JP2000065135A - Laminated rubber support - Google Patents

Laminated rubber support

Info

Publication number
JP2000065135A
JP2000065135A JP23512298A JP23512298A JP2000065135A JP 2000065135 A JP2000065135 A JP 2000065135A JP 23512298 A JP23512298 A JP 23512298A JP 23512298 A JP23512298 A JP 23512298A JP 2000065135 A JP2000065135 A JP 2000065135A
Authority
JP
Japan
Prior art keywords
rubber
elastic plate
seismic isolation
plate
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23512298A
Other languages
Japanese (ja)
Inventor
Tatsuji Matsumoto
達治 松本
Fumio Sekido
文雄 関堂
Eimei Yoshikawa
栄明 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP23512298A priority Critical patent/JP2000065135A/en
Publication of JP2000065135A publication Critical patent/JP2000065135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain a long period of a natural period without impairing the other various performances by setting a primary shape factor, a secondary shape factor, the ratio of a diameter to a thickness and rubber hardness of a rubber-like elastic plate to respective specific values. SOLUTION: In a support of this laminated rubber, when a diameter of a rubber-like elastic plate 10 is denoted by D, a thickness of the robber-like elastic plate 10 is denoted by (h'), the total thickness Σh' of the rubber-like elastic plate 10 is denoted by (h), a thickness of a hard plate 9 is denoted by (t) and a diameter of a central hole when there is a central hole extending by penetrating through the laminated layer in a base isolation laminated body is denoted by (d), a primary shape factor S1 decided by S1=(D-d)/4h' and S2=D/h is set >=35, a secondary shape factor S2 is <5, the ratio D/t of a diameter D of a rubber elastic body to a thickness (t) is set <150, and rubber hardness of the rubber-like elastic plate 10 is set <=50. Thus, the support of this laminated rubber can attain a long period of a natural period without impairing the other various performances, particularly, buckling performance, and can exhibit excellent base isolation performance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば地震、機械
振動、或いは交通振動等により、構造物、各種機器類及
び美術工芸品類等に入力される振動の加速度を低減させ
る免震支承体に使用される積層ゴム支承に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for a seismic isolation bearing that reduces the acceleration of vibrations input to structures, various devices, arts and crafts, etc. due to, for example, earthquakes, mechanical vibrations, or traffic vibrations. Related to laminated rubber bearings.

【0002】[0002]

【従来の技術】例えば、建築物、橋、タンク等の構造
物、及び電子計算機、医療機器、保安機器、精密製造機
器、分析解析機器等の機器類、或いは美術工芸品類など
に加わる振動の加速度を低減する免震支承体として、例
えば、図6に示すように、鋼板などの硬質板aとゴム状
弾性板bとを交互に積層しかつ接合した積層ゴム支承が
知られている。
2. Description of the Related Art Acceleration of vibration applied to structures such as buildings, bridges, tanks, etc., and devices such as electronic computers, medical devices, security devices, precision manufacturing devices, analytical and analytical devices, and arts and crafts. For example, as shown in FIG. 6, a laminated rubber bearing in which a hard plate a such as a steel plate and a rubber-like elastic plate b are alternately laminated and joined as shown in FIG. 6 is known.

【0003】又、このような積層ゴム支承の形状を決定
するパラメータの一つとして、次式で定まる二次形状係
数S2 があり、この二次形状係数S2 は、載荷能力や水
平剛性に係わり、二次形状係数S2 が大きくなるほど積
層ゴム支承は偏平となり、座屈や曲げ変形を起こしにく
くなるなど載荷能力が高まるとともに水平剛性が減ぜら
れる。 S2 =D/h (式中、Dはゴム状弾性板の直径、hはゴム状弾性板の
総厚さ)
[0003] Further, as one of the parameters that determine the shape of such a laminated rubber bearing, there is the secondary shape coefficient S 2 defined by the following equation, the secondary shape factor S 2 is the loading capacity and the horizontal rigidity involvement, laminated rubber bearing as secondary shape factor S 2 is increased becomes flat, horizontal rigidity is subtracted with increases the loading capability, etc. becomes difficult to cause buckling or bending deformation. S 2 = D / h (where D is the diameter of the rubber-like elastic plate and h is the total thickness of the rubber-like elastic plate)

【0004】従って、積層ゴム支承としては、従来、前
記二次形状係数S2 が5をこえる比較的安定な構造のも
のが用いられていた。
Therefore, as the laminated rubber bearing, a rubber bearing having a relatively stable structure in which the secondary shape factor S 2 exceeds 5 has conventionally been used.

【0005】[0005]

【発明が解決しようとする課題】他方、近年の建築分野
では、効果的な免震構造として免震建物の固有周期Tを
より長周期化する方向が指向されており、特に固有周期
Tを4秒以上とすることが望まれている。
On the other hand, in the field of construction in recent years, as an effective seismic isolation structure, the direction of making the natural period T of a base-isolated building longer is oriented. It is hoped that it will be more than seconds.

【0006】ここで、免震建物の固有周期Tは、積層ゴ
ム支承の水平剛性から次式で与えられることは周知の通
りである。 T=2π√{W/( KH ・g) } ≒ 2π√{( D・
σ) /( S2 ・G・g) } 式中、 T:積層ゴム支承の水平剛性に基づく建物の固有周期 W:建物総重量 KH :積層ゴム支承の水平剛性 g:重力加速度 D:ゴム状弾性板の直径 σ:積層ゴム支承の面圧 G:ゴム状弾性板の剪断弾性率 S2 :積層ゴム支承の二次形状係数
Here, it is well known that the natural period T of the base-isolated building is given by the following equation from the horizontal rigidity of the laminated rubber bearing. T = 2π√ {W / (KH · g)} ≒ 2π√ {(D ·
σ) / (S 2 · G · g) 中 where T: natural period of the building based on the horizontal rigidity of the laminated rubber bearing W: gross building weight KH: horizontal rigidity of the laminated rubber bearing g: gravitational acceleration D: rubbery Elastic plate diameter σ: Surface pressure of laminated rubber bearing G: Shear modulus of rubbery elastic plate S 2 : Secondary shape factor of laminated rubber bearing

【0007】上式より、面圧σ、直径D及び二次形状係
数S2 などの幾何学寸法、或いは剪断弾性率Gを変化さ
せることにより、前記固有周期Tを長周期化できること
が理解できるが、これらはいずれも積層ゴム支承の使用
環境のうえで厳しい方向となる。
From the above equation, it can be understood that the natural period T can be made longer by changing the geometric dimensions such as the surface pressure σ, the diameter D and the secondary shape factor S 2 , or the shear modulus G. However, these are all severe directions in the use environment of the laminated rubber bearing.

