、1.0V以下の比較的低電圧の
領域では、固体電極1が活性炭のみからなる比較例の電
気二重層キャパシタが約45時間で放電するのに対し
て、本実施形態の電気二重層キャパシタは約70時間で
放電しており、優れた放電特性を示すことが明らかであ
る。
From FIG. 2, in the comparatively low voltage region of 1.0 V or less, the electric double layer capacitor of the comparative example, in which the solid electrode 1 is made of only activated carbon, discharges in about 45 hours, whereas the present embodiment uses the same. Is discharged in about 70 hours, and it is clear that the electric double layer capacitor exhibits excellent discharge characteristics.

【0018】本実施形態では、前記リチウムバナジウム
酸化物として、5価のバナジウムを含むLiV3 8
用いているが、他に、4価のバナジウムと5価のバナジ
ウムとの混合物を含むLiV2 5 、4価のバナジウム
を含むLi2 2 5 を用いてもよい。しかし、5価の
バナジウムを含むLi3 VO4 は適していない。
In this embodiment, LiV 3 O 8 containing pentavalent vanadium is used as the lithium vanadium oxide. However, LiV 2 containing a mixture of tetravalent vanadium and pentavalent vanadium is also used. O 5 or Li 2 V 2 O 5 containing tetravalent vanadium may be used. However, Li 3 VO 4 containing pentavalent vanadium is not suitable.

【0019】次に、図1に示す構成において、固体電極
1を炭素成分としてのアセチレンブラック18重量部
と、前記の各種リチウムバナジウム酸化物としてのLi
3 8 、LiV2 5 またはLi3 VO4 10重量部
とからなり、重量が1gの複合電極とし、本実施形態と
同一の電解質溶液を用いた電気二重層キャパシタを2.
0Vで満充電し、1mAの付加に接続したときの放電時
間を図3に示す。前記アセチレンブラックは電気二重層
キャパシタに用いたときに容量を持たないことが知られ
ており、前記構成では単にバインダーとして用いられて
いる。従って、図3のグラフは、前記の各種リチウムバ
ナジウム酸化物のみの充放電特性と見做すことができ
る。
Next, in the configuration shown in FIG.
1 as a carbon component, 18 parts by weight of acetylene black
And Li as the various lithium vanadium oxides described above.
VThreeO 8, LiVTwoOFiveOr LiThreeVOFour10 parts by weight
Consisting of a composite electrode having a weight of 1 g,
1. An electric double layer capacitor using the same electrolyte solution
When discharging when fully charged at 0V and connected to 1mA additional
The interval is shown in FIG. The acetylene black is an electric double layer
Known to have no capacity when used for capacitors
In the above configuration, it is simply used as a binder
I have. Therefore, the graph of FIG.
It can be regarded as the charge / discharge characteristics of only sodium oxide.
You.

【0020】図3から、LiV3 8 、LiV2 5
比較的長い放電時間を有するのに比較して、Li3 VO
4 は放電時間が短いことが明らかである。
FIG. 3 shows that LiV 3 O 8 and LiV 2 O 5 have relatively long discharge times, while Li 3 VO
It is clear that No. 4 has a short discharge time.

【0021】尚、本実施形態では、図1示の構成の電気
二重層キャパシタについて説明しているが、電気二重層
キャパシタの構成はこれに限定されるものではなく、例
えば、各別に集電部材表面に分極性電極を備える複数の
電極素子をセパレータを介して正負極交互に積層し、各
集電部材から引き出されるリード部材を同極毎にまとめ
て接続端子に接続するようにした構成等、他の構成であ
ってもよい。
In this embodiment, the electric double layer capacitor having the structure shown in FIG. 1 is described. However, the structure of the electric double layer capacitor is not limited to this. A configuration in which a plurality of electrode elements each having a polarizable electrode on the surface are alternately laminated with a positive electrode and a negative electrode via a separator, and lead members drawn out from each current collecting member are collectively connected to the connection terminal for each same electrode. Other configurations may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電気二重層キャパシタの構成を示す説明的断面
図。
FIG. 1 is an explanatory sectional view showing a configuration of an electric double layer capacitor.

【図2】本発明の固体電極の充放電特性を示すグラフ。FIG. 2 is a graph showing charge / discharge characteristics of the solid electrode of the present invention.

【図3】本発明の固体電極に用いる各種リチウムバナジ
ウム酸化物の充放電特性を示すグラフ。
FIG. 3 is a graph showing charge / discharge characteristics of various lithium vanadium oxides used for the solid electrode of the present invention.

