JP2000090936A - Winding type secondary battery and collector therefor - Google Patents

Winding type secondary battery and collector therefor

Info

Publication number
JP2000090936A
JP2000090936A JP10257722A JP25772298A JP2000090936A JP 2000090936 A JP2000090936 A JP 2000090936A JP 10257722 A JP10257722 A JP 10257722A JP 25772298 A JP25772298 A JP 25772298A JP 2000090936 A JP2000090936 A JP 2000090936A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode body
wound
conductive layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10257722A
Other languages
Japanese (ja)
Inventor
Tamotsu Yamamoto
保 山本
Kensuke Yoshida
賢介 吉田
Masami Tsutsumi
正巳 堤
Hiroshi Horiuchi
博志 堀内
Tsutomu Miyashita
勉 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10257722A priority Critical patent/JP2000090936A/en
Publication of JP2000090936A publication Critical patent/JP2000090936A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery capable of preventing the reduction of battery capacity due to breakdown of a collector and capable of being stably operated for a long time by coating a surface of a collector formed of a metal substrate and conductive layers formed in one surface or both surfaces of the metal substrate with the positive electrode mix so as to form a positive electrode body. SOLUTION: Aluminum as a conductive layer 221 is laminated on both surfaces of a mesh- like metal substance 220 so as to manufacture a collector 22. An opening 26 of the collector 22 is filled with the positive electrode mix 23, and furthermore, both surfaces of the collector 22 are coated with the positive electrode mix 23 so as to form a positive electrode 20. A negative electrode is formed of a lithium foil or made of the lithium alloy, and the positive electrode 20 and a negative electrode are wound through a separator, and sealed in a battery can, and electrode leads are connected to terminals of a metal can. The electrolyte is filled, and sealed. In the case where the volume is expanded with charge and discharge, the positive electrode mix 23 is broken, but the metal substrate 220 is extended, and the conductive layer 221 is not broken. Even if the volume is expanded more and the conductive layer 221 is broken, the metal substrate 220 is extended so as to absorb the breaking force, and the current carrying function is compensated so as to maintain the capacity of the battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は巻回式二次電池に係り、
特にリチウム二次電池に好適な巻回式電極構造の改良に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wound type secondary battery,
In particular, the present invention relates to an improvement in a wound electrode structure suitable for a lithium secondary battery.

【0002】[0002]

【従来の技術】リチウム二次電池は金属リチウムの析出
溶解反応を利用するもので、小型で電池容量が大きい理
由から、特に携帯型電子装置の電源用として期待されて
いる。このようなリチウム二次電池の電極体に巻回構造
を採用したものが知られている。
2. Description of the Related Art A lithium secondary battery utilizes a deposition and dissolution reaction of metallic lithium, and is expected to be used particularly as a power source for portable electronic devices because of its small size and large battery capacity. It is known that such a lithium secondary battery employs a wound structure for an electrode body.

【0003】図6は巻回式電池の巻回体の構成図であ
る。なお、図6においては、説明を容易に理解するため
に正極体と負極体とセパレータとを一体物として図面上
区別せずに示している。前記巻回体10は大別して正極
体20と負極体30とセパレータ40とよりなる。すな
わち、正極体20と負極体30とがセパレータ40を介
して渦巻状に巻回され、巻き止めテープ50で固定され
る。正極体20に設けられた正極リード21が電池缶の
正極端子に接続され、負極体30に設けられた負極リー
ド31が負極端子に接続される。この巻回体10は金属
缶に装着され、その後、金属缶に電解液を注入しプレス
機等で金属缶を封口して巻回式二次電池が形成される。
FIG. 6 is a structural view of a wound body of a wound type battery. In FIG. 6, for easy understanding of the description, the positive electrode body, the negative electrode body, and the separator are shown as one body without being distinguished in the drawing. The wound body 10 roughly includes a positive electrode body 20, a negative electrode body 30, and a separator 40. That is, the positive electrode body 20 and the negative electrode body 30 are spirally wound with the separator 40 interposed therebetween, and are fixed with the winding tape 50. The positive electrode lead 21 provided on the positive electrode body 20 is connected to the positive electrode terminal of the battery can, and the negative electrode lead 31 provided on the negative electrode body 30 is connected to the negative electrode terminal. The wound body 10 is mounted on a metal can, and thereafter, an electrolytic solution is injected into the metal can, and the metal can is sealed with a press or the like to form a wound secondary battery.

【0004】図7は従来技術に係る正極体の構造図であ
る。上記正極体20は単3サイズの場合で厚さ約250
μm、幅約36mm、長さ約26cmである。この正極体2
0は大略、集電体22と正極合剤23とから構成されて
いる。集電体22は正極体20のベースとなるアルミニ
ウムまたはアルミニウム合金である。そして正極合剤2
3は正極活物質と導電剤と結着材を溶媒で溶解したもの
である。正極活物質はLiCoO2、LiMnO4、LiNiO2、LiMn3O
6 等である。集電体22の表裏両面に正極合剤23を塗
布または圧着した領域が正極合剤領域24である。また
集電領域25は正極合剤23を塗布されておらずアルミ
箔が露出した領域で、巻回体の前端部の領域である。こ
の集電領域25に正極体リード21が設けられている。
FIG. 7 is a structural view of a cathode body according to the prior art. The positive electrode body 20 has a thickness of about 250 in the case of AA size.
μm, about 36 mm in width and about 26 cm in length. This positive electrode body 2
Numeral 0 generally includes a current collector 22 and a positive electrode mixture 23. The current collector 22 is aluminum or an aluminum alloy serving as a base of the positive electrode body 20. And positive electrode mixture 2
No. 3 is obtained by dissolving a positive electrode active material, a conductive agent and a binder in a solvent. The positive electrode active material is LiCoO2, LiMnO4, LiNiO2, LiMn3O
6 mag. A region where the positive electrode mixture 23 is applied or pressed on both the front and back surfaces of the current collector 22 is a positive electrode mixture region 24. The current collecting area 25 is an area where the positive electrode mixture 23 is not applied and the aluminum foil is exposed, and is an area at the front end of the wound body. The positive electrode lead 21 is provided in the current collecting region 25.

【0005】次に、前述した負極体30はリチウム箔ま
たはリチウム合金であり、単3サイズの場合で厚さ約1
50μm、幅約38mm、長さ約28cmである。更に、セ
パレータ40は多孔質ポリエチレンであり、単3サイズ
の場合で厚さ約25μm、幅約40mm、長さ約30cmで
ある。図8は正極体と負極体とセパレータとの関係を示
す配置図である。
Next, the above-mentioned negative electrode body 30 is made of a lithium foil or a lithium alloy, and has a thickness of about 1 in the case of AA size.
It is 50 μm, about 38 mm wide and about 28 cm long. Further, the separator 40 is made of porous polyethylene, and has a thickness of about 25 μm, a width of about 40 mm, and a length of about 30 cm in the case of AA size. FIG. 8 is an arrangement diagram showing a relationship among a positive electrode body, a negative electrode body, and a separator.

【0006】紙面垂直方向に下面からセパレータ40、
負極体30、セパレータ40、正極体20の順に配置さ
れている。これら負極体30と正極体20とをセパレー
タ40を介して、正極体リード21を上向きに配置し、
負極体リード31を下向きに配置する。この状態で負極
体30、セパレータ40と正極体20とを巻回すると図
6に示した巻回体10ができる。
[0006] The separator 40,
The negative electrode body 30, the separator 40, and the positive electrode body 20 are arranged in this order. The negative electrode body 30 and the positive electrode body 20 are disposed with the positive electrode body lead 21 facing upward via the separator 40,
The negative electrode lead 31 is arranged downward. When the negative electrode body 30, the separator 40, and the positive electrode body 20 are wound in this state, the wound body 10 shown in FIG. 6 is formed.

【0007】[0007]

【発明が解決しようとする課題】上記のようにリチウム
を吸蔵する正極体を使ったリチウム二次電池は、充電時
に正極合剤中の正極活物質からリチウムが抜け出して負
極体に析出する。この析出したリチウムによって負極体
の体積が膨張する。また放電時には負極に析出したリチ
ウムが溶解し正極体の正極活物質に吸蔵される。しかし
析出したリチウムの一部は電解液と反応し、死リチウム
になり正極活物質に吸蔵されない。換言すると、この死
リチウムが負極体上に不可逆性の被膜として残る。この
ため充放電を繰り返す度に、この不可逆性の被膜が徐々
に増え続けて、さらに体積膨張を続ける。この体積膨張
は引張応力として巻回体に作用する。結果として、この
引張応力が巻回体を構成する正負極体からなる電極体の
集電体を破断する。
As described above, in a lithium secondary battery using a positive electrode body that stores lithium, lithium escapes from the positive electrode active material in the positive electrode mixture during charging and deposits on the negative electrode body. The volume of the negative electrode body expands due to the deposited lithium. At the time of discharge, lithium precipitated on the negative electrode is dissolved and occluded in the positive electrode active material of the positive electrode body. However, part of the deposited lithium reacts with the electrolytic solution to become dead lithium and is not absorbed by the positive electrode active material. In other words, the dead lithium remains as an irreversible film on the negative electrode body. Therefore, each time charge and discharge are repeated, the irreversible film gradually increases and further expands in volume. This volume expansion acts on the wound body as tensile stress. As a result, this tensile stress breaks the current collector of the electrode body composed of the positive and negative electrode bodies constituting the wound body.

【0008】つまり、巻回体で発生した引張応力が電極
体の集電体の破断強度を越えることにより渦巻状集電体
を横断する破断を生じる。この結果として、リード2
1、リード31に連なる集電領域から切り離された領域
の電池エネルギーつまり電流を集電することができな
い。結果として電池の容量が大幅に減少する。本発明の
目的は各電極の集電体の破断による電池容量の減少を防
止し、電池を長期間安定に動作させることができる新し
い巻回式二次電池を提供するものである。
That is, when the tensile stress generated in the wound body exceeds the breaking strength of the current collector of the electrode body, breakage occurs across the spiral current collector. As a result, lead 2
1. It is impossible to collect the battery energy, that is, the current, in a region separated from the current collecting region connected to the lead 31. As a result, the capacity of the battery is greatly reduced. SUMMARY OF THE INVENTION It is an object of the present invention to provide a new wound secondary battery that can prevent a decrease in battery capacity due to breakage of a current collector of each electrode and can operate a battery stably for a long period of time.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の発明
は、正極体と負極体とがセパレータを介して巻回されて
なる二次電池であって、前記正極体は金属基体と、前記
金属基体の片面または両面に形成された導電層とからな
る集電体の表面に正極合剤を塗布した構成を有すること
を特徴としている。従って充放電時に生じる体積膨張に
よる集電体の破断を防止でき、電池を長期間安定に動作
することができる。
The invention according to claim 1 is a secondary battery in which a positive electrode body and a negative electrode body are wound with a separator interposed therebetween, wherein the positive electrode body comprises a metal base, It is characterized in that it has a configuration in which a positive electrode mixture is applied to the surface of a current collector comprising a conductive layer formed on one or both surfaces of a metal substrate. Therefore, it is possible to prevent the current collector from being broken due to volume expansion occurring at the time of charging and discharging, and to operate the battery stably for a long period of time.

【0010】請求項2の発明は、前記金属基体はメッシ
ュ状のステンレス材からなり、前記導電層はアルミニウ
ムまたはアルミニウム合金材からなることを特徴として
いる。従って、伸長可能な金属基体は伸び率を向上する
ことができ、導電層は導電率を向上することができる。
請求項3の発明は、前記集電体の伸び率および強度は前
記正極合材の伸び率および強度より大きいことを特徴と
している。結果として体積膨張によって正極合剤が破断
されても集電体は破断されないため電池の容量を取り出
せることができる。
[0010] The invention according to claim 2 is characterized in that the metal base is made of a mesh-like stainless material, and the conductive layer is made of aluminum or an aluminum alloy material. Therefore, the stretchable metal base can improve the elongation, and the conductive layer can improve the conductivity.
The invention of claim 3 is characterized in that the elongation and the strength of the current collector are larger than the elongation and the strength of the positive electrode mixture. As a result, even if the positive electrode mixture is broken by volume expansion, the current collector is not broken, so that the capacity of the battery can be taken out.

【0011】請求項4の発明は、前記金属基体の伸び率
および強度は前記導電層の伸び率および強度より大き
く、前記導電層の導電率は前記金属基体の導電率より高
いことを特徴としている。従って、体積膨張によって正
極合剤、導電層が破断されても金属基体は破断されない
ため電池の容量を取り出すことができる。また電池の容
量つまり電流は導電用層の破断された部分のみ金属基体
をバイパスして導電層から取り出されるので電気抵抗を
増大することはない。従って、電池の容量を低下するこ
ともない。
[0011] The invention of claim 4 is characterized in that the elongation and strength of the metal base are greater than the elongation and strength of the conductive layer, and the conductivity of the conductive layer is higher than the conductivity of the metal base. . Therefore, even if the positive electrode mixture and the conductive layer are broken by volume expansion, the metal substrate is not broken, so that the capacity of the battery can be taken out. Further, the capacity of the battery, that is, the current, is extracted from the conductive layer by bypassing the metal base only in the broken portion of the conductive layer, so that the electric resistance does not increase. Therefore, the capacity of the battery is not reduced.

【0012】請求項5の発明は、正極体と負極体とがセ
パレータを介して巻回されてなる二次電池であって、前
記負極体はメッシュ状のステンレス材の基体の片面また
は両面に、リチウムまたはリチウム合金を設けているこ
とを特徴としている。従って、伸長可能な金属基体は伸
び率を向上することがでる。請求項6の発明は、金属缶
に巻回して封入された正極体と負極体の少なくとも一方
が伸長可能なメッシュ状の金属と、その上に積層された
他の金属層との2層構成の金属基体を有して成ることを
特徴としてる。結果として体積膨張によって正極体の正
極合剤、導電層または負極体のリチウムが破断されても
金属基体は破断されないため電池の容量を取り出せるこ
とができる。
The invention according to claim 5 is a secondary battery in which a positive electrode body and a negative electrode body are wound with a separator interposed therebetween, wherein the negative electrode body is provided on one or both sides of a mesh-shaped stainless steel substrate. A feature is that lithium or a lithium alloy is provided. Therefore, the extensible metal base can improve the elongation rate. The invention according to claim 6 has a two-layer structure of a mesh-like metal in which at least one of a positive electrode body and a negative electrode body wound and sealed in a metal can is extensible, and another metal layer laminated thereon. It is characterized by having a metal substrate. As a result, even if the positive electrode mixture of the positive electrode body, the conductive layer or the lithium of the negative electrode body is broken by volume expansion, the metal base is not broken, so that the capacity of the battery can be taken out.

【0013】[0013]

【発明の実施の形態】本発明の実施例を図面に基づいて
説明する。尚、従来例と同じ部分には同一符号を記して
説明を省略している。 <第1の実施例>図1は第1の実施例に係る正極体の側
断面図である。図1は説明を理解し易いように正極体2
0の正極合剤領域24の側断面を示した図である。
Embodiments of the present invention will be described with reference to the drawings. The same parts as those in the conventional example are denoted by the same reference numerals, and description thereof is omitted. <First Embodiment> FIG. 1 is a side sectional view of a positive electrode body according to a first embodiment. FIG. 1 shows a cathode body 2 for easy understanding of the description.
FIG. 3 is a diagram showing a side cross section of a positive electrode mixture region 24 of No. 0;

【0014】正極体20は大略、集電体22と正極合剤
23とから構成されている。そして、この集電体22は
メッシュ状の開口部26を有する基材部としての伸長可
能な金属基体220と導電層221とから構成されてい
る。図2は第1の実施例に係る金属基体の平面図であ
る。この金属基体220は例えば、SUS430の名で
呼ばれるステンレス材で、単3サイズの場合で厚さ約4
0μm、幅約36mm、長さ約26cmである。金属基体2
20はメッシュ状に複数の開口部26が設けられてい
る。この開口部26は表裏貫通の孔である。一例とし
て、ひし形開口部26の形状は短軸P1が約1.6mm、
横ピッチP2が約1.2mm、 長軸P3が約3.3mm、
縦ピッチP4が約2.0mmである。この金属基体220
の強度は約0.90Kgf であり、引っ張速度1mm/ 分に
て破断するまでの伸びは約61.9mmである。この開口
部26を金属基体220に設けることによって伸び率が
増し、引張応力に耐えて破断されにくくなる。なお、開
口部26の形状は上記ひし形に限らず他の任意形状であ
っても良い。 <電池の製作方法>電池の製作方法について説明する。
まず、図1に示す正極体20の製作方法を説明する。上
述したメッシュ状金属基体220の両面に導電層221
としてのアルミニウムをスパッタ製法等で厚さ約各15
μmに積層して集電体22を製作する。ここでメッシュ
状金属基体220の導電率は約60μオーム・cmであ
り、導電層221用としてのアルミニウムの導電率は約
2.8μオーム・cmである。また上述した寸法で形成し
た導電層221の巻回始終端間抵抗は0.05オームで
ある。
The cathode body 20 generally comprises a current collector 22 and a cathode mixture 23. The current collector 22 includes an extensible metal base 220 serving as a base having a mesh-shaped opening 26 and a conductive layer 221. FIG. 2 is a plan view of the metal base according to the first embodiment. The metal substrate 220 is, for example, a stainless steel material called SUS430, and has a thickness of about 4 in the case of AA size.
0 μm, width about 36 mm, length about 26 cm. Metal substrate 2
20 is provided with a plurality of openings 26 in a mesh shape. The opening 26 is a through-hole. As an example, the shape of the diamond-shaped opening 26 has a short axis P1 of about 1.6 mm,
The horizontal pitch P2 is about 1.2 mm, the major axis P3 is about 3.3 mm,
The vertical pitch P4 is about 2.0 mm. This metal substrate 220
Has a strength of about 0.90 kgf and an elongation before breaking at a pulling rate of 1 mm / min of about 61.9 mm. By providing the opening 26 in the metal base 220, the elongation rate is increased, and the material is resistant to tensile stress and hardly broken. The shape of the opening 26 is not limited to the above-mentioned rhombus, but may be any other shape. <Method of Manufacturing Battery> A method of manufacturing a battery will be described.
First, a method for manufacturing the positive electrode body 20 shown in FIG. 1 will be described. The conductive layers 221 are provided on both surfaces of the mesh-shaped metal base 220 described above.
About 15mm thick by sputtering method etc.
A current collector 22 is manufactured by laminating the current collector 22 to a thickness of μm. Here, the conductivity of the mesh-shaped metal base 220 is about 60 μΩ · cm, and the conductivity of aluminum for the conductive layer 221 is about 2.8 μΩ · cm. The resistance between the start and end of winding of the conductive layer 221 formed with the above-described dimensions is 0.05 ohm.

【0015】この集電体22の開口部26に正極合剤2
3を充填し、更にこの集電体22の両面に正極合剤23
を厚さ約90μm塗布し正極体20を製作する。正極合
剤23は正極活物質と導電剤と結着剤とを溶媒で溶解し
たものである。正極活物質はLiCoO2であり、導電剤はグ
ラファイトとアセチレンブラックの混合物であり、結着
剤はポリフッカビニリデンである。そして正極合剤23
はこれらの正極活物質:導電剤:結着剤を91:6:3
の割合に混合し、そして溶媒としてのN−メチルピロリ
ドンで溶解したペースト状のものを乾燥、圧延したもの
である。
The positive electrode mixture 2 is placed in the opening 26 of the current collector 22.
3 and a positive electrode mixture 23 on both surfaces of the current collector 22.
Is applied to a thickness of about 90 μm to manufacture the positive electrode body 20. The positive electrode mixture 23 is obtained by dissolving a positive electrode active material, a conductive agent, and a binder with a solvent. The positive electrode active material is LiCoO2, the conductive agent is a mixture of graphite and acetylene black, and the binder is polyfukkavinylidene. And the positive electrode mixture 23
Represents 91: 6: 3 of these positive electrode active material: conductive agent: binder
And dried and rolled from a paste which was dissolved in N-methylpyrrolidone as a solvent.

【0016】この集電体22の強度は約0.72Kgf で
あり、引っ張速度1mm/ 分にて破断するまでの伸びは約
38.0mmである。また正極合剤23の強度は固形化し
た状態で約0.5Kgf であり、引っ張速度1mm/ 分にて
破断するまでの1分間の伸びは約0.3mmである。本実
施例では正極活物質としてLiCoO2を用いたが、LiMn2o4
,LiNi(1-x)MxO2( 0≦x <0.5 ,M はTi,V ,Cr,M
n,Fe,Co,Cu,Zn,Al,B の金属元素のうち一種類以
上),LiMn3O6 ,LiV2O5等の正極活物質を用いた場合も
同様の効果が得られる。
The current collector 22 has a strength of about 0.72 kgf and an elongation before breaking at a pulling rate of 1 mm / min of about 38.0 mm. The strength of the positive electrode mixture 23 is about 0.5 kgf in a solidified state, and the elongation per minute before breaking at a pulling rate of 1 mm / min is about 0.3 mm. In this example, LiCoO2 was used as the positive electrode active material, but LiMn2o4
, LiNi (1-x) MxO2 (0 ≦ x <0.5, M is Ti, V, Cr, M
Similar effects can be obtained when a positive electrode active material such as n, Fe, Co, Cu, Zn, Al, or B is used, or LiMn3O6, LiV2O5, or the like.

【0017】また本実施例では導電層221としてアル
ミニウムを用いたが、金属基体220よりも高い導電率
を有し、且つ電解液に酸化されないアルミニウム合金、
金、白金を用いても良い。また金属基体220としてS
US430のステンレス材を用いたがSUS430以外
のステンレス材、アルミニウム合金、銅および銅合金等
を用いた場合も同様の効果がある。
In this embodiment, aluminum is used for the conductive layer 221. However, an aluminum alloy having higher conductivity than the metal base 220 and not being oxidized by the electrolytic solution is used.
Gold or platinum may be used. Further, as the metal base 220, S
Although a stainless steel material of US430 is used, the same effect can be obtained when a stainless steel material other than SUS430, aluminum alloy, copper, copper alloy, or the like is used.

【0018】次に、負極体30はリチウム箔またはリチ
ウム合金であり、単3サイズの場合で厚さ約150μ
m、幅約38mm、長さ約28cmである。更に、セパレー
タ40は厚さ約25μmの多孔質ポリエチレンである。
前記セパレータ40を介して正極体20と負極体30と
を巻回する。結果として従来と同型の巻回体ができる。
Next, the negative electrode body 30 is made of a lithium foil or a lithium alloy, and has a thickness of about 150 μm in the case of AA size.
m, width about 38 mm, length about 28 cm. Further, the separator 40 is a porous polyethylene having a thickness of about 25 μm.
The positive electrode body 20 and the negative electrode body 30 are wound with the separator 40 interposed therebetween. As a result, a wound body of the same type as the conventional one is obtained.

【0019】金属缶の内径に対して巻回体の内径は約
0.9mm程小さめであり、その間に若干の膨張吸収用と
しての間隙を設けてある。この巻回体を電池缶に封入し
両電極リードを金属缶の両端子と接続する。その後、電
解液を注入し、プレス機等で金属缶を封口すると巻回式
二次電池ができる。上記電解液はLiPF6 (6フッ化リン
酸リチウム)を1mol/リットル濃度で溶解した容積比
1:1のEC(エチレンカーボネート)とDEC(ジエ
チルカーボネート)の混合液である。
The inner diameter of the wound body is smaller than the inner diameter of the metal can by about 0.9 mm, and a gap is provided between them for absorbing some expansion. The wound body is sealed in a battery can, and both electrode leads are connected to both terminals of the metal can. Thereafter, an electrolytic solution is injected, and the metal can is sealed with a press or the like, whereby a wound type secondary battery is completed. The electrolyte is a mixture of EC (ethylene carbonate) and DEC (diethyl carbonate) in a volume ratio of 1: 1 in which LiPF6 (lithium hexafluorophosphate) is dissolved at a concentration of 1 mol / liter.

