JP5763981B2 - Laminated rubber bearing - Google Patents

Laminated rubber bearing Download PDF

Info

Publication number
JP5763981B2
JP5763981B2 JP2011132690A JP2011132690A JP5763981B2 JP 5763981 B2 JP5763981 B2 JP 5763981B2 JP 2011132690 A JP2011132690 A JP 2011132690A JP 2011132690 A JP2011132690 A JP 2011132690A JP 5763981 B2 JP5763981 B2 JP 5763981B2
Authority
JP
Japan
Prior art keywords
rubber
plate
laminated rubber
laminated
surface pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011132690A
Other languages
Japanese (ja)
Other versions
JP2013002509A (en
Inventor
柳 勝幸
勝幸 柳
加藤 直樹
直樹 加藤
美雪 開發
美雪 開發
慧 前野
慧 前野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Showa Device Technology Co Ltd
Original Assignee
SWCC Showa Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Device Technology Co Ltd filed Critical SWCC Showa Device Technology Co Ltd
Priority to JP2011132690A priority Critical patent/JP5763981B2/en
Publication of JP2013002509A publication Critical patent/JP2013002509A/en
Application granted granted Critical
Publication of JP5763981B2 publication Critical patent/JP5763981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は、構造物の免震などに用いられる積層ゴム支承体に係り、特にゴム状弾性体のせん断弾性率を大きくして高面圧化を図ることができる積層ゴム支承体に関する。   The present invention relates to a laminated rubber bearing used for seismic isolation of a structure, and more particularly to a laminated rubber bearing that can increase the shear elastic modulus of a rubber-like elastic body to increase the surface pressure.

従来から、建築物等の上部構造体及び基礎等の下部構造体間に設けられ、両構造体間の相対的な水平方向の振動エネルギを吸収して上部構造体への振動加速度を低減するために、積層ゴム支承体が使用されている。   Conventionally, it has been provided between upper structures such as buildings and lower structures such as foundations to absorb vibration energy in the horizontal direction between the two structures and reduce vibration acceleration to the upper structure. In addition, laminated rubber bearings are used.

このような積層ゴム支承体は、図3に示すように、複数のゴム板1と鋼板のような金属材からなる硬質板(中間鋼板)2とを交互に積層し加硫接着するとともに、上下両側から2枚の硬質板(連結鋼板)3a、3bで挟持して成るものが知られている(例えば、特許文献1等)。なお、図中、符号4a、4bは連結鋼板3a、3bの上下両側にそれぞれ重ねられたフランジ、5a、5bは連結鋼板3a、3bとフランジ4a、4bを連結固定するボルト、符号6は硬質板2およびゴム板1の中央に設けられる製造時の加熱用の中心孔、7はゴム板1と硬質板2の外周面に設けられる保護層、8a、8bは取付ボルト用穴を示している。   As shown in FIG. 3, such a laminated rubber bearing is formed by alternately laminating a plurality of rubber plates 1 and a hard plate (intermediate steel plate) 2 made of a metal material such as a steel plate and vulcanizing and bonding them. There are known ones sandwiched between two hard plates (connected steel plates) 3a and 3b from both sides (for example, Patent Document 1). In the figure, reference numerals 4a and 4b are flanges stacked on the upper and lower sides of the connecting steel plates 3a and 3b, 5a and 5b are bolts for connecting and fixing the connecting steel plates 3a and 3b and the flanges 4a and 4b, and reference numeral 6 is a hard plate. 2 and a center hole for heating provided at the center of the rubber plate 1, 7 is a protective layer provided on the outer peripheral surfaces of the rubber plate 1 and the hard plate 2, and 8a and 8b are holes for mounting bolts.

このような積層ゴム支承体の形状を決定する主なパラメーターは、ゴム板1の直径または一辺の長さDとゴム板1の1層あたりの厚さt、及びゴム板1の積層枚数nであり、これらは一次形状係数Sと二次形状係数Sとしてまとめられる。 The main parameters for determining the shape of such a laminated rubber bearing are the diameter of the rubber plate 1 or the length D 1 of one side, the thickness t R of the rubber plate 1 and the number of laminated rubber plates 1. n, which are summarized as a primary shape factor S 1 and a secondary shape factor S 2 .

一次形状係数Sは、ゴム板1の拘束面積と自由表面積(側面積)の比として、二次形状係数Sは、ゴム板1の直径または一辺の長さとゴム層全体の厚さの比としてそれぞれ定義され、以下に示す式で計算される。 The primary shape factor S 1 is the ratio of the restrained area of the rubber plate 1 and the free surface area (side area), and the secondary shape factor S 2 is the ratio of the diameter or length of one side of the rubber plate 1 to the thickness of the entire rubber layer. And is calculated by the following formula.

=(D−D)/4t
=D/nt (式1)
但し、nはゴム板1の積層枚数、Dは硬質板2およびゴム板1の中央に設けられる製造時の加熱用の中心孔6の直径を示す。
S 1 = (D 1 −D 2 ) / 4t R
S 2 = D 1 / nt R (Formula 1)
Here, n represents the number of laminated rubber plates 1, and D 2 represents the diameter of the central hole 6 for heating provided at the center of the hard plate 2 and the rubber plate 1.

そして、一次形状係数Sは、鉛直剛性、回転剛性に関するパラメーターであり、Sが大きくなるほど、直径に対するゴム層(ゴム板1)の厚さは薄くなり、鉛直剛性や曲げ剛性が大きくなる。また、二次形状係数Sは、載荷能力や水平剛性に関するパラメーターであり、Sが大きくなるほど、積層ゴム(ゴム板1)は偏平になり座屈や曲げ変形を起こしにくい形状となる。 The primary shape factor S 1 is a vertical rigid parameters for rotational stiffness, the greater the S 1, becomes thin the thickness of the rubber layer (rubber plate 1) to the diameter, the vertical rigidity and flexural rigidity increases. The secondary shape coefficient S 2 is a parameter related to loading capacity and horizontal rigidity, the larger the S 2, laminated rubber (rubber plate 1) is less susceptible to flattening on it buckling or bending deformation shape.

このような観点から、従来の積層ゴム支承体においては、安定した積層ゴム支承体とするため、二次形状係数Sは5以上としている。 From this point of view, in the conventional laminated rubber bearing member, to a stable laminated rubber bearing body, the secondary shape factor S 2 is set to 5 or more.

一方、近年の建築分野では、効果的な免震構造として免震建物の固有周期をより長周期化する方向が指向されており、地震波の入力に対する出力の収束傾向から、4秒以上の振動周期を有する積層ゴム支承体の使用が、免震特性の点で有効であることが確認されている。   On the other hand, in the recent construction field, the direction of increasing the natural period of the seismic isolation building as an effective seismic isolation structure is directed to a longer period. From the convergence tendency of the output with respect to the input of the seismic wave, the vibration period of 4 seconds or more. It has been confirmed that the use of a laminated rubber bearing body having the above is effective in terms of seismic isolation characteristics.

ここで、積層ゴム支承体の水平剛性に基づく免震建物の固有周期Tは、式2より与えられ、積層ゴム支承体のゴム板1の外径Dを同じとした場合、長周期化を図るには、ゴム板1の面圧(圧縮応力)σを上げるか、ゴム板1を構成するゴム状弾性体のせん断弾性率Gを下げるか、または積層ゴム支承体の二次形状係数Sを小さくすることになる。 Here, the natural period T of the base-isolated building based on the horizontal rigidity of the laminated rubber bearing is given by Equation 2, and when the outer diameter D of the rubber plate 1 of the laminated rubber bearing is the same, a longer period is achieved. For example, the surface pressure (compression stress) σ of the rubber plate 1 is increased, the shear elastic modulus G of the rubber-like elastic body constituting the rubber plate 1 is reduced, or the secondary shape factor S 2 of the laminated rubber bearing is set. Will be smaller.

T=2π√{W/(K・g)}≒2π√{(D・σ)/(S・G・g)} (式2)
但し、Wは建物総重量、Kは積層ゴム支承の水平剛性、gは重力加速度を示している。
T = 2π√ {W / (K H · g)} ≈2π√ {(D · σ) / (S 2 · G · g)} (Formula 2)
Where W is the total weight of the building, K H is the horizontal rigidity of the laminated rubber bearing, and g is the acceleration of gravity.

ところで、長周期化の事例として、例えば特開平8−312704号公報(特許文献1)には、ゴム板1を構成するゴム状弾性体のせん断弾性率Gを小さくすることにより、すなわち、一次形状係数Sを20以上、二次形状係数Sを5以上で、かつゴム板1を構成するゴム状弾性体のせん断弾性率Gを4kgf/cmより小さくすることにより、振動周期が長く、かつ水平ばね定数の面圧依存性が小さくなる積層ゴム支承体が開示され、また、特開2000−65135号公報(特許文献2)には、ゴム状弾性体のせん断弾性率Gを4kgf/cm〜6kgf/cm程度とし(段落「0009」、「表1」)、二次形状係数Sを5より小さくし、さらにゴム板の外径Dと硬質板の厚さtの比(D/t)を150より小さくすることで、長周期化する構成が開示されている。 Incidentally, as an example of lengthening the period, for example, in Japanese Patent Laid-Open No. 8-312704 (Patent Document 1), by reducing the shear elastic modulus G of the rubber-like elastic body constituting the rubber plate 1, that is, the primary shape. By making the coefficient S 1 20 or more, the secondary shape factor S 2 5 or more, and making the shear elastic modulus G of the rubber-like elastic body constituting the rubber plate 1 smaller than 4 kgf / cm 2 , the vibration period is long, A laminated rubber bearing body in which the horizontal spring constant is less dependent on the surface pressure is disclosed, and Japanese Patent Laid-Open No. 2000-65135 (Patent Document 2) discloses a shear elastic modulus G of a rubber-like elastic body of 4 kgf / cm. 2 to 6 kgf / cm 2 (paragraphs “0009” and “Table 1”), the secondary shape factor S 2 is made smaller than 5, and the ratio of the outer diameter D of the rubber plate to the thickness t of the hard plate (D / t) less than 150 And in, that configuration is disclosed for long period of.

一方、積層ゴム支承体の設計においては、近年、設計荷重(面圧)を高くする傾向になってきている。すなわち、積層ゴム支承体は、工事作業性等を考慮して積層ゴム支承体1個の直径を小さくする傾向にある。このため、積層ゴム支承体にかかる建築物の荷重が同じ条件であっても、積層ゴム支承体の直径が小さくなると、積層ゴム支承体の単位面積当たりにかかる荷重は、すなわち面圧は、より大きなものとなる。従って、高面圧下においても良好な免震特性が得られる積層ゴム支承体が求められている。   On the other hand, in the design of laminated rubber bearings, in recent years, there has been a tendency to increase the design load (surface pressure). That is, the laminated rubber bearing body tends to reduce the diameter of one laminated rubber bearing body in consideration of construction workability and the like. For this reason, even if the building load applied to the laminated rubber bearing is the same, if the diameter of the laminated rubber bearing is reduced, the load per unit area of the laminated rubber bearing, that is, the surface pressure is more It will be big. Accordingly, there is a need for a laminated rubber bearing that can provide good seismic isolation characteristics even under high surface pressure.

この点に関し、免震建築物及び免震材料に関する技術基準(平成12年度建設省告示2009号及び2010号)において、積層ゴム支承体の設計にあたり、積層ゴム支承体の鉛直基準強度は、圧縮限界強度を0.9倍した数値以下の値とし、同積層ゴム支承材の水平基準変形は、鉛直基準強度の1/3に相当する面圧で水平方向に変形させた場合の限界の変形と定められている。ここで、圧縮限界強度σは、アイソレータが座屈や破断をすることなく安全に支持できる圧縮応力度と規定されており、式3より算出される。 In this regard, in the technical standards for seismic isolation buildings and seismic isolation materials (Ministry of Construction Notification 2009 and 2010 No. 2000), the vertical standard strength of the laminated rubber bearings is the compression limit. The horizontal reference deformation of the laminated rubber bearing material shall be the limit deformation when it is deformed in the horizontal direction with a surface pressure equivalent to 1/3 of the vertical reference strength. It has been. Here, the compression limit strength σ B is defined as a compressive stress degree that the isolator can safely support without buckling or breaking, and is calculated from Equation 3.

σ=ζ・G・S・S
ζ=π√{k/8(1+2kS G/E)} (式3)
但し、Gはゴム板を構成するゴム状弾性体のせん断弾性率、Sは一次形状係数、Sは積層ゴム支承の二次形状係数、kはゴムの硬度に応じた補正係数、Eは体積弾性係数を示している。
σ B = ζ · G · S 1 · S 2
ζ = π√ {k / 8 (1 + 2 kS 1 2 G / E b )} (Formula 3)
Where G is the shear elastic modulus of the rubber-like elastic body constituting the rubber plate, S 1 is the primary shape factor, S 2 is the secondary shape factor of the laminated rubber bearing, k is a correction factor corresponding to the hardness of the rubber, E b Indicates the bulk modulus.

この技術基準に基づき、積層ゴム支承体の面圧を高くするには、圧縮限界強度σを大きくする必要がある。具体的には、式3より、せん断弾性率Gを大きくするか、一次形状係数Sを大きくするか、または二次形状係数Sを大きくすることになる。 In order to increase the surface pressure of the laminated rubber bearing based on this technical standard, it is necessary to increase the compression limit strength σ B. Specifically, from equation 3, increase the shear modulus G, will be increased either by increasing primary shape factor S 1, or a secondary shape factor S 2.

ここで、1次形状係数Sを大きくする場合、式1より、ゴム板の外径Dを大きくするか、ゴム板1の1層あたりの厚みtを薄くすることになるが、ゴム板1の外径Dを大きくする方法については、積層ゴム支承体自体が大型化することになり、材料費等のコストアップにつながってしまう。また、ゴム板1の外径Dを大きくすると、硬質板2の外径も合わせて大きくなることから、積層ゴム支承体の重量が重くなってしまう。さらに、設置するスペースの問題から、積層ゴム支承体の外径(ゴム板1の外径D)に制約が生じることもあるし、積層ゴム支承体1個の直径を小さくする傾向とは逆になる。また、ゴム板1の1層当りの厚さtを薄くした場合、積層ゴム支承体全体として必要となるゴム厚を確保するために、ゴム板1の総数を増やす必要がある。さらに、積層ゴム支承体は、複数のゴム板1と硬質板2を交互に積層することで形成されるところ、ゴム板1の総数を増やすと、硬質板2の総数も増えることになり、全体として積層ゴム支承体の重量が増加し、コストもアップしてしまう。 Here, when the primary shape factor S 1 is increased, the outer diameter D 1 of the rubber plate is increased or the thickness t R per layer of the rubber plate 1 is decreased from the equation 1, but the rubber the method of increasing the outer diameter D 1 of the plate 1, the laminated rubber bearing body itself becomes to large, resulting in increase in cost of material cost and the like. Also, increasing the outer diameter D 1 of the rubber plate 1, since the outer diameter of the hard plate 2 be combined becomes large, the weight of the laminated rubber bearing body becomes heavier. Furthermore, the outer diameter of the laminated rubber bearing (outer diameter D 1 of the rubber plate 1 ) may be restricted due to the problem of installation space, which is contrary to the tendency to reduce the diameter of one laminated rubber bearing. become. Moreover, when reducing the thickness t R of the first layer per the rubber plate 1, in order to ensure the rubber thickness required overall laminated rubber bearing body, it is necessary to increase the total number of the rubber plate 1. Further, the laminated rubber support is formed by alternately laminating a plurality of rubber plates 1 and hard plates 2. However, when the total number of rubber plates 1 is increased, the total number of hard plates 2 is also increased. As a result, the weight of the laminated rubber bearing increases and the cost increases.

次に、式1より、D=0、すなわち、硬質板2およびゴム板1の中央に設けられる製造時の加熱用の中心孔6を無くすことも考えられるが、加熱用の中心孔6は、加熱の他、加硫時のエア抜きのためにも形成されており、また、積層工程から加硫工程に至る各製造段階における中間鋼板の位置決めにも不可欠となっているため、中心孔6を無くす(D=0とする)ことはできない。また、二次形状係数Sを大きくした場合、座屈や曲げ変形は起こり難くなるが、式2より、免震建屋の固有周期Tが短くなってしまうため、Sを大きくすることにも限度がある。 Next, from Formula 1, D 2 = 0, that is, it is considered that the center hole 6 for heating provided in the center of the hard plate 2 and the rubber plate 1 may be eliminated, but the center hole 6 for heating is In addition to heating, it is also formed for venting during vulcanization, and is also essential for positioning of the intermediate steel plate in each manufacturing stage from the lamination process to the vulcanization process. Cannot be eliminated (D 2 = 0). Further, when increasing the secondary shape coefficient S 2, although buckling or bending deformation is difficult to occur, the equation 2, because the natural period T of the seismic isolation building is shortened, also possible to increase the S 2 There is a limit.

この点に関し、特開平8−312704号公報(特許文献1)に開示される積層ゴム支承体においては、長周期化のため、ゴム板1を構成するゴム状弾性体のせん断弾性率Gを小さくしているが、せん断弾性率Gを小さくした場合、ゴム板1の層が低弾性で柔らかくなり、風揺れ等の影響を受けやすくなり、さらにクリープ量の増加を招く虞がある上、圧縮限界強度σを大きくして高面圧化する方向とは逆行する。また、特開2000−65135号公報(特許文献2)に開示される積層ゴム支承体のように、長周期化のため、二次形状係数Sを5より小さくする構成も、圧縮限界強度σを大きくして高面圧化する方向とは逆行する。 In this regard, in the laminated rubber bearing disclosed in Japanese Patent Application Laid-Open No. 8-312704 (Patent Document 1), the shear elastic modulus G of the rubber-like elastic body constituting the rubber plate 1 is reduced to increase the period. However, when the shear modulus G is reduced, the rubber plate 1 layer becomes soft and soft with low elasticity, and is easily affected by wind fluctuations, etc., and may cause an increase in the amount of creep, as well as the compression limit. The direction opposite to the direction in which the strength σ B is increased to increase the surface pressure. Further, as in the laminated rubber bearing disclosed in JP 2000-65135 A (Patent Document 2), the configuration in which the secondary shape factor S 2 is made smaller than 5 for a long period is also the compression limit strength σ. The direction reverses from the direction of increasing B to increase the surface pressure.

このような観点から、座屈や曲げ変形を考慮した積層ゴム支承体の設計においては、二次形状係数Sを5以上とすることが望まれているところ、特開2000−65135号公報(特許文献2)に開示される方法では、固有周期Tを4秒以上とすることは困難になる。 From this point of view, in the design of the laminated rubber bearing body in consideration of buckling or bending deformation, where it is desired to a secondary shape factor S 2 5 or more, JP 2000-65135 JP ( In the method disclosed in Patent Document 2), it is difficult to set the natural period T to 4 seconds or more.

一方、積層ゴム支承体の高面圧化に対し、免震建物の固有周期Tの長周期化や積層ゴム支承体の製作コスト等も考慮して設計する必要がある。また、面圧(圧縮応力)σを上げることによって、クリープ量の増加を招き、より小さな水平剪断変形時において座屈が発生しやすくなるなど座屈特性を低下させる懸念があり、座屈特性を考慮した設計とする必要もある。さらに、鉛直方向の面圧(鉛直荷重をゴム板の面積で除した値)が変わっても水平特性の変化が小さい、すなわち面圧依存性が小さくなるように設計することも要求される。   On the other hand, in order to increase the surface pressure of the laminated rubber bearing body, it is necessary to design in consideration of the longer period of the natural period T of the base-isolated building and the production cost of the laminated rubber bearing body. In addition, increasing the surface pressure (compressive stress) σ may increase the amount of creep, and there is a concern that buckling characteristics may be reduced, such as buckling is likely to occur during smaller horizontal shear deformations. It is also necessary to consider the design. Furthermore, it is also required to design such that the change in horizontal characteristics is small, that is, the dependence on the surface pressure is small, even if the surface pressure in the vertical direction (value obtained by dividing the vertical load by the area of the rubber plate) changes.

従って、これらの各要求に鑑みて、二次形状係数Sを5以上、免震建物の固有周期Tを4秒以上とした上で、ゴム状弾性体のせん断弾性率Gを大きくして高面圧化を図ることは、従来の方法では困難であり、平成12年度建設省告示に基づく、圧縮方向の許容応力度(鉛直基準強度の1/3に相当する面圧で水平方向に変形させた場合の限界の変形)は15N/mmまでであった。 Therefore, in view of each of these requirements, the secondary shape coefficient S 2 to 5 or more, after a specific period T of the seismic isolation building 4 seconds or more, the high and increasing the shear modulus G of the rubber-like elastic body It is difficult to achieve surface pressure with the conventional method. Based on the 2000 Ministry of Construction notice, the allowable stress in the compression direction (the surface pressure corresponding to 1/3 of the vertical reference strength is deformed in the horizontal direction). The limit deformation in this case was up to 15 N / mm 2 .

特開平8−312704号公報JP-A-8-312704 特開2000−65135号公報JP 2000-65135 A

本発明は、積層ゴム支承体の高面圧化に際し、コストアップ等につながる積層ゴム支承体の外径(ゴム板の外径)を変更することなく、また、免震建物の固有周期については4秒以上を維持し、二次形状係数は5以上として、さらに高面圧化によって座屈特性等が低下しない積層ゴム支承体を提供することを目的としている。   The present invention does not change the outer diameter of the laminated rubber bearing body (the outer diameter of the rubber plate), which leads to an increase in cost, etc., and increases the surface pressure of the laminated rubber bearing body. An object of the present invention is to provide a laminated rubber bearing that maintains 4 seconds or more and has a secondary shape factor of 5 or more and does not deteriorate buckling characteristics and the like due to higher surface pressure.

本発明の第1の態様である積層ゴム支承体は、複数の硬質板とゴム板とを交互に積層一体化してなる積層ゴム支承体において、硬質板およびゴム板の中央に設けられる中心孔にはゴム板と同一または同質のゴム材が充填されており、積層ゴム支承体の二次形状係数をS、ゴム板のせん断弾性率をG〔N/mm〕としたときに、(a)S≧5、(b)0.8≧G≧0.5の条件を満足するように構成されたものであって、面圧(圧縮応力)σ=20〔N/mm 〕を達成し、かつ、ゴム板の外径をD、重力加速度をgとしたときに、2π√{(D・σ)/(S ・G・g)}で求められる積層ゴム支承体の水平剛性に基づく免震建物の固有周期が4秒以上であるとされているものである。 The laminated rubber bearing body according to the first aspect of the present invention is a laminated rubber bearing body obtained by alternately laminating and integrating a plurality of hard plates and rubber plates, in a central hole provided at the center of the hard plate and the rubber plate. Is filled with the same or the same rubber material as the rubber plate, and when the secondary shape factor of the laminated rubber support is S 2 and the shear modulus of the rubber plate is G [N / mm 2 ], (a ) S 2 ≧ 5, (b) 0.8 ≧ G ≧ 0.5 It is configured to satisfy the condition, and the surface pressure (compression stress) σ = 20 [N / mm 2 ] is achieved. In addition, when the outer diameter of the rubber plate is D and the acceleration of gravity is g, the horizontal rigidity of the laminated rubber bearing body calculated by 2π√ {(D · σ) / (S 2 · G · g)} is obtained. It is said that the natural period of the base-isolated building is 4 seconds or more .

本発明の第の態様は、第1の態様である積層ゴム支承体において、硬質板の外周縁側は、ゴム板の外周縁側より径方向外方に突出しているものである。 According to a second aspect of the present invention, in the laminated rubber support according to the first aspect , the outer peripheral edge side of the hard plate protrudes radially outward from the outer peripheral edge side of the rubber plate.

本発明の第1の態様または第2の態様の積層ゴム支承体によれば、次のような効果がある。 The laminated rubber bearing body according to the first aspect or the second aspect of the present invention has the following effects.

第1に、ゴム板を構成するゴム状弾性体のせん断弾性率Gを0.5N/mm以上とすることで、圧縮限界強度σを大きくすることができ、また、圧縮方向の許容応力度(長期面圧)が20N/mmの十分な性能を有する積層ゴム支承体を提供することができ、さらに、圧縮方向の許容応力度(長期面圧)が20N/mmとなることで、固有周期Tが4秒以上の免震建物を提供することができる。 First, by setting the shear elastic modulus G of the rubber-like elastic body constituting the rubber plate to 0.5 N / mm 2 or more, the compression limit strength σ B can be increased, and the allowable stress in the compression direction can be increased. A laminated rubber bearing body having a sufficient performance with a degree (long-term surface pressure) of 20 N / mm 2 can be provided, and the allowable stress degree (long-term surface pressure) in the compression direction is 20 N / mm 2. A base-isolated building having a natural period T of 4 seconds or more can be provided.

第2に、積層ゴム支承体の形成時に、硬質板とゴム板の中央に設けた中心孔にゴム板と同一または同質のゴム材を充填することで、製造時における中心孔は維持したうえで、建築物を支承する際には、中心孔が無い状態を模擬して1次形状係数Sを大きくすることができる。また、中心孔へのゴム材の充填により、積層ゴム支承体の変形時においてゴム状弾性が中心孔内にはみ出すことを抑制し、水平剛性の面圧依存性を改善することができる。 Secondly, when the laminated rubber support is formed, the central hole provided in the center of the hard plate and the rubber plate is filled with the same or the same quality rubber material as that of the rubber plate. , when supporting the buildings, it is possible to increase the primary shape factor S 1 to simulate a state the center hole is not. Further, by filling the center hole with the rubber material, it is possible to suppress the rubber-like elasticity from protruding into the center hole when the laminated rubber bearing is deformed, and to improve the surface pressure dependency of the horizontal rigidity.

第3に、ゴム板の厚さに対する硬質板(中間鋼板)の厚みを0.5超と厚くすることで、硬質板(中間鋼板)に剛性及び強度を持たせ、曲げ変形の抑制と局部的な応力集中の緩和を図り、高面圧化での挙動を安定させ、面圧依存性を小さくすることができる。   Third, by increasing the thickness of the hard plate (intermediate steel plate) to more than 0.5 with respect to the thickness of the rubber plate, the hard plate (intermediate steel plate) is given rigidity and strength, and bending deformation is suppressed and localized. It is possible to alleviate stress concentration, stabilize the behavior at higher surface pressure, and reduce the surface pressure dependency.

本発明の実施例における積層ゴム支承体の断面図。Sectional drawing of the laminated rubber support body in the Example of this invention. 理論式より求めた圧縮限界曲線と圧縮せん断試験及びオフセットせん断圧縮試験の測定結果の比較を示す説明図Explanatory drawing which shows the comparison of the measurement result of the compression limit curve and the compression shear test and the offset shear compression test which were calculated | required from the theoretical formula 従来における積層ゴム支承体の断面図。Sectional drawing of the laminated rubber bearing body in the past.

以下、本発明の積層ゴム支承体の好ましい実施の形態例について、図面を参照して説明する。   Hereinafter, preferred embodiments of the laminated rubber bearing of the present invention will be described with reference to the drawings.

図1は本発明における積層ゴム支承体の一実施例の断面図を示している。なお、同図において、図3と同一の部分には同一の符号が付されている。   FIG. 1 shows a cross-sectional view of an embodiment of a laminated rubber bearing in the present invention. In the figure, the same parts as those in FIG. 3 are denoted by the same reference numerals.

図1において、本発明の積層ゴム支承体は、複数のゴム板1と鋼板のような金属材からなる硬質板(中間鋼板)2とを交互に積層し加硫接着してなる免震積層体9と、免震積層体9の上下両側に当該免震積層体9を挟持するように配置される連結鋼板3a、3bと、連結鋼板3a、3bの上下両側にそれぞれ重ねられ、ボルト5a、5bを介して連結鋼板3a、3b取付けられるフランジ4a、4bとを備えている。
In FIG. 1, the laminated rubber support of the present invention is a seismic isolation laminate obtained by alternately laminating a plurality of rubber plates 1 and a hard plate (intermediate steel plate) 2 made of a metal material such as a steel plate and vulcanizing and bonding them. 9 and connecting steel plates 3a and 3b arranged to sandwich the seismic isolation laminate 9 on both the upper and lower sides of the seismic isolation laminate 9, and the upper and lower sides of the connecting steel plates 3a and 3b, respectively, and bolts 5a and 5b. connecting steel plates 3a via the flange 4a mounted to 3b, and a 4b.

なお、図中、符号6は、硬質板2およびゴム板1の中央に設けられる製造時の加熱用の中心孔、8a、8bはフランジ4a、4bの外周縁側に円周方向に沿って等間隔で設けられた取付ボルト穴を示している。   In the figure, reference numeral 6 denotes a center hole for heating provided in the center of the hard plate 2 and the rubber plate 1, and 8a and 8b are equally spaced along the circumferential direction on the outer peripheral side of the flanges 4a and 4b. The attachment bolt hole provided in is shown.

このような構成の積層ゴム支承体は、下部側のフランジ4bを介して例えば基礎等の下部構造体10bに取付けられ、上部側のフランジ4aを介して例えば建築物等の上部構造体10aに取付けられる。   The laminated rubber bearing having such a structure is attached to the lower structure 10b such as a foundation via the lower flange 4b, and is attached to the upper structure 10a such as a building via the upper flange 4a. It is done.

ここで、本実施例においては、免震積層体9としていわゆる中間鋼板露出型のものが使用されている。具体的には、硬質板2の外周縁側が荷重を支えるゴム板1の外周縁側より径方向外方に突出するように配置されている。このような中間鋼板露出型の免震積層体によれば、各ゴム層(ゴム板1)および中間鋼板(硬質板2)の整列が人目でわかるため、品質管理が容易となり、また、成型時の熱伝導が従来に比べて均一化されるため、各ゴム層(ゴム板1)に加わる熱履歴が均質化され、良好な特性と接着性能を得ることができる。さらに、安定した形状との相乗効果により、積層ゴム(ゴム板1)の命である荷重支承能力、安定した変形、および水平剛性のきわめて少ない依存性を実現させることができる。   Here, in the present embodiment, a so-called intermediate steel plate exposure type is used as the seismic isolation laminate 9. Specifically, it arrange | positions so that the outer periphery side of the hard board 2 may protrude in the radial direction outward from the outer periphery side of the rubber plate 1 which supports a load. According to such an intermediate steel plate-exposed seismic isolation laminate, since the alignment of each rubber layer (rubber plate 1) and intermediate steel plate (hard plate 2) can be visually recognized, quality control is facilitated, and at the time of molding Therefore, the heat history applied to each rubber layer (rubber plate 1) is homogenized, and good characteristics and adhesive performance can be obtained. Furthermore, due to the synergistic effect with the stable shape, it is possible to realize the load bearing ability, the stable deformation, and the extremely low dependency of the horizontal rigidity, which are the life of the laminated rubber (rubber plate 1).

また、当該免震積層体9の外周には、必要により、長期耐久性に優れた合成ゴムの後巻き等により形成される保護層7を設けることができる。このような保護層7を設けた場合には、酸素、紫外線、オゾンおよび湿度等の劣勢因子から保護し、耐久性を更に向上させることができる。
なお、保護層7は、後から別途取り付けるため、中間鋼板露出型による免震積層体の効果は損なわれない。
Further, a protective layer 7 formed by, for example, a synthetic rubber post-winding excellent in long-term durability can be provided on the outer periphery of the seismic isolation laminate 9 if necessary. When such a protective layer 7 is provided, it can protect from inferior factors, such as oxygen, an ultraviolet-ray, ozone, and humidity, and can further improve durability.
In addition, since the protective layer 7 is separately attached later, the effect of the seismic isolation laminate by the intermediate steel plate exposure type is not impaired.

次に、従来の問題点をクリアし、圧縮特性を改良した高面圧タイプの積層ゴム支承体を提供するための構成について説明する。   Next, a configuration for providing a high surface pressure type laminated rubber bearing body that has cleared conventional problems and improved compression characteristics will be described.

先ず、本発明においては、積層ゴム支承体の高面圧化に際し、圧縮限界強度σの算出式における各パラメータの調整に加えて、次のような構成が付加されている。 First, in the present invention, the following configuration is added in addition to the adjustment of each parameter in the calculation formula of the compression limit strength σ B when increasing the surface pressure of the laminated rubber bearing.

第1に、二次形状係数Sを5以上とした上で、ゴムのせん断弾性率Gを0.5N/mm以上、具体的には、免震建物の固有周期T等を考慮してゴムのせん断弾性率Gが0.5N/mm〜0.8N/mmにまで引き上げられている。ここで、ゴムのせん断弾性率Gを0.5N/mm以上としたのは、圧縮方向の許容応力度(長期面圧)20N/mmを確保するためである。また、ゴムのせん断弾性率Gが0.8N/mm以下としたのは、Gが0.8N/mmを超えると、ゴム板1(ばね)が硬くなることで、固有周期Tが短くなり、応答特性が悪くなるからである。 First, after setting the secondary shape factor S 2 to 5 or more, the shear modulus G of rubber is 0.5 N / mm 2 or more, specifically considering the natural period T of the seismic isolation building. shear modulus G of the rubber is raised to 0.5N / mm 2 ~0.8N / mm 2 . Here, the reason why the shear modulus G of the rubber is set to 0.5 N / mm 2 or more is to secure an allowable stress degree (long-term surface pressure) 20 N / mm 2 in the compression direction. Moreover, the reason why the shear modulus G of rubber is set to 0.8 N / mm 2 or less is that when G exceeds 0.8 N / mm 2 , the rubber plate 1 (spring) becomes hard, and the natural period T is shortened. This is because the response characteristics deteriorate.

このように、ゴム状弾性体のせん断弾性率Gを上げることにより、圧縮限界強度σを大きくすることができる。 Thus, the compression limit strength σ B can be increased by increasing the shear modulus G of the rubber-like elastic body.

第2に、本発明においては、免震支承体の中心孔6にゴム板1と同一のゴム材Rが充填されている。すなわち、本発明における免震支承体は円筒状の金型内に、ゴム板1と硬質板2(中間鋼板)を積層し、一体に成型、加硫接着して形成されるところ、上述したように、製造時(加硫)の加熱、積層工程から加硫工程に至る各製造段階における硬質板2(中間鋼板)の位置決めの際に中心孔6が設けられている。そして、ゴム板1と硬質板2(中間鋼板)の位置決め後、中心孔6から金型のスライドピン(不図示)を抜くことにより当該中心孔6にゴム材Rを充填することができる。   Secondly, in the present invention, the same rubber material R as the rubber plate 1 is filled in the center hole 6 of the seismic isolation bearing. That is, the seismic isolation bearing in the present invention is formed by laminating a rubber plate 1 and a hard plate 2 (intermediate steel plate) in a cylindrical mold, and integrally molding and vulcanizing and bonding, as described above. In addition, the center hole 6 is provided at the time of positioning of the hard plate 2 (intermediate steel plate) at each manufacturing stage from heating at the time of manufacture (vulcanization) and from the lamination process to the vulcanization process. Then, after positioning the rubber plate 1 and the hard plate 2 (intermediate steel plate), the center hole 6 can be filled with the rubber material R by removing a slide pin (not shown) of the mold from the center hole 6.

このように、本発明においては、建築物を支承する際には、中心孔6が無い状態を模擬して1次形状係数Sを大きくしている。また、中心孔6へのゴム材Rの充填により、積層ゴム支承体の変形時においてゴム状弾性が中心孔6内にはみ出すことを抑制し、水平剛性の面圧依存性を改善することができる。 Thus, in the present invention, when supporting the buildings, to simulate the state center hole 6 is not being increased primary shape factor S 1. Further, by filling the center hole 6 with the rubber material R, it is possible to suppress the rubber-like elasticity from protruding into the center hole 6 when the laminated rubber bearing is deformed, and to improve the surface pressure dependency of the horizontal rigidity. .

第3に、本発明においては、ゴム板1の厚さTに対する硬質板2(中間鋼板)の厚さTの比を大きくすることで、すなわち、硬質板2(中間鋼板)の厚さTを、(T/T)>0.5の条件を満足するように構成することで、硬質板2(中間鋼板)に剛性及び強度を持たせ、曲げ変形の抑制と局部的な応力集中の緩和を図り、高面圧化での挙動を安定させ、面圧依存性を小さくすることができる。ここで、ゴム板1の厚さに対する硬質板2(中間鋼板)の厚さの比が0.5以下の場合、高面圧化での挙動が不安定になり、面圧依存性が大きくなってしまう。 Third, in the present invention, by increasing the ratio of the thickness T 1 of the hard plate 2 to the thickness T 2 of the rubber plate 1 (intermediate steel plate), i.e., the thickness of the hard plate 2 (intermediate steel plate) By configuring T 1 so as to satisfy the condition of (T 1 / T 2 )> 0.5, the rigid plate 2 (intermediate steel plate) is given rigidity and strength, and bending deformation is suppressed and localized. The stress concentration can be relaxed, the behavior at high surface pressure can be stabilized, and the surface pressure dependency can be reduced. Here, when the ratio of the thickness of the hard plate 2 (intermediate steel plate) to the thickness of the rubber plate 1 is 0.5 or less, the behavior at high surface pressure becomes unstable and the surface pressure dependency becomes large. End up.

上記の(T/T)は、具体的には、1.0≧(T/T)>0.5の条件を満足するように構成することが好ましい。ゴム板1の厚さTに対して硬質板2(中間鋼板)の厚さTの比を1.0超とした場合、硬質板2(中間鋼板)の厚さとゴム板1の厚さの比を1.0以下とした同じ外径の積層ゴム支承体と比べ、積層ゴム支承体の重量が増し、搬送及び据え付け作業効率の低下やコストアップを招いてしまう。特に、ゴム板1と硬質板2(中間鋼板)は20〜30層程度を交互に積層するため、硬質板2(中間鋼板)の厚さ増による重量増の影響は大きく、このため、(T/T)は、0.85以下とすることがより好ましい。 Specifically, the above (T 1 / T 2 ) is preferably configured to satisfy the condition of 1.0 ≧ (T 1 / T 2 )> 0.5. If the ratio of the thickness T 2 of the hard plate 2 (the intermediate steel plate) to the thickness T 1 of the rubber plate 1 and greater than 1.0, the thickness and the thickness of the rubber plate 1 of the hard plate 2 (intermediate steel plate) Compared with a laminated rubber bearing body having the same outer diameter with a ratio of 1.0 or less, the weight of the laminated rubber bearing body increases, leading to a decrease in conveyance and installation work efficiency and an increase in cost. In particular, since the rubber plate 1 and the hard plate 2 (intermediate steel plate) are alternately laminated with about 20 to 30 layers, the influence of the weight increase due to the increase in the thickness of the hard plate 2 (intermediate steel plate) is large. 1 / T 2 ) is more preferably 0.85 or less.

このように、硬質板2(中間鋼板)の厚さを1.0≧(T/T)>0.5の条件を満足するように構成することで、座屈特性の低下を抑えるための最低限の硬質板(中間鋼板)の厚さを設定することができる。 As described above, the thickness of the hard plate 2 (intermediate steel plate) is configured so as to satisfy the condition of 1.0 ≧ (T 1 / T 2 )> 0.5, thereby suppressing the decrease in buckling characteristics. The minimum thickness of the hard plate (intermediate steel plate) can be set.

この点に関し、上記の(T/T)については、「日本建築学会大会学術講演梗概集2010年9月」(福岡大学、昭和電線デバイステクノロジー)において、積層ゴム支承体を15N/mmで、せん断ひずみ±100〜300%まで圧縮せん断試験を実施した結果、硬質板(中間鋼板)の厚さ/ゴム板の厚さ、すなわち(T/T)が0.5超であれば、硬質板(中間鋼板)の厚さが変形性能や座屈性能に影響しないことが報告されている。 In this regard, regarding the above (T 1 / T 2 ), the laminated rubber bearing body is 15 N / mm 2 in the “Summary of the Annual Meeting of the Architectural Institute of Japan, September 2010” (Fukuoka University, Showa Cable Device Technology). As a result of carrying out the compression shear test to a shear strain of ± 100 to 300%, if the thickness of the hard plate (intermediate steel plate) / the thickness of the rubber plate, that is, (T 1 / T 2 ) exceeds 0.5, It has been reported that the thickness of a hard plate (intermediate steel plate) does not affect deformation performance and buckling performance.

また、「日本建築学会大会学術講演梗概集1997年9月」(昭和電線電纜)において、硬質板(中間鋼板)の外周縁が露出した積層ゴム支承体と、被覆ゴムで硬質板(中間鋼板)の外周面を被覆した積層ゴム支承体を作製し、水平剛性の面圧依存性を評価し、水平剛性に関して、硬質板(中間鋼板)の外周縁を露出させた構成の方が面圧依存性が小さいことが報告されている。さらに、面圧依存性を改善するには、硬質板(中間鋼板)の外周縁を露出させた構成の積層ゴム支承体が好ましい。
[実施例]
本発明の実施例として、中間鋼板露出型の天然ゴム系積層ゴム支承体を用い、ゴム状弾性体のせん断弾性率Gを0.5N/mmとし、中心孔6にゴム材Rを充填した直径600mmの積層ゴム支承体を作製した。また、比較例として、中間鋼板露出型の天然ゴム系積層ゴム支承体を用い、ゴム状弾性体のせん断弾性率Gを0.44N/mmとし、中心孔6を維持した積層ゴム支承体(中心孔6にゴム材Rを充填しない積層ゴム支承体)を作製した。
In addition, in the "Architectural Summary of Conference of the Architectural Institute of Japan September 1997" (Showa Electric Wire & Electrical Co., Ltd.) A laminated rubber bearing covering the outer peripheral surface of the steel plate is manufactured, the surface pressure dependency of the horizontal rigidity is evaluated, and the structure in which the outer periphery of the hard plate (intermediate steel plate) is exposed is more dependent on the surface pressure. Is reported to be small. Furthermore, in order to improve the surface pressure dependency, a laminated rubber bearing having a configuration in which the outer peripheral edge of the hard plate (intermediate steel plate) is exposed is preferable.
[Example]
As an example of the present invention, an intermediate steel plate exposed type natural rubber-based laminated rubber bearing was used, the rubber-like elastic body had a shear elastic modulus G of 0.5 N / mm 2 , and the center hole 6 was filled with the rubber material R. A laminated rubber bearing body having a diameter of 600 mm was produced. In addition, as a comparative example, a laminated rubber bearing body in which a natural rubber laminated rubber bearing body exposed from an intermediate steel plate is used, the shear elastic modulus G of the rubber-like elastic body is 0.44 N / mm 2 and the center hole 6 is maintained ( A laminated rubber bearing in which the center hole 6 is not filled with the rubber material R) was produced.

表1には、実施例および比較例の各積層ゴム支承体の概要が示されている。なお、実施例および比較例とも積層ゴム支承体における硬質板2(中間鋼板)は鋼板からなる金属板で形成し、その厚さは3.2mmとし、硬質板2(中間鋼板)の厚さ/ゴム板1の厚さの比、すなわち、(T/T)を0.71とした。また、平成12年度建設省告示に基づく、圧縮方向の許容応力度(長期面圧)は、実施例が20N/mm、従来例が15N/mmとなる。さらに、免震建物の固有周期Tは実施例が4.3秒、比較例が4秒と要求されている周期時間を満たしている。 Table 1 shows an outline of each laminated rubber bearing body of Examples and Comparative Examples. In both the examples and the comparative examples, the hard plate 2 (intermediate steel plate) in the laminated rubber support is formed of a metal plate made of a steel plate, the thickness thereof is 3.2 mm, and the thickness of the hard plate 2 (intermediate steel plate) / The thickness ratio of the rubber plate 1, that is, (T 1 / T 2 ) was set to 0.71. Further, based on the FY2000 Ministry of Construction Notice, the compression direction of the allowable stress (long-term surface pressure), embodiment 20 N / mm 2, the conventional example is 15N / mm 2. Furthermore, the natural period T of the base-isolated building satisfies the required period time of 4.3 seconds for the example and 4 seconds for the comparative example.

これらの実施例および比較例について、圧縮せん断試験とオフセットせん断圧縮試験を実施した。   The compression shear test and the offset shear compression test were performed on these examples and comparative examples.

表2、3には各試験の条件を示す。なお、圧縮せん断試験においては、一定荷重の圧縮荷重を載荷した状態で座屈するまで(水平剛性が0となる)せん断変形を与えた。また、オフセットせん断圧縮試験においては、せん断変形を一定にした状態で圧縮荷重を水平剛性が0となるまで単調に与えた。いずれの試験も試験体へのダメージを考慮して一定の条件で途中停止させている。   Tables 2 and 3 show the conditions of each test. In the compression shear test, shear deformation was applied until buckling (horizontal rigidity became zero) in a state where a constant compression load was applied. In the offset shear compression test, the compression load was monotonously applied until the horizontal rigidity became zero with the shear deformation kept constant. Both tests were stopped halfway under certain conditions in consideration of damage to the specimen.

Figure 0005763981
Figure 0005763981

Figure 0005763981
Figure 0005763981

Figure 0005763981
Figure 0005763981

「試験結果」
圧縮せん断試験及びオフセットせん断圧縮試験による座屈特性の評価を行なった結果、表2より、比較例の積層ゴム支承体においては、60〜80N/mmの高面圧試験において、外観上から座屈の傾向が確認された。一方、実施例の積層ゴム支承体においては、外観上からの座屈傾向は無かった。また、表3より、実施例および比較例とも、せん断ひずみの増加に伴い鉛直面圧は低下する傾向にある。
"Test results"
As a result of the evaluation of buckling characteristics by the compression shear test and the offset shear compression test, it is shown from Table 2 that the laminated rubber bearing body of the comparative example is seated from the exterior in the high surface pressure test of 60 to 80 N / mm 2. The tendency of bending was confirmed. On the other hand, in the laminated rubber bearing of the example, there was no buckling tendency from the appearance. Further, from Table 3, in both the examples and the comparative examples, the vertical surface pressure tends to decrease as the shear strain increases.

図2は、理論式より求めた圧縮限界曲線と圧縮せん断試験及びオフセットせん断圧縮試験の測定結果の比較を示している。なお、同図において、長期面圧とは常時作用している面圧をいい、短期面圧とは地震時に想定される面圧で、長期面圧の2倍とされている。   FIG. 2 shows a comparison between the compression limit curve obtained from the theoretical formula and the measurement results of the compression shear test and the offset shear compression test. In the figure, the long-term surface pressure is a surface pressure that is constantly acting, and the short-term surface pressure is a surface pressure assumed at the time of an earthquake and is twice the long-term surface pressure.

実施例および比較例とも理論上の圧縮限界曲線よりも座屈面圧が高いことが確認できる。これは、本発明の前記の第1、第2の構成並びに必要により前記の第3の構成を組み合わせた相乗効果によるものと考えられる。また、実施例においては、面圧50N/mmで370%以上のせん断ひずみまで座屈しないことから、圧縮方向の許容応力度(長期面圧)20N/mmの積層ゴム支承体として十分な性能を有していることがわかる。 It can be confirmed that the buckling surface pressure is higher than the theoretical compression limit curve in both Examples and Comparative Examples. This is considered to be due to a synergistic effect obtained by combining the first and second configurations of the present invention and, if necessary, the third configuration. Further, in the examples, since it does not buckle to a shear strain of 370% or more at a surface pressure of 50 N / mm 2 , it is sufficient as a laminated rubber bearing body having an allowable stress degree (long-term surface pressure) of 20 N / mm 2 in the compression direction. It turns out that it has performance.

以上のように、本発明によれば、積層ゴム支承体の高面圧化に際し、圧縮限界強度σの算出式における各パラメータの調整に加えて、前記の第1、第2の構成並びに必要により前記の第3の構成を組み合わせることで、ゴム状弾性体のせん断弾性率Gを0.5N/mm以上として、理論上の圧縮限界曲線よりも高い座屈面圧を得ることができる。 As described above, according to the present invention, when increasing the surface pressure of the laminated rubber bearing body, in addition to the adjustment of each parameter in the calculation formula of the compression limit strength σ B , the first and second configurations and necessary Thus, by combining the third configuration, the shear elastic modulus G of the rubber-like elastic body is 0.5 N / mm 2 or more, and a buckling surface pressure higher than the theoretical compression limit curve can be obtained.

また、ゴム板を構成するゴム状弾性体のせん断弾性率Gを0.5N/mm以上とすることで、圧縮方向の許容応力度(長期面圧)20N/mmの十分な性能を備える積層ゴム支承体を提供することができる。 Further, by setting the shear elastic modulus G of the rubber-like elastic body constituting the rubber plate to 0.5 N / mm 2 or more, sufficient performance of an allowable stress degree (long-term surface pressure) 20 N / mm 2 in the compression direction is provided. A laminated rubber bearing can be provided.

さらに、圧縮方向の許容応力度(長期面圧)20N/mmとなることで、免震建物の固有周期Tが4秒以上を維持できる積層ゴム支承体を提供することができる。 Furthermore, when the allowable stress level (long-term surface pressure) in the compression direction is 20 N / mm 2 , it is possible to provide a laminated rubber bearing that can maintain the natural period T of the base-isolated building of 4 seconds or more.

前述の実施例においては、図面等に示した特定の形態をもって本発明を説明しているが、本発明はこれらの実施の形態に限定されるものではなく、本発明の効果を奏する限り、次のように構成してもよい。   In the above-described embodiments, the present invention has been described with specific forms shown in the drawings and the like. However, the present invention is not limited to these embodiments, and as long as the effects of the present invention are exhibited, the following is provided. You may comprise as follows.

第1に、前述の実施例においては、硬質板(中間鋼板)の外周縁側が露出したいわゆる中間露出型の積層ゴム支承体について説明しているが、硬質板(中間鋼板)をゴムで被覆したいわゆる被覆型の積層ゴム支承体を用いてもよい。   1stly, in the above-mentioned Example, although the outer peripheral side of the hard board (intermediate steel plate) was exposed, the so-called intermediate exposure type laminated rubber bearing body was explained, but the hard plate (intermediate steel plate) was covered with rubber. A so-called coated-type laminated rubber bearing may be used.

第2に、前述の実施例においては、中心孔にゴム板と同一のゴム材を充填する場合について述べているが、ゴム板と同質のゴム材を充填してもよい。   Secondly, in the above-described embodiment, the case where the center hole is filled with the same rubber material as that of the rubber plate is described, but a rubber material having the same quality as that of the rubber plate may be filled.

第3に、前述の実施例においては、連結鋼板とフランジとを別体で構成しているが、連結鋼板とフランジは一体に構成してもよい。   3rdly, in the above-mentioned Example, although a connection steel plate and a flange are comprised separately, you may comprise a connection steel plate and a flange integrally.

第4に、硬質板として、前述の実施例においては、鋼板からなる金属板としたが、所要の剛性や耐久性等を有するものであれば、セラミックス、プラスチック等の材料としてもよい。   Fourth, the hard plate is a metal plate made of a steel plate in the above-described embodiments, but may be a material such as ceramics or plastic as long as it has the required rigidity and durability.

1・・・ゴム板
2・・・硬質板
6・・・中心孔
・・・積層ゴム支承体の二次形状係数
G・・・ゴム板のせん断弾性率
1 ... shear modulus of the secondary shape coefficient G ... rubber plate of rubber plate 2 ... hard plate 6 ... center hole S 2 ... laminated rubber bearing body

Claims (2)

複数の硬質板とゴム板とを交互に積層一体化してなる積層ゴム支承体において、
前記硬質板および前記ゴム板の中央に設けられる中心孔には前記ゴム板と同一または同質のゴム材が充填されており、
前記積層ゴム支承体の二次形状係数をS、前記ゴム板のせん断弾性率をG〔N/mm〕としたときに、
(a)S≧5
(b)0.8≧G≧0.5
の条件を満足するように構成されたものであって、
面圧(圧縮応力)σ=20〔N/mm 〕を達成し、かつ、前記ゴム板の外径をD、重力加速度をgとしたときに、2π√{(D・σ)/(S ・G・g)}で求められる前記積層ゴム支承体の水平剛性に基づく免震建物の固有周期が4秒以上であることを特徴とする積層ゴム支承体。
In a laminated rubber bearing body in which a plurality of hard plates and rubber plates are alternately laminated and integrated,
The central hole provided in the center of the hard plate and the rubber plate is filled with a rubber material that is the same or the same quality as the rubber plate,
When the secondary shape factor of the laminated rubber support is S 2 and the shear modulus of the rubber plate is G [N / mm 2 ],
(A) S 2 ≧ 5
(B) 0.8 ≧ G ≧ 0.5
Be one that is configured so as to satisfy the condition,
When the surface pressure (compression stress) σ = 20 [N / mm 2 ] is achieved, the outer diameter of the rubber plate is D, and the gravitational acceleration is g, 2π√ {(D · σ) / (S 2 · G · g)} in the laminated rubber bearing laminate rubber bearing body natural period of the seismic isolation building and said der Rukoto than 4 seconds which is based on the horizontal stiffness of the sought.
前記硬質板の外周縁側は、前記ゴム板の外周縁側より径方向外方に突出していることを特徴とする請求項記載の積層ゴム支承体。 The outer peripheral edge of the rigid plate is laminated rubber bearing body according to claim 1, wherein the protruding radially outward from the outer peripheral edge of the rubber plate.
JP2011132690A 2011-06-14 2011-06-14 Laminated rubber bearing Active JP5763981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011132690A JP5763981B2 (en) 2011-06-14 2011-06-14 Laminated rubber bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011132690A JP5763981B2 (en) 2011-06-14 2011-06-14 Laminated rubber bearing

Publications (2)

Publication Number Publication Date
JP2013002509A JP2013002509A (en) 2013-01-07
JP5763981B2 true JP5763981B2 (en) 2015-08-12

Family

ID=47671308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011132690A Active JP5763981B2 (en) 2011-06-14 2011-06-14 Laminated rubber bearing

Country Status (1)

Country Link
JP (1) JP5763981B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6482974B2 (en) * 2014-07-10 2019-03-13 昭和電線ケーブルシステム株式会社 Laminated rubber bearing
JP6484474B2 (en) * 2015-03-20 2019-03-13 昭和電線ケーブルシステム株式会社 Displacement suppression seismic isolation device and seismic isolation system
CN106381929A (en) * 2016-10-17 2017-02-08 南京大德减震科技有限公司 Three-dimensional base isolation support with preset vertical initial rigidity
CN114837318A (en) * 2022-06-10 2022-08-02 苏州科裕减震科技有限公司 Friction damping shock insulation rubber support and integrated vulcanization production method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10110552A (en) * 1996-10-04 1998-04-28 Sumitomo Rubber Ind Ltd Base isolation structure
JP3896668B2 (en) * 1998-01-26 2007-03-22 株式会社ブリヂストン Seismic isolation structure
JP2000065135A (en) * 1998-08-21 2000-03-03 Sumitomo Rubber Ind Ltd Laminated rubber support
JP2000145857A (en) * 1998-11-13 2000-05-26 Sumitomo Rubber Ind Ltd Laminated rubber support
JP4738846B2 (en) * 2005-03-07 2011-08-03 学校法人五島育英会 Laminated rubber bearing with excellent buckling stability
JP2007177515A (en) * 2005-12-28 2007-07-12 Toyo Tire & Rubber Co Ltd Vibration isolation supporting device
JP2008121822A (en) * 2006-11-14 2008-05-29 Bridgestone Corp Vibration-isolation structure and its manufacturing method
JP2009228855A (en) * 2008-03-25 2009-10-08 Toyo Tire & Rubber Co Ltd Laminated layer rubber for seismic isolation

Also Published As

Publication number Publication date
JP2013002509A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP5763981B2 (en) Laminated rubber bearing
WO2008004475A1 (en) Earthquake isolation device
US9429205B2 (en) Elastomeric isolator
JP2013044416A (en) Laminated rubber bearing body
JP2006275212A (en) Energy absorbing device
JP5845130B2 (en) Laminated rubber bearing
JP2623584B2 (en) Seismic isolation device
JP5984012B2 (en) Laminated rubber support
JP2006207680A (en) Laminated rubber supporter
JP4868435B2 (en) Laminated rubber body with lead plug
CN111810568B (en) Steady-state controllable composite pressure lever and transient vibration suppression structure based on same
JP5136622B2 (en) Laminated rubber body with lead plug
JP2007024287A (en) Laminated support body
JP6482974B2 (en) Laminated rubber bearing
JP2009228855A (en) Laminated layer rubber for seismic isolation
JP3039846B2 (en) Laminated rubber bearing
KR100402881B1 (en) earthquake insulating composite bearing
JP2016169770A (en) Seismic isolation structure
JP2007270569A (en) Rubber laminated type mount of vibration-proof device for housing
JP2018178653A (en) Laminated rubber bearing
JP4828951B2 (en) Laminated rubber bearing and seismic isolation system
JP5524683B2 (en) Rubber bearing
JP2023181816A (en) Seismic isolator
JP2013221576A (en) Laminated rubber bearing
JP4631274B2 (en) Laminated rubber seismic isolation device mounting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150105

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150612

R150 Certificate of patent or registration of utility model

Ref document number: 5763981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250