JP2000114027A - Superconducting coil device - Google Patents

Superconducting coil device

Info

Publication number
JP2000114027A
JP2000114027A JP28551098A JP28551098A JP2000114027A JP 2000114027 A JP2000114027 A JP 2000114027A JP 28551098 A JP28551098 A JP 28551098A JP 28551098 A JP28551098 A JP 28551098A JP 2000114027 A JP2000114027 A JP 2000114027A
Authority
JP
Japan
Prior art keywords
superconducting coil
heat
heat transfer
cooling member
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28551098A
Other languages
Japanese (ja)
Inventor
Shunei Nakano
俊英 中野
Toshiyuki Yamanaka
敏行 山中
Hiroaki Nakamata
博昭 中俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28551098A priority Critical patent/JP2000114027A/en
Publication of JP2000114027A publication Critical patent/JP2000114027A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superconducting coil device which can quickly magnetize and demagnetize a superconducting coil without quenching the coil by preventing the heat generation caused by eddy current losses, and can be actuated in a short time. SOLUTION: A superconducting coil device is constituted in such a way that a cooling member 4 is attached to at least one of the outer periphery, inner periphery, and end section of a superconducting coil 3, and a transmitting member 5 comes into contact with the cooling member 4 to transmit the heat of the coil 3 to the low-temperature member. At least, either one of the members 4 and 5 is constituted to suppress eddy currents.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】発明は、冷凍機その他各種手
段により超伝導コイルが極低温保持される超伝導コイル
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting coil device in which a superconducting coil is kept at a very low temperature by a refrigerator or other various means.

【0002】[0002]

【従来の技術】従来の冷凍機により冷却される超伝導コ
イル装置を、図10に基づいて説明する。鉄鋼材で形成
された真空容器01内には、外部からの輻射熱の侵入を
防ぐ銅等の金属製のサーマルシールド02が配置されて
いる。サーマルシールド02内には、超伝導線材が巻き
付けられて形成された超伝導コイル03(内径約530
mm、外形約450mm、高さ約450mm)が配置さ
れており、超伝導コイル03の外周部と端部には、熱伝
導性の良い銅、アルミニューム等の金属製の一枚板から
形成された厚さ約10mmの冷却板04が取り付けられ
ている。冷却板04には、幅60mm、厚さ30mmの
熱伝導性の良い銅、アルミニューム等の金属性の一枚板
から形成された伝熱板05の端部がろう付け等により取
り付けられている。伝熱板04の他端部付近は、真空容
器01、サーマルシールド02を貫通し、冷凍機の低温
ステージ06にインジューム等の軟金属を間に挟んでボ
ルトによって接続されている。超伝導コイル03は、電
線によりサーマルシールド02内に設けられた電流リー
ド07を介して、真空容器01に設けられた電流リード
用端子08に接続しており、電流リード用端子08は図
示省略の外部電源に接続されている。
2. Description of the Related Art A conventional superconducting coil device cooled by a refrigerator will be described with reference to FIG. In a vacuum vessel 01 made of a steel material, a thermal shield 02 made of metal such as copper for preventing intrusion of radiant heat from the outside is arranged. In the thermal shield 02, a superconducting coil 03 (with an inner diameter of about 530) formed by winding a superconducting wire is wound.
mm, an outer shape of about 450 mm, and a height of about 450 mm). The outer peripheral portion and the end portion of the superconducting coil 03 are formed of a single plate made of metal such as copper or aluminum having good heat conductivity. A cooling plate 04 having a thickness of about 10 mm is attached. To the cooling plate 04, an end portion of a heat transfer plate 05 formed of a single metal plate such as copper or aluminum having a heat conductivity of 60 mm in width and 30 mm in thickness is attached by brazing or the like. . The vicinity of the other end of the heat transfer plate 04 penetrates through the vacuum vessel 01 and the thermal shield 02, and is connected to the low-temperature stage 06 of the refrigerator by bolts with soft metal such as indium interposed therebetween. The superconducting coil 03 is connected to a current lead terminal 08 provided in the vacuum vessel 01 via a current lead 07 provided in the thermal shield 02 by an electric wire, and the current lead terminal 08 is not shown. Connected to an external power supply.

【0003】外部電源から、電流リード用端子08、電
流リード07を介して電流を徐々に増加させながら超伝
導コイル03に送り、超伝導コイル03を励磁させて定
格磁場までに立ち上げて運転する。また、運転終了後
は、電流を徐々に減少させて消磁させる。超伝導コイル
03には、外部からの熱が侵入すると共に、超伝導コイ
ル03自体の内部で交流損失による熱が発生する。これ
らの熱は、超伝導コイル03内部を半径方向に移動して
冷却板04に達する。冷却板04に達した熱は、冷却板
04を周方向及びコイル軸方向に流れて伝熱板05に達
し、伝熱板05を介して低温ステージ06に移動する。
これにより超伝導コイル03は零下200数10℃の極
低温に維持されている。
A current is gradually increased from an external power supply via a current lead terminal 08 and a current lead 07 to the superconducting coil 03, and the superconducting coil 03 is excited to operate up to a rated magnetic field. . After the end of the operation, the current is gradually reduced to demagnetize. Heat from the outside enters the superconducting coil 03, and heat due to AC loss is generated inside the superconducting coil 03 itself. These heats move inside the superconducting coil 03 in the radial direction and reach the cooling plate 04. The heat that has reached the cooling plate 04 flows through the cooling plate 04 in the circumferential direction and the coil axial direction, reaches the heat transfer plate 05, and moves to the low-temperature stage 06 via the heat transfer plate 05.
As a result, the superconducting coil 03 is maintained at an extremely low temperature of 200 degrees below several ten degrees Celsius.