【0020】上記の様に、正極体20は開口部26を持
つ金属基体220と、この金属基体220の両面に形成
された導電層221とからなる集電体22の表面に正極
合剤23を塗布した構成である。更に集電体22の伸び
率および強度は正極合剤23の伸び率および強度より大
きいものである。次に金属基体220の伸び率および強
度は導電層221の伸び率および強度より大きくして、
且つ導電層221の導電率は金属基体220の導電率よ
り高くしている。
As described above, the positive electrode body 20 has the positive electrode mixture 23 on the surface of the current collector 22 including the metal base 220 having the opening 26 and the conductive layers 221 formed on both surfaces of the metal base 220. It is a configuration in which it is applied. Further, the elongation and strength of the current collector 22 are larger than the elongation and strength of the positive electrode mixture 23. Next, the elongation and the strength of the metal base 220 are set to be larger than the elongation and the strength of the conductive layer 221.
The conductivity of the conductive layer 221 is higher than the conductivity of the metal base 220.

【0021】このような構成にすることによって、充放
電に伴う体積膨張が発生した場合は最初に正極合剤23
が破断されることになるが集電体22の金属基体220
が伸長可能であるので導電層221の破断には至らな
い。このため電池の容量を取り出せることができる。ま
た体積が更に膨張して正極合剤23と導電層221が破
断された場合でも集電体22の金属基体220自身の伸
長によって破断力を吸収すると共に、破断された導電層
部分の導通機能を補うので電池の容量を取り出すのに支
障を生じない。また電池の容量つまり電流は導電層22
1の破断された部分のみ金属基体220をバイパスする
ために電池の容量を低下することもない。具体的には次
のようになる。
With this configuration, when volume expansion occurs due to charging and discharging, first, the positive electrode mixture 23
Is broken, but the metal substrate 220 of the current collector 22 is broken.
Is stretchable, the conductive layer 221 is not broken. Therefore, the capacity of the battery can be taken out. Further, even when the volume further expands and the positive electrode mixture 23 and the conductive layer 221 are broken, the breaking force is absorbed by the extension of the metal base 220 of the current collector 22 itself, and the conduction function of the broken conductive layer portion is improved. Since it supplements, there is no problem in taking out the capacity of the battery. The capacity of the battery, that is, the current is
Since only one broken portion bypasses the metal base 220, the capacity of the battery is not reduced. Specifically, it is as follows.

【0022】図3は正極体の正極合剤と導電層に亀裂を
生じた断面図である。体積膨張によって、正極合剤23
と導電層221とに亀裂を生じ破断されている。しかし
金属基体220は伸び率が導電層221よりも大きいた
めに破断されていない。この状態になっても電池内の電
流iは下記のように流れる。導電層221の破断されて
いない部分では金属基体220よりも電気抵抗の小さい
導電層221を流れ、破断されている部分だけ金属基体
220をバイパスして流れる。そして再度破断されてい
ない部分では電気抵抗の小さい導電層221を流れる。
その後、正極体20の集電領域25に設けられたリード
端子から出力される。従って、金属基体220の大きな
伸び率が体積膨張による集電体22の破断を防止し、導
電層221の高い導電率が電流の流れを容易する。
FIG. 3 is a cross-sectional view in which a crack has occurred in the positive electrode mixture and the conductive layer of the positive electrode body. Due to the volume expansion, the positive electrode mixture 23
And the conductive layer 221 are cracked and broken. However, the metal base 220 is not broken because the elongation is larger than that of the conductive layer 221. Even in this state, the current i in the battery flows as follows. The unbroken portion of the conductive layer 221 flows through the conductive layer 221 having lower electric resistance than the metal base 220, and only the broken portion flows bypassing the metal base 220. Then, the portion not broken again flows through the conductive layer 221 having a small electric resistance.
Thereafter, the signal is output from a lead terminal provided in the current collecting region 25 of the positive electrode body 20. Therefore, the large elongation of the metal base 220 prevents the current collector 22 from breaking due to volume expansion, and the high conductivity of the conductive layer 221 facilitates the flow of current.

【0023】結果として、集電領域25から切り離され
た領域のエネルギーをも集電することができる。 <第2の実施例>第1の実施例では正極側の金属基体に
伸長可能な金属基体を用いた構成について説明したが、
正極側と負極側の両方に伸長可能な金属基体を用いたの
がこの第2の実施例である。
As a result, the energy in the area separated from the current collecting area 25 can also be collected. <Second Embodiment> In the first embodiment, the configuration using an extensible metal base as the metal base on the positive electrode side has been described.
In the second embodiment, an extensible metal substrate is used on both the positive electrode side and the negative electrode side.

【0024】図4は金属基体にリチウム箔を設けた負極
体の断面図である。負極体30の金属基体220として
も前述の正極体20の金属基体220と同様に伸長可能
な金属基体220を用いる。SUS430の名からなる
メッシュ状の金属基体220の両面に厚さ約70μmの
リチウム箔を貼合わせ又は圧着したものである。但し、
金属基体220であるSUS430とリチウム箔との合
金化を防止するためステンレスとリチウム箔との間に下
地として銅、ニッケル等の金属を設けている。
FIG. 4 is a sectional view of a negative electrode body provided with a lithium foil on a metal base. As the metal base 220 of the negative electrode body 30, an extensible metal base 220 is used similarly to the metal base 220 of the positive electrode body 20 described above. It is formed by laminating or crimping a lithium foil having a thickness of about 70 μm on both sides of a mesh-shaped metal substrate 220 made of SUS430. However,
A metal such as copper or nickel is provided as a base between stainless steel and the lithium foil in order to prevent alloying of the metal base 220 SUS430 and the lithium foil.

