JP2000096353A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JP2000096353A
JP2000096353A JP10270775A JP27077598A JP2000096353A JP 2000096353 A JP2000096353 A JP 2000096353A JP 10270775 A JP10270775 A JP 10270775A JP 27077598 A JP27077598 A JP 27077598A JP 2000096353 A JP2000096353 A JP 2000096353A
Authority
JP
Japan
Prior art keywords
fiber
heat treatment
treatment
carbon fiber
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10270775A
Other languages
Japanese (ja)
Inventor
Masahiro Habasaki
正裕 羽場崎
Mitsuo Suguro
光男 勝呂
Hitoshi Onodera
仁志 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP10270775A priority Critical patent/JP2000096353A/en
Publication of JP2000096353A publication Critical patent/JP2000096353A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide highly strong carbon fibers by reducing single filament breakage in a fire-retardation process. SOLUTION: This method for producing carbon fibers comprises subjecting acrylonitrile-based fibers as a raw material to a fire-resisting treatment in an oxidizing atmosphere at 200-300 deg.C and further subjecting the treated fibers to a carbonization treatment in an inert gas atmosphere. Therein, before the fire-retardation treatment, the fibers are subjected to a dry heat treatment at a temperature of 140-190 deg.C in a dry atmosphere having a water content of <=27 g/Nm3.gas until to give a fiber density of 1.18-1.20 g/cc, and subsequently subjected to the fire-retardation treatment and the carbonization treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度炭素繊維の
製造法に関するものである。更に詳しくは、アクリロニ
トリル系繊維を原料として、耐炎化処理後炭素化処理
し、炭素繊維を製造する方法において、アクリロニトリ
ル系繊維をあらかじめ特定の条件下で処理した後、耐炎
化工程に供する事により、引っ張り強度に優れた炭素繊
維を得る方法に関するものである。
[0001] The present invention relates to a method for producing high-strength carbon fiber. More specifically, by using acrylonitrile-based fiber as a raw material, carbonization treatment after oxidation treatment, in a method of producing carbon fiber, by treating the acrylonitrile-based fiber in advance under specific conditions, and then subjected to the oxidation treatment process, The present invention relates to a method for obtaining a carbon fiber having excellent tensile strength.

【0002】[0002]

【従来技術】従来、アクリロニトリル系繊維を原料とし
て、酸化性雰囲気中で耐炎化処理後、更に不活性雰囲気
中で炭素化処理し、炭素繊維を製造する方法は広く知ら
れており、このようにして得られた炭素繊維は、種々の
産業分野において広く活用されている。特に、航空機及
び一般産業分野においては、炭素繊維のより高性能化が
要求される。
2. Description of the Related Art Conventionally, there has been widely known a method for producing carbon fibers by using an acrylonitrile fiber as a raw material, after performing a flame-resistant treatment in an oxidizing atmosphere, and further performing a carbonization treatment in an inert atmosphere. The obtained carbon fibers are widely used in various industrial fields. In particular, in the aircraft and general industrial fields, higher performance of carbon fiber is required.

【0003】従来、アクリロニトリル系繊維(PAN繊
維)を原料とした炭素繊維の製造は、PAN繊維を一旦
酸化性雰囲気中、200〜300℃で耐炎化処理(酸化
処理)していわゆる耐炎化繊維となし、次いで不活性雰
囲気中、500℃以上、炭素の昇華温度未満の温度で熱
処理する方法によって製造されている。
Conventionally, the production of carbon fibers from acrylonitrile-based fibers (PAN fibers) has been carried out by subjecting the PAN fibers to a so-called flame-resistant fiber (oxidizing treatment) once at 200 to 300 ° C. in an oxidizing atmosphere. None, followed by a heat treatment in an inert atmosphere at a temperature of 500 ° C. or higher and lower than the sublimation temperature of carbon.

【0004】耐炎化処理によって、PAN繊維は密度を
1.35〜1.40g/ccにまで増加し、炭素化工程
に耐える繊維となる。この耐炎化処理工程に供される繊
維の特性は、目的物である炭素繊維の性能に与える影響
が大きく、従来種々の提案がなされている。例えば、P
AN繊維の配向度、沃素吸着量で表される緻密化度等の
特性を管理指標とした発明が提案されている(特開平1
−124629号、同3−180514号、同4−24
0220号各公報)。
[0004] By the oxidation treatment, the PAN fiber is increased in density to 1.35 to 1.40 g / cc, and becomes a fiber that can withstand the carbonization step. The characteristics of the fiber subjected to the flame-proofing treatment step have a great influence on the performance of the target carbon fiber, and various proposals have hitherto been made. For example, P
An invention has been proposed in which characteristics such as the degree of orientation of AN fiber and the degree of densification expressed by the amount of adsorbed iodine are used as a control index (Japanese Patent Application Laid-Open No. Hei 1 (1994)).
-124629, 3-180514, 4-24
No. 0220).