【0004】[0004]

【発明が解決しようとする課題】従来の装置において
は、冷却板04及び伝熱板05は、熱伝導性の良い銅、
アルミニューム等の金属で作られており、電気伝導性に
も優れているので、これら冷却板04及び伝熱板05に
は、超伝導コイル03で発生する磁場の時間変化、即ち
磁場変化により渦電流が発生し、渦電流の発生に伴って
渦電流損失が発生して発熱が起こる。この渦電流損失は
無限長モデルにおいて、一般に式1で表される。 [式1]
In the conventional apparatus, the cooling plate 04 and the heat transfer plate 05 are made of copper having good heat conductivity.
Since the cooling plate 04 and the heat transfer plate 05 are made of a metal such as aluminum and have excellent electric conductivity, the cooling plate 04 and the heat transfer plate 05 have a vortex due to the time change of the magnetic field generated by the superconducting coil 03, that is, the magnetic field change. An electric current is generated, and an eddy current loss occurs with the generation of the eddy current, thereby generating heat. This eddy current loss is generally expressed by Equation 1 in an infinite length model. [Equation 1]

【0005】式1からも判るように、渦電流による発熱
は、磁場変化の2乗に比例して大きくなっており、大き
な磁場変化があると冷凍機の冷凍能力を超えた発熱が冷
却板04及び伝熱板05に発生し、この熱が超伝導コイ
ル03に伝わって超伝導コイル03の温度が上昇し、臨
界温度を超える温度によってクエンチ(常伝導転移現
象)が起こる。クエンチが発生すると、再度超伝導コイ
ル03を冷却して励磁をやり直すことが必要となった
り、最悪の場合は、超伝導コイル03が破損するといっ
たことが起こる。このため従来は、大きな磁場変化によ
って起こるクエンチの発生を防ぐために、励磁、消磁の
速度を遅くして磁場変化を小さくしている。そのため励
磁、消磁に長時間要し、定格磁場に立ち上げるまでには
数10分から1時間もかかるとの課題があった。
As can be seen from equation (1), the heat generated by the eddy current increases in proportion to the square of the change in the magnetic field. Then, the heat is generated in the heat transfer plate 05, and this heat is transmitted to the superconducting coil 03, the temperature of the superconducting coil 03 rises, and a quench (normal conduction transition phenomenon) occurs when the temperature exceeds the critical temperature. When the quench occurs, it is necessary to cool the superconducting coil 03 again to re-execute, or in the worst case, the superconducting coil 03 is damaged. For this reason, conventionally, in order to prevent the occurrence of quench caused by a large change in the magnetic field, the speed of the excitation and demagnetization is reduced to reduce the change in the magnetic field. Therefore, there is a problem that it takes a long time to excite and demagnetize, and it takes several tens of minutes to one hour to start up to the rated magnetic field.

【0006】また、従来の装置においては、特に冷却板
04は一枚板で形成されており、超伝導コイル03の表
面との接触性が悪いとその部分が抵抗となって熱伝達が
悪くなって超伝導コイル03の熱が冷却板4に伝達され
にくくなり、超伝導コイル03の温度が上昇するという
課題もある。この現象は冷却板04と伝熱板05との
間、伝熱板05と低温ステージ06との間でも同様な課
題が発生する。
Further, in the conventional apparatus, the cooling plate 04 is particularly formed by a single plate. If the contact with the surface of the superconducting coil 03 is poor, the portion becomes a resistance and the heat transfer becomes poor. As a result, the heat of the superconducting coil 03 is less likely to be transmitted to the cooling plate 4 and the temperature of the superconducting coil 03 rises. This phenomenon causes a similar problem between the cooling plate 04 and the heat transfer plate 05 and between the heat transfer plate 05 and the low-temperature stage 06.

【0007】[0007]

【課題を解決するための手段】発明は上記課題を解決す
るために、以下の超伝導コイル装置を提供している。 (1)超伝導コイルの外周、内周、及び端部の少なくと
もいずれか一つに冷却部材が取り付けられ、同冷却部材
に接触して前記超伝導コイルの熱を低温部材に伝達させ
る伝熱部材からなる超伝導コイル装置において、前記冷
却部材と伝熱部材との少なくともどちらか一方を渦電流
を抑制する構造としたことを特徴とする超伝導コイル装
置。
In order to solve the above-mentioned problems, the present invention provides the following superconducting coil device. (1) A heat transfer member having a cooling member attached to at least one of an outer periphery, an inner periphery, and an end of the superconducting coil, and contacting the cooling member to transfer heat of the superconducting coil to a low-temperature member. Wherein at least one of the cooling member and the heat transfer member has a structure for suppressing an eddy current.

【0008】(2)超伝導コイルの外周、内周、及び端
部の少なくともいずれか一つに冷却部材が取り付けら
れ、同冷却部材に接触して前記超伝導コイルの熱を低音
部材に伝達させる伝熱部材からなる超伝導コイル装置に
おいて、前記冷却部材と伝熱部材との少なくともどちら
か一方を渦電流を抑制する構造とし、前記冷却部材と前
記伝熱部材とを窒化アルミ等の良熱伝導性の非金属材を
介して接続したことを特徴とする超伝導コイル装置。
(2) A cooling member is attached to at least one of the outer periphery, the inner periphery, and the end of the superconducting coil, and contacts the cooling member to transmit heat of the superconducting coil to the bass member. In a superconducting coil device including a heat transfer member, at least one of the cooling member and the heat transfer member has a structure that suppresses eddy current, and the cooling member and the heat transfer member are connected to a good heat conductive material such as aluminum nitride. A superconducting coil device characterized by being connected via a non-metallic material.