【0025】負極体30の集電材22の強度は約0.9
8Kgf であり、引っ張速度1mm/ 分にて破断するまでの
伸びは約62.5mmである。リチウム箔の強度は約0.
18Kgf であり、引っ張速度1mm/ 分にて破断するまで
の伸びは約7.5mmである。従って金属基体220の伸
び率、強度はリチウム箔またはリチウム合金の伸び率、
強度より大きい。この負極体30を使用した点が第1の
実施例と異なる。この点以外は第1の実施例と同じであ
る。 <第3の実施例>第3の実施例では負極側の集電体22
のみに伸長可能な金属基体220を用い、正極側の集電
体22は伸長可能な金属基体220を使用していない。
The strength of the current collector 22 of the negative electrode body 30 is about 0.9.
It is 8 kgf and the elongation before breaking at a pulling speed of 1 mm / min is about 62.5 mm. The strength of the lithium foil is about 0.5.
It is 18 kgf and the elongation before breaking at a pulling speed of 1 mm / min is about 7.5 mm. Therefore, the elongation rate and strength of the metal base 220 are the same as those of the lithium foil or lithium alloy.
Greater than strength. The point that this negative electrode body 30 is used is different from the first embodiment. The other points are the same as those of the first embodiment. <Third Embodiment> In the third embodiment, the current collector 22 on the negative electrode side is used.
Only the extensible metal base 220 is used, and the current collector 22 on the positive electrode side does not use the extensible metal base 220.

【0026】この場合、図5の断面図に示すように、正
極体20はアルミニウムの両面に厚さ約120μmの正
極合剤23を塗布したものである。この正極体20の強
度は約4.20Kgf であり、引っ張速度1mm/ 分にて破
断するまでの伸びは約0.8mmである。この正極体20
を使用した点が第2の実施例と異なる。しかしこの点以
外は第2の実施例と同じである。 <比較例1>第2の実施例と異なる点は、金属基体22
0の両面に導電層221を設けることなく正極合剤23
を塗布した正極体20を用いた点である。この正極体2
0の強度は0.68Kgf であり、引っ張速度1mm/ 分に
て破断するまでの伸びは36mmである。この点以外は第
2の実施例と同じである。 <比較例2>負極体30は厚さ約10μmの銅箔の両面
にリチウム箔を張り付けられている。この負極体30の
強度は約4.85Kgf であり、引っ張速度1mm/ 分にて
破断するまでの伸びは約0.6mmである。
In this case, as shown in the cross-sectional view of FIG. 5, the positive electrode body 20 is formed by coating a positive electrode mixture 23 having a thickness of about 120 μm on both surfaces of aluminum. The strength of the positive electrode body 20 is about 4.20 kgf, and the elongation before breaking at a pulling rate of 1 mm / min is about 0.8 mm. This positive electrode body 20
Is different from the second embodiment. However, the other points are the same as the second embodiment. <Comparative Example 1> The difference from the second embodiment is that
0 without providing the conductive layer 221 on both surfaces thereof.
This is the point that the positive electrode body 20 coated with is used. This positive electrode body 2
The strength at 0 is 0.68 kgf and the elongation to break at a pulling speed of 1 mm / min is 36 mm. The other points are the same as the second embodiment. <Comparative Example 2> The negative electrode body 30 has a copper foil having a thickness of about 10 μm and lithium foils attached to both surfaces thereof. The strength of the negative electrode body 30 is about 4.85 kgf, and the elongation before breaking at a pulling rate of 1 mm / min is about 0.6 mm.

【0027】そして正極体20は厚さ約20μmのアル
ミニウムの両面に正極合剤23を塗布されている。この
正極体20の強度は4.20Kgf であり、引っ張速度1
mm/分にて破断するまでの伸びは0.8mmである。これ
らの負極体30と正極体20とを使用した点が第2の実
施例と異なる。この点以外は第2の実施例と同じであ
る。換言すると負極体30、正極体20共に伸長可能な
金属基体220を使用しない従来技術の電池と同じであ
る。 <充放電試験>第1、2、3の実施例の電池及び比較例
1、2の電池を各5セル製作し充放電時の容量変化を試
験した。
The positive electrode body 20 has a positive electrode mixture 23 applied to both surfaces of aluminum having a thickness of about 20 μm. The strength of the positive electrode body 20 was 4.20 kgf, and the
The elongation to break at mm / min is 0.8 mm. The difference from the second embodiment is that these negative electrode bodies 30 and positive electrode bodies 20 are used. The other points are the same as the second embodiment. In other words, it is the same as the battery of the related art which does not use the extensible metal base 220 for both the negative electrode body 30 and the positive electrode body 20. <Charge / Discharge Test> Five cells of each of the batteries of the first, second, and third embodiments and the batteries of Comparative Examples 1 and 2 were manufactured, and a change in capacity during charge / discharge was tested.

【0028】上記4種類の電池の充放電試験条件につい
ては、 (1) 充電:4.2Vカットオフ、充電電流密度0.3
mA/ 平方cm (2) 休止:1分間 (3) 放電:3.0Vカットオフ、充電電流密度1mA/
平方cm (4) 休止:1分間 上記(1) から(4) を繰り返し行った。
The charge / discharge test conditions for the above four types of batteries are as follows: (1) Charge: 4.2 V cutoff, charge current density 0.3
mA / square cm (2) Rest: 1 minute (3) Discharge: 3.0 V cut-off, charge current density 1 mA /
Square cm (4) Rest: 1 minute The above (1) to (4) were repeated.

【0029】表1は第1、2、3の実施例の電池及び比
較例1、2の電池との充電放電試験結果である。
Table 1 shows the results of charge / discharge tests of the batteries of the first, second and third embodiments and the batteries of Comparative Examples 1 and 2.

【0030】[0030]

【表1】 [Table 1]

【0031】充放電を交互に50サイクル行い、1サイ
クル前の電池容量と比較して30%以上の減衰を電極破
断と判断し、30%までの減衰は良品として判断した。
結果として、第1の実施例のように正極体のみに金属基
体220と導電層221とを使用した場合は評価数5セ
ルの電池の内4セルが良品として判断された。
The charging and discharging were alternately performed for 50 cycles, and an attenuation of 30% or more compared with the battery capacity one cycle before was judged as electrode breakage, and an attenuation of up to 30% was judged as a non-defective product.
As a result, when the metal substrate 220 and the conductive layer 221 were used only for the positive electrode body as in the first embodiment, 4 cells out of the batteries having the evaluation number of 5 cells were judged as non-defective.