【0005】この耐炎化処理工程は、PAN繊維を原料
として炭素繊維を製造する際、PAN繊維が高温雰囲気
に曝露される最初の工程であり、この工程は炭素繊維の
性能に重要な影響を与える。炭素繊維は、通常100〜
数万フィラメントのストランドで使用されるが、このス
トランドを構成するフィラメントが切断すると、いわゆ
る毛羽となり炭素繊維ストランドの品質を低下させる。
この毛羽発生の、直接的又は間接的原因の大きな部分
を、耐炎化工程が占めている。従ってこの耐炎化工程で
の単糸切れ(毛羽)発生の原因を低下させることが重要
である。
[0005] This oxidization-resistant treatment step is the first step of exposing the PAN fiber to a high-temperature atmosphere when producing the carbon fiber from the PAN fiber, and this step has a significant effect on the performance of the carbon fiber. . Carbon fiber is usually 100 ~
It is used for strands of tens of thousands of filaments, but when the filaments constituting the strands are cut, the strands become so-called fluff and deteriorate the quality of the carbon fiber strand.
A large part of the direct or indirect cause of the generation of fluff is the flameproofing process. Therefore, it is important to reduce the cause of single yarn breakage (fuzz) in the flame-proofing step.

【0006】[0006]

【発明が解決しようとする課題】炭素繊維は、その用途
上の要求によって様々なグレードで商品化されており、
引っ張り強度では、200〜700kgf/mm2、弾
性率では、10〜70×103kgf/mm2まで、広
い範囲のものがあるが、最近、より一層高強度化、高伸
度化の要求が強い。炭素繊維の高強度化は、個々の工程
の最適化努力の累積の結果であり、工程の単一ユニット
の改善によって一挙に解決できるものではない。本発明
者らは、この炭素繊維製造工程の内、耐炎化工程に供さ
れる前の状態について検討の結果本発明に到った。
Problems to be Solved by the Invention Carbon fibers have been commercialized in various grades depending on the application requirements.
Although there is a wide range of tensile strength from 200 to 700 kgf / mm2 and an elastic modulus from 10 to 70 × 103 kgf / mm2, recently, there is a strong demand for higher strength and higher elongation. The strengthening of carbon fibers is the result of the accumulation of individual process optimization efforts and cannot be solved all at once by improving a single unit of process. The present inventors have studied the state of the carbon fiber manufacturing process before being subjected to the oxidizing process, and arrived at the present invention.

【0007】[0007]

【課題を解決するための手段】本発明は下記の構成から
なる。 (請求項1)アクリロニトリル系繊維を原料として、2
00〜300℃の酸化性雰囲気中で耐炎化処理後、更に
不活性雰囲気中で炭素化処理し、炭素繊維を製造する方
法において、耐炎化処理に先立ち、繊維密度1.18〜
1.20g/ccとなるまで、水27g/Nm3・ガス
以下の乾燥雰囲気中140〜190℃温度で乾熱処理
し、次いで耐炎化処理及び炭素化処理する事を特徴とす
る炭素繊維の製造法。 (請求項2)乾燥雰囲気が乾燥した空気である請求項1
記載の炭素繊維の製造方法。 (請求項3)水27g/Nm3・ガス以下の乾燥雰囲気
中140〜190℃温度で乾熱処理した後の繊維の小角
散乱強度(0.4゜)が1800cps以下であること
を特徴とする請求項1記載の炭素繊維の製造法。 (請求項5)乾燥雰囲気の水分率が3〜22g/Nm3
・ガスであることを特徴とする請求項1記載の炭素繊維
の製造法。
The present invention comprises the following constitutions. (Claim 1) Acrylonitrile fiber is used as a raw material and 2
In a method of producing carbon fibers after performing the oxidation treatment in an oxidizing atmosphere at 00 to 300 ° C. and further carbonizing in an inert atmosphere, the fiber density is 1.18 to
A method for producing carbon fiber, comprising: performing dry heat treatment at a temperature of 140 to 190 ° C. in a dry atmosphere of 27 g / Nm 3 · gas or less of water until reaching 20 g / cc, followed by oxidization treatment and carbonization treatment. (Claim 2) The drying atmosphere is dry air.
The method for producing a carbon fiber according to the above. (3) The fiber has a small-angle scattering intensity (0.4 °) of 1800 cps or less after dry heat treatment at a temperature of 140 to 190 ° C in a dry atmosphere of 27 g / Nm3 · gas of water or less. 2. The method for producing carbon fiber according to 1. (Claim 5) The moisture content of the dry atmosphere is 3 to 22 g / Nm3.
The method for producing carbon fiber according to claim 1, wherein the method is gas.

【0008】本発明によると、このように乾熱処理し、
引き続いて耐炎化処理することによって、同じPAN繊
維を、乾熱処理を行わないで同一条件で炭素化処理した
場合に比較し、毛羽の発生が少なく、しかも、高強度の
炭素繊維を得ることが出来る
According to the present invention, the dry heat treatment is performed as described above,
By subsequently performing the oxidizing treatment, it is possible to obtain a high-strength carbon fiber with less generation of fluff as compared with a case where the same PAN fiber is carbonized under the same conditions without performing the dry heat treatment.

【0009】本発明に於いて、小角散乱強度は次によっ
て測定される。
In the present invention, the small-angle scattering intensity is measured as follows.

【0010】小角散乱強度は、RINT1200型X線
回折装置(理学電機(株)製)、CN4057B1型X
線発生装置(理学電機(株)製)、SC−50型シンチ
レーション・カウンター(理学電機(株)製)を使用し
て測定した。
[0010] The small-angle scattering intensity is measured using a RINT1200 type X-ray diffractometer (manufactured by Rigaku Corporation), CN4057B1 type X-ray diffractometer.
The measurement was performed using a line generator (manufactured by Rigaku Denki Co., Ltd.) and a SC-50 type scintillation counter (manufactured by Rigaku Denki Co., Ltd.).

【0011】[装置の設定]X線は、管球Cu、管電圧
40kV、管電流40mAにて発生させ、グラファイト
製モノクロメーターで単色化したCuKα線を使用す
る。光学系はゴニオメーターを使用する。スリットの幅
は、第一スリット0.08mm、第二スリット0.06
mm、第三スリット0.14mm、受光スリット0.1
0mm、受光スリットの縦散乱スリット0.01mmで
ある。検出器は、シンチレーターとしてT1で活性化し
たNaI単結晶を使用したシンチレーション・カウンタ
ーを用いる。
[Apparatus Settings] X-rays are generated using a CuKα ray generated by a tube Cu, a tube voltage of 40 kV and a tube current of 40 mA, and made monochromatic by a graphite monochromator. The optical system uses a goniometer. The width of the slit is 0.08 mm for the first slit and 0.06 for the second slit.
mm, third slit 0.14 mm, light receiving slit 0.1
0 mm and the longitudinal scattering slit of the light receiving slit is 0.01 mm. As the detector, a scintillation counter using a T1-activated NaI single crystal as a scintillator is used.

【0012】[試料の調整]10万デニール相当の繊維
束を平行に引き揃え、気温10〜30℃の室内に放置
し、水分を2重量%まで乾燥する。
[Preparation of Sample] Fiber bundles equivalent to 100,000 deniers are aligned in parallel, left in a room at a temperature of 10 to 30 ° C., and dried to a water content of 2% by weight.

【0013】[測定と計算]バックグランド散乱の強度
Bを測定する。上記の装置に試料をセットせずに、散乱
角2θ=0.4゜において、1秒間あたりのカウント
数、すなわちCPSを単位として測定する。なお、バッ
クグランド散乱とは、空気中で測定することによって生
じる散乱や装置のスリットによる散乱を合わせたものを
いう。試料である10万デニール相当の繊維束を、繊維
軸と垂直方向の散乱を計測するため、繊維軸がX線スリ
ットの長手方向と平行になるようにゴニオメーターにセ
ットし、上記と同様に、散乱角2θ=0.4゜において
繊維束10万デニールあたりの散乱強度S(単位CP
S)を測定する。散乱角2θ=0.4゜における繊維束
10万デニールあたりの正味の散乱強度F(単位CP
S)を F=S−B により計算する。
[Measurement and Calculation] The intensity B of background scattering is measured. Without setting the sample in the above-mentioned apparatus, the measurement is performed in units of the number of counts per second, that is, CPS, at a scattering angle of 2θ = 0.4 °. Note that background scattering refers to a combination of scattering caused by measurement in the air and scattering by a slit of the device. In order to measure the scattering in the direction perpendicular to the fiber axis, a fiber bundle equivalent to 100,000 denier, which is a sample, is set on the goniometer so that the fiber axis is parallel to the longitudinal direction of the X-ray slit, and, as described above, At a scattering angle 2θ = 0.4 °, the scattering intensity S per 100,000 denier fiber bundle (unit CP)
Measure S). Net scattering intensity F per 100,000 denier fiber bundle at a scattering angle 2θ = 0.4 ° (unit CP
S) is calculated by F = S−B.

【0014】小角X線散乱とは、細く絞ったX線が試料
内部を通過する際に粗密構造により散乱されて広がる現
象である。したがって、理論的に、不均一構造部が多い
ほど散乱強度が大きく、緻密な均一構造ほど散乱強度が
小さい。散乱の様子は、散乱角2θの0゜付近を最大と
するX線強度の分布として測定される。本発明は、装置
のスリットによる散乱の影響が比較的少なく、かつ、散
乱の差が顕著に現れる散乱角2θ=0.4゜において、
上記条件で測定された繊維の小角X線散乱強度Fが、0
〜500CPS/10万デニール、好ましくは、0〜2
00CPS/10万デニールである高度に緻密化された
アクリル繊維である。
Small-angle X-ray scattering is a phenomenon in which finely focused X-rays are scattered and spread by a dense structure when passing through the inside of a sample. Therefore, theoretically, the scattering intensity increases as the number of non-uniform structures increases, and the scattering intensity decreases as the density of the uniform structure increases. The state of the scattering is measured as an X-ray intensity distribution having a maximum around 0 ° of the scattering angle 2θ. In the present invention, at a scattering angle 2θ = 0.4 °, the effect of scattering by the slit of the device is relatively small, and the difference in scattering is remarkable.
The small-angle X-ray scattering intensity F of the fiber measured under the above conditions is 0.
~ 500 CPS / 100,000 denier, preferably 0-2
It is a highly densified acrylic fiber of 00 CPS / 100,000 denier.

