JPS63196016A - Superconducting coil - Google Patents

Superconducting coil

Info

Publication number
JPS63196016A
JPS63196016A JP2875587A JP2875587A JPS63196016A JP S63196016 A JPS63196016 A JP S63196016A JP 2875587 A JP2875587 A JP 2875587A JP 2875587 A JP2875587 A JP 2875587A JP S63196016 A JPS63196016 A JP S63196016A
Authority
JP
Japan
Prior art keywords
spacer
coil
thin film
layers
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2875587A
Other languages
Japanese (ja)
Inventor
Chizuru Suzawa
須澤 千鶴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2875587A priority Critical patent/JPS63196016A/en
Publication of JPS63196016A publication Critical patent/JPS63196016A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide excellent electric insulation, heat sink and heat resistance at an insulating spacer by coating a metal substrate with a good thermal transfer inorganic insulating thin film made, for example, of diamond to form the spacer, and inserting the spacer between the layers of windings necessary to be electrically insulated or the laminated layer boundary of laminated coils. CONSTITUTION:A metal substrate 11 is coated with a good thermal transfer inorganic insulating thin film made of diamond as an insulating spacer 10, and the spacer 10 is inserted instead of an intermediate spacer, a spacer between coil layers, a spacer between windings, etc. between the layers of windings necessary to be electrically insulated or the laminated layer boundary of laminated coils. Thus, the reliability of the electric insulator is largely enhanced by a thin film coated on the substrate of the spacer, and the heat generated in the coil through the thin film is rapidly dissipated into liquid helium, thereby increasing the coil cooling performance.

Description

【発明の詳細な説明】 (産業上の利用分野] この発明は、放熱性(冷却性)を向上させた超電導コイ
ルに関する。なお、この発明を適用するコイルの形式は
特に限定されないが、以下の説明は、便宜上、パンケー
キ巻きコイルとソレノイドコイルを例にとって行なう。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a superconducting coil with improved heat dissipation (cooling performance).The type of coil to which this invention is applied is not particularly limited, but the following: For convenience, the explanation will be given using a pancake-wound coil and a solenoid coil as examples.

(従来の技術とその問題点) 周知の超電導マグネットの中に、第2図に示すように、
ダブルパンケーキ巻きコイル1を、第3図に示すように
、複数個積み重ねて形成されるものがある。このマグネ
ットは、巻枠2上に巻かれたダブルパンケーキコイルの
各パンケーキ巻wA3.3間及びダブルパンケーキコイ
ル1.1間に電気絶縁のための中間スペーサ4と、コイ
ル層間スペーサ5を必要とする。シングルパンケーキコ
イルを積層して構成されるマグネットもあるが、この場
合にも、各コイルの積層界面部に絶縁スペーサを必要と
する。これ等のスペーサは、単に電気絶縁のためだけで
な(、コイル内部の冷却性の向上のためにも利用されて
いる。即ち、一般的には、第4図に示すように、スペー
サ4又は5間に、液体ヘリウムの流入する冷却チャネル
6が作られる。
(Prior art and its problems) Among the well-known superconducting magnets, as shown in Figure 2,
Some coils are formed by stacking a plurality of double pancake-wound coils 1, as shown in FIG. This magnet has an intermediate spacer 4 for electrical insulation between each pancake winding wA3.3 of the double pancake coil wound on the winding frame 2 and between the double pancake coil 1.1 and a coil interlayer spacer 5. I need. Some magnets are constructed by laminating single pancake coils, but even in this case, an insulating spacer is required at the laminated interface of each coil. These spacers are used not only for electrical insulation (but also for improving the cooling performance inside the coil).In other words, generally, as shown in FIG. 5, a cooling channel 6 is created into which liquid helium flows.

