JP4319889B2 - Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same - Google Patents

Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same Download PDF

Info

Publication number
JP4319889B2
JP4319889B2 JP2003366026A JP2003366026A JP4319889B2 JP 4319889 B2 JP4319889 B2 JP 4319889B2 JP 2003366026 A JP2003366026 A JP 2003366026A JP 2003366026 A JP2003366026 A JP 2003366026A JP 4319889 B2 JP4319889 B2 JP 4319889B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
oriented electrical
flux density
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003366026A
Other languages
Japanese (ja)
Other versions
JP2004197217A (en
Inventor
猛 久保田
洋介 黒崎
昌浩 藤倉
力 開道
岳顕 脇坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003366026A priority Critical patent/JP4319889B2/en
Publication of JP2004197217A publication Critical patent/JP2004197217A/en
Application granted granted Critical
Publication of JP4319889B2 publication Critical patent/JP4319889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、電気機器鉄心材料として使用される、磁気特性の優れた無方向性電磁鋼板に関するものであり、特に、回転機鉄心材料として望ましい、鋼板の板面内全周磁気特性に優れた無方向性電磁鋼板及びその製造方法を提供するものである。   The present invention relates to a non-oriented electrical steel sheet having excellent magnetic properties used as an electrical equipment iron core material. A grain-oriented electrical steel sheet and a method for producing the same are provided.

近年、電気機器、特に無方向性電磁鋼板がその鉄心材料として使用される回転機、中小型変圧器、電装品等の分野においては、世界的な電力・エネルギー節減、地球環境保全の動きの中で、高効率化、小型化の要請はますます強まりつつある。このような社会環境下において、当然無方向性電磁鋼板に対しても、その性能向上は喫緊の課題として強く要請されている。   In recent years, in the fields of electrical machinery, especially rotating machines, medium- and small-sized transformers, electrical components, etc. in which non-oriented electrical steel sheets are used as iron core materials, there is a trend of global power and energy saving and global environmental conservation. Therefore, the demand for higher efficiency and smaller size is increasing. Under such a social environment, of course, improvