JP2000045040A - Nonoriented silicon steel sheet excellent in machinability and reduced in iron loss - Google Patents

Nonoriented silicon steel sheet excellent in machinability and reduced in iron loss

Info

Publication number
JP2000045040A
JP2000045040A JP10225427A JP22542798A JP2000045040A JP 2000045040 A JP2000045040 A JP 2000045040A JP 10225427 A JP10225427 A JP 10225427A JP 22542798 A JP22542798 A JP 22542798A JP 2000045040 A JP2000045040 A JP 2000045040A
Authority
JP
Japan
Prior art keywords
mns
iron loss
steel sheet
less
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10225427A
Other languages
Japanese (ja)
Other versions
JP4258859B2 (en
Inventor
Noriyuki Honjo
法之 本庄
Taisei Nakayama
大成 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22542798A priority Critical patent/JP4258859B2/en
Publication of JP2000045040A publication Critical patent/JP2000045040A/en
Application granted granted Critical
Publication of JP4258859B2 publication Critical patent/JP4258859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon steel sheet suitable for the purpose where machining is performed after lamination into an iron core and modification of shape or improvement in dimensional accuracy, having a machinability, and reduced in iron loss. SOLUTION: This sheet is a silicon steel sheet having a composition consisting of <=0.01% C, 0.1-3.5% Si, 0.1-1.00% Mn, <=0.2% P, 0.002-0.040% S, 0.1-1.0% Al, and the balance Fe with inevitable impurities. By incorporating, among non-metallic inclusions in the cross section parallel to a rolling direction, MnS as a simple substance having 0.1 to 20 μm maximum grain size and MnS inclusions where AlN and Al2O3 are compounded with MnS into the above silicon steel sheet by (1 to 50) pieces/mm2, and the semiprocessed silicon steel sheet having sufficient machinability at the time of machining and reduced in iron loss can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電動機の鉄心等に
使用される無方向性電磁鋼板のうち、鋼板を打ち抜き、
積層して鉄心としたのち、形状修正または寸法精度の向
上を目的として、積層した鉄心を切削加工する用途に用
いられる切削性が良好で鉄損の少ない無方向性電磁鋼板
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet used for an iron core of an electric motor or the like.
The present invention relates to a non-oriented electrical steel sheet having good machinability and low iron loss used for cutting a laminated iron core for the purpose of correcting the shape or improving the dimensional accuracy after laminating the core.

【0002】[0002]

【従来の技術】電動機を回転精度がよく、トルク変動が
少なく、かつ低振動で回転させるには、電動機を構成す
る各部品に高い寸法精度が要求される。高い寸法精度に
は、回転子鉄心の外径寸法、軸挿入穴の寸法精度および
固定子鉄心の内径寸法精度も含まれ、非常に重要であ
る。これらの寸法精度を向上させるには、回転子および
固定子の鉄心を打ち抜いた後の寸法精度の高いことが重
要である。
2. Description of the Related Art In order to rotate a motor with good rotational accuracy, small torque fluctuation and low vibration, high dimensional accuracy is required for each component constituting the motor. High dimensional accuracy is very important, including the outer diameter of the rotor core, the dimensional accuracy of the shaft insertion hole, and the inner diameter of the stator core. In order to improve these dimensional accuracy, it is important to have high dimensional accuracy after punching the rotor and stator cores.

【0003】更に高い寸法精度が要求される場合は、積
層後の鉄心に高精度の切削加工を施し、目的の寸法に修
正する方法がある。このように切削加工によって寸法を
修正する場合は、材料となる電磁鋼板の切削加工性が重
要である。しかしながら、従来の電磁鋼板は、積層後の
鉄心に高精度の切削加工を施すことは考慮していない。
また、切削加工性を改善することも行われていない。
[0003] When higher dimensional accuracy is required, there is a method of performing high-precision cutting on the iron core after lamination and correcting it to a target size. When the dimensions are corrected by cutting, the cutability of the magnetic steel sheet as the material is important. However, the conventional magnetic steel sheet does not consider performing high-precision cutting on the iron core after lamination.
Further, no improvement has been made on the machinability.

【0004】また、電動機の電力効率を向上するために
は、鉄心の材料である無方向性電磁鋼板の鉄損の低いこ
とが要求される。例えば、需要家が所定の形状に打ち抜
き、歪取り焼鈍を行って磁気特性を現出させるセミプロ
セス製品の場合であっても、歪取り焼鈍後の鉄損の低い
ものが要求される。歪取り焼鈍後の鉄損を低くするに
は、歪取り焼鈍における結晶粒の成長をできるだけ促進
する必要がある。
Further, in order to improve the power efficiency of the electric motor, it is required that the non-oriented electrical steel sheet, which is the material of the iron core, has a low iron loss. For example, even in the case of a semi-process product in which a customer punches out a predetermined shape and performs strain relief annealing to exhibit magnetic properties, a product having low iron loss after strain relief annealing is required. In order to reduce iron loss after strain relief annealing, it is necessary to promote the growth of crystal grains in strain relief annealing as much as possible.

【0005】歪取り焼鈍における結晶粒の成長を促進す
る方法としては、下記の方法が知られている。 (a) 特開昭56−38420号公報に開示のよう
に、C:0.05%以下、SiあるいはSiとAlの和
が1.5%以下、Mn:0.1〜1%、P:0.2%以
下、残部Feおよび不可避的不純物よりなる鋼塊もしく
は連続鋳造したスラブを、熱間圧延の終了温度を{89
1−900(C%)+50(Si%)−88(Mn%)
+190(P%)+380(Al%)}℃で表される温
度と、{882−5750(C%)+5880(C%)
2+50(Si%)−82(Mn%)+170(P%)
+380(Al%)}℃で表される温度の中央値と75
0℃との間の温度範囲内となし、かつ、巻取り温度を6
80℃以上とし、最終工程でスキンパス等の低圧下率の
調質圧延を実施し、これによって付与された残留歪エネ
ルギーの作用によって、需要家での歪取り焼鈍において
結晶粒の成長促進を図る。 (b) 特開昭63−255323号公報に開示のよう
に、冷延鋼帯を再結晶温度以上で連続焼鈍したのち、2
50℃以下まで平均冷却速度15℃/秒以上で冷却し、
調質圧延を実施し、これによって付与された残留歪エネ
ルギーの作用によって、需要家での歪取り焼鈍において
結晶粒の成長促進を図る。 (c) 特開平6−108149号公報に開示のよう
に、C、N、S、Ti、Zr、Nb、V、As、Mo、
Cr、W、Oなど、歪取り焼鈍における結晶粒の成長を
妨げる働きを有する不可避的不純物の鋼中含有量を制限
することによって、需要家での歪取り焼鈍における結晶
粒の成長を容易にする。 (d) C:0.15%以下、Si:0.1un1.0
%、Sol.Al:0.001〜0.005%、Mn:
1.5%以下、S:0.008%以下、N:0.01%
以下、T.O:0.02%以下、残部Feおよび不可避
的不純物よりなる無方向性電磁鋼板において、製品中の
SiO2、MnO、Al23の3種の介在物の総重量に
対するMnOの重量の割合を、15%以下とすると共
に、SiO2の重量の割合を75%以上とすることによ
って、需要家での歪取り焼鈍において結晶粒の成長促進
を図り、鉄損を低下させる。
The following method is known as a method for accelerating the growth of crystal grains in strain relief annealing. (A) As disclosed in JP-A-56-38420, C: 0.05% or less, Si or the sum of Si and Al is 1.5% or less, Mn: 0.1 to 1%, P: The end temperature of hot rolling of a steel ingot or a continuously cast slab consisting of 0.2% or less and the balance of Fe and unavoidable impurities is set to $ 89.
1-900 (C%) + 50 (Si%)-88 (Mn%)
+190 (P%) + 380 (Al%)} ° C and {882-5750 (C%) + 5880 (C%)
2 +50 (Si%)-82 (Mn%) +170 (P%)
+380 (Al%)} ° C median and 75
0 ° C. and a winding temperature of 6 ° C.
At a temperature of 80 ° C. or higher, temper rolling at a low rolling reduction such as a skin pass is performed in the final step, and the effect of the residual strain energy imparted thereby promotes the growth of crystal grains in strain relief annealing at the customer. (B) As disclosed in JP-A-63-255323, after continuously annealing a cold-rolled steel strip at a temperature higher than the recrystallization temperature,
Cool at an average cooling rate of 15 ° C / sec or more to 50 ° C or less,
Temper rolling is performed, and the effect of the residual strain energy imparted thereby promotes the growth of crystal grains during strain relief annealing at the customer. (C) As disclosed in JP-A-6-108149, C, N, S, Ti, Zr, Nb, V, As, Mo,
By limiting the content of unavoidable impurities such as Cr, W, and O in the steel, which have the function of hindering the growth of crystal grains in strain relief annealing, the growth of crystal grains in strain relief annealing at the customer is facilitated. . (D) C: 0.15% or less, Si: 0.1un1.0
%, Sol. Al: 0.001 to 0.005%, Mn:
1.5% or less, S: 0.008% or less, N: 0.01%
Hereinafter, T.I. O: ratio of MnO weight to total weight of three kinds of inclusions of SiO 2 , MnO and Al 2 O 3 in a non-oriented electrical steel sheet composed of 0.02% or less, balance Fe and unavoidable impurities. Is set to 15% or less, and the weight ratio of SiO 2 is set to 75% or more, thereby promoting the growth of crystal grains in strain relief annealing at a customer and reducing iron loss.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記
(a)〜(d)の方法は、材料である電磁鋼板の打ち抜
き積層後の切削加工性について全く着目していない。し
かも、本発明者らが電磁鋼板の切削加工性の改善に有効
な析出物であると考えるMnSについて、その必要性に
ついて言及していない。また、前記(a)(b)の方法
は、通常の冷間圧延に比較し、小さな歪を調質圧延によ
り付与することを特徴とするため、電磁鋼板全体に均一
な歪を付与することが困難である。このため、需要家で
の打ち抜き加工に際し、残留歪の不均一による反りの問
題が発生し易いという欠点があり、高い寸法精度は望む
ことはできない。
However, the above-mentioned methods (a) to (d) do not pay any attention to the machinability after punching and laminating a magnetic steel sheet as a material. Moreover, the present inventors do not mention the necessity of MnS, which is considered to be a precipitate effective for improving the machinability of the magnetic steel sheet. In addition, since the methods (a) and (b) are characterized in that a small strain is imparted by temper rolling as compared with normal cold rolling, uniform strain can be imparted to the entire electromagnetic steel sheet. Have difficulty. For this reason, there is a drawback that a problem of warpage due to non-uniform residual strain is apt to occur at the time of punching at a customer, and high dimensional accuracy cannot be expected.

【0007】本発明の目的は、電動機の鉄心用の無方向
性電磁鋼板のうち、電磁鋼板を所定の形状に打ち抜き、
積層して鉄心としたのち、形状修正または寸法精度の向
上を目的として切削加工するに際し、必要とする切削加
工性を有し、なおかつ、低鉄損の電磁鋼板を提供するこ
とにある。
[0007] An object of the present invention is to punch out an electromagnetic steel sheet into a predetermined shape from non-oriented electromagnetic steel sheets for an iron core of an electric motor,
An object of the present invention is to provide an electromagnetic steel sheet having required cutting workability and low iron loss when performing cutting work for the purpose of shape correction or improvement of dimensional accuracy after laminating an iron core.

【0008】[0008]

【課題を解決するための手段】本発明者らは、電磁鋼板
の固有抵抗値を上昇させて鉄損を低下させるのに効果的
な元素であるSi、Mn、Alの添加量と、切削加工性
の改善に効果的な非金属介在物であるMnS単体および
MnS系介在物の析出と密接な関係をもつSの添加量と
を、適正な範囲に規定することによって、切削加工性と
磁気特性がともに優れた電磁鋼板を得ることができると
の知見を得た。
Means for Solving the Problems The inventors of the present invention have determined the addition amounts of Si, Mn, and Al, which are effective elements for increasing the specific resistance of an electromagnetic steel sheet to reduce iron loss, and for cutting. Machinability and magnetic properties by defining the amount of S, which is closely related to the precipitation of MnS alone and MnS-based inclusions, which are non-metallic inclusions effective for improving the machinability, in an appropriate range. Found that it was possible to obtain excellent electrical steel sheets.

【0009】本発明の切削性が良好で鉄損の少ない無方
向性電磁鋼板は、C:0.01%以下、Si:0.1〜
3.5%、Mn:0.1〜1.0%、P:0.2%以
下、S:0.002〜0.040%、Al:0.1〜
1.0%を含有し、残部がFeおよび不可避的不純物か
らなる。そして、本発明においては、MnS単体および
MnS系介在物の最適な大きさのものの個数を特定する
ことによって、切削加工性と磁気特性とを両立させるこ
とを特徴としている。このため、本発明の無方向性電磁
鋼板は、圧延方向と平行な断面における非金属介在物の
うち、最大粒子径が0.1μm以上20μm以下のMn
S単体およびMnSにAlNやAl23が複合したMn
S系介在物を、1〜50個/mm2含むこととしてい
る。
The non-oriented electrical steel sheet of the present invention having good machinability and low iron loss has a C content of 0.01% or less and a Si content of 0.1 to 0.1%.
3.5%, Mn: 0.1-1.0%, P: 0.2% or less, S: 0.002-0.040%, Al: 0.1-
1.0%, with the balance being Fe and unavoidable impurities. The present invention is characterized by achieving both machinability and magnetic properties by specifying the number of MnS simple substances and MnS-based inclusions having optimal sizes. For this reason, the non-oriented electrical steel sheet of the present invention has a maximum grain size of Mn of 0.1 μm or more and 20 μm or less among non-metallic inclusions in a cross section parallel to the rolling direction.
Mn composed of S alone and MnS mixed with AlN and Al 2 O 3
It is assumed that the number of S-based inclusions is 1 to 50 / mm 2 .

【0010】このように、C:0.01%以下、Si:
0.1〜3.5%、Mn:0.1〜1.0%、P:0.
2%以下、S:0.002〜0.040%、Al:0.
1〜1.0%を含有し、残部がFeおよび不可避的不純
物からなる鋼板が、圧延方向と平行な断面における非金
属介在物のうち、最大粒子径が0.1μm以上20μm
以下のMnS単体およびMnSにAlNやAl23が複
合したMnS系介在物を、1〜50個/mm2含むこと
によって、切削加工性が良好で、鉄損の少ない無方向性
電磁鋼板を得ることができる。
[0010] Thus, C: 0.01% or less, Si:
0.1-3.5%, Mn: 0.1-1.0%, P: 0.
2% or less, S: 0.002 to 0.040%, Al: 0.
A steel sheet containing 1 to 1.0%, the balance being Fe and unavoidable impurities has a maximum particle diameter of 0.1 μm or more and 20 μm among nonmetallic inclusions in a cross section parallel to the rolling direction.
By containing the following MnS simple substance and MnS-based inclusions in which AlN or Al 2 O 3 is combined with MnS in an amount of 1 to 50 / mm 2, a non-oriented electrical steel sheet having good machinability and low iron loss can be obtained. Obtainable.

【0011】[0011]

【発明の実施の形態】本発明において電磁鋼板の化学成
分を限定した理由は、下記のとおりである。Cは、炭化
物を析出して磁気時効による磁気特性の劣化を招く有害
な元素で、少ないほど好ましいが、脱炭コストによる経
済性を勘案して、上限を0.01%以下とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the chemical components of the magnetic steel sheet in the present invention are as follows. C is a harmful element that precipitates carbides and causes deterioration of magnetic properties due to magnetic aging. The smaller the amount, the better, but the upper limit is made 0.01% or less in consideration of the economics due to decarburization costs.

【0012】Siは、固有抵抗値を高め、鉄損を下げる
成分として有用であるが、0.1%未満ではその効果が
十分でなく、また、3.5%を超えると冷間圧延が困難
となるため、0.1〜3.5%とした。
[0012] Si is useful as a component for increasing the specific resistance and lowering the iron loss. However, if it is less than 0.1%, its effect is not sufficient, and if it exceeds 3.5%, cold rolling is difficult. Therefore, it was set to 0.1 to 3.5%.

【0013】Mnは、Sを粗大なMnSとして固定し、
結晶粒の成長に有害な微細な硫化物の析出を抑える働き
があり、また、Siと同様に固有抵抗値を高めて鉄損を
下げる元素としても有用であるが、0.1%未満ではそ
の効果が十分でなく、1.0%を超えると最終焼鈍での
結晶粒の成長性が悪化するとともに、材料コストの上昇
を招くため、0.1〜1.0%とした。
Mn fixes S as coarse MnS,
It has the function of suppressing the precipitation of fine sulfides that are harmful to the growth of crystal grains, and is also useful as an element that raises the specific resistance value and lowers iron loss similarly to Si. If the effect is not sufficient, and if the content exceeds 1.0%, the growth of the crystal grains in the final annealing is deteriorated and the material cost is increased.

【0014】Pは、鋼板の熱間脆性を高める働きがあ
り、0.2%を超えると熱間圧延性が著しく低下し、熱
間圧延が不能となるため、0.2%以下とした。
[0014] P has the function of increasing the hot brittleness of the steel sheet. If P exceeds 0.2%, the hot rollability is significantly reduced and hot rolling becomes impossible, so P is set to 0.2% or less.