【0008】すなわち、面圧σを上げることは、クリー
プ量の増加を招くと同時に、より小さな水平剪断変形時
において座屈が発生しやすくなるなど座屈特性を低下さ
せる。又剪断弾性率Gを下げることは、生産工程におけ
る困難やクリープ量の増加を招く。又二次形状係数S2
を5より小に減じることは、前述の如く、座屈や曲げ変
形が発生しやすくなり、又載荷能力が減じるため、積層
ゴム支承の使用数の増加或いは大型化を招くという諸問
題がある。
That is, increasing the surface pressure σ causes an increase in the amount of creep and at the same time lowers the buckling characteristics such that buckling is likely to occur during smaller horizontal shear deformation. Further, lowering the shear modulus G causes difficulty in the production process and increases the amount of creep. The secondary shape factor S 2
As described above, if the number of the laminated rubber bearings is reduced to less than 5, the buckling or bending deformation is likely to occur, and the loading capacity is reduced.

【0009】しかしこの考えからすると、表1に示すよ
うに、例えば直径Dが70cmの積層ゴム支承において
は、通常、ゴムの剪断弾性率Gは4kgf/cm2 〜6
kgf/cm2 程度、最大面圧σは100kgf/cm
2 程度で設定されているため、二次形状係数S2 が5以
上の範囲では固有周期Tは4秒より確実に短くなってし
まう。このように、従来の積層ゴム支承では4秒以上の
長周期化を達成することは極めて難しく、免震性能を充
分発揮することはできなかった。
However, from this viewpoint, as shown in Table 1, in a laminated rubber bearing having a diameter D of, for example, 70 cm, the shear modulus G of the rubber is usually 4 kgf / cm 2 -6.
kgf / cm 2 , maximum surface pressure σ is 100 kgf / cm
Since it is set to about 2 , the natural period T is surely shorter than 4 seconds when the secondary shape coefficient S2 is 5 or more. As described above, it is extremely difficult to achieve a longer period of 4 seconds or more with the conventional laminated rubber bearing, and it was not possible to sufficiently exhibit the seismic isolation performance.

【0010】[0010]

【表1】 [Table 1]

【0011】このような状況に鑑み、本発明者が研究を
積み重ねた結果、二次形状係数S2を5未満に減じた場
合に生ずる座屈・曲げ変形、及び載荷能力の減少の問題
は、硬質板の厚さtを高めて各硬質板に充分な剛性を付
与する一方、一次形状係数S 1 を増大して積層ゴム支承
全体の鉛直剛性や曲げ剛性をアップしかつ水平バネ定数
の面圧依存性を適正範囲に抑えることにより解決しうる
ことを見出し得た。
In view of such circumstances, the present inventor has conducted research.
As a result of stacking, the secondary shape factor STwoWhere is reduced to less than 5
Of buckling / bending deformation and reduction of loading capacity
Increases the thickness t of the hard plate to provide sufficient rigidity to each hard plate.
While the primary shape factor S 1To increase the laminated rubber bearing
Increased vertical and bending stiffness and horizontal spring constant
Can be solved by keeping the surface pressure dependency of
I was able to find out.

【0012】すなわち本発明は、二次形状係数S2 を5
未満として長周期化を実現したうえで、座屈・曲げ変形
および載荷能力の減少に対して、硬質板の厚さ及び一次
形状係数S1 の設定によって改善でき、固有周期Tの長
周期化を他の諸性能を損ねることなく達成しうる積層ゴ
ム支承の提供を目的としている。
That is, according to the present invention, the secondary shape factor S 2 is set to 5
After realizing a longer period, the buckling / bending deformation and the reduction of the loading capacity can be improved by setting the thickness of the hard plate and the primary shape factor S 1. It is intended to provide a laminated rubber bearing that can be achieved without impairing other performances.

【0013】なお前記一次形状係数S1 は、公知の如
く、ゴム状弾性板の拘束面積と自由表面積(側面積)と
の比として定義されかつ次式で定まる積層ゴム支承のパ
ラメータの一つであり、これが大きくなると前記鉛直・
曲げ剛性が増加するととも、面圧に対する変形が抑制さ
れる結果、水平バネ定数の変動すなわち水平バネ定数の
面圧依存性を減じ安定化する。 S1 =(D−d)/4h’ (式中、h’はゴム状弾性板の厚さ、dは免震積層体に
中心孔c(図 に示す)ある場合の中心孔cの直径であ
る。)
As is well known, the primary shape factor S 1 is defined as a ratio between the restrained area of the rubber-like elastic plate and the free surface area (side area) and is one of the parameters of the laminated rubber bearing determined by the following equation. Yes, when this becomes large,
As the bending stiffness increases, the deformation due to the surface pressure is suppressed. As a result, the fluctuation of the horizontal spring constant, that is, the dependency of the horizontal spring constant on the surface pressure is reduced and stabilized. S 1 = (D−d) / 4h ′ (where h ′ is the thickness of the rubber-like elastic plate, and d is the diameter of the center hole c when the base-isolated laminate has a center hole c (shown in the figure)). is there.)

【0014】[0014]

【課題を解決するための手段】前記目的を達成するため
に、本願の請求項1の発明は、複数の硬質板とゴム状弾
性板とが交互に積層されかつ接合された免震積層体を具
える積層ゴム支承であって、前記ゴム状弾性板の直径を
D、ゴム状弾性板の厚さをh’、ゴム状弾性板の総厚さ
をh、前記硬質板の厚さをt、前記免震積層体にその積
層を貫通してのびる中心孔がある場合の前記中心孔の直
径をdとしたとき、以下の式で定まる一次形状係数S1
は35以上、二次形状係数S2 は5より小、前記直径D
と厚さtとの比D/tは150より小、しかも前記ゴム
状弾性板のゴム硬度Hdは50度以下であることを特徴
としている。 S1 =(D−d)/4h’ −−−(1) S2 =D/h −−−(2)
In order to achieve the above object, the invention of claim 1 of the present application provides a seismic isolation laminate in which a plurality of hard plates and rubber-like elastic plates are alternately laminated and joined. A laminated rubber bearing comprising: a rubber-like elastic plate having a diameter of D, a rubber-like elastic plate having a thickness of h ′, a rubber-like elastic plate having a total thickness of h, and a hard plate having a thickness of t; When the seismic isolation laminate has a center hole extending through the stack and the diameter of the center hole is d, a primary shape factor S 1 determined by the following equation:
Is 35 or more, the secondary shape factor S 2 is less than 5, and the diameter D
The ratio D / t between the thickness and the thickness t is smaller than 150, and the rubber hardness Hd of the rubber-like elastic plate is 50 degrees or less. S 1 = (D−d) / 4h ′ − (1) S 2 = D / h − (2)

【0015】又請求項2の発明では、前記免震積層体
は、前記中心孔を有さないことを特徴としている。
In the invention of claim 2, the seismic isolation laminate does not have the center hole.

【0016】又請求項3の発明では、前記免震積層体
は、前記中心孔を有しかつこの中心孔の直径dは、前記
ゴム状弾性板の直径Dの0.05倍以下であることを特
徴としている。
In the invention according to claim 3, the seismic isolation laminate has the center hole, and the diameter d of the center hole is 0.05 times or less the diameter D of the rubber-like elastic plate. It is characterized by.

【0017】又請求項4の発明では、前記免震積層体
は、前記ゴム状弾性板の外周面を、前記硬質板の外周面
から内に距離Lを凹ませて位置させることにより硬質板
間にゴム状弾性板がない間隙部を外周近傍領域に形成す
るとともに、前記免震積層体の外周面は、この免震積層
体と一体加硫形成される外皮ゴム層により覆われること
を特徴としている。
Further, in the invention according to claim 4, the seismic isolation laminate is characterized in that the outer peripheral surface of the rubber-like elastic plate is located at a distance L inward from the outer peripheral surface of the hard plate. A gap portion having no rubber-like elastic plate is formed in a region near the outer periphery, and an outer peripheral surface of the seismic isolation laminate is covered with an outer rubber layer integrally vulcanized with the seismic isolation laminate. I have.

【0018】又請求項5の発明では、前記ゴム状弾性板
と硬質板との各外周面は略同形でありかつ外周面から内
方に距離Lを隔たる外周近傍領域に、前記ゴム状弾性板
が前記硬質板に接着されない非接着部を形成するととも
に、前記免震積層体の外周面は、この免震積層体と一体
加硫形成される外皮ゴム層により覆われることを特徴と
している。
According to the fifth aspect of the present invention, each of the outer peripheral surfaces of the rubber-like elastic plate and the hard plate has substantially the same shape, and the rubber-like elastic plate is provided in a region near the outer periphery which is inwardly separated from the outer peripheral surface by a distance L. The plate forms a non-adhesion portion that is not adhered to the hard plate, and an outer peripheral surface of the seismic isolation laminate is covered with a skin rubber layer integrally vulcanized with the seismic isolation laminate.

【0019】又請求項6の発明では、前記距離Lは、前
記ゴム状弾性板の厚さh’の1.0倍以上であることを
特徴としている。
In the invention of claim 6, the distance L is at least 1.0 times the thickness h 'of the rubber-like elastic plate.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態を、図
示例とともに説明する。図1、2は、本願の積層ゴム支
承1の断面図であり、積層ゴム支承1は、複数の硬質板
9とゴム状弾性板10とが交互に積層されかつ接合され
る免震積層体5を具え、この免震積層体5の外周面は、
本例では、免震積層体5と一体加硫成形される外皮ゴム
層6によって被覆保護される。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are cross-sectional views of a laminated rubber bearing 1 of the present application. The laminated rubber bearing 1 has a seismic isolation laminate 5 in which a plurality of hard plates 9 and rubber-like elastic plates 10 are alternately laminated and joined. The outer peripheral surface of the seismic isolation laminate 5 has
In this example, the outer rubber layer 6 is integrally covered with the seismic isolation laminate 5 to be covered and protected by the outer rubber layer 6.

【0021】なお積層ゴム支承1には、前記免震積層体
5の最上段及び最下段に配される上下の連結板2に、固
定板3が例えばボルト等の連結金具13を用いて取付く
とともに、積層ゴム支承1は、この固定板3を介して例
えば基礎である下の構造体4L及び建築物等である上の
構造体4Uにそれぞれ固定される。
The fixed plate 3 is attached to the upper and lower connecting plates 2 arranged at the uppermost and lowermost stages of the seismic isolation laminate 5 on the laminated rubber bearing 1 by using connecting fittings 13 such as bolts. At the same time, the laminated rubber bearing 1 is fixed to the lower structure 4L as a foundation and the upper structure 4U as a building, for example, via the fixing plate 3, respectively.

【0022】前記硬質板9は、剛性を有する例えば鋼板
などの金属製板体からなり、前記連結板2は、この硬質
板9に比して厚さが大、例えば前記固定板3と略同程度
の厚肉板体で形成している。なお金属製板体と同程度の
剛性及び強度を有するものであるならば、例えばセラミ
ックス、合成樹脂等の種々の材料の板体が使用できる。
又硬質板9は、種々な方向の揺れにも対応できるよう
に、その外周面9sの形状、すなわち外縁の輪郭形状
を、方向性のない円形形状としている。
The hard plate 9 is made of a rigid metal plate such as a steel plate. The connecting plate 2 is thicker than the hard plate 9, for example, approximately the same as the fixed plate 3. It is formed of a thick plate body of the order. As long as the plate has the same rigidity and strength as the metal plate, plates made of various materials such as ceramics and synthetic resin can be used.
The hard plate 9 has an outer peripheral surface 9s having a circular shape with no directivity, that is, a contour shape of an outer edge of the hard plate 9 so as to cope with swings in various directions.

【0023】又前記ゴム状弾性板10としては、各種の
ゴム材料が使用できるが、機械的強度、弾性率の長期安
定性、変形能力の長期安定性、耐クリープ性などに優れ
ることが必要であり、例えば天然ゴム(NR)、クロロプレ
ンゴム(CR)などが好ましく使用できる。特に、天然ゴム
は、安価でありかつ耐候性以外の特性でクロロプレンゴ
ムより優れているため、この天然ゴムを90phr以上
配合した天然ゴム系材料を用いることがさらに好まし
い。
As the rubber-like elastic plate 10, various rubber materials can be used, but it is necessary to have excellent mechanical strength, long-term stability of elastic modulus, long-term stability of deformation capacity, and creep resistance. Yes, for example, natural rubber (NR), chloroprene rubber (CR) and the like can be preferably used. In particular, since natural rubber is inexpensive and is superior to chloroprene rubber in characteristics other than weather resistance, it is more preferable to use a natural rubber-based material in which this natural rubber is blended in an amount of 90 phr or more.