【0015】[発明の概要]本発明は、耐炎化工程に供
されるPAN繊維を、その前処理において、密度1.1
8〜1.20g/cc、好ましくは小角散乱強度(0.
4゜)が1800cps以下の状態にまで乾熱処理し、
引き続いて耐炎化処理を行うものである。このように乾
熱処理し、引き続いて耐炎化処理することによって、同
じPAN繊維を、乾熱処理を行わないで同一条件で炭素
化処理した場合に比較し、毛羽の発生が少なく、しか
も、高強度の炭素繊維を得ることが出来る。
[Summary of the Invention] The present invention provides a PAN fiber to be subjected to an oxidization-resistant step, in which the PAN fiber has a density of 1.1 in a pretreatment.
8 to 1.20 g / cc, preferably small angle scattering intensity (0.
4 ゜) is subjected to dry heat treatment to 1800 cps or less,
Subsequently, a flameproofing treatment is performed. By performing the dry heat treatment in this manner and subsequently performing the flame resistance treatment, compared to a case where the same PAN fiber is carbonized under the same condition without performing the dry heat treatment, the generation of the fluff is less and the high strength A carbon fiber can be obtained.

【0016】炭素化処理は、目的とする炭素繊維の性能
に応じて、処理温度、温度勾配、張力条件等が異なるこ
とが知られており、本発明の乾熱処理は、何れの要求特
性を満足する炭素繊維においても有効である。
It is known that the carbonization treatment differs in the treatment temperature, temperature gradient, tension conditions, etc., depending on the performance of the target carbon fiber, and the dry heat treatment of the present invention satisfies any required characteristics. It is also effective for carbon fibers that do.

【0017】従来、炭素繊維の耐炎化工程に先立ち、あ
らかじめ熱処理する方法は、例えば特公昭58−530
86号にて知られている。この方法は、230〜270
℃の酸化性雰囲気中で、密度1.18〜1.20g/c
cまで熱処理するものである。この方法にあっては、P
AN繊維の欠陥を除去する目的では効果的であり、その
結果、炭素繊維の収率向上、耐炎化炉中でのストランド
の切断防止に効果的であるが、本発明とは、処理目的と
乾熱処理の温度の点において相違する。
Conventionally, a method of performing heat treatment in advance of the carbon fiber oxidizing step is described in, for example, Japanese Patent Publication No. 58-530.
No. 86. This method is based on 230-270.
In an oxidizing atmosphere at a temperature of 1.18 to 1.20 g / c
The heat treatment is performed up to c. In this method, P
It is effective for the purpose of removing defects of AN fiber, and as a result, it is effective for improving the yield of carbon fiber and preventing the strand from being cut in the oxidizing furnace. They differ in the temperature of the heat treatment.

【0018】本発明者らの検討によると、耐炎化処理に
先立ち水27g/Nm3・ガス以下の雰囲気であらかじ
め処理することによって、PAN繊維中のミクロ欠陥低
減効果を得ることを見出したものである。
According to the study of the present inventors, it has been found that a micro-defect reduction effect in the PAN fiber can be obtained by pre-treatment in an atmosphere of water of 27 g / Nm 3 · gas or less prior to the oxidation treatment. .

【0019】[0019]

【発明の具体的説明】[PAN繊維]本発明においてP
AN繊維とは、PAN繊維を構成する重合体成分中にア
クリロニトリル成分を少なくとも90重量%以上含み、
共重合体成分としてアクリル酸、メタアクリル酸、イタ
コン酸、マレイン酸、アクリルアミド、アクリル酸メチ
ル等、の中性又はイオン性単量体からなるものである。
特に単繊維性能として、単繊維繊度 0.9〜1.1
d、乾強度 6.0g/d以上、伸度8〜15%のもの
が好ましい。
DETAILED DESCRIPTION OF THE INVENTION [PAN fiber]
The AN fiber includes at least 90% by weight or more of an acrylonitrile component in a polymer component constituting the PAN fiber,
The copolymer component comprises a neutral or ionic monomer such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, acrylamide, and methyl acrylate.
In particular, as the single fiber performance, the single fiber fineness is 0.9 to 1.1.
d, those having a dry strength of 6.0 g / d or more and an elongation of 8 to 15% are preferable.

【0020】[乾熱処理]本発明において、PAN繊維
の乾熱処理は、温度140〜190℃のガス雰囲気中で
行われる。ガス成分は空気等の酸化性ガス、窒素、アル
ゴン等の不活性ガス何れでもよいが、空気を使用するの
が最も効果的である。
[Dry Heat Treatment] In the present invention, the dry heat treatment of the PAN fiber is performed in a gas atmosphere at a temperature of 140 to 190 ° C. The gas component may be any of an oxidizing gas such as air and an inert gas such as nitrogen and argon, but the use of air is most effective.

【0021】この乾熱処理工程において、PAN繊維に
かかる張力は50〜110mg/dである。
In this dry heat treatment step, the tension applied to the PAN fiber is 50 to 110 mg / d.

【0022】乾熱処理雰囲気の水分率は27g/Nm3
・ガス以下とする事が必要である。好ましくは、3〜2
2g/Nm3・ガスとするのがよい。より好ましくは5
〜20g/Nm3・ガスとするのが良い。
The moisture content of the dry heat treatment atmosphere is 27 g / Nm3.
-It is necessary to make it less than gas. Preferably, 3 to 2
The gas is preferably 2 g / Nm3 · gas. More preferably 5
-20 g / Nm3 · gas is good.