【0032】更に、第2の実施例のように正負極体共に
金属基体220を使用した場合は評価数5セルの電池の
内5セルが良品として判断された。次に、第3の実施例
のように負極体にのみ金属基体220を使用した場合は
評価数5セルの電池の内4セルが良品として判断され
た。更に、比較例1のように正負極体に金属基体220
を使用した場合は評価数5セルの電池の内5セルが良品
として判断された。ただし導電層221を使用しないた
めに電池抵抗が大きくなり所定の電池容量を取り出せな
かった。従って比較例1の電池は製品として不適格とし
て判断された。
Further, when the metal substrate 220 was used for both the positive and negative electrodes as in the second embodiment, 5 of the batteries having the evaluation number of 5 were judged to be good. Next, when the metal substrate 220 was used only for the negative electrode body as in the third embodiment, 4 cells out of the batteries having the evaluation number of 5 cells were judged as non-defective. Further, as in Comparative Example 1, the metal base 220
When 5 was used, 5 cells out of the batteries having the evaluation number of 5 cells were judged as non-defective. However, since the conductive layer 221 was not used, the battery resistance increased, and a predetermined battery capacity could not be obtained. Therefore, the battery of Comparative Example 1 was determined to be unsuitable as a product.

【0033】更に、比較例2のように正負極体に金属基
体220を使用しない場合は評価数5セルの電池の内3
セルが不良品として判断された。
Further, when the metal base 220 was not used for the positive and negative electrodes as in Comparative Example 2, three out of five cells with the evaluation number of 5 were evaluated.
The cell was determined to be defective.

【0034】[0034]

【発明の効果】以上説明したとおり、本発明のような巻
回型電池は、電極の破断による電池容量の減少を防止
し、充放電のサイクル寿命の長い電池が得られる。結果
として、電池を長期間安定に動作することができる。
As described above, in the wound type battery according to the present invention, a decrease in battery capacity due to electrode breakage is prevented, and a battery having a long charge and discharge cycle life can be obtained. As a result, the battery can operate stably for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 第1の実施例に係る正極体の側断面図、FIG. 1 is a side sectional view of a positive electrode body according to a first embodiment,

【図2】 第1の実施例に係る金属基体の平面図、FIG. 2 is a plan view of a metal base according to the first embodiment,

【図3】 正極体の集電体に亀裂を生じた断面図、FIG. 3 is a cross-sectional view showing a crack in a current collector of a positive electrode body;

【図4】 金属基体にリチウムを設けた負極体の断面
図、
FIG. 4 is a cross-sectional view of a negative electrode body provided with lithium on a metal base,

【図5】 アルミニウムに正極合剤を塗布した正極体の
断面図、
FIG. 5 is a cross-sectional view of a positive electrode body obtained by applying a positive electrode mixture to aluminum.

【図6】 巻回型電池の巻回体の構成図、FIG. 6 is a configuration diagram of a wound body of the wound battery,

【図7】 従来技術に係る正極体の構造図、FIG. 7 is a structural diagram of a positive electrode body according to the related art;

【図8】 正極体と負極体とセパレータとの関係を示す
配置図である。
FIG. 8 is an arrangement diagram showing a relationship among a positive electrode body, a negative electrode body, and a separator.

【符号の説明】[Explanation of symbols]

10 巻回体 20 正極体 21 正極リード 22 集電体 23 正極合剤 24 正極合剤領域 25 集電領域 26 開口部 30 負極体 31 負極リード 40 セパレータ 50 巻き止めテープ DESCRIPTION OF SYMBOLS 10 Winding body 20 Positive electrode body 21 Positive electrode lead 22 Current collector 23 Positive electrode mixture 24 Positive electrode mixture area 25 Current collecting area 26 Opening 30 Negative electrode body 31 Negative electrode lead 40 Separator 50 Winding tape