【0024】又図2に拡大して示すように、前記ゴム状
弾性板10は、本例では、その外周面10sを、前記硬
質板9の外周面9sから、内に距離Lを凹ませて(控え
て)位置させることにより、硬質板9、9間にゴム状弾
性板10が存在しない間隙部14を外周近傍領域に形成
している。なお前記ゴム状弾性板10は、その上面及び
下面における全面が、硬質板9及び上下の連結板2と加
硫接着などの公知の手段で接合する。
As shown in FIG. 2 in an enlarged manner, the rubber-like elastic plate 10 has an outer peripheral surface 10 s recessed by a distance L from the outer peripheral surface 9 s of the hard plate 9 in this embodiment. By locating (aside), a gap portion 14 in which the rubber-like elastic plate 10 does not exist between the hard plates 9 is formed in a region near the outer periphery. The entire upper surface and lower surface of the rubber-like elastic plate 10 are joined to the hard plate 9 and the upper and lower connecting plates 2 by known means such as vulcanization bonding.

【0025】次に、外皮ゴム層6は、前記硬質板9の各
外周面9sに沿う直筒状をなし、従って、前記ゴム状弾
性板10の外周面10sとの間に、この外周面10sと
離間し非接着となる中空部15を形成しうる。なお外皮
ゴム層6は、少なくとも前記上下の連結板2の外周面と
接着することによって、免震積層体5の外周面を気密に
被覆保護するが、免震積層体5との接着強度を全体に亘
って均一に高め、剥がれ等を防止するために、各硬質板
9の外周面9sとも接着することがこのましい。
Next, the outer rubber layer 6 is formed in a straight cylindrical shape along each outer peripheral surface 9 s of the hard plate 9, and therefore, between the outer peripheral surface 10 s of the rubber-like elastic plate 10 and the outer peripheral surface 10 s. It is possible to form a hollow portion 15 that is separated and non-adhesive. The outer rubber layer 6 hermetically covers and protects the outer peripheral surface of the seismic isolation laminate 5 by bonding at least to the outer peripheral surfaces of the upper and lower connecting plates 2. It is preferable to adhere to the outer peripheral surface 9s of each hard plate 9 in order to uniformly increase the thickness over the entire surface and to prevent peeling.

【0026】前記外皮ゴム層6としては、耐候性に優れ
る、例えば、クロロプレンゴム(CR)、ブチルゴム(IIR)
、ハロゲン化ブチルゴム(X-IIR)、エチレンプロピレ
ンゴム(EPM、EPDM)、ウレタンゴム(U) 、シリコンゴム
(Q) 、フッ素ゴム(FKM) 、多硫化ゴム(T) 、クロロスル
ホン化ポリエチレン(CSM) 、塩素化ポリエチレン(CM)、
エチレン酢酸ビニルゴム(EVM) 、エピクロルヒドリンゴ
ム(ECO) 等の合成ゴム材料が使用できるが、特に耐候性
の点で、クロロプレンゴム(CR)、ブチルゴム(IIR) 、ハ
ロゲン化ブチルゴム(X-IIR)、エチレンプロピレンゴム
(EPM、EPDM)が好ましい。
The outer rubber layer 6 has excellent weather resistance, for example, chloroprene rubber (CR), butyl rubber (IIR)
, Halogenated butyl rubber (X-IIR), ethylene propylene rubber (EPM, EPDM), urethane rubber (U), silicon rubber
(Q), fluoro rubber (FKM), polysulfide rubber (T), chlorosulfonated polyethylene (CSM), chlorinated polyethylene (CM),
Synthetic rubber materials such as ethylene vinyl acetate rubber (EVM) and epichlorohydrin rubber (ECO) can be used, but chloroprene rubber (CR), butyl rubber (IIR), butyl rubber (X-IIR), ethylene Propylene rubber
(EPM, EPDM) are preferred.

【0027】このうち、クロロプレンゴム(CR)は、前記
天然ゴムとは一体に加硫接着する同種のゴム材料であ
り、ブチルゴム(IIR) 、ハロゲン化ブチルゴム(X-II
R)、エチレンプロピレンゴム(EPM、EPDM)は、前記天然
ゴムとは一体に加硫接着しない異種のゴム材料である。
また非結晶性であるという点からは、ニトリルゴム(NB
R)、ブタジエンゴム(BR)、エチレンプロピレンゴム(EPD
M)、シリコンゴム(Q) 、アクリルゴム(ACM) 、エピクロ
ルヒドリンゴム(ECO) が好ましい。
Of these, chloroprene rubber (CR) is the same kind of rubber material that is integrally vulcanized and bonded to the natural rubber, and includes butyl rubber (IIR) and halogenated butyl rubber (X-II
R) and ethylene propylene rubber (EPM, EPDM) are different types of rubber materials that are not integrally vulcanized with the natural rubber.
Also, in view of being amorphous, nitrile rubber (NB
R), butadiene rubber (BR), ethylene propylene rubber (EPD
M), silicone rubber (Q), acrylic rubber (ACM), and epichlorohydrin rubber (ECO) are preferred.