【0023】この乾熱処理工程において、好ましくは被
処理繊維の小角散乱強度(0.4゜)を1800cps以下
とする。また、この乾熱処理工程において、被処理繊維
の繊維密度を1.18〜1.20g/ccとする。
In the dry heat treatment step, the small-angle scattering intensity (0.4 °) of the fiber to be treated is preferably set to 1800 cps or less. In the dry heat treatment step, the fiber density of the fiber to be treated is set to 1.18 to 1.20 g / cc.

【0024】[耐炎化・炭素化]本発明において耐炎化
とは、200〜300℃の酸化性雰囲気中で、PAN繊
維を酸化処理し、繊維密度を1.35〜1.40g/c
cとなるまで処理する工程であり、炭素化とは500℃
以上の炭素の昇華温度までの温度範囲の不活性ガス中で
熱処理する工程であり、この一連の処理によって、被処
理繊維は最高温度に応じ、密度 1.70g/cc以
上、炭素含有率 98%以上、繊維強度 380kg/
mm2以上、伸度1.6〜2.4%の炭素繊維となる。
[Fireproofing / Carbonization] In the present invention, flameproofing refers to oxidizing PAN fibers in an oxidizing atmosphere at 200 to 300 ° C. to reduce the fiber density to 1.35 to 1.40 g / c.
and carbonization at 500 ° C.
This is a step of performing a heat treatment in an inert gas in a temperature range up to the above-described sublimation temperature of carbon. Through this series of treatments, the fiber to be treated has a density of 1.70 g / cc or more and a carbon content of 98% according to the maximum temperature. Above, fiber strength 380kg /
mm2 or more and elongation of 1.6 to 2.4%.

【0025】これら耐炎化、炭素化のいずれの処理もア
クリロニトリル系炭素繊維の製造工程としてはよく知ら
れている工程であり、特別なものではない。
[0025] Both of these treatments for flame resistance and carbonization are well-known processes for producing acrylonitrile-based carbon fibers, and are not special.

【0026】[図面の説明]本発明の実施に用いられる
装置の概念図は図1及び図2の通りである。図1におい
て1はストランド、2は調湿された空気、3は空気熱風
発生室、4は流量調整用ダンパー、5は乾熱処理炉、6
はヒーター、7は排気ファンである。図2において8は
ストランド、9は乾熱処理炉内に設置された温湿度セン
サーである。調湿された空気は熱風発生室に入り、加温
され、乾熱処理炉に供給され、乾熱処理炉内の雰囲気ガ
スと混合し、排気ファンによって炉外へ排出される。乾
熱処理炉に設置された温湿度センサーが乾熱処理炉の温
度及び水分率を関知して、熱風発生装置の温度及び乾熱
処理炉への供給流量、ヒーター出力、排気量を調整し、
乾熱処理炉の雰囲気条件が制御され、乾熱処理炉の温度
を140〜190℃、水分率を27g/Nm3・ガス以
下とする。
[Explanation of the Drawings] FIGS. 1 and 2 are conceptual diagrams of an apparatus used for carrying out the present invention. In FIG. 1, 1 is a strand, 2 is conditioned air, 3 is an air hot air generation chamber, 4 is a damper for adjusting flow rate, 5 is a dry heat treatment furnace, 6
Is a heater and 7 is an exhaust fan. In FIG. 2, 8 is a strand, and 9 is a temperature and humidity sensor installed in a dry heat treatment furnace. The conditioned air enters the hot air generation chamber, is heated, is supplied to the dry heat treatment furnace, mixes with the atmospheric gas in the dry heat treatment furnace, and is discharged out of the furnace by the exhaust fan. A temperature and humidity sensor installed in the dry heat treatment furnace senses the temperature and moisture content of the dry heat treatment furnace, and adjusts the temperature of the hot air generator and the supply flow rate to the dry heat treatment furnace, the heater output, and the exhaust amount,
The atmosphere conditions of the dry heat treatment furnace are controlled, and the temperature of the dry heat treatment furnace is set to 140 to 190 ° C. and the moisture content is set to 27 g / Nm 3 · gas or less.

【0027】本発明において、熱処理炉内水分及び毛羽
量の測定方法は次の通りである。
In the present invention, the method for measuring the moisture and the amount of fluff in the heat treatment furnace is as follows.

【0028】(1) 熱処理炉内水分の測定方法 熱処理炉内に直径3mmの銅管を入れ、吸引ポンプによ
り1Nl/分の速度で熱処理炉内空気を吸引した。それ
を塩化カルシウムを充填させたシェフィールド型吸湿管
に20分間通過させ、その増加量から熱処理炉内水分を
算出した。
(1) Method of Measuring Moisture in Heat Treatment Furnace A copper tube having a diameter of 3 mm was placed in the heat treatment furnace, and air in the heat treatment furnace was sucked at a rate of 1 Nl / min by a suction pump. It was passed through a Sheffield-type moisture absorbing tube filled with calcium chloride for 20 minutes, and the water content in the heat treatment furnace was calculated from the increased amount.