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堤 正巳 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 (72)発明者 堀内 博志 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 (72)発明者 宮下 勉 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 Fターム(参考) 5H017 AA03 AS01 AS10 BB00 BB19 CC01 CC05 DD05 EE01 EE04 EE05 HH01 HH03 5H028 AA01 BB05 BB06 BB07 CC08 CC11 CC20 EE01 5H029 AJ03 AJ05 AJ11 AK03 AL12 AM01 AM02 AM06 BJ02 BJ14 CJ02 CJ03 CJ06 CJ07 CJ08 CJ24 DJ05 DJ06 EJ01 EJ04 EJ12 HJ01 HJ04 HJ05 HJ20 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Masami Tsutsumi 4-1-1 Kamikadanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fujitsu Limited (72) Inventor Hiroshi Horiuchi 4-1-1 Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture No. 1 Fujitsu Co., Ltd. (72) Inventor Tsutomu Miyashita 4-1-1, Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture F-term in Fujitsu Co., Ltd. 5H017 AA03 AS01 AS10 BB00 BB19 CC01 CC05 DD05 EE01 EE04 EE05 HH01 HH03 5H028 AA01 BB05 BB06 BB07 CC08 CC11 CC20 EE01 5H029 AJ03 AJ05 AJ11 AK03 AL12 AM01 AM02 AM06 BJ02 BJ14 CJ02 CJ03 CJ06 CJ07 CJ08 CJ24 DJ05 DJ06 EJ01 EJ04 EJ12 HJ01 HJ04 HJ04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 正極体と負極体とがセパレータを介して
巻回されてなる二次電池であって、 前記正極体は金属基体と、 前記金属基体の片面または両面に形成された導電層とか
らなる集電体の表面に正極合剤を塗布した構成を有する
ことを特徴とする巻回式二次電池。
1. A secondary battery in which a positive electrode body and a negative electrode body are wound with a separator interposed therebetween, wherein the positive electrode body comprises: a metal base; and a conductive layer formed on one or both surfaces of the metal base. A wound secondary battery having a configuration in which a positive electrode mixture is applied to the surface of a current collector made of
【請求項2】 前記金属基体はメッシュ状のステンレス
材からなり、 前記導電層はアルミニウムまたはアルミニウム合金材か
らなることを特徴とする請求項1記載の巻回式二次電
池。
2. The wound secondary battery according to claim 1, wherein the metal substrate is made of a mesh-shaped stainless material, and the conductive layer is made of aluminum or an aluminum alloy material.
【請求項3】 前記集電体の伸び率および強度は前記正
極合材の伸び率および強度より大きいことを特徴とする
請求項1記載の巻回式二次電池。
3. The wound secondary battery according to claim 1, wherein the elongation and the strength of the current collector are larger than the elongation and the strength of the positive electrode mixture.
【請求項4】 前記金属基体の伸び率および強度は前記
導電層の伸び率および強度より大きく、前記導電層の導
電率は前記金属基体の導電率より高いことを特徴とする
請求項1または2記載の集電体。
4. The metal substrate according to claim 1, wherein the elongation and the strength of the metal substrate are larger than the elongation and the strength of the conductive layer, and the conductivity of the conductive layer is higher than the conductivity of the metal substrate. Current collector as described.
【請求項5】 正極体と負極体とがセパレータを介して
巻回されてなる二次電池であって、 前記負極体はメッシュ状のステンレス材の基体の片面ま
たは両面に、リチウムまたはリチウム合金を設けている
ことを特徴とする巻回式二次電池。
5. A secondary battery in which a positive electrode body and a negative electrode body are wound with a separator interposed therebetween, wherein the negative electrode body is made of a mesh-shaped stainless steel base material on one or both sides of a lithium or lithium alloy. A wound type secondary battery, which is provided.
【請求項6】 金属缶に巻回して封入された正極体と負
極体の少なくとも一方が伸長可能なメッシュ状の金属
と、その上に積層された他の金属層との2層構成の金属
基体を有して成ることを特徴とする巻回式リチウム二次
電池。
6. A metal substrate having a two-layer structure including a mesh-shaped metal in which at least one of a positive electrode body and a negative electrode body is wound and enclosed in a metal can and another metal layer laminated thereon. A wound type lithium secondary battery comprising:
JP10257722A 1998-09-11 1998-09-11 Winding type secondary battery and collector therefor Pending JP2000090936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10257722A JP2000090936A (en) 1998-09-11 1998-09-11 Winding type secondary battery and collector therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10257722A JP2000090936A (en) 1998-09-11 1998-09-11 Winding type secondary battery and collector therefor

Publications (1)

Publication Number Publication Date
JP2000090936A true JP2000090936A (en) 2000-03-31

Family

ID=17310204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10257722A Pending JP2000090936A (en) 1998-09-11 1998-09-11 Winding type secondary battery and collector therefor

Country Status (1)

Country Link
JP (1) JP2000090936A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253095A (en) * 2005-03-14 2006-09-21 Mitsui Mining & Smelting Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
WO2018119956A1 (en) * 2016-12-29 2018-07-05 深圳深科先进投资管理有限公司 Porous aluminum-foil anode and method for preparing same, and lithium secondary battery
WO2018119957A1 (en) * 2016-12-29 2018-07-05 深圳先进技术研究院 Porous tinfoil anode and method for preparing same, and sodium-ion secondary battery
KR20190039206A (en) * 2016-09-16 2019-04-10 가부시키가이샤 무라타 세이사쿠쇼 Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, electric power storage system, power tool and electronic device
CN113555561A (en) * 2020-04-24 2021-10-26 北京小米移动软件有限公司 Current collector, electrode, battery, current collector manufacturing method and electrode manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253095A (en) * 2005-03-14 2006-09-21 Mitsui Mining & Smelting Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
KR20190039206A (en) * 2016-09-16 2019-04-10 가부시키가이샤 무라타 세이사쿠쇼 Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, electric power storage system, power tool and electronic device
KR102171213B1 (en) 2016-09-16 2020-10-28 가부시키가이샤 무라타 세이사쿠쇼 Negative electrode for lithium ion secondary batteries, lithium ion secondary batteries, battery packs, electric vehicles, power storage systems, power tools and electronic devices
WO2018119956A1 (en) * 2016-12-29 2018-07-05 深圳深科先进投资管理有限公司 Porous aluminum-foil anode and method for preparing same, and lithium secondary battery
WO2018119957A1 (en) * 2016-12-29 2018-07-05 深圳先进技术研究院 Porous tinfoil anode and method for preparing same, and sodium-ion secondary battery
CN113555561A (en) * 2020-04-24 2021-10-26 北京小米移动软件有限公司 Current collector, electrode, battery, current collector manufacturing method and electrode manufacturing method

Similar Documents

Publication Publication Date Title
JP5004488B2 (en) battery
US20060110660A1 (en) Lithium secondary battery and method of manufacturing the same
JP3669646B2 (en) Nonaqueous electrolyte secondary battery
US20130288122A1 (en) Copper foil for negative electrode current collector of lithium ion secondary battery, negative electrode material of lithium ion secondary battery, and method for selecting negative electrode current collector of lithium ion secondary battery
US4328297A (en) Electrode
JPH10507587A (en) Nickel alloy electrodes for electrochemical devices
JP2002319408A (en) Lithium secondary battery electrode and lithium secondary battery
JP2000021453A (en) Nonaqueous electrolyte secondary battery
JP4342160B2 (en) Storage battery and manufacturing method thereof
JP2000090936A (en) Winding type secondary battery and collector therefor
CN109891640A (en) Electrode for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3565272B2 (en) Negative electrode material for Li secondary battery, negative electrode using the same
JP2743416B2 (en) Zinc plate for rechargeable batteries
JP4836351B2 (en) Electrode plate for alkaline storage battery and alkaline storage battery using the same
US3261715A (en) Negative electrode assembly for alkaline batteries
JP3482605B2 (en) Lead storage battery
JP2555710B2 (en) Zinc electrode
JP2003086166A (en) Nonaqueous electrolyte secondary battery
JP3349362B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP6825614B2 (en) battery
CN114050229A (en) Pole piece and preparation method and application thereof
JPS61208748A (en) Lithium organic secondary battery
JPH0536401A (en) Lithium secondary battery
JP2006221817A (en) Wound-type lead acid storage battery
JP2982630B2 (en) Lead storage battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030422