【符号の説明】[Explanation of symbols]

1…固体電極、 2…絶縁部材、 3,5…集電部材。 1: solid electrode, 2: insulating member, 3, 5: current collecting member.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 善夫 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 小山 茂樹 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 沖 尚彦 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 5H029 AJ00 AJ03 AK03 AK08 AL03 AL08 AM03 AM07 BJ03  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Yoshio Yamamoto, Inventor 1-4-1 Chuo, Wako-shi, Saitama Pref. Honda Technical Research Institute, Inc. (72) Shigeki Koyama 1-4-1, Chuo, Wako-shi, Saitama Inside the Honda R & D Co., Ltd. (72) Inventor Naohiko Oki 1-4-1 Chuo, Wako-shi, Saitama F-term inside the Honda R & D Co., Ltd. 5H029 AJ00 AJ03 AK03 AK08 AL03 AL08 AM03 AM07 BJ03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】各別に集電部材表面に固体電極を備える電
極素子を正負極を一対として絶縁部材を介して対向配置
し、電解質溶液と共に容器内に密封した電気二重層キャ
パシタにおいて、該固体電極は活性炭とリチウムバナジ
ウム酸化物とからなる複合電極であることを特徴とする
電気二重層キャパシタ。
An electric double layer capacitor in which electrode elements each having a solid electrode on the surface of a current collecting member are opposed to each other with a pair of positive and negative electrodes via an insulating member and sealed in a container together with an electrolyte solution. Is a composite electrode composed of activated carbon and lithium vanadium oxide.
【請求項2】前記リチウムバナジウム酸化物はLiV3
8 、LiV2 5 、Li2 2 5 から成る群から選
択される少なくとも1種の酸化物であることを特徴とす
る請求項1記載の電気二重層キャパシタ。
2. The method according to claim 1, wherein the lithium vanadium oxide is LiVThree
O8, LiVTwoOFive, LiTwoVTwoO FiveSelected from the group consisting of
At least one selected oxide.
The electric double layer capacitor according to claim 1.
JP10311829A 1998-11-02 1998-11-02 Electric double layer capacitor Withdrawn JP2000138142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10311829A JP2000138142A (en) 1998-11-02 1998-11-02 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10311829A JP2000138142A (en) 1998-11-02 1998-11-02 Electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2000138142A true JP2000138142A (en) 2000-05-16

Family

ID=18021910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10311829A Withdrawn JP2000138142A (en) 1998-11-02 1998-11-02 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2000138142A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158139A (en) * 2000-11-17 2002-05-31 Hitachi Maxell Ltd Electrode material for secondary power supply and electrochemical capacitor
JP2002208403A (en) * 2001-01-10 2002-07-26 Toyota Central Res & Dev Lab Inc Lithium secondary battery
US6558846B1 (en) * 1998-03-17 2003-05-06 Asahi Glass Company Ltd. Secondary power source
JP2005158719A (en) * 2003-10-30 2005-06-16 Yuasa Corp Lithium ion secondary battery
JP2015225876A (en) * 2014-05-26 2015-12-14 旭化成株式会社 Positive electrode active material for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by use thereof
CN105742076A (en) * 2016-03-31 2016-07-06 南京工业大学 Alkali metal ion capacitor using lithium orthovanadate as negative electrode active material
US11394089B2 (en) 2017-06-13 2022-07-19 Lg Energy Solution, Ltd. Electrode assembly and method for manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558846B1 (en) * 1998-03-17 2003-05-06 Asahi Glass Company Ltd. Secondary power source
JP2002158139A (en) * 2000-11-17 2002-05-31 Hitachi Maxell Ltd Electrode material for secondary power supply and electrochemical capacitor
JP4697912B2 (en) * 2000-11-17 2011-06-08 日立マクセル株式会社 Secondary power supply electrode material and secondary power supply using the same
JP2002208403A (en) * 2001-01-10 2002-07-26 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP4513210B2 (en) * 2001-01-10 2010-07-28 株式会社豊田中央研究所 Lithium secondary battery
JP2005158719A (en) * 2003-10-30 2005-06-16 Yuasa Corp Lithium ion secondary battery
JP2015225876A (en) * 2014-05-26 2015-12-14 旭化成株式会社 Positive electrode active material for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by use thereof
CN105742076A (en) * 2016-03-31 2016-07-06 南京工业大学 Alkali metal ion capacitor using lithium orthovanadate as negative electrode active material
US11394089B2 (en) 2017-06-13 2022-07-19 Lg Energy Solution, Ltd. Electrode assembly and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5455999A (en) Method for making electrochemical device
Murakami et al. A high-voltage dye-sensitized photocapacitor of a three-electrode system
US6301093B1 (en) Electrochemical capacitor
US5426561A (en) High energy density and high power density ultracapacitors and supercapacitors
US5621609A (en) Composite electrode materials for high energy and high power density energy storage devices
US6383363B2 (en) Proton inserted ruthenium oxide electrode material for electrochemical capacitors
CA2265075A1 (en) Lithium secondary battery
US6088217A (en) Capacitor
JPH11145012A (en) Capacitor element and battery cell
JP2000138142A (en) Electric double layer capacitor
WO2008106533A1 (en) Ultracapacitor collector and/or package with controlled magnesium content
JP3364460B2 (en) Electrochemical capacitor
US20070266554A1 (en) Electrochemical cell with moderate-rate discharging capability and method of production
JPS59143280A (en) Secondary battery using polymer
JP2002252145A (en) Electrochemical device
JP4514275B2 (en) Electric double layer capacitor
JPH07111936B2 (en) Multilayer Electric Double Layer Capacitor
JPH05299296A (en) Electric double-layer capacitor
JP2002158140A (en) Electrochemical capacitor
JPH09205041A (en) Electric double layered capacitor
WO2005076296A1 (en) Electrochemical device and electrode body
JPH07307250A (en) Electric double-layer capacitor
JPH11354389A (en) Electrochemical capacitor
JP2000315527A (en) Non-aqueous electrochemical capacitor
JP2000243453A (en) Nonaqueous electrochemical capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061106