【0015】Sは、Mnにより粗大なMnSとして固定
され、最終焼鈍での結晶粒の成長に有害な微細な硫化物
の析出を押さえ、切削性を改善する働きがあるが、0.
002%未満では切削性の改善が十分でなく、0.04
0%を超えると微細な硫化物が析出し、最終焼鈍での結
晶粒の成長を抑制して鉄損が上昇するため、0.002
〜0.040%とした。
S is fixed as coarse MnS by Mn, and has the function of suppressing the precipitation of fine sulfides harmful to the growth of crystal grains in the final annealing and improving the machinability.
If it is less than 002%, the cutting property is not sufficiently improved, and
If it exceeds 0%, fine sulfides precipitate, and the growth of crystal grains in the final annealing is suppressed to increase iron loss.
0.040%.

【0016】上記のようにS含有量を限定した根拠は、
次ぎのとおりである。 C:0.001%以下、P:0.01%を含有する鋼中
のSi、Mn、Alの含有量を図1に示すように変化さ
せた3種類について、S含有量が0.001%、0.0
015%、0.0020%、0.0030%、0.00
50%、0.010%、0.015%、0.020%、
0.040%、0.060%となるよう通常の方法で溶
製したのち、連続鋳造してスラブとした。この各スラブ
は、1150℃に再加熱したのち、通常の方法によって
熱間圧延し、板厚2.3mmの熱延コイルに仕上げた。
各熱延コイルは、通常の方法によって酸洗し、必要に応
じて延板焼鈍を施したのち、通常の方法によって冷間圧
延し、板厚0.5mmの冷間鋼帯とし、850℃で連続
焼鈍したものを供試材として使用した。
The basis for limiting the S content as described above is as follows.
It is as follows. C: 0.001% or less, P: 0.01% of steel, S content of 0.001% for three kinds of steel, Mn and Al contents changed as shown in FIG. , 0.0
015%, 0.0020%, 0.0030%, 0.00
50%, 0.010%, 0.015%, 0.020%,
After smelting by a usual method so as to be 0.040% and 0.060%, a slab was obtained by continuous casting. After each slab was reheated to 1150 ° C., it was hot-rolled by an ordinary method to finish a hot-rolled coil having a thickness of 2.3 mm.
Each hot-rolled coil is pickled by a normal method, and then, if necessary, is subjected to annealed strip, and then cold-rolled by a normal method to form a 0.5 mm-thick cold steel strip at 850 ° C. The material subjected to continuous annealing was used as a test material.

【0017】切削性の評価は、各供試材から外径50m
m、内径30mmの孔あき円板をそれぞれ100枚打ち
抜き、これを積層してかしめたのち、旋盤を用いて内径
を0.5mm切削加工し、採取した切り屑1個当たりの
平均重量を測定し、切り屑が小さいほど切削性が良好と
判断し、切り屑重量0.2g/個以下を切削性良好と定
めた。そして、S含有量と切り屑重量との関係を求め
た。その結果を図1に示す。なお、旋盤での切削加工条
件は、使用したバイトが住友電工株式会社製、品番T1
2A、旋盤の回転数は500rpm、送り量は0.15
mm/回転であった。
The evaluation of the machinability was performed using an outer diameter of 50 m from each test material.
m, 100 perforated discs with an inner diameter of 30 mm were punched out, laminated and caulked, and then the inner diameter was cut by 0.5 mm using a lathe, and the average weight per piece of collected chips was measured. The smaller the chips, the better the cutability was determined, and a chip weight of 0.2 g / piece or less was determined to be good. Then, the relationship between the S content and the chip weight was determined. The result is shown in FIG. The cutting conditions for the lathe were such that the bite used was manufactured by Sumitomo Electric Industries, Ltd., part number T1.
2A, lathe speed is 500rpm, feed rate is 0.15
mm / rotation.

【0018】鉄損の評価は、各供試材を更に750℃で
2時間焼鈍し、JISC2550に規定の電磁鋼板試験
方法に準じて磁気試験を行い、周波数50Hz、最大磁
束密度1.5Tの時の鉄損(W15/50)で評価し、鉄損
(W15/50)が3.5w/kg以下の範囲を鉄損の良好
な範囲と定めた。そして、S含有量と鉄損(W15/50
との関係を求めた。その結果を図2に示す。
For the evaluation of iron loss, each test material was further annealed at 750 ° C. for 2 hours, and a magnetic test was conducted in accordance with the test method for electromagnetic steel sheets specified in JISC2550. Was evaluated in terms of iron loss (W 15/50 ), and a range where the iron loss (W 15/50 ) was 3.5 w / kg or less was determined as a favorable range of the iron loss. And S content and iron loss ( W15 / 50 )
And sought a relationship. The result is shown in FIG.

【0019】図1に示すように、S含有量を0.002
%以上とすることによって、切削性が良好となることが
確認された。また、図2に示すように、S含有量を0.
040%以下とすることによって、鉄損(W15/50)が
良好であることが確認された。
As shown in FIG. 1, the S content is 0.002
%, It was confirmed that the machinability was good. In addition, as shown in FIG.
It was confirmed that the iron loss (W 15/50 ) was good by setting the content to 040% or less.

【0020】Alは、MnおよびSiと同様に固有抵抗
値を高め、鉄損を減少させる元素として有用であるが、
0.1%未満ではその効果が十分でなく、1.0%を超
えると最終焼鈍での結晶粒の成長性が悪化するととも
に、材料コストの悪化を招くため、0.1〜1.0%と
した。
Al is useful as an element for increasing the specific resistance value and reducing iron loss like Mn and Si.
If it is less than 0.1%, the effect is not sufficient, and if it exceeds 1.0%, the growth of crystal grains in final annealing is deteriorated, and the material cost is deteriorated. And