【0009】(3)超伝導コイルの外周、内周、及び端
部の少なくともいずれか一つに冷却部材が取り付けら
れ、同冷却部材に接触して前記超伝導コイルの熱を低温
部材に伝達させる伝熱部材からなる超伝導コイル装置に
おいて、前記冷却部材と伝熱部材との少なくともどりら
か一方を渦電流を抑制する構造とし、前記冷却部材と前
記伝熱部材とを窒化アルミ等の良熱伝導性の非金属材を
介して接続し、前記伝熱部材と前記低温部材とを櫛歯状
の金属板を介して接続したことを特徴とする超伝導コイ
ル装置。
(3) A cooling member is attached to at least one of the outer periphery, the inner periphery, and the end of the superconducting coil, and contacts the cooling member to transmit heat of the superconducting coil to the low-temperature member. In a superconducting coil device including a heat transfer member, at least one of the cooling member and the heat transfer member has a structure for suppressing an eddy current, and the cooling member and the heat transfer member are formed of a heat-resistant material such as aluminum nitride. A superconducting coil device, wherein the superconducting coil device is connected via a conductive non-metallic material, and the heat transfer member and the low-temperature member are connected via a comb-shaped metal plate.

【0010】(4)前記渦電流を抑制する構造は金属製
の心材の周囲を絶縁材で被覆した絶縁皮膜導線を積層し
て接着剤を含浸させてなることを特徴とする上記(1)
ないし(3)上記の超伝導コイル装置。
(4) The structure for suppressing the eddy current is characterized in that an insulating film conductor in which a metal core is covered with an insulating material is laminated and impregnated with an adhesive.
Or (3) the superconducting coil device described above.

【0011】(5)前記絶縁被膜導線が熱伝達方向とほ
ぼ同一方向に伸びるように積層されていることを特徴と
する上記(4)記載の超伝導コイル装置。
(5) The superconducting coil device according to the above (4), wherein the insulating-coated conductive wires are laminated so as to extend in substantially the same direction as the heat transfer direction.

【0012】(6)前記絶縁被膜導線をコイル状に積層
したことを特徴とする上記(4)または(5)記載の超
伝導コイル装置。
(6) The superconducting coil device according to the above (4) or (5), wherein the insulation-coated conductive wires are laminated in a coil shape.

【0013】(7)複数本の前記絶縁被膜導線を積層し
たことを特徴とする上記(4)または(5)記載の超伝
導コイル装置。
(7) The superconducting coil device according to the above (4) or (5), wherein a plurality of the insulating coating conductors are laminated.

【0014】(8)前記渦電流を抑制する構造は複数の
金属製の小ブロックどうしを電気的に絶縁の接着剤で接
続してなることを特徴とする上記(1)ないし(3)記
載の超伝導コイル装置。
(8) The structure described in (1) to (3), wherein the structure for suppressing the eddy current is formed by connecting a plurality of small blocks made of metal with an electrically insulating adhesive. Superconducting coil device.

【0015】[0015]

【発明の実施の形態】以下図1ないし図9に示す各種実
施例に基づいて実施の形態を説明することにより、発明
を具体的に説明する。図1ないし図7は第1の実施例を
示す図であり、図1ないし図7において、鉄鋼材で形成
された真空容器1内には、外部からの熱の侵入を防ぐ銅
等の金属からなり、下端から約3/4の高さまでスリッ
トが設けられたサーマルシールド2が配置されている。
サーマルシールド2は本例では1つであるが、必要に応
じて従来のように2つ、或いはそれ以上配置してもよ
い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below by describing embodiments based on various examples shown in FIGS. FIGS. 1 to 7 show a first embodiment. In FIGS. 1 to 7, a vacuum vessel 1 made of a steel material is made of metal such as copper for preventing heat from entering from outside. The thermal shield 2 provided with a slit from the lower end to a height of about / is arranged.
Although the number of the thermal shields 2 is one in the present embodiment, two or more thermal shields may be arranged as necessary as in the related art.

【0016】サーマルシールド2内には、NbTi/C
u/CuNiからなる心材11にホルマール等の絶縁材
12が被覆された約1mm径の超伝導線材を積層して巻
き付け、エポキシ樹脂等の樹脂13を含浸させて固めて
形成された超伝導コイル3が配置されている。なお、心
材11は、Nb3Sn、Nb3A1、高温超伝導体等の
超伝導となる材料であれば何でもよい。超伝導コイル3
の両端部にはコイル端板9が配置され、コイル端板9ど
うしは複数本のタイロッド10で連結されて超伝導コイ
ル3を支持している。
In the thermal shield 2, NbTi / C
A superconducting coil 3 formed by laminating a superconducting wire having a diameter of about 1 mm covered with an insulating material 12 such as formal on a core material 11 made of u / CuNi and impregnating with a resin 13 such as an epoxy resin to solidify the superconducting coil Is arranged. The core material 11 may be made of any superconducting material such as Nb3Sn, Nb3A1, or a high-temperature superconductor. Superconducting coil 3
The coil end plates 9 are arranged at both ends of the coil, and the coil end plates 9 are connected by a plurality of tie rods 10 to support the superconducting coil 3.