【0028】そして本願の積層ゴム支承1では、図2の
如く、前記ゴム状弾性板10の直径をD、ゴム状弾性板
10の厚さをh’、ゴム状弾性板10の総厚さΣh’を
h、前記硬質板9の厚さをt、前記免震積層体5にその
積層を貫通してのびる中心孔11がある場合の前記中心
孔11の直径をdとしたとき、以下の式(1)、(2)
で定まる一次形状係数S1 を35以上、二次形状係数S
2 を5より小、前記直径Dと厚さtとの比D/tを15
0より小、しかも前記ゴム状弾性板10のゴム硬度Hd
を50度以下とすることを特徴としている。 S1 =(D−d)/4h’ −−−(1) S2 =D/h −−−(2)
In the laminated rubber bearing 1 of the present application, as shown in FIG. 2, the diameter of the rubber-like elastic plate 10 is D, the thickness of the rubber-like elastic plate 10 is h ′, and the total thickness of the rubber-like elastic plate 10 is Δh. ′ Is h, the thickness of the hard plate 9 is t, and the diameter of the center hole 11 when the seismic isolation laminate 5 has a center hole 11 extending through the stack is d, (1), (2)
The primary shape factor S 1 determined by
2 is less than 5, and the ratio D / t of the diameter D to the thickness t is 15
0, and the rubber hardness Hd of the rubber-like elastic plate 10
Is set to 50 degrees or less. S 1 = (D−d) / 4h ′ − (1) S 2 = D / h − (2)

【0029】前述の如く、本願では、前記二次形状係数
2 を、5未満に減じているため、固有周期Tを長周期
化できる。しかも同一の直径Dに対して総厚さhが大き
くなるため、許容される水平剪断歪み量や水平バネ定数
の線形領域が増加し、その結果、水平変形性能を向上さ
せることが可能となる。
As described above, in the present application, since the secondary shape coefficient S 2 is reduced to less than 5, the natural period T can be made longer. Moreover, since the total thickness h is larger for the same diameter D, the allowable horizontal shear strain amount and the linear region of the horizontal spring constant are increased, and as a result, the horizontal deformation performance can be improved.

【0030】他方、二次形状係数S2 <5の設定によ
り、座屈・曲げ変形が発生しやすくかつ載荷能力が低下
する傾向となる。そのために、比D/t<150、かつ
一次形状係数S1 ≧35としている。
On the other hand, by setting the secondary shape factor S 2 <5, buckling and bending deformation tend to occur and the loading capacity tends to decrease. Therefore, the ratio D / t <150 and the primary shape factor S 1 ≧ 35.

【0031】ここで、比D/t<150 とすること
は、一枚当たりの硬質板9の厚さtをD/150の値よ
り大に高めることを意味し、これにより各硬質板9に充
分な剛性及び強度を付与することができ、座屈・曲げ変
形を抑制する。又一次形状係数S1 は、前述のように鉛
直・曲げ剛性に係わり、S1 ≧35とすることにより免
震積層体5全体の鉛直・曲げ剛性が高まり、前記比D/
t<150の設定と相俟って座屈・曲げ変形を効果的に
抑制する。
Here, setting the ratio D / t <150 means that the thickness t of the hard plate 9 per sheet is increased to a value larger than the value of D / 150. Sufficient rigidity and strength can be provided, and buckling and bending deformation are suppressed. The primary shape factor S 1 is related to the vertical / bending stiffness as described above. By setting S 1 ≧ 35, the vertical / bending stiffness of the entire seismic isolation laminate 5 is increased, and the ratio D /
In combination with the setting of t <150, buckling and bending deformation are effectively suppressed.

【0032】その結果、例えば図3に示す如く、面圧σ
が300kgf/cm2 と大きい場合にも、水平歪み率
δ/hが400%までは、座屈の発生を抑制でき、安定
した履歴曲線を示すことが可能になる。
As a result, for example, as shown in FIG.
Is as large as 300 kgf / cm 2 , the generation of buckling can be suppressed and a stable hysteresis curve can be exhibited up to a horizontal strain rate δ / h of 400%.

【0033】又S2 ≧35とすることにより、水平バネ
定数の面圧依存性を減じることができ免震性能を安定し
て発揮することが可能になる。
By setting S 2 ≧ 35, the dependency of the horizontal spring constant on the surface pressure can be reduced, and seismic isolation performance can be stably exhibited.

【0034】又ゴム硬度Hdは、ゴムの弾性率とある程
度の相関関係を有し、一般にゴム硬度Hdが増すと弾性
率が高まる傾向となり、固有周期Tの長周期化を妨げる
傾向にある。従って、ゴム硬度Hd(JISA硬度)を
50度以下に規制することによって、長周期化への悪影
響を排除できるとともに、水平バネ定数の適正な値を得
ることができる。
The rubber hardness Hd has a certain correlation with the elastic modulus of the rubber. In general, as the rubber hardness Hd increases, the elastic modulus tends to increase, which tends to hinder the elongation of the natural period T. Therefore, by restricting the rubber hardness Hd (JISA hardness) to 50 degrees or less, it is possible to eliminate an adverse effect on the long period and obtain an appropriate value of the horizontal spring constant.

【0035】なお、二次形状係数S2 が5以上、及びゴ
ム硬度Hdが50度より大では長周期化が充分に達成さ
れず、又一次次形状係数S1 が35未満、及び比D/t
が150以上のとき、高い面圧、高い剪断歪みが作用す
る際の座屈・曲げ変形を抑制できなくなる。なお、 ・一次形状係数S1 の上限は45以下が好ましく、その
理由は総ゴム厚さが同一の支承に対して積層数が増し、
コストが高くなるからである。 ・二次形状係数S2 の下限は30以上が好ましく、その
理由は面圧依存性、歪み依存性が大きくなってしまうか
らである。 ・比D/tの下限は20以上が好ましく、その理由は面
圧依存性、歪み依存性が大きくなってしまうからであ
る。 ・ゴム硬度Hdの下限は20以上が好ましく、その理由
は硬度低下に比例してクリープ量が増加してしまうから
である。
If the secondary shape factor S 2 is 5 or more and the rubber hardness Hd is more than 50 degrees, the long period cannot be sufficiently achieved, the primary shape factor S 1 is less than 35, and the ratio D / t
When it is 150 or more, buckling and bending deformation when high surface pressure and high shear strain act cannot be suppressed. In addition, ・ The upper limit of the primary shape factor S 1 is preferably 45 or less, because the number of laminations increases for bearings having the same total rubber thickness,
This is because the cost increases. The lower limit of the secondary shape factor S 2 is preferably 30 or more, because the surface pressure dependency and the strain dependency increase. The lower limit of the ratio D / t is preferably 20 or more, because the surface pressure dependency and the strain dependency increase. -The lower limit of the rubber hardness Hd is preferably 20 or more, because the creep amount increases in proportion to the decrease in hardness.