【0021】本発明においては、MnS単体およびMn
SにAlNやAl23が複合したMnS系介在物の最大
粒子径と個数を特定することによって、磁気特性と切削
性とを両立させることを特徴としている。このため、圧
延方向と平行な断面における非金属介在物のうち、最大
粒子径が0.1μm以上20μm以下のMnS単体およ
びMnSにAlNやAl23が複合したMnS系介在物
の個数を、1〜50個/mm2に限定した。MnS単体
およびMnS系介在物の最大粒子径の範囲を0.1μm
以上20μm以下としたのは、0.1μm未満では十分
な切削性改善効果が得られず、20μmを超えると介在
物が内部欠陥または表面傷となり鋼板の品質上問題が発
生するからである。
In the present invention, MnS alone and MnS
By specifying the maximum particle diameter and the number of MnS-based inclusions in which S is combined with AlN or Al 2 O 3 , both magnetic properties and machinability are compatible. For this reason, among the nonmetallic inclusions in the cross section parallel to the rolling direction, the maximum particle size is 0.1 μm or more and 20 μm or less, the number of MnS-based inclusions in which AlN or Al 2 O 3 is combined with MnS, The number was limited to 1 to 50 pieces / mm 2 . The range of the maximum particle size of MnS alone and MnS-based inclusions is 0.1 μm
The reason why the thickness is set to 20 μm or less is that if the thickness is less than 0.1 μm, a sufficient effect of improving machinability cannot be obtained.

【0022】本発明における圧延方向と平行な断面と
は、圧延方向と平行な断面であればよく、特に限定され
ないが、圧延方向と平行に垂直切断した切断面を用いる
のが一般的である。圧延方向と平行な断面における最大
粒子径が0.1μm以上20μm以下のMnS単体およ
びMnSにAlNやAl23が複合したMnS系介在物
の個数を、1〜50個/mm2に限定した根拠は、下記
のとおりである。 C:0.001〜0.004%、Si:0.2〜0.3
%、Mn:0.1〜0.3%、P:0.07〜0.09
%、S:0.005〜0.025%、Al:0.2〜
0.4%を含有するスラブに、熱間圧延および冷間圧延
を施し、板厚0.5mmとした冷間鋼帯を850℃で1
分間焼鈍したものを供試材として使用した。
The section parallel to the rolling direction in the present invention is not particularly limited as long as it is a section parallel to the rolling direction, and a cut surface perpendicular to the rolling direction is generally used. The number of MnS simple substances having a maximum particle diameter of 0.1 μm or more and 20 μm or less in a cross section parallel to the rolling direction and the number of MnS-based inclusions in which MNS is combined with AlN or Al 2 O 3 are limited to 1 to 50 / mm 2 . The basis is as follows. C: 0.001 to 0.004%, Si: 0.2 to 0.3
%, Mn: 0.1 to 0.3%, P: 0.07 to 0.09
%, S: 0.005 to 0.025%, Al: 0.2 to
A slab containing 0.4% is subjected to hot rolling and cold rolling to form a cold steel strip having a thickness of 0.5 mm at 850 ° C. for 1 hour.
The material annealed for a minute was used as a test material.

【0023】切削加工性の評価は、各供試材から外径5
0mm、内径30mmの孔あき円板をそれぞれ100枚
打ち抜き、これを積層してかしめたのち、前記と同条件
で旋盤を用いて内径を0.5mm切削加工し、採取した
切り屑1個当たりの平均重量を測定し、切り屑重量0.
2g/個以下を切削性良好と判定した。
The evaluation of the machinability was performed by using an outer diameter of 5
After punching out 100 perforated discs having a diameter of 0 mm and an inner diameter of 30 mm, laminating them and caulking them, the inner diameter was cut by 0.5 mm using a lathe under the same conditions as described above, and the per piece The average weight was measured and the chip weight was set at 0.
A cutability of 2 g / piece or less was determined to be good.

【0024】各供試材の圧延方向と平行な断面、例え
ば、圧延方向と平行に垂直切断した切断面おける最大粒
子径が0.1μm以上20μm以下の、MnS単体およ
びMnSにAlNやAl23が複合したMnS系介在物
の個数を、JISG0555に規定の鋼の非金属介在物
の顕微鏡試験方法に準じて測定した。そして、最大粒子
径が0.1μm以上20μm以下のMnS単体およびM
nSにAlNやAl23が複合したMnS系介在物の個
数と切り屑重量との関係を求めた。その結果を図3に示
す。
MnS alone and MnS having a maximum particle diameter of 0.1 μm or more and 20 μm or less in a cross section parallel to the rolling direction of each test material, for example, a cross section cut perpendicularly parallel to the rolling direction, include AlN or Al 2 O. The number of MnS-based inclusions in which 3 were combined was measured in accordance with the microscope test method for non-metallic inclusions in steel specified in JIS G0555. MnS alone having a maximum particle size of 0.1 μm or more and 20 μm or less and MnS
The relationship between the number of MnS-based inclusions in which nS was combined with AlN or Al 2 O 3 and the chip weight was determined. The result is shown in FIG.

【0025】さらに、鉄損の評価は、各供試材を、75
0℃で2時間焼鈍し、JISC2550に規定の電磁鋼
板試験方法に準じて磁気試験を行い、周波数50Hz、
最大磁束密度1.5Tの時の鉄損(W15/50)を測定し
た。そして、最大粒子径が0.1μm以上20μm以下
のMnS単体およびMnSにAlNやAl23が複合し
たMnS系介在物の個数と鉄損との関係を求めた。その
結果を図4に示す。
Further, the iron loss was evaluated by evaluating each test material by 75%.
Annealed at 0 ° C. for 2 hours, performed a magnetic test according to the electrical steel sheet test method specified in JISC2550,
The iron loss ( W15 / 50 ) at a maximum magnetic flux density of 1.5 T was measured. Then, the relationship between the number of MnS-based inclusions having a maximum particle diameter of 0.1 μm or more and 20 μm or less and MnS-based inclusions in which MNS was combined with AlN or Al 2 O 3 and iron loss was determined. FIG. 4 shows the results.