【0029】(2) 毛羽量の測定法 炭素繊維ストランドをウレタンスポンジ(寸法:32m
m×64mm×10mm、重さ約0.25g)2枚の間
に挟み、125gの重りをウレタンスポンジ全面に荷重
がかかるように乗せ、炭素繊維ストランドを15m/分
の速度で2分間通過させた時のウレタンスポンジに付着
した毛羽の重量を毛羽量とした。
(2) Method of measuring the amount of fluff
(m × 64 mm × 10 mm, weight about 0.25 g) sandwiched between two sheets, a 125 g weight was placed on the urethane sponge so as to apply a load, and the carbon fiber strand was passed through the carbon fiber strand at a speed of 15 m / min for 2 minutes. The weight of the fluff attached to the urethane sponge at that time was defined as the fluff amount.

【0030】[0030]

【実施例】以下に参考例、実施例、比較例について説明
する。
EXAMPLES Reference examples, examples and comparative examples will be described below.

【参考例】アクリロニトリル 92重量%、メタアクリ
ル酸メチル 6重量%、アクリル酸メチル 2重量%か
らなるアクリロニトリル共重合体を65重量%の塩化亜
鉛溶液に溶解した紡糸原液を湿式紡糸法にて紡糸、水
洗、シリコーン系油剤を0.5重量%付着後、乾燥、延
伸処理を施し、単繊維繊度 1.0dのフィラメント数
12000本からなるPAN繊維を得た。このPAN
繊維の密度は1.17g/cc、小角散乱強度(0.4
゜)は2200cpsであった。
[Reference Example] A spinning solution prepared by dissolving an acrylonitrile copolymer composed of 92% by weight of acrylonitrile, 6% by weight of methyl methacrylate, and 2% by weight of methyl acrylate in a 65% by weight zinc chloride solution was spun by a wet spinning method. After washing with water and adhering 0.5% by weight of a silicone-based oil agent, drying and stretching were performed to obtain a PAN fiber having a single fiber fineness of 1.0 d and 12,000 filaments. This PAN
The fiber density is 1.17 g / cc and the small angle scattering intensity (0.4
゜) was 2200 cps.

【0031】このPAN繊維を240〜260℃の温度
にて空気中で耐炎化し、繊維密度1.36g/ccの耐
炎化繊維を得た。この耐炎化繊維を400〜700℃の
窒素雰囲気中、張力 400g/ストランドで炭素化を
行った後、700〜1000℃の窒素雰囲気中、張力
1000g/ストランドで炭素化を行った。
The PAN fiber was oxidized in air at a temperature of 240 to 260 ° C. to obtain an oxidized fiber having a fiber density of 1.36 g / cc. After carbonizing the flame-resistant fiber in a nitrogen atmosphere at 400 to 700 ° C. at a tension of 400 g / strand, the carbon fiber is tensioned in a nitrogen atmosphere at 700 to 1000 ° C.
Carbonization was performed at 1000 g / strand.

【0032】炭素化後、硫酸水溶溶液中で電解処理後、
水洗、乾燥後、エポキシ樹脂を主成分とする集束剤を
1.3重量%付着後、乾燥し、炭素繊維ストランドを得
た。この炭素繊維ストランドの単繊維直径は7μm、繊
維密度はいずれも1.75g/ccであった。また、単
繊維の引っ張り強度460kgf/mm2、引っ張り弾
性率 24.5×103kgf/mm2、毛羽量1.7
mgであった。
After carbonization, after electrolytic treatment in an aqueous solution of sulfuric acid,
After washing with water and drying, 1.3% by weight of a sizing agent containing an epoxy resin as a main component was adhered, followed by drying to obtain a carbon fiber strand. The single fiber diameter of this carbon fiber strand was 7 μm, and the fiber density was 1.75 g / cc in each case. Further, the tensile strength of the single fiber was 460 kgf / mm2, the tensile elasticity was 24.5 × 103 kgf / mm2, and the amount of fluff was 1.7.
mg.

【0033】[0033]

【実施例1〜8】参考例において使用されたものと同一
のPAN繊維を140〜180℃のそれぞれ異なる温度
及び27g/Nm3・ガス以下のそれぞれ異なる水分率
の乾熱処理炉にて3分間乾熱処理を施し、繊維密度
1.18〜1.20g/cc、小角散乱強度(0.4
゜) 1800cps以下の繊維とした。乾熱処理は図
1に示した装置を用いて行い、熱風発生装置の温度及び
乾熱処理炉への供給流量、ヒーター出力、排気量を調整
する事により、加熱処理炉の温度を140〜180℃、
27g/Nm3・ガス以下の水分率にせしめた。
Examples 1 to 8 The same PAN fibers as those used in the reference examples were subjected to dry heat treatment for 3 minutes in dry heat treatment furnaces having different temperatures of 140 to 180 ° C. and different moisture contents of 27 g / Nm 3 · gas or less. Subjected to fiber density
1.18 to 1.20 g / cc, small-angle scattering intensity (0.4
゜) Fiber of 1800 cps or less was used. The dry heat treatment is performed using the apparatus shown in FIG. 1, and the temperature of the heat treatment furnace is adjusted to 140 to 180 ° C. by adjusting the temperature of the hot air generator and the supply flow rate to the dry heat treatment furnace, the heater output, and the exhaust amount.
The water content was 27 g / Nm3 · gas or less.