さて、通常、厚みを0.5〜10m程度にする上述のス
ペーサ4.6には、従来、(1)FPR(これが一般的
)、ベークライト等の有機絶縁物から成るもの、(2)
金属基材の表面にポリエステル、テフロン、ポリイミド
等の有機材フィルムを貼付したもの、或いは、(粉セラ
ミック製のものが用いられているが、有機材から成る(
1)、偉)のスペーサは、いずれも耐熱性がないため、
例えば、Nb5Sn、VsGa等の化合物超電導体を用
いたマグネットの場合、700〜800℃程度に加熱さ
れるコイルの熱処理前の組付けが許容されず、従ってダ
ブルパンケーキコイルの中間スペーサ4には使用できな
いと言う問題があった。
Now, the above-mentioned spacer 4.6, which usually has a thickness of about 0.5 to 10 m, has conventionally been made of (1) FPR (this is common), an organic insulator such as Bakelite, (2)
A film made of an organic material such as polyester, Teflon, or polyimide is attached to the surface of a metal base material, or a film made of an organic material (although powder ceramic is used)
Both of the spacers 1) and 1) are not heat resistant, so
For example, in the case of a magnet using a compound superconductor such as Nb5Sn or VsGa, it is not allowed to assemble the coil before heat treatment, which heats it to about 700 to 800 degrees Celsius, so it is not used as the intermediate spacer 4 of the double pancake coil. The problem was that it couldn't be done.

一方、(3)のスペーサは、熱処理に耐えるが、大型の
コイルに適用し得るサイズが見当らず、しかも、耐衝撃
性に問題があり、機械的特性に劣っている。
On the other hand, the spacer (3) can withstand heat treatment, but no size that can be applied to large coils has been found, and furthermore, it has problems with impact resistance and is inferior in mechanical properties.

また、更に大事なことは、有機材料やセラミツブりは、
伝熱性が悪く、コイルの熱を良好に液体ヘリウム部に伝
播し得ないため、マグネットの使用時、或いは常温から
液体ヘリウム温度への冷却時における冷却性に優れず、
マグネットの信鱈性確保や液体ヘリウム消費の面で問題
があった。
What is more important is that organic materials and ceramics are
It has poor heat conductivity and cannot properly propagate the heat of the coil to the liquid helium part, so it does not have excellent cooling performance when using a magnet or when cooling from room temperature to liquid helium temperature.
There were problems in ensuring the reliability of the magnet and in consuming liquid helium.

他の形式のコイルについても同じことが言える。The same is true for other types of coils.

例えば、NbTi1電導線を用いたソレノイド巻きコイ
ルの多くは、第5図に示すように、巻線70眉間に、ポ
リエステルフィルムやカプトンフィルムをスペーサ8と
して巻き込んでいるが、これ等のフィルムも有機材であ
るため、コイルの放熱に寄与するところは非常に少ない
For example, in many solenoid-wound coils using NbTi conductive wire, polyester film or Kapton film is wound as a spacer 8 between the winding wires 70 and 8, as shown in Figure 5, but these films also contain organic material. Therefore, there are very few parts that contribute to the heat dissipation of the coil.

この発明は、超電導コイルの信鯨性、安定性、製作性を
向上させるために、上述した如きスペーサに、優れた電
気絶縁性、放熱性、耐熱性を付与することを目的として
いる。
The object of this invention is to provide the above-mentioned spacer with excellent electrical insulation, heat dissipation, and heat resistance in order to improve reliability, stability, and manufacturability of superconducting coils.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の超電導コイルは、第1図に示すように、金属
基材11の表面に、ダイヤモンド等の良伝熱性無機質絶
縁薄膜12をコーティングしたものを絶縁スペーサ10
となし、このスペーサを、前述の中間スペーサ4、コイ
ル層間スペーサ5、!!線間スペーサ8等に代えて電気
絶縁の必要な巻線の眉間或いは積層コイルの積層界面部
等に挿入したことに特徴づけられる。
As shown in FIG. 1, the superconducting coil of the present invention includes an insulating spacer 10 in which the surface of a metal base material 11 is coated with an inorganic insulating film 12 having good heat conductivity such as diamond.
This spacer is used as the above-mentioned intermediate spacer 4, coil interlayer spacer 5,! ! It is characterized in that it is inserted between the eyebrows of the windings that require electrical insulation, or at the laminated interface part of the laminated coil, instead of the inter-line spacer 8 or the like.

なお、基材11の金属としては、銅、アルミニウム、ス
テンレスなどが挙げられるが、スペーサ10全体の熱伝
導率を上げるため社は、機械的強度に問題のない範囲で
、極力熱伝導率の高い銅等を選択するのが望ましい。
The metal of the base material 11 may include copper, aluminum, stainless steel, etc., but in order to increase the thermal conductivity of the entire spacer 10, the company selected metals with as high a thermal conductivity as possible without causing problems in mechanical strength. It is preferable to choose copper, etc.

また、巻線の眉間に巻込むものは、線材とのなじみ性を
良くするため、銅箔に上記の薄膜12をコーティングし
てシート状に形成する。
Further, the part of the winding wire to be wound between the eyebrows is formed into a sheet by coating copper foil with the thin film 12 described above in order to improve compatibility with the wire material.