【0036】又免震積層体5に前記中心孔11がある場
合、硬質板9に生じる応力度が大きくなるなど、前記一
次形状係数S1 及び比D/tの規制による効果が減ぜら
れる。従って、本願の積層ゴム支承1においては、前記
中心孔11を形成しないことが好ましく、又形成する必
要がある場合には、その直径dは、前記ゴム状弾性板1
0の直径Dの0.05倍以下より好ましくは0.03倍
以下に止めるべきである。
When the seismic isolation laminate 5 has the center hole 11, the effect of the regulation of the primary shape factor S 1 and the ratio D / t is reduced, for example, the degree of stress generated in the hard plate 9 is increased. Therefore, in the laminated rubber bearing 1 of the present invention, it is preferable that the center hole 11 is not formed, and when it is necessary to form the center hole 11, the diameter d is equal to the rubber-like elastic plate 1.
It should be kept to no more than 0.05 times, more preferably no more than 0.03 times the diameter D of 0.

【0037】他方、本発明者らの研究の結果、ゴム状弾
性板10の外周面10sと硬質板9の外周面9sとが同
一形状をなしかつ全面を接着した直柱状の免震積層体5
においては、地震などにより大きな水平変形が生じたと
きには、前記硬質板9の外周エッジに応力が集中し、免
震装置に要求される柔らかな水平バネ定数を得ることが
出きないばかりでなエッジのゴム状弾性板10に損傷が
発生しやすくなる傾向にあることが判明した。特に、外
皮ゴム層6とゴム状弾性板10とが接着一体化している
場合には、ゴム状弾性板10の動き(変形)が外皮ゴム
層6に阻害されるため、水平バネ定数が影響を受け、面
圧依存性をいっそう悪化させることが判明した。
On the other hand, as a result of the study by the present inventors, the outer peripheral surface 10 s of the rubber-like elastic plate 10 and the outer peripheral surface 9 s of the hard plate 9 have the same shape, and the entire surface is adhered.
In the case, when a large horizontal deformation occurs due to an earthquake or the like, stress concentrates on the outer peripheral edge of the hard plate 9 and a soft horizontal spring constant required for the seismic isolation device cannot be obtained. It has been found that the rubber-like elastic plate 10 tends to be easily damaged. In particular, when the outer rubber layer 6 and the rubber-like elastic plate 10 are bonded and integrated, the movement (deformation) of the rubber-like elastic plate 10 is hindered by the outer rubber layer 6, so that the horizontal spring constant has an effect. As a result, it was found that the surface pressure dependency was further worsened.

【0038】これに対して、本例では、硬質板9の外周
近傍にゴム状弾性板10が存在しない中空部15を形成
しているため、硬質板9の外周エッジにおける応力集中
を避けるとともに、外皮ゴム層6とゴム状弾性板10と
の固着一体化を防止できるなどゴム状弾性板10の動き
が円滑化し、柔らかな水平バネ定数の確保、外周エッジ
からの損傷抑制、並びに水平バネ定数における面圧依存
性の低下をそれぞれ改善できる。
On the other hand, in this embodiment, since the hollow portion 15 in which the rubber-like elastic plate 10 does not exist is formed near the outer periphery of the hard plate 9, stress concentration at the outer peripheral edge of the hard plate 9 is avoided, and The movement of the rubber-like elastic plate 10 is smoothed, for example, the fixation and unification of the outer rubber layer 6 and the rubber-like elastic plate 10 can be prevented, a soft horizontal spring constant is secured, damage from the outer peripheral edge is suppressed, and the horizontal spring constant is reduced. The decrease in the surface pressure dependency can be improved.

【0039】なお前記中空部15の距離Lが、前記ゴム
厚さh’の1.0倍未満の時には、応力集中の回避が不
十分となる。又距離Lが大きすぎると、ゴム状弾性板1
0の実接着面積が減じるため、耐久性、強度などに悪影
響を与え、従って、その上限は、前記ゴム厚さh’の
2.0倍以下とするのが好ましい。
When the distance L between the hollow portions 15 is less than 1.0 times the thickness h 'of the rubber, the avoidance of stress concentration is insufficient. If the distance L is too large, the rubber-like elastic plate 1
Since the actual bonding area of 0 is reduced, durability and strength are adversely affected. Therefore, the upper limit thereof is preferably 2.0 times or less the rubber thickness h '.

【0040】又鉛直荷重を受けながら大きな水平剪断変
形が生じた際に起こるゴム状弾性板10の端部からのは
らみ出しを、中空部15に臨む硬質板9の外周部分が支
持できるため、鉛直方向の沈込みが抑えられ、面圧依存
性も改善される。特に、図4に示すように、外皮ゴム層
6の内面に、前記中空部15内に充填される突出部6A
を形成したときには、前記沈込みをより確実に抑制でき
面圧依存性をさらに改善しうる。このとき、突出部6A
とゴム状弾性板10との接着を避けるために、加硫前に
離型剤を塗布するか、外皮ゴム層6を前記天然ゴムとは
加硫接着しない前記異種のゴム材料で形成することが好
ましい。なお図2の如く中空部15を設ける場合には、
加硫接着の恐れがないため、外皮ゴム層6として前記同
種のゴム材料も採用でき、さらには前記ゴム材料以外に
も、耐候性に優れかつ可撓性を有するものならば、例え
ばポリエチレン、ポリプロピレン、ポリアミド等の種々
の合成樹脂材料を用いることもできる。
Further, since the outer peripheral portion of the hard plate 9 facing the hollow portion 15 can support the protrusion from the end of the rubber-like elastic plate 10 which occurs when a large horizontal shear deformation occurs while receiving a vertical load, Sinking in the direction is suppressed, and surface pressure dependency is also improved. In particular, as shown in FIG. 4, the protrusion 6 </ b> A filled in the hollow portion 15 is formed on the inner surface of the outer rubber layer 6.
Is formed, the depression can be suppressed more reliably, and the surface pressure dependency can be further improved. At this time, the protrusion 6A
In order to avoid adhesion between the rubber material and the rubber-like elastic plate 10, a release agent may be applied before vulcanization, or the outer rubber layer 6 may be formed of the different rubber material that does not vulcanize and adhere to the natural rubber. preferable. When the hollow portion 15 is provided as shown in FIG.
Since there is no fear of vulcanization adhesion, the same type of rubber material can be used as the outer rubber layer 6. Further, besides the rubber material, if the material has excellent weather resistance and flexibility, for example, polyethylene or polypropylene And various synthetic resin materials such as polyamide.