【0034】次いで、参考例と同一条件で耐炎化及び炭
素化し炭素繊維を得た。この炭素繊維ストランドの性能
は表1に示すとおり、引っ張り強度 500kgf/m
m2以上、引っ張り弾性率 24.5×103kgf/
mm2の毛羽量の少ない高強度炭素繊維が得られた。
Then, carbon fibers were obtained by flame resistance and carbonization under the same conditions as in the reference example. The performance of this carbon fiber strand was as shown in Table 1, and the tensile strength was 500 kgf / m.
m2 or more, tensile modulus of elasticity 24.5 × 103 kgf /
A high-strength carbon fiber with a small amount of fluff of mm2 was obtained.

【0035】[0035]

【表1】 [Table 1]

【0036】注:( )はPAN繊維の乾熱処理前の値
を示す。
Note: () shows the value before the PAN fiber was subjected to the dry heat treatment.

【0037】[0037]

【比較例1、2】乾熱処理温度がそれぞれ130、20
0℃、処理炉内水分率が11g/Nm3・ガスである以
外は実施例1〜8と同一条件にて炭素繊維ストランドを
得た。
Comparative Examples 1 and 2 The dry heat treatment temperatures were 130 and 20 respectively.
Carbon fiber strands were obtained under the same conditions as in Examples 1 to 8 except that the temperature was 0 ° C. and the moisture content in the processing furnace was 11 g / Nm 3 · gas.

【0038】乾熱処理後の被処理繊維の繊維密度は比較
例1については1.17g/cc、比較例2については
1.21g/ccであり、その繊維の小角散乱強度
(0.4゜)は比較例1.2、それぞれ2000、16
00cpsであった。
The fiber density of the fiber to be treated after the dry heat treatment was 1.17 g / cc for Comparative Example 1 and 1.21 g / cc for Comparative Example 2, and the small-angle scattering intensity (0.4 °) of the fiber was obtained. Are Comparative Examples 1.2, 2000 and 16 respectively.
00 cps.

【0039】この炭素繊維ストランドの性能は表1に示
すとおりであった。
The performance of the carbon fiber strand was as shown in Table 1.

【0040】[0040]

【比較例3】乾熱処理温度を180℃、処理炉内水分率
が32g/Nm3・ガスで行い、乾熱処理後の被処理繊
維の繊維密度1.19g/cc、小角散乱強度(0.4
゜)は2000cpsとした。この繊維を使用し実施例
1〜8と同一条件にて炭素繊維ストランドを得た。
Comparative Example 3 Dry heat treatment was performed at a temperature of 180 ° C. and a moisture content in a treatment furnace of 32 g / Nm 3 · gas. The fiber density of the fiber to be treated after the dry heat treatment was 1.19 g / cc, and the small-angle scattering intensity (0.4
゜) was set to 2000 cps. Using these fibers, carbon fiber strands were obtained under the same conditions as in Examples 1 to 8.

【0041】この炭素繊維ストランドの性能は表1に示
すとおりであった。
The performance of the carbon fiber strand was as shown in Table 1.

【0042】[0042]

【発明の効果】本発明によると、このような処理をしな
い場合に比較し、炭素繊維の引っ張り強度で約10%高
めることが出来、また炭素繊維ストランドの毛羽量を9
0%以上減少させることが出来るという効果を得ること
が出来る。
According to the present invention, the tensile strength of carbon fiber can be increased by about 10% and the amount of fluff of the carbon fiber strand can be increased by 9%, as compared with the case without such treatment.
The effect of being able to reduce 0% or more can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施に用いられる装置の概念図FIG. 1 is a conceptual diagram of an apparatus used to carry out the present invention.

【図2】本発明の実施に用いられる装置の概念図FIG. 2 is a conceptual diagram of an apparatus used to carry out the present invention.

【符号の説明】[Explanation of symbols]

1 ストランド 2 調湿された空気、 3 空気熱風発生室 4 流量調整用ダンパー 5 乾熱処理炉 6 ヒーター 7 排気ファン 8 ストランド 9 温湿度センサー DESCRIPTION OF SYMBOLS 1 Strand 2 Humidified air, 3 Air hot air generation chamber 4 Damper for flow control 5 Dry heat treatment furnace 6 Heater 7 Exhaust fan 8 Strand 9 Temperature and humidity sensor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】アクリロニトリル系繊維を原料として、2
00〜300℃の酸化性雰囲気中で耐炎化処理後、更に
不活性雰囲気中で炭素化処理し、炭素繊維を製造する方
法において、耐炎化処理に先立ち、繊維密度1.18〜
1.20g/ccとなるまで、水27g/Nm3・ガス
以下の乾燥雰囲気中140〜190℃温度で乾熱処理
し、次いで耐炎化処理及び炭素化処理をする事を特徴と
する炭素繊維の製造法。
1. An acrylonitrile fiber as a raw material,
In a method of producing carbon fibers after performing the oxidation treatment in an oxidizing atmosphere at 00 to 300 ° C. and further carbonizing in an inert atmosphere, the fiber density is 1.18 to
A method for producing carbon fiber, comprising: performing a dry heat treatment at a temperature of 140 to 190 ° C. in a dry atmosphere of 27 g / Nm 3 · gas or less of water until a pressure of 20 g / cc is obtained, and then performing a flame resistance treatment and a carbonization treatment. .
【請求項2】乾燥雰囲気が乾燥した空気である請求項1
記載の炭素繊維の製造方法。
2. The dry atmosphere is dry air.
The method for producing a carbon fiber according to the above.
【請求項3】水27g/Nm3・ガス以下の乾燥雰囲気
中140〜190℃温度で乾熱処理した後の繊維の小角
散乱強度(0.4゜)が1800cps 以下であるこ
とを特徴とする請求項1記載の炭素繊維の製造法。
3. The small-angle scattering intensity (0.4 °) of the fiber after dry heat treatment at a temperature of 140 to 190 ° C. in a dry atmosphere of 27 g / Nm 3 gas or less of water is 1800 cps or less. 2. The method for producing carbon fiber according to 1.
【請求項4】 乾燥雰囲気の水分率が3〜22g/Nm
3・ガスであることを特徴とする請求項1記載の炭素繊
維の製造法。
4. The moisture content of a dry atmosphere is 3 to 22 g / Nm.
3. The method for producing carbon fiber according to claim 1, wherein the gas is gas.
JP10270775A 1998-09-25 1998-09-25 Production of carbon fiber Pending JP2000096353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10270775A JP2000096353A (en) 1998-09-25 1998-09-25 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10270775A JP2000096353A (en) 1998-09-25 1998-09-25 Production of carbon fiber