このほか、薄膜12は、必要に応じて巻枠のコイル接触
面(第2図の巻枠の場合は巻胴の外周面2a、第5図の
巻枠の場合は、巻胴外周2aとフランジ内面2b)にも
コーティングしてよい。
In addition, the thin film 12 may be applied to the coil contact surface of the winding frame (in the case of the winding frame shown in FIG. 2, the outer circumferential surface 2a of the winding drum, and in the case of the winding frame shown in FIG. 5, the winding body outer circumference 2a and flange). The inner surface 2b) may also be coated.

〔作用〕[Effect]

ダイヤモンド、アモルファスダイヤモンド、アルミナ、
アモルファスアルミナ等の無機質絶縁薄膜は、近年、急
速の進歩を遂げている気相成長法、具体的には、プラズ
マCVD法やマイクロ波CvD法等によって基材上にコ
ーティングすることができる。
diamond, amorphous diamond, alumina,
An inorganic insulating thin film such as amorphous alumina can be coated on a base material by a vapor phase growth method that has made rapid progress in recent years, specifically, a plasma CVD method, a microwave CVD method, or the like.

また、その薄膜のうち、特に、ダイヤモンドは、第1表
と第6図を見て判るように、絶縁性に優れ、かつ、熱膨
張係数が小さい、一方、熱伝導率は、液体ヘリウム温度
下でも有機絶縁物に比較すれば格段に大きく、良伝熱性
の銅とほぼ同レベルになる。しかも、第7図に示すよう
に優れた耐摩耗性を示し、摩滅の心配が殆んどない。
Among these thin films, diamond in particular has excellent insulation properties and a small coefficient of thermal expansion, as can be seen from Table 1 and Figure 6, while its thermal conductivity is low at the temperature of liquid helium. However, it is much larger than organic insulators, and is almost on the same level as copper, which has good heat conductivity. Moreover, as shown in FIG. 7, it exhibits excellent abrasion resistance and there is almost no fear of wear.

第1表 従って、この発明によれば、スペーサの金属基材上にコ
ーティングした薄膜によって電気絶縁の信頼性が大きく
高められ、また、そのmsを伝ってコイル内に発生した
熱が急速に液体ヘリウム中に放散されるため、コイルの
冷却性能も高められることになる。
Table 1 Therefore, according to the present invention, the reliability of electrical insulation is greatly improved by the thin film coated on the metal base material of the spacer, and the heat generated in the coil through the ms is rapidly transferred to liquid helium. Since the heat is dissipated into the air, the cooling performance of the coil is also improved.

さらに、ダイヤモンドは、コイルの熱処理温度に耐える
耐熱性を発揮し、このために、スペーサを熱処理前にコ
イル内に組入れることが可能になる。
Additionally, diamond exhibits heat resistance that withstands the heat treatment temperatures of the coil, allowing spacers to be incorporated into the coil prior to heat treatment.

なお、巻枠のコーティング薄膜は省略してもよいが、こ
の薄膜は、上述の特性により発明の効果を増強する働き
があり、また、そのコーティングは、巻線後に熱処理し
て線材を超電導体にするWind& React (フ
ィンFアンFす7クト)法で製造されるコイルにも実施
でき、非常に有効なものと言える。
Note that the coating thin film on the winding frame may be omitted, but this thin film has the effect of enhancing the effect of the invention due to the above-mentioned characteristics. It can also be applied to coils manufactured by the Wind & React method, and can be said to be very effective.

〔効果〕〔effect〕

以上述べたように、この発明は、コイル内に挿入する絶
縁スペーサを、金属基材の表面に無機質絶縁薄膜のコー
ティングされた構造にして電気絶縁の信頼性を向上させ
、かつ、コイルの冷却性(スペーサを介しての放熱性)
を高めたものであるから、クエンチ時にコイル内に局部
的に生じた熱の拡散性の悪さに起因したコイルの焼損や
、絶縁不良に起因した導体間のカップリングロスの増加
等が効果的に防止される。
As described above, the present invention improves the reliability of electrical insulation by making the insulating spacer inserted into the coil have a structure in which the surface of the metal base material is coated with an inorganic insulating thin film, and improves the cooling performance of the coil. (Heat dissipation via spacer)
This effectively prevents coil burnout due to poor dispersion of heat generated locally within the coil during quenching, and increased coupling loss between conductors due to poor insulation. Prevented.

また、冷却性の同上効果により、コイル内部に冷熱が良
く伝わるため、コイル内外部間の熱勾配が小さくなり、
従9て、コイルを常温から液体ヘリウム温度に冷却する
際にコイルに働く熱応力も小さくなり、この熱応力によ
るコイルの信頼性の低下も抑制される。
In addition, due to the same cooling effect as mentioned above, cold heat is well transmitted to the inside of the coil, so the thermal gradient between the inside and outside of the coil is reduced.
Accordingly, the thermal stress acting on the coil when the coil is cooled from room temperature to the liquid helium temperature is also reduced, and deterioration in the reliability of the coil due to this thermal stress is also suppressed.

さらに、スペーサは耐熱性を有するので、熱処理前の組
入れが可能になる。また、高温熱処理時には、熱膨張率
が化合物超電導々体のそれに近づくため、この点でも熱
応力の影響が緩和される。
Furthermore, since the spacer is heat resistant, it can be incorporated before heat treatment. Furthermore, during high-temperature heat treatment, the coefficient of thermal expansion approaches that of the compound superconductor, so the influence of thermal stress is alleviated in this respect as well.

このほか、薄膜の耐摩耗性が高いので、耐久性の向上効
果も期待できる。
In addition, since the thin film has high abrasion resistance, it can also be expected to improve durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の超電導コイルに採用する絶縁スペ
ーサの断面図、第2図はダブルパンケーキコイルを示す
断面図、第3図はダブルパンケーキコイルを数個積み重
ねてマグネフ)を形成する際のスタック状態を示す断面
図、第4図は第2図及び第3図のコイルにおけるズペー
サの配置パターンの一例を示す図、第5図はソレノイド
巻コイルの断面図、第6図はダイヤモンドの熱伝導特性
を銅と比較して示すグラフ、第7図はダイヤモンドの耐
摩耗性を示すグラフである。 1・・・・・・ダブルパンケーキコイル、2・・・・・
・t’8.3・・・・・・パンケーキ巻線、4・・・・
・・中間スペーサ、5・・・・・・コイル層間スペーサ
、6・・・・・・冷却チャネル、7・・・・・・ソレノ
イド巻線、8・・・・・・巻線の眉間スペーサ・10・
・・・・・絶縁スペーサ、11・・・・・・金属基材、
12・・・・・・無機質絶縁薄膜。
Figure 1 is a sectional view of an insulating spacer used in the superconducting coil of this invention, Figure 2 is a sectional view of a double pancake coil, and Figure 3 is a stack of several double pancake coils to form a magnet. 4 is a diagram showing an example of the arrangement pattern of spacers in the coils of FIGS. 2 and 3, FIG. 5 is a sectional view of the solenoid-wound coil, and FIG. A graph showing the heat conduction properties in comparison with copper, and FIG. 7 is a graph showing the wear resistance of diamond. 1...Double pancake coil, 2...
・t'8.3...Pancake winding, 4...
...Middle spacer, 5... Coil layer spacer, 6... Cooling channel, 7... Solenoid winding, 8... Winding glabella spacer. 10・
...Insulating spacer, 11...Metal base material,
12...Inorganic insulating thin film.

Claims (1)

【特許請求の範囲】[Claims]  金属基材の表面に、ダイヤモンド等の良伝熱性無機質
絶縁薄膜をコーティングして絶縁スペーサとなし、この
スペーサを、電気絶縁の必要な巻線の層間或いは積層コ
イルの積層界面部等に挿入して構成される超電導コイル
The surface of a metal base material is coated with a thin insulating film made of a highly heat conductive inorganic material such as diamond to form an insulating spacer, and this spacer is inserted between the layers of windings that require electrical insulation or at the laminated interface of a laminated coil. A superconducting coil composed of
JP2875587A 1987-02-09 1987-02-09 Superconducting coil Pending JPS63196016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2875587A JPS63196016A (en) 1987-02-09 1987-02-09 Superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2875587A JPS63196016A (en) 1987-02-09 1987-02-09 Superconducting coil

Publications (1)

Publication Number Publication Date
JPS63196016A true JPS63196016A (en) 1988-08-15

Family

ID=12257224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2875587A Pending JPS63196016A (en) 1987-02-09 1987-02-09 Superconducting coil

Country Status (1)