【0017】超伝導コイル3の外周部には、超伝導線材
とほぼ同径で、熱伝導性の良い銅等の金属製の心材14
にホルマール等の絶縁材15が被覆された絶縁被膜導線
を、超伝導コイル3の外表面にコイル状に積層して巻き
付けてエポシキ樹脂等の樹脂16を含浸させて固めて形
成された冷却部材4が配置されている。
At the outer periphery of the superconducting coil 3, a core material 14 made of a metal such as copper having substantially the same diameter as the superconducting wire and having good heat conductivity is provided.
A cooling member 4 formed by laminating and winding an insulated conductive wire coated with an insulating material 15 such as formal on the outer surface of the superconducting coil 3 and impregnating with a resin 16 such as epoxy resin. Is arranged.

【0018】冷却部材4の外表面には、冷却部材4と同
様に絶縁被膜導線をコイル状に積層して巻き付けて窒化
アルミ等の良熱伝導性の非金属材のフィラーが混入され
た趣旨を含浸させて環状に固めて形成された伝熱部材5
を、良熱伝導性の非金属材である窒化アルミ17を間に
挟んで樹脂で接着している。また、伝熱部材5を形成す
る絶縁被膜導線の伸び方向が超伝導コイル3の軸方向と
一致するよう冷却部材4の外表面と伝熱部材5を接着し
ている。
On the outer surface of the cooling member 4, in the same manner as the cooling member 4, an insulating-coated conductive wire is laminated and wound into a coil shape, and a filler of a non-metallic material having good thermal conductivity such as aluminum nitride is mixed. Heat transfer member 5 formed by being impregnated and solidified into an annular shape
Are bonded with a resin with aluminum nitride 17, which is a non-metallic material having good thermal conductivity, interposed therebetween. Further, the outer surface of the cooling member 4 and the heat transfer member 5 are bonded so that the direction of extension of the insulating film conductor forming the heat transfer member 5 coincides with the axial direction of the superconducting coil 3.

【0019】伝熱部材5は、図示省略の冷凍機の低温ス
テージ6に、両端にスリットが設けられた櫛歯状の銅板
等の良熱伝導性の金属板18を間に挟んでボルト等で連
結されている。
The heat transfer member 5 is bolted to a low-temperature stage 6 of a refrigerator (not shown) with a metal plate 18 of good heat conductivity such as a comb-like copper plate provided with slits at both ends interposed therebetween. Are linked.

【0020】また、真空容器1には、リード線19を介
して電源と超伝導コイル3とを接続するための電流リー
ド用端子20、図示省略の真空ポンプと連通して真空容
器1内を真空に保持するための真空バルブ21、及び計
測ポート22が設けられている。
The vacuum vessel 1 is connected to a current lead terminal 20 for connecting the power supply and the superconducting coil 3 through a lead wire 19, and communicates with a vacuum pump (not shown) to evacuate the vacuum vessel 1. And a measurement port 22 for holding the vacuum valve 21.

【0021】外部電源から、電流リード用端子20、リ
ード線19を介して超伝導コイル3に電流が送られ、超
伝導コイル3を励磁させて定格磁場までに立ち上げ、定
常運転に入る。また、運転終了後は電流の流れを減少さ
せて消磁させる。超伝導コイル3には、外部からの熱が
侵入すると共に、超伝導コイル3自体の内部で交流損失
による熱が発生する。これらの熱は、超伝導コイル3内
部を半径方向に移動して冷却部材4に達し、冷却部材4
に達した熱は、冷却部材4を周方向に流れて伝熱部材5
に達し、さらに熱は伝熱部材5を伝わって低温ステージ
6に移動する。これにより超伝導コイル3は極低温に維
持されている。
A current is sent from the external power supply to the superconducting coil 3 via the current lead terminal 20 and the lead wire 19 to excite the superconducting coil 3 to start up to the rated magnetic field and to enter a steady operation. After the operation is completed, the flow of current is reduced to demagnetize. The superconducting coil 3 receives heat from the outside and generates heat due to AC loss inside the superconducting coil 3 itself. These heats move inside the superconducting coil 3 in the radial direction and reach the cooling member 4 where the cooling member 4
Reaches the cooling member 4 in the circumferential direction and passes through the heat transfer member 5.
, And the heat is transferred to the low-temperature stage 6 through the heat transfer member 5. Thereby, the superconducting coil 3 is maintained at a very low temperature.

【0022】超伝導コイル3での磁場変化による冷却部
材4、伝熱部材5での渦電流の発生で生じる渦電流損失
は、冷却部材4、伝熱部材5において式1の板幅Wに相
当するものは心材11、14の径であり、この径は極め
て小さいものであるので低く抑えられ、冷却部材4、伝
熱部材5での発熱を抑制することができる。このため大
きな磁場変化、即ち、急速な励磁、消磁が可能となり、
短時間で装置を定格磁場までに立ち上げたり、定格磁場
から停止させることが可能となる。
The eddy current loss caused by the generation of the eddy current in the cooling member 4 and the heat transfer member 5 due to the magnetic field change in the superconducting coil 3 corresponds to the plate width W of the cooling member 4 and the heat transfer member 5 in the formula 1. What is required is the diameter of the core members 11 and 14. Since this diameter is extremely small, the diameter can be kept low, and the heat generated by the cooling member 4 and the heat transfer member 5 can be suppressed. For this reason, a large magnetic field change, that is, rapid excitation and demagnetization becomes possible,
The device can be started up to the rated magnetic field or stopped from the rated magnetic field in a short time.