【0041】又図5に本願の他の実施例を示す。図にお
いて、前記ゴム状弾性板10は、その外周面10sの輪
郭形状が、硬質板9の外周面9sと略同形の場合を示
す。すなわち、各外周面9s、10sは互いに面一であ
り、ゴム状弾性板10の外周面10sは、外皮ゴム層6
と非接着状態で面接触している。この非接着状態は、前
述の如く外皮ゴム層6として前記ゴム状弾性板10とは
異種のゴム材料を用いることにより、簡易に形成するこ
とができ、又同種のゴム材料を用いる時には、加硫前の
離型剤の塗布によって形成できる。
FIG. 5 shows another embodiment of the present invention. In the drawing, the rubber-like elastic plate 10 shows a case where the outer peripheral surface 10 s has a contour shape substantially the same as the outer peripheral surface 9 s of the hard plate 9. That is, the outer peripheral surfaces 9 s and 10 s are flush with each other, and the outer peripheral surface 10 s of the rubber-like elastic plate 10 is
And surface contact in a non-adhered state. This non-adhered state can be easily formed by using a rubber material different from the rubber-like elastic plate 10 as the outer rubber layer 6 as described above, and when the same type of rubber material is used, it is vulcanized. It can be formed by applying a release agent before.

【0042】しかる場合においても、前記硬質板9の外
周エッジにおける応力集中を避けることが好ましく、硬
質板9の外周面9sから内方に前記距離Lを隔たる外周
近傍領域に、前記ゴム状弾性板10が前記硬質板9に接
着されない非接着部16を形成している。この非接着部
分16も、加硫前の離型剤の塗布によって形成できる。
なお図5には、非接着状態を接着状態と区別するため、
非接着部分16には微小隙間を設けて描いている。
In this case as well, it is preferable to avoid stress concentration at the outer peripheral edge of the hard plate 9, and the rubber-like elastic region is provided inward from the outer peripheral surface 9 s of the hard plate 9 at the distance L. The plate 10 forms a non-bonded portion 16 that is not bonded to the hard plate 9. This non-adhered portion 16 can also be formed by applying a release agent before vulcanization.
In FIG. 5, in order to distinguish the non-bonded state from the bonded state,
The non-bonded portion 16 is illustrated with a minute gap.

【0043】なお本願の積層ゴム支承1は、従来と同
様、外皮ゴム層6と免震積層体5との同時加硫によって
形成できるため、製作工程の増加を招くことがなく効率
よく製造することができ、しかも外皮ゴム層6が硬質板
9の側面と加硫接着するため、例えば耐候性材料のテー
プを巻き付けて外皮を形成する場合に比べ、接着強度及
び耐久性において優れた性能を示す。しかし同時加硫が
困難な場合には、外皮ゴム層6を免震積層体5とは別の
工程で成形するか、成形後の免震積層体5にテープを巻
き付けて外皮を形成しても良い。
Since the laminated rubber bearing 1 of the present invention can be formed by simultaneous vulcanization of the outer rubber layer 6 and the seismic isolation laminate 5 as in the prior art, efficient production can be achieved without increasing the number of production steps. In addition, since the outer skin rubber layer 6 is vulcanized and bonded to the side surface of the hard plate 9, it exhibits superior performance in terms of adhesive strength and durability as compared with, for example, a case where a tape of a weather-resistant material is wound around to form the outer skin. However, if simultaneous vulcanization is difficult, the outer rubber layer 6 may be formed in a process different from that of the seismic isolation laminate 5 or a tape may be wound around the molded seismic isolation laminate 5 to form the outer skin. good.

【0044】[0044]

【発明の効果】本願の積層ゴム支承は、叙上の如く構成
しているため、固有周期Tの長周期化を他の諸性能、特
に座屈性能などを損ねることなく達成でき、優れた免震
性能を発揮できる。
Since the laminated rubber bearing of the present invention is constructed as described above, it is possible to achieve a longer natural period T without impairing other performances, especially buckling performance, etc. It can demonstrate seismic performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願の積層ゴム支承の一実施例を示す断面図で
ある。
FIG. 1 is a sectional view showing one embodiment of a laminated rubber bearing of the present application.

【図2】その外周近傍領域を拡大して示す部分断面図で
ある。
FIG. 2 is an enlarged partial cross-sectional view of a region near the outer periphery.

【図3】水平荷重−水平歪み率曲線を、実施例と比較例
1、2とで比較した線図である。
FIG. 3 is a diagram comparing a horizontal load-horizontal distortion rate curve between an example and comparative examples 1 and 2;

【図4】外周近傍領域の他の実施例を拡大して示す断面
図である。
FIG. 4 is an enlarged cross-sectional view showing another embodiment near the outer periphery.

【図5】外周近傍領域のさらに他の実施例を拡大して示
す断面図である。
FIG. 5 is an enlarged cross-sectional view showing still another embodiment of a region near the outer periphery.

【図6】従来技術を説明する断面図である。FIG. 6 is a cross-sectional view illustrating a conventional technique.

【符号の説明】[Explanation of symbols]

1 積層ゴム支承 5 免震積層体 6 外皮ゴム層 9 硬質板 10 ゴム状弾性板 11 中心孔 14 間隙部 16 非接着部 DESCRIPTION OF SYMBOLS 1 Laminated rubber bearing 5 Seismic isolation laminated body 6 Outer rubber layer 9 Hard plate 10 Rubbery elastic plate 11 Center hole 14 Gap 16 Non-adhesion