Country Link
JP (1) JPS63196016A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6081179A (en) * 1997-05-08 2000-06-27 Sumitomo Electric Industries, Ltd. Superconducting coil
JP2006120828A (en) * 2004-10-21 2006-05-11 Mitsubishi Electric Corp Superconducting coil and its manufacturing method
JP2009170550A (en) * 2008-01-11 2009-07-30 Nippon Steel Corp Oxide superconducting magnet, its manufacturing method, and cooling method
JP2010267835A (en) * 2009-05-15 2010-11-25 Toshiba Corp Superconductive coil
CN102468029A (en) * 2010-11-15 2012-05-23 株式会社东芝 Superconducting coil
JP2013207088A (en) * 2012-03-28 2013-10-07 Toshiba Corp Superconducting coil
JP2014022543A (en) * 2012-07-18 2014-02-03 Toshiba Corp Superconducting coil and superconducting coil device
JP2014112617A (en) * 2012-12-05 2014-06-19 Toshiba Corp Superconducting coil and manufacturing method thereof
WO2016092882A1 (en) * 2014-12-09 2016-06-16 三菱電機株式会社 Double pancake coil positioning member, method for manufacturing superconductive magnet device, and superconductive magnet device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6081179A (en) * 1997-05-08 2000-06-27 Sumitomo Electric Industries, Ltd. Superconducting coil
JP2006120828A (en) * 2004-10-21 2006-05-11 Mitsubishi Electric Corp Superconducting coil and its manufacturing method
JP4607540B2 (en) * 2004-10-21 2011-01-05 三菱電機株式会社 Superconducting coil and manufacturing method thereof
JP2009170550A (en) * 2008-01-11 2009-07-30 Nippon Steel Corp Oxide superconducting magnet, its manufacturing method, and cooling method
JP2010267835A (en) * 2009-05-15 2010-11-25 Toshiba Corp Superconductive coil
KR101313329B1 (en) * 2010-11-15 2013-09-27 가부시끼가이샤 도시바 Superconducting coil
CN102468029A (en) * 2010-11-15 2012-05-23 株式会社东芝 Superconducting coil
US8655423B2 (en) 2010-11-15 2014-02-18 Kabushiki Kaisha Toshiba Superconducting coil
JP2013207088A (en) * 2012-03-28 2013-10-07 Toshiba Corp Superconducting coil
JP2014022543A (en) * 2012-07-18 2014-02-03 Toshiba Corp Superconducting coil and superconducting coil device
JP2014112617A (en) * 2012-12-05 2014-06-19 Toshiba Corp Superconducting coil and manufacturing method thereof
WO2016092882A1 (en) * 2014-12-09 2016-06-16 三菱電機株式会社 Double pancake coil positioning member, method for manufacturing superconductive magnet device, and superconductive magnet device
JPWO2016092882A1 (en) * 2014-12-09 2017-04-27 三菱電機株式会社 Double pancake coil positioning member, superconducting electromagnet apparatus manufacturing method, and superconducting electromagnet apparatus

Similar Documents

Publication Publication Date Title
JPH0481355B2 (en)
JPH11186025A (en) Superconducting coil
KR20170047253A (en) A metal assembly comprising a superconductor
EP0207286B1 (en) Conical, unimpregnated winding for mr magnets
JPH07142237A (en) Superconducting magnet device
JPS63196016A (en) Superconducting coil
US20210344256A1 (en) Rotor and machine having superconducting permanent magnets
US5212013A (en) Inorganic wire insulation for super-conducting wire
JPS61113218A (en) Superconductive magnet
US4574261A (en) Bakeable electromagnets
JP2000114027A (en) Superconducting coil device
US6577028B2 (en) High temperature superconducting rotor power leads
JPH0341705A (en) Device for propagating quentch within superconductive magnet
KR101500999B1 (en) Apparatus of superconducting coil for conduction-cooled
JP2001307917A (en) Method for connecting superconducting wire
JP2007324615A (en) Coil-winding frame and coil
JPS61177702A (en) Mold coil
JP2003257728A (en) Coil and bobbin therefor
JPH0491408A (en) Superconducting coil
JPS62259307A (en) Superconductor
KR102049155B1 (en) Conduction cooling system for a superconducting magnet
JP2883071B1 (en) Superconducting field winding conductor
KR20120023201A (en) Superconducting magnetic energy storage and design method thereof
JPS62194602A (en) Cooling structure of winding in stationary induction apparatus
JPH04188707A (en) Superconducting coil