【0023】また、超伝導コイル3と冷却部材4、冷却
部材4と伝熱部材5とは樹脂を介して密着しており、密
着性に優れているため、熱伝達性の低下を防止してい
る。さらに、冷却部材4と伝熱部材5との間には熱伝導
性の良い非金属材である窒化アルミ17を介在させてい
るため、また、伝熱部材5と低温ステージ6との間にも
伝熱性の優れた銅等の金属板18を介在させているた
め、熱伝達性を良好にしている。
The superconducting coil 3 and the cooling member 4 and the cooling member 4 and the heat transfer member 5 are in close contact with each other via a resin and have excellent adhesion, so that a decrease in heat transfer can be prevented. I have. Furthermore, since aluminum nitride 17 which is a nonmetallic material having good heat conductivity is interposed between the cooling member 4 and the heat transfer member 5, the heat transfer member 5 and the low-temperature stage 6 are also provided between the heat transfer member 5 and the low-temperature stage 6. Since the metal plate 18 made of copper or the like having excellent heat conductivity is interposed, heat transfer is improved.

【0024】さらにまた、冷却部材4と伝熱部材5での
熱の流れは、絶縁被膜導線の伸び方向に良好であり、超
伝導コイル3、冷却部材4及び伝熱部材5内での熱の流
れを考慮して、即ち、超伝導コイル3では中心から外部
への流れ、冷却部材4では周方向の流れ、冷却部材4か
ら伝熱部材5への流れを考えて、伝熱部材5を形成する
絶縁被膜導線の伸び方向が超伝導コイル3の軸方向と一
致するよう冷却部材4の外表面に伝熱部材5を接着して
いるので、熱を最短で効率的に伝えることができる。そ
して、渦電流が発生する可能性のあるサーマルシールド
2及び板18は、端部にスリットを入れて短冊状として
おり、渦電流損失による発熱を抑制しているので、真空
容器1内の温度上昇を抑制している。
Further, the flow of heat in the cooling member 4 and the heat transfer member 5 is good in the direction of extension of the insulating film conductor, and the heat flow in the superconducting coil 3, the cooling member 4 and the heat transfer member 5 is good. The heat transfer member 5 is formed in consideration of the flow, that is, the flow from the center to the outside in the superconducting coil 3, the circumferential flow in the cooling member 4, and the flow from the cooling member 4 to the heat transfer member 5. Since the heat transfer member 5 is adhered to the outer surface of the cooling member 4 so that the direction of extension of the insulating coating conductive wire coincides with the axial direction of the superconducting coil 3, heat can be efficiently transmitted in the shortest time. The thermal shield 2 and the plate 18 where an eddy current is likely to be generated are formed in a strip shape with slits at their ends to suppress heat generation due to eddy current loss. Has been suppressed.

【0025】以上第1の実施例では、超伝導コイルの外
表面に冷却部材を設けたものであるが、ボビン等を利用
して、絶縁被膜導線をコイル状に積層し冷却部材を形成
した上に超伝導材をコイル状に積層して超伝導コイルを
形成するこちにより、超伝導コイルの内表面に冷却部材
を配置したもの、あるいは、類似の手法で超伝導コイル
の端部に冷却部材を配置してもよく、これら組み合わせ
たものでもよい。
In the first embodiment described above, the cooling member is provided on the outer surface of the superconducting coil. However, the cooling member is formed by laminating an insulating film conductor in a coil shape using a bobbin or the like. The superconducting material is laminated in a coil shape to form a superconducting coil, and a cooling member is arranged on the inner surface of the superconducting coil, or a cooling member is attached to the end of the superconducting coil by a similar method. They may be arranged or a combination thereof.

【0026】さらに絶縁被膜導線の積層形態は、コイル
状に限らず、一定長さに切断した絶縁被膜導線を多数本
積層して樹脂で固めたものでもよく、この多数本積層し
て樹脂で固めたものを超伝導コイルの外表面、内表面、
端部の少なくともいずれかに設けてもよく、また図8に
示すように、多数本積層して所定形状に折り曲げて樹脂
で固めたものを伝熱部材5として利用してもよい。(こ
のとき超伝導コイル3の外表面の冷却部材4は、コイル
状に積層したもの、多数本を積層したものどちらでもよ
い。)
The form of lamination of the insulating coating conductors is not limited to the coil shape, but may be a laminate of a number of insulating coating conductors cut to a fixed length and solidified with resin. The outer surface, inner surface,
The heat transfer member 5 may be provided on at least one of the end portions, or may be formed by laminating a large number, bending the resin into a predetermined shape, and hardening it with a resin, as shown in FIG. (At this time, the cooling member 4 on the outer surface of the superconducting coil 3 may be either a coil-shaped member or a multi-layer member.)

【0027】次に図9に示す第2に実施例に基づいて説
明する。図9において、10mm程度の銅、アルミニュ
ーム等の熱伝達性にすぐれた金属の小ブロック23どう
しをポリイミド材、FRP材、有機樹脂等の電気絶縁材
24で接着して冷却部材4を形成し、電気絶縁材24を
介して超伝導コイル3の外表面に接着したものである。
電気絶縁材24の厚みは、薄くなりすぎると電気絶縁性
が悪くなり、また、厚すぎると熱伝達性が悪くなるに
で、電気絶縁性、熱伝達性を考慮して最適な厚み、例え
ば、20〜50μmとなる。また、本例は冷却部材4は
1層のものであるが、2層、3層等必要に応じて複数層
にしてもよい。この場合は、小ブロック23どうしを同
一位置で重ねてもよく、千鳥状に重ねてもよい。
Next, a description will be given based on a second embodiment shown in FIG. In FIG. 9, cooling members 4 are formed by bonding small blocks 23 of about 10 mm of metal such as copper or aluminum having excellent heat conductivity with an electrical insulating material 24 such as a polyimide material, an FRP material, and an organic resin. Is bonded to the outer surface of the superconducting coil 3 via an electrical insulating material 24.
If the thickness of the electrical insulating material 24 is too thin, the electrical insulation deteriorates, and if it is too thick, the thermal conductivity deteriorates. Therefore, the optimal thickness in consideration of the electrical insulation and the thermal conductivity, for example, It becomes 20-50 micrometers. In this embodiment, the cooling member 4 has a single layer, but may have a plurality of layers such as two layers or three layers as required. In this case, the small blocks 23 may be overlapped at the same position or in a staggered manner.