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】複数の硬質板とゴム状弾性板とが交互に積
層されかつ接合された免震積層体を具える積層ゴム支承
であって、 前記ゴム状弾性板の直径をD、ゴム状弾性板の厚さを
h’、ゴム状弾性板の総厚さをh、前記硬質板の厚さを
t、前記免震積層体にその積層を貫通してのびる中心孔
がある場合の前記中心孔の直径をdとしたとき、 以下の式で定まる一次形状係数S1 は35以上、二次形
状係数S2 は5より小、前記直径Dと厚さtとの比D/
tは150より小、しかも前記ゴム状弾性板のゴム硬度
Hdは50度以下であることを特徴とする積層ゴム支
承。 S1 =(D−d)/4h’ −−−(1) S2 =D/h −−−(2)
1. A laminated rubber bearing comprising a seismic isolation laminate in which a plurality of hard plates and rubber-like elastic plates are alternately laminated and joined, wherein the rubber-like elastic plate has a diameter of D, The thickness of the elastic plate is h ', the total thickness of the rubbery elastic plate is h, the thickness of the hard plate is t, and the center when the seismic isolation laminate has a center hole extending through the laminate. When the diameter of the hole is d, the primary shape factor S 1 determined by the following equation is 35 or more, the secondary shape factor S 2 is less than 5, and the ratio D / D of the diameter D to the thickness t is D / D.
The laminated rubber bearing, wherein t is smaller than 150 and the rubber hardness Hd of the rubber-like elastic plate is 50 degrees or less. S 1 = (D−d) / 4h ′ − (1) S 2 = D / h − (2)
【請求項2】前記免震積層体は、前記中心孔を有さない
ことを特徴とする請求項1記載の積層ゴム支承。
2. The laminated rubber bearing according to claim 1, wherein said seismic isolation laminate does not have said center hole.
【請求項3】前記免震積層体は、前記中心孔を有しかつ
この中心孔の直径dは、前記ゴム状弾性板の直径Dの
0.05倍以下であることを特徴とする請求項1記載の
積層ゴム支承。
3. The seismic isolation laminate has the center hole, and the diameter d of the center hole is 0.05 times or less the diameter D of the rubber-like elastic plate. 1. The laminated rubber bearing according to 1.
【請求項4】前記免震積層体は、前記ゴム状弾性板の外
周面を、前記硬質板の外周面から内に距離Lを凹ませて
位置させることにより硬質板間にゴム状弾性板がない間
隙部を外周近傍領域に形成するとともに、前記免震積層
体の外周面は、この免震積層体と一体加硫形成される外
皮ゴム層により覆われることを特徴とする請求項1、2
又は3記載の積層ゴム支承。
4. The seismic isolation laminate is characterized in that the rubber-like elastic plate is located between the hard plates by positioning the outer peripheral surface of the rubber-like elastic plate at a distance L inward from the outer peripheral surface of the hard plate. 3. An outer peripheral surface of the seismic isolation laminate is covered with an outer rubber layer integrally vulcanized with the seismic isolation laminate, wherein no gap is formed in a region near the outer periphery.
Or the laminated rubber bearing according to 3.
【請求項5】前記ゴム状弾性板と硬質板との各外周面は
略同形でありかつ外周面から内方に距離Lを隔たる外周
近傍領域に、前記ゴム状弾性板が前記硬質板に接着され
ない非接着部を形成するとともに、前記免震積層体の外
周面は、この免震積層体と一体加硫形成される外皮ゴム
層により覆われることを特徴とする請求項1、2又は3
記載の積層ゴム支承。
5. The rubber-like elastic plate and the hard plate have substantially the same outer peripheral surface, and the rubber-like elastic plate is attached to the hard plate in a region near the outer periphery which is inwardly separated by a distance L from the outer peripheral surface. The non-adhesive portion which is not adhered is formed, and an outer peripheral surface of the seismic isolation laminate is covered with a skin rubber layer integrally vulcanized with the seismic isolation laminate.
The described laminated rubber bearing.
【請求項6】前記距離Lは、前記ゴム状弾性板の厚さ
h’の1.0倍以上であることを特徴とする請求項4又
は5記載の積層ゴム支承。
6. The laminated rubber bearing according to claim 4, wherein the distance L is at least 1.0 times the thickness h ′ of the rubber-like elastic plate.
JP23512298A 1998-08-21 1998-08-21 Laminated rubber support Pending JP2000065135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23512298A JP2000065135A (en) 1998-08-21 1998-08-21 Laminated rubber support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23512298A JP2000065135A (en) 1998-08-21 1998-08-21 Laminated rubber support

Publications (1)

Publication Number Publication Date
JP2000065135A true JP2000065135A (en) 2000-03-03

Family

ID=16981387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23512298A Pending JP2000065135A (en) 1998-08-21 1998-08-21 Laminated rubber support

Country Status (1)

Country Link
JP (1) JP2000065135A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050313A (en) * 2001-08-07 2003-02-21 Nitto Denko Corp Polarizing plate and liquid crystal display element
JP2013002509A (en) * 2011-06-14 2013-01-07 Swcc Showa Device Technology Co Ltd Laminated rubber bearing body
JP2013044416A (en) * 2011-08-25 2013-03-04 Swcc Showa Device Technology Co Ltd Laminated rubber bearing body
JP2016028208A (en) * 2014-07-10 2016-02-25 昭和電線デバイステクノロジー株式会社 Laminated rubber bearing body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050313A (en) * 2001-08-07 2003-02-21 Nitto Denko Corp Polarizing plate and liquid crystal display element
JP2013002509A (en) * 2011-06-14 2013-01-07 Swcc Showa Device Technology Co Ltd Laminated rubber bearing body
JP2013044416A (en) * 2011-08-25 2013-03-04 Swcc Showa Device Technology Co Ltd Laminated rubber bearing body
JP2016028208A (en) * 2014-07-10 2016-02-25 昭和電線デバイステクノロジー株式会社 Laminated rubber bearing body

Similar Documents

Publication Publication Date Title
JP2000065135A (en) Laminated rubber support
JPH11210091A (en) Base isolation structure
JP5763981B2 (en) Laminated rubber bearing
JP4594183B2 (en) Laminated support
JPH11141181A (en) Laminated rubber type vibration isolation device
JP3039846B2 (en) Laminated rubber bearing
JP2019127994A (en) Aseismic base isolation support device
JPH11344076A (en) Laminated rubber bearing
JP2002195327A (en) Laminated rubber pivotally supporting body
JP2839988B2 (en) Laminated rubber bearing
JPH09196116A (en) Base isolator of structure
WO2000031436A1 (en) Seismic isolation device
JP3282801B2 (en) Seismic isolation bearing
JP3359465B2 (en) Laminated rubber bearing
JP4631274B2 (en) Laminated rubber seismic isolation device mounting structure
JP2002147527A (en) Laminated rubber for base isolation
JPH11344075A (en) Laminated rubber bearing
JPH0960689A (en) Base isolation supporting body
JPS6245836A (en) Earthquake isolator
JP2002188687A (en) Base-isolation device
JPH06272217A (en) Support for bridge
JP2001220826A (en) Sliding bearing for base isolation
JP2001140978A (en) Laminated rubber support body
JPH1122241A (en) Base isolator of friction attenuation type
JPH0520807Y2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040420