【0026】図3に示すように、最大粒子径が0.1μ
m以上20μm以下のMnS単体およびMnSにAlN
やAl23が複合したMnS系介在物の個数が、1個/
mm2未満ではMnS単体およびMnSにAlNやAl2
3が複合したMnS系介在物が十分なチップブレーカ
としての効果を発揮せず、切削性の改善が十分でない。
また、図4に示すように、最大粒子径が0.1μm以上
20μm以下のMnS単体およびMnSにAlNやAl
23が複合したMnS系介在物の個数が、50個/mm
2を超えると介在物によって最終焼鈍での結晶粒の成長
が妨げられ、鉄損が悪化する。このため、粒子径が0.
1μm以上20μm以下のMnS単体およびMnSにA
lNやAl23が複合したMnS系介在物の個数を、1
〜50個/mm2とした。
As shown in FIG. 3, the maximum particle size is 0.1 μm.
m to 20 μm or less and MnS with AlN
And the number of MnS-based inclusions in which Al 2 O 3 is composited is 1 /
If it is less than mm 2 , MnS alone and MnS may contain AlN or Al 2
The MnS-based inclusions compounded with O 3 do not exhibit a sufficient effect as a chip breaker, and the improvement in machinability is not sufficient.
As shown in FIG. 4, MnS alone having a maximum particle diameter of 0.1 μm or more and 20 μm or less and MnS are made of AlN or Al.
The number of MnS-based inclusions in which 2 O 3 is compounded is 50 / mm
If it exceeds 2 , the inclusions hinder the growth of crystal grains in the final annealing, and iron loss worsens. For this reason, when the particle size is 0.
MnS alone of 1 μm or more and 20 μm or less and MnS
The number of MnS-based inclusions in which 1N or Al 2 O 3 is
5050 / mm 2 .

【0027】このような最大粒子径が0.1〜20μm
といった比較的粒子径が大きいMnS単体およびMnS
系介在物を所定の個数得るには、熱間圧延前のスラブ加
熱温度を低温加熱とし、スラブ加熱時にMnSが固溶し
加熱終了後に微細なMnSとして再析出するのを防ぐた
め、熱間圧延前のスラブ加熱温度は1180℃以下であ
ることが好ましい。更に鉄損を下げたい場合は、スラブ
加熱温度は1150℃以下の低温加熱であることが好ま
しい。
The maximum particle size is 0.1 to 20 μm.
MnS alone having a relatively large particle size and MnS
In order to obtain a predetermined number of system inclusions, the slab heating temperature before hot rolling is set to low temperature heating. The previous slab heating temperature is preferably 1180 ° C. or less. If it is desired to further reduce iron loss, the slab heating temperature is preferably low-temperature heating of 1150 ° C. or less.

【0028】[0028]

【実施例】表1に示す成分組成の鋼No.1〜13を通
常の方法で溶製したのち、連続鋳造してスラブとした。
この各スラブは、1150℃に再加熱したのち、通常の
方法により熱間圧延し、板厚2.3mmの熱延コイルに
仕上げた。各熱延コイルは、通常の方法により酸洗した
のち、必要に応じて熱延板焼鈍を施した後に、通常の方
法により冷間圧延して板厚0.5mmの冷延鋼帯とし、
850℃で連続焼鈍した。
EXAMPLE Steel No. 1 having the composition shown in Table 1 was used. After smelting 1 to 13 by an ordinary method, they were continuously cast to form slabs.
After each slab was reheated to 1150 ° C., it was hot-rolled by an ordinary method to finish a hot-rolled coil having a thickness of 2.3 mm. Each hot-rolled coil, after pickling by a normal method, after subjecting the hot-rolled sheet annealing if necessary, cold-rolled by a normal method to form a cold-rolled steel strip having a sheet thickness of 0.5 mm,
Continuous annealing was performed at 850 ° C.

【0029】各供試材の切削性の評価は、外径50m
m、内径30mmの孔あき円板に打ち抜き、100枚を
積層してかしめたのち、前記と同条件で旋盤を用いて内
径を0.5mm切削加工し、採取した切り屑1個当たり
の平均重量で評価した。切り屑が小さいほど切削性が良
好と判断し、切り屑重量0.2g/個以下を切削性良好
と判定した。その結果を表2に示す。
The evaluation of the machinability of each test material was performed using an outer diameter of 50 m.
m, punched into a perforated disk with an inner diameter of 30 mm, laminated 100 pieces and caulked, then cut the inner diameter by 0.5 mm using a lathe under the same conditions as above, and averaged the weight of one chip Was evaluated. The smaller the chips, the better the cutability was determined, and a chip weight of 0.2 g / piece or less was determined to be good. Table 2 shows the results.

【0030】各供試材の鉄損の評価は、各供試材を75
0℃で2時間焼鈍し、JISC2550に規定の電磁鋼
板試験方法に準じて磁気試験を行い、周波数50Hz、
最大磁束密度1.5Tの時の鉄損(W15/50)で評価し
た。また、各供試材を圧延方向と平行に垂直切断した切
断面における最大粒子径0.1μm以上20μm以下の
MnS単体およびMnSにAlNやAl23が複合した
MnS系介在物の個数は、JISG0555に規定の鋼
の非金属介在物の顕微鏡試験方法に準じて測定した。そ
の結果を表2に示す。
The evaluation of the iron loss of each test material was carried out using 75% of each test material.
Annealed at 0 ° C. for 2 hours, performed a magnetic test according to the electrical steel sheet test method specified in JISC2550,
The core loss ( W15 / 50 ) at the maximum magnetic flux density of 1.5T was evaluated. In addition, the number of MnS-based inclusions in which MnS alone and MnS are combined with AlN or Al 2 O 3 on the cut surface obtained by vertically cutting each test material in parallel with the rolling direction is 0.1 μm or more and 20 μm or less, It was measured according to the microscope test method for nonmetallic inclusions of steel specified in JIS G0555. Table 2 shows the results.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】表1、表2に示すとおり、鋼No.1〜6
は、本発明の条件を満たすため、歪取り焼鈍後の鉄損値
が低く、かつ切削性も良好である。これに対し、鋼N
o.7は、C量が高いため、鋼No.1に比較して鉄損
が高いという問題がある。鋼No.8は、Si量不足の
ため、鋼No.1に比較して鉄損が高いという問題があ
る。鋼No.9は、Mn量不足のため、鋼No.1に比
較して鉄損が高いという問題がある。鋼No.10は、
Al量不足のため、鋼No.1に比較して鉄損が高いと
いう問題がある。鋼No.11は、S量が高いため、切
削性は良好であるが、介在物個数が多く、鉄損が高いと
いう問題がある。鋼No.12は、S量不足のため、鉄
損が低いが、介在物個数が少なく、切削性が悪いという
問題がある。鋼No.13は、熱間圧延中にクラックが
生じ、圧延不可であった。
As shown in Tables 1 and 2, the steel No. 1-6
In order to satisfy the conditions of the present invention, the iron loss value after strain relief annealing is low and the machinability is also good. In contrast, steel N
o. Steel No. 7 has a high C content, There is a problem that iron loss is higher than that of No. 1. Steel No. No. 8 is steel No. 8 due to insufficient amount of Si. There is a problem that iron loss is higher than that of No. 1. Steel No. No. 9 is steel No. 9 due to insufficient Mn content. There is a problem that iron loss is higher than that of No. 1. Steel No. 10 is
Due to insufficient Al content, steel No. There is a problem that iron loss is higher than that of No. 1. Steel No. No. 11 has a high S content and therefore has good machinability, but has a problem that the number of inclusions is large and iron loss is high. Steel No. No. 12 has low iron loss due to insufficient S content, but has a problem that the number of inclusions is small and the machinability is poor. Steel No. In No. 13, cracks occurred during hot rolling, and rolling was impossible.