Publications (1)

Publication Number Publication Date
JP2000096353A true JP2000096353A (en) 2000-04-04

Family

ID=17490833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10270775A Pending JP2000096353A (en) 1998-09-25 1998-09-25 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JP2000096353A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069754A (en) * 2000-08-31 2002-03-08 Toho Tenax Co Ltd Carbon fiber having high strength and high elongation, and forming material of the same
JP2007297762A (en) * 2006-04-04 2007-11-15 Mitsubishi Rayon Co Ltd Method for producing carbon fiber
JP2009221619A (en) * 2008-03-14 2009-10-01 Toho Tenax Co Ltd Precursor fiber and method for producing precursor fiber, flame-resistant fiber and carbon fiber
JP2012246596A (en) * 2012-07-24 2012-12-13 Toho Tenax Co Ltd Precursor fiber and method for producing precursor fiber, flameproof fiber and carbon fiber
CN105220276A (en) * 2015-10-12 2016-01-06 浙江精业新兴材料有限公司 A kind of carbonization technique pre-heating device for carbon fiber processing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069754A (en) * 2000-08-31 2002-03-08 Toho Tenax Co Ltd Carbon fiber having high strength and high elongation, and forming material of the same
JP4533518B2 (en) * 2000-08-31 2010-09-01 東邦テナックス株式会社 Fiber reinforced composite material using high strength and high elongation carbon fiber
JP2007297762A (en) * 2006-04-04 2007-11-15 Mitsubishi Rayon Co Ltd Method for producing carbon fiber
JP2009221619A (en) * 2008-03-14 2009-10-01 Toho Tenax Co Ltd Precursor fiber and method for producing precursor fiber, flame-resistant fiber and carbon fiber
JP2012246596A (en) * 2012-07-24 2012-12-13 Toho Tenax Co Ltd Precursor fiber and method for producing precursor fiber, flameproof fiber and carbon fiber
CN105220276A (en) * 2015-10-12 2016-01-06 浙江精业新兴材料有限公司 A kind of carbonization technique pre-heating device for carbon fiber processing

Similar Documents

Publication Publication Date Title
JPH11241230A (en) Carbon fiber, precursor fiber for carbon fiber, composite material and production of carbon fiber
JP2011162898A (en) Carbon fiber precursor fiber and method for producing carbon fiber by using the same
TW202006201A (en) Carbon fiber and method for producing same
JP2000096353A (en) Production of carbon fiber
JP6020202B2 (en) Carbon fiber bundle and method for producing the same
JP2004149983A (en) Acrylic fiber for carbon fiber production
JP2004003043A (en) Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same
JP3002549B2 (en) Manufacturing method of graphite fiber
JP4775928B2 (en) Method for producing carbon fiber and acrylonitrile-based precursor fiber
WO2005054554A1 (en) Carbon fiber spun yarn and woven fabric thereof
JP3890770B2 (en) Carbon fiber bundle and manufacturing method thereof
EP0100410B1 (en) High strength and high elongation carbon fiber bundle and process for producing the same
JP3969799B2 (en) High-strength acrylic fiber and method for producing carbon fiber using the same
JP2002146681A (en) Method of producing carbon fiber and precursor thereof and method of applying finishing oil
JPS6141326A (en) Preparation of precursor for carbon fiber
JP2004060069A (en) Polyacrylonitrile-based carbon fiber, and method for producing the same
JP2004197278A (en) Method for producing carbon fiber
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JP3303424B2 (en) Method for producing acrylic carbon fiber
JP2014234557A (en) Method for manufacturing carbon fiber
JPH02264011A (en) Acrylic fiber for graphite fibers
JP2003064539A (en) Carbon fiber fabric and method for producing the same
KR20030047072A (en) A rayon-type twisted carbon fiber and a method of preparing same
JPS58214518A (en) Acrylic precursor yarn bundle
JPH0931758A (en) Carbon fiber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070807