【0028】その他の構成は、第1の実施例と同様であ
るので、詳細な説明は省略する。本例においても、渦電
流損失による発熱については、第1の実施例と比べれば
抑制効果は若干劣るが、充分抑制効果が期待できるもの
であり、熱伝達も電気絶縁材24を介して密着しており
抵抗部分がないので良好となるものである。さらに、第
1の実施例においては、熱は特に絶縁被膜導線の伸び方
向に流れやすくなっているが、本例では1方向に限らず
全ての方向に熱が流れるので、装置製造に当たっては、
第1の実施例ほど熱の流れ方向を考慮しなくてもよいと
の利点がある。
The other configuration is the same as that of the first embodiment, and a detailed description is omitted. Also in this example, although the heat generation due to the eddy current loss is slightly inferior to the first embodiment, the heat generation can be expected to be sufficiently suppressed. It is good because there is no resistance part. Further, in the first embodiment, the heat is particularly easy to flow in the direction of extension of the insulating film conductor. However, in this example, the heat flows not only in one direction but in all directions.
There is an advantage that the flow direction of heat need not be considered as in the first embodiment.

【0029】以上本発明を第1、第2の実施例に基づい
て具体的に説明したが、本発明はこれらの実施例の限定
されるものではなく、本発明のもっとも重要な要旨は、
渦電流損失によって発生する熱を抑制するために、冷却
部材と伝熱部材との少なくともどちらか一方を、絶縁被
膜導線を積層させて樹脂で固めた構造、あるいは、小ブ
ロックどうしを樹脂で接続した構造として渦電流を抑制
する構造としたことにあり、冷却部材と伝熱部材との間
に窒化アルミを介在させること、伝熱部材と低温ステー
ジとの間に、両端部にスリットを設けて短冊形状の銅板
を介在させること、あるいは、サーマルステージの下端
にスリットを設けて短冊形状とすること等は、適宜採用
してもよい。
Although the present invention has been specifically described based on the first and second embodiments, the present invention is not limited to these embodiments, and the most important points of the present invention are as follows.
In order to suppress heat generated by eddy current loss, at least one of the cooling member and the heat transfer member has a structure in which insulating coating conductors are laminated and solidified with resin, or small blocks are connected with resin. The structure is designed to suppress eddy currents. Aluminum nitride is interposed between the cooling member and the heat transfer member, and slits are provided at both ends between the heat transfer member and the low-temperature stage. Interposition of a copper plate having a shape, or provision of a slit at the lower end of the thermal stage to form a strip may be appropriately employed.

【0030】[0030]

【発明の効果】本発明は、 (1)冷却部材と伝熱部材との少なくともどちらか一方
を、例えば、金属製の新材の周囲を絶縁材で被覆した絶
縁被膜導線をコイル状積層、または多数本を積層して接
着剤で接着した構造、あるいは、金属製の小ブロックど
うしを電気的に絶縁の接着材で接着した構造等、渦電流
を抑制する構造としたことで、渦電流損失による発熱を
防止し、超伝導コイルのクエンチ現象を発生させること
なく超伝導コイルの急速励磁、急速消磁が可能となり、
装置を短時間で立ち上げることが可能となるものであ
る。
According to the present invention, (1) at least one of a cooling member and a heat transfer member, for example, a coil-shaped lamination of an insulation-coated conductor in which a new metal material is covered with an insulation material; Eddy current loss caused by eddy current loss, such as a structure in which many pieces are stacked and bonded together with an adhesive, or a structure in which small metal blocks are bonded together with an electrically insulating adhesive. Prevents heat generation and enables rapid excitation and demagnetization of the superconducting coil without causing the quench phenomenon of the superconducting coil.
The device can be started up in a short time.

【0031】(2)冷却部材と伝熱部材との少なくとも
どちらか一方を渦電流を抑制する構造とし、冷却部材と
伝熱部材とを窒化アルミを介して接続したことにより、
上記(1)の効果が得られるとともに、さらに冷却部材
から伝熱部材への熱伝達効率をアップさせることができ
る。
(2) Since at least one of the cooling member and the heat transfer member has a structure for suppressing eddy current, and the cooling member and the heat transfer member are connected via aluminum nitride,
The effect of the above (1) is obtained, and the efficiency of heat transfer from the cooling member to the heat transfer member can be further increased.

【0032】(3)冷却部材と伝熱部材との少なくとも
どちらか一方を渦電流を抑制する構造とし、前記冷却部
材と前記伝熱部材とを窒化アルミを介して接続し、伝熱
部材と低温部材とを櫛歯状の金属板を介して接続したこ
とにより、上記(1)、(2)の効果が得られるととも
に、さらに金属板での渦電流損失による発熱を起こすこ
となく伝熱部材から低温ステージへの熱伝達効率をアッ
プさせることができる。
(3) At least one of the cooling member and the heat transfer member has a structure for suppressing eddy current, the cooling member and the heat transfer member are connected via aluminum nitride, and the heat transfer member and the low-temperature By connecting the members to each other via a comb-shaped metal plate, the effects (1) and (2) described above can be obtained, and further, the heat transfer member can be heated without causing heat generation due to eddy current loss in the metal plate. The efficiency of heat transfer to the low-temperature stage can be improved.

【0033】(4)前記絶縁被膜導線が熱伝達方式とほ
ぼ同一方向に伸びるように積層させたことにより、熱の
移動を良好にすることができる。
(4) The heat transfer can be improved by laminating the insulating-coated conductive wires so as to extend in substantially the same direction as the heat transfer method.

【0034】[0034]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の実施形態を示す第1の実施例
の正面断面図である。
FIG. 1 is a front sectional view of a first example showing an embodiment of the present invention.

【図2】図2は、図1の中のB−B矢視図である。FIG. 2 is a view taken in the direction of arrows BB in FIG. 1;

【図3】図3は、図1中のC部拡大図である。FIG. 3 is an enlarged view of a portion C in FIG. 1;

【図4】図4は、図3中D部の拡大図である。FIG. 4 is an enlarged view of a portion D in FIG. 3;

【図5】図5は、図3中E部の拡大図である。FIG. 5 is an enlarged view of a portion E in FIG. 3;

【図6】図6は、図1中F部の拡大図である。FIG. 6 is an enlarged view of a portion F in FIG. 1;

【図7】図7は、図6中G部の拡大図である。FIG. 7 is an enlarged view of a portion G in FIG. 6;

【図8】図8は、本発明の実施の形態を示す第1の実施
例の伝熱部材5の別の例を示す図である。
FIG. 8 is a diagram showing another example of the heat transfer member 5 of the first example showing the embodiment of the present invention.

【図9】図9は、本発明の実施の形態を示す第2の実施
例の主要部拡大図である。
FIG. 9 is an enlarged view of a main part of a second example showing the embodiment of the present invention.

【図10】図10は、従来装置を示す概念図である。FIG. 10 is a conceptual diagram showing a conventional device.

【0034】[0034]

【符号の説明】[Explanation of symbols]

1、01:真空容器 2、02:サーマルシールド 3、03:超伝導コイル 4:冷却部材 5:伝熱部材 6、06:低温ステージ 9:コイル端板 10:タイロッド 11、14:心材 12、15:絶縁材 13、16:樹脂 17:窒化アルミ 18:金属板 19:リード線 20、08:電流リード用端子 21:真空バルブ 22:計測ポート 23:小ブロック 24:電気絶縁材 1, 01: Vacuum container 2, 02: Thermal shield 3, 03: Superconducting coil 4: Cooling member 5: Heat transfer member 6, 06: Low temperature stage 9: Coil end plate 10: Tie rod 11, 14: Core material 12, 15 : Insulating material 13, 16: Resin 17: Aluminum nitride 18: Metal plate 19: Lead wire 20, 08: Terminal for current lead 21: Vacuum valve 22: Measurement port 23: Small block 24: Electrical insulating material

【式1】 (Equation 1)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 超伝導コイルの外周、内周、及び端部の
少なくともいずれか一つに冷却部材が取り付けられ、同
冷却部材に接触し前記超伝導のコイルの熱を低温部材に
伝達させる伝熱部材からなる超伝導コイル装置におい
て、前記冷却部材と伝熱部材との少なくともどちらか一
方を渦電流を制御する構造としたことを特徴とする超伝
導コイル装置。
A cooling member is attached to at least one of an outer periphery, an inner periphery, and an end of a superconducting coil. The cooling member contacts the cooling member and transfers heat of the superconducting coil to a low-temperature member. A superconducting coil device comprising a heat member, wherein at least one of the cooling member and the heat transfer member has a structure for controlling an eddy current.
【請求項2】 超伝導コイルの外周、内周、及び端部の
少なくともいずれか一つに冷却部材が取り付けられ、同
冷却部材に接触して前記超伝導コイルの熱を低温部材に
伝達させる伝熱部材からなる超伝導コイル装置におい
て、前記冷却部材と伝熱部材との少なくともどちらか一
方を渦電流を抑制する構造とし、前記冷却部材と前記伝
熱部材とを良熱伝導性の非金属材を介して接続したこと
を特徴とする超伝導コイル装置。
2. A cooling member is attached to at least one of the outer periphery, the inner periphery, and the end of the superconducting coil, and the cooling member is brought into contact with the cooling member to transmit heat of the superconducting coil to a low-temperature member. In a superconducting coil device comprising a heat member, at least one of the cooling member and the heat transfer member has a structure for suppressing eddy current, and the cooling member and the heat transfer member are formed of a non-metallic material having good heat conductivity. A superconducting coil device, which is connected via a wire.
【請求項3】 超伝導コイルの外周、内周、及び端部の
少なくともいずれか一つに冷却部材が取り付けられ、同
冷却部材に接触して前記超伝導コイルの熱を低音部材に
伝達させる伝熱部材からなる超伝導コイル装置におい
て、前記冷却部材と伝熱部材との少なくともどちらか一
方を渦電流を抑制する構造とし、前記冷却部材と前記伝
熱部材とを良熱伝導性の非金属材を介して接続し、前記
伝熱部材と前記低温部材とを櫛歯状の金属板を介して接
続したことを特徴とする超伝導コイル装置。
3. A cooling member is attached to at least one of the outer periphery, the inner periphery, and the end of the superconducting coil, and the cooling member contacts the cooling member to transfer heat of the superconducting coil to the bass member. In a superconducting coil device comprising a heat member, at least one of the cooling member and the heat transfer member has a structure for suppressing eddy current, and the cooling member and the heat transfer member are formed of a non-metallic material having good heat conductivity. Wherein the heat transfer member and the low temperature member are connected via a comb-shaped metal plate.
【請求項4】 前記渦電流を抑制する構造は金属製の心
材の周囲を絶縁材で被覆した絶縁被膜導線を積層して接
着材を含浸させてなることを特徴とする請求項1ないし
請求項3記載の超伝導コイル装置。
4. The structure according to claim 1, wherein said eddy current suppressing structure is formed by laminating an insulation-coated conductive wire in which a metal core is covered with an insulating material and impregnating with an adhesive. 3. The superconducting coil device according to 3.
【請求項5】 前記絶縁被膜導線が熱伝達方向とほぼ同
一方向に伸びるように積層されていることを特徴とする
請求項4記載の超伝導コイル装置。
5. A superconducting coil device according to claim 4, wherein said insulating-coated conductive wires are laminated so as to extend in substantially the same direction as the heat transfer direction.
【請求項6】 前記絶縁被膜導線をコイル状に積層した
ことを特徴とする請求項4または請求項5記載の超伝導
コイル装置。
6. The superconducting coil device according to claim 4, wherein the insulating-coated conductive wires are laminated in a coil shape.
【請求項7】 複数本の前記絶縁被膜導線を積層したこ
とを特徴とする請求項4または請求項5記載の超伝導コ
イル装置。
7. The superconducting coil device according to claim 4, wherein a plurality of the insulating-coated conductive wires are laminated.
【請求項8】 前記渦電流を抑制する構造は複数の金属
性の小ブロックどうしを電気的に絶縁の接着剤で接続し
てなることを特徴とする請求項1ないし請求項3記載の
超伝導コイル装置。
8. The superconducting device according to claim 1, wherein said eddy current suppressing structure is formed by connecting a plurality of small metal blocks with an electrically insulating adhesive. Coil device.
JP28551098A 1998-10-07 1998-10-07 Superconducting coil device Withdrawn JP2000114027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28551098A JP2000114027A (en) 1998-10-07 1998-10-07 Superconducting coil device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28551098A JP2000114027A (en) 1998-10-07 1998-10-07 Superconducting coil device

Publications (1)

Publication Number Publication Date
JP2000114027A true JP2000114027A (en) 2000-04-21

Family

ID=17692471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28551098A Withdrawn JP2000114027A (en) 1998-10-07 1998-10-07 Superconducting coil device

Country Status (1)

Country Link
JP (1) JP2000114027A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353931A (en) * 2004-06-14 2005-12-22 Japan Superconductor Technology Inc Heat transfer structure of superconducting coil and superconducting magnet
JP2009170619A (en) * 2008-01-16 2009-07-30 Toshiba Corp Superconducting coil device
JP2012248726A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
JP2012248730A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
JP2012248731A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
CN103247406A (en) * 2012-02-06 2013-08-14 三星电子株式会社 Cryocooler system and superconducting magnet apparatus having the same
JP2019207916A (en) * 2018-05-28 2019-12-05 住友電気工業株式会社 Superconducting coil body and superconducting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353931A (en) * 2004-06-14 2005-12-22 Japan Superconductor Technology Inc Heat transfer structure of superconducting coil and superconducting magnet
JP2009170619A (en) * 2008-01-16 2009-07-30 Toshiba Corp Superconducting coil device
JP2012248726A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
JP2012248730A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
JP2012248731A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
CN103247406A (en) * 2012-02-06 2013-08-14 三星电子株式会社 Cryocooler system and superconducting magnet apparatus having the same
JP2019207916A (en) * 2018-05-28 2019-12-05 住友電気工業株式会社 Superconducting coil body and superconducting device
JP7151173B2 (en) 2018-05-28 2022-10-12 住友電気工業株式会社 Superconducting coil body and superconducting equipment

Similar Documents

Publication Publication Date Title
JP2980097B2 (en) Superconducting coil
JP2009211899A (en) Superconductive current lead and method of manufacturing the same
JP2000114027A (en) Superconducting coil device
Mizuno et al. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev
JP2006203154A (en) Superconducting pulse coil, and superconducting device and superconducting power storage using same
JP2012038812A (en) Superconducting coil device
JP2001093721A (en) High-temperature superconducting magnet
US4956608A (en) Apparatus for propagating a quench in a superconducting magnet
JPS61113218A (en) Superconductive magnet
JP7040730B2 (en) Permanent current switch
JPS6213010A (en) Superconductive electromagnet
JPS63196016A (en) Superconducting coil
US6577028B2 (en) High temperature superconducting rotor power leads
CN104795923A (en) High-heat-conductivity insulating structure and manufacturing method thereof
JP6452601B2 (en) Superconducting magnet and superconducting magnet device for MRI
JP4559834B2 (en) Manufacturing method of heat conductor
JP7222622B2 (en) Superconducting coil and superconducting coil device
JPS61271804A (en) Superconductive electromagnet
JP7247080B2 (en) Superconducting coil device
JP2014192182A (en) Permanent current switch
JP3199782B2 (en) Superconducting coil manufacturing method
JP2023044839A (en) Superconducting coil and superconducting coil device
JP2018026222A (en) Tape type high temperature superconducting wire
JP2022174411A (en) Superconducting coil and method for manufacturing superconducting coil
US20210375508A1 (en) Electrical spool device having increased electrical stability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110