【0034】以上の結果、本発明の条件を満たす鋼N
o.1〜6は、鉄損値が低く、かつ切削性も良好であ
る。これに対し、本発明の条件を満足させない鋼No.
7〜13は、鉄損または切削性のいずれか一方または両
方に問題が発生し、鋼No.13においては、熱間圧延
不可であった。
As a result, the steel N satisfying the conditions of the present invention
o. Nos. 1 to 6 have a low iron loss value and good cutting properties. On the other hand, steel No. which does not satisfy the conditions of the present invention.
Steel Nos. 7 to 13 have problems with one or both of iron loss and machinability. In No. 13, hot rolling was not possible.

【0035】[0035]

【発明の効果】本発明の無方向性電磁鋼板は、鋼中の化
学成分をC:0.01%以下、Si:0.1〜3.5
%、Mn:0.1〜1.0%、P:0.2%以下、S:
0.002〜0.040%、Al:0.1〜1.0%を
含有し、残部がFeおよび不可避的不純物に限定すると
ともに、圧延方向と平行な断面における非金属介在物の
うち、最大粒子径が0.1μm以上20μm以下のMn
S単体およびMnSにAlNやAl23が複合したMn
S系介在物を、1〜50個/mm2含むことによって、
切削加工に際し必要十分な切削加工性を有し、鉄損の低
いセミプロセス電磁鋼板である。鋼板を積層して鉄心と
したのち、形状修正または寸法精度の向上のため、切削
加工する用途で使用すると、高い回転精度で、低振動
で、かつ高効率の電動機の製造が可能となり、エネルギ
ー消費量を低減することができる。
According to the non-oriented electrical steel sheet of the present invention, the chemical composition in steel is 0.01% or less for C and 0.1 to 3.5 for Si.
%, Mn: 0.1 to 1.0%, P: 0.2% or less, S:
0.002 to 0.040%, Al: 0.1 to 1.0%, the balance being limited to Fe and inevitable impurities, and the largest nonmetallic inclusions in the cross section parallel to the rolling direction. Mn having a particle diameter of 0.1 μm or more and 20 μm or less
Mn composed of S alone and MnS mixed with AlN and Al 2 O 3
By containing 1 to 50 S / mm 2 S-based inclusions,
It is a semi-processed electrical steel sheet that has necessary and sufficient machinability in cutting and has low iron loss. When used for cutting work to improve shape or improve dimensional accuracy after laminating steel plates to form an iron core, it is possible to manufacture motors with high rotational accuracy, low vibration and high efficiency, and energy consumption The amount can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】S含有量と切削加工により発生する切り屑の平
均重量と切削性良好範囲との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between an S content, an average weight of chips generated by cutting, and a good cutting property range.

【図2】S含有量と鉄損と鉄損良好範囲との関係を示す
グラフである。
FIG. 2 is a graph showing a relationship between an S content, iron loss, and a good iron loss range.

【図3】最大粒子径が0.1μm以上20μm以下のM
nS単体およびMnSにAlNやAl23が複合したM
nS系介在物の個数と切削加工により発生する切り屑の
平均重量と切削性良好範囲との関係を示すグラフであ
る。
FIG. 3 shows M having a maximum particle size of 0.1 μm or more and 20 μm or less.
M in which AlN and Al 2 O 3 are combined with nS alone and MnS
It is a graph which shows the number of nS type inclusions, the average weight of the chip generated by cutting, and the relationship between the range of favorable cutting characteristics.

【図4】最大粒子径が0.1μm以上20μm以下のM
nS単体およびMnSにAlNやAl23が複合したM
nS系介在物の個数と鉄損と鉄損良好範囲との関係を示
すグラフである。
FIG. 4 shows M having a maximum particle diameter of 0.1 μm or more and 20 μm or less.
M in which AlN and Al 2 O 3 are combined with nS alone and MnS
It is a graph which shows the relationship between the number of nS type inclusions, iron loss, and a good iron loss range.

フロントページの続き Fターム(参考) 4K033 AA01 BA01 BA02 CA08 CA09 CA10 5E041 AA02 AA11 AA19 CA02 NN01 NN06 NN17 Continuation of the front page F term (reference) 4K033 AA01 BA01 BA02 CA08 CA09 CA10 5E041 AA02 AA11 AA19 CA02 NN01 NN06 NN17

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 C:0.01%以下、Si:0.1〜
3.5%、Mn:0.1〜1.0%、P:0.2%以
下、S:0.002〜0.040%、Al:0.1〜
1.0%を含有し、残部がFeおよび不可避的不純物か
らなる電磁鋼板であって、圧延方向と平行な断面におけ
る非金属介在物のうち、最大粒子径が0.1μm以上2
0μm以下の、MnS単体およびMnSにAlNやAl
23が複合したMnS系介在物を、1〜50個/mm2
含むことを特徴とする切削性が良好で鉄損の少ない無方
向性電磁鋼板。
1. C: 0.01% or less, Si: 0.1 to
3.5%, Mn: 0.1-1.0%, P: 0.2% or less, S: 0.002-0.040%, Al: 0.1-
An electromagnetic steel sheet containing 1.0%, with the balance being Fe and inevitable impurities, and having a maximum particle diameter of 0.1 μm or more among nonmetallic inclusions in a cross section parallel to the rolling direction.
0 μm or less, MnS alone or MnS with AlN or Al
1 to 50 MnS-based inclusions complexed with 2 O 3 / mm 2
Non-oriented electrical steel sheet with good machinability and low iron loss characterized by containing.
JP22542798A 1998-07-24 1998-07-24 Non-oriented electrical steel sheet with good machinability and low iron loss Expired - Fee Related JP4258859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22542798A JP4258859B2 (en) 1998-07-24 1998-07-24 Non-oriented electrical steel sheet with good machinability and low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22542798A JP4258859B2 (en) 1998-07-24 1998-07-24 Non-oriented electrical steel sheet with good machinability and low iron loss

Publications (2)

Publication Number Publication Date
JP2000045040A true JP2000045040A (en) 2000-02-15
JP4258859B2 JP4258859B2 (en) 2009-04-30

Family

ID=16829208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22542798A Expired - Fee Related JP4258859B2 (en) 1998-07-24 1998-07-24 Non-oriented electrical steel sheet with good machinability and low iron loss

Country Status (1)

Country Link
JP (1) JP4258859B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285721A (en) * 2007-05-17 2008-11-27 Nippon Steel Corp Nonoriented silicon steel sheet having excellent blanking workability and core loss, and method for producing the same
US20120267015A1 (en) * 2009-12-28 2012-10-25 Posco Non-Oriented Electrical Steel Sheet Having Superior Magnetic Properties and a Production Method Therefor
JP2017509861A (en) * 2013-11-27 2017-04-06 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー Method of making a ferromagnetic part for a torque sensor of an automobile steering shaft and the torque sensor
CN113088788A (en) * 2021-03-03 2021-07-09 武汉科技大学 Method for reducing harmfulness of aluminum nitride inclusions in high-aluminum steel
WO2024080140A1 (en) * 2022-10-14 2024-04-18 Jfeスチール株式会社 Nonoriented electromagnetic steel sheet and method for manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285721A (en) * 2007-05-17 2008-11-27 Nippon Steel Corp Nonoriented silicon steel sheet having excellent blanking workability and core loss, and method for producing the same
US20120267015A1 (en) * 2009-12-28 2012-10-25 Posco Non-Oriented Electrical Steel Sheet Having Superior Magnetic Properties and a Production Method Therefor
JP2017509861A (en) * 2013-11-27 2017-04-06 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー Method of making a ferromagnetic part for a torque sensor of an automobile steering shaft and the torque sensor
CN113088788A (en) * 2021-03-03 2021-07-09 武汉科技大学 Method for reducing harmfulness of aluminum nitride inclusions in high-aluminum steel
CN113088788B (en) * 2021-03-03 2022-03-15 武汉科技大学 Method for reducing harmfulness of aluminum nitride inclusions in high-aluminum steel
WO2024080140A1 (en) * 2022-10-14 2024-04-18 Jfeスチール株式会社 Nonoriented electromagnetic steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JP4258859B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5228379B2 (en) Non-oriented electrical steel sheet with excellent strength and magnetic properties and manufacturing method thereof
JP4586669B2 (en) Method for producing non-oriented electrical steel sheet for rotor
JP2004068084A (en) Non-grain-oriented electromagnetic steel sheet with high magnetic-flux density for rotating machine, and member for rotating machine
JP6825758B1 (en) Non-oriented electrical steel sheet, its manufacturing method and motor core
JP4319889B2 (en) Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same
JP2003213385A (en) Nonoriented silicon steel sheet
JP2000045040A (en) Nonoriented silicon steel sheet excellent in machinability and reduced in iron loss
JP2001335897A (en) Nonoriented silicon steel sheet having low core loss and high magnetic flux density and excellent in workability and recyclability
JP4258951B2 (en) Non-oriented electrical steel sheet
JP5614063B2 (en) High tension non-oriented electrical steel sheet with excellent high-frequency iron loss
JP5515485B2 (en) Split motor core
JP4855221B2 (en) Non-oriented electrical steel sheet for split core
JP2003013190A (en) High-grade non-oriented magnetic steel sheet
JP4987190B2 (en) Method for producing non-oriented electrical steel sheet with good workability and low iron loss after processing and strain relief annealing
WO2023090424A1 (en) Rotary electric machine, non-oriented electrical steel sheet, laminated core, method for manufacturing rotary electric machine, and method for manufacturing laminated core
JP4258952B2 (en) Non-oriented electrical steel sheet
CN116323990B (en) Electric rotating machine, stator core, rotor core set, and method for manufacturing same
JP2001262289A (en) NONORIENTED SILICON STEEL SHEET EXCELLENT IN MAGNETIC PROPERTY IN &gt;=1 kHz FREQUENCY REGION
JP3885450B2 (en) Non-oriented electrical steel sheet
JP2004270011A (en) Method for producing high magnetic flux density non-directional magnetic steel sheet for rotary machine
JP4258949B2 (en) Electrical steel sheet for DC motor
JP4280139B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2849279B2 (en) Non-oriented electrical steel sheet for motors with excellent machinability
JP2001323352A (en) Nonoriented silicon steel sheet having low core loss and high magnetic flux density and excellent in workability and recyclability
JP2004076056A (en) Non-oriented silicon steel sheet for semi-process

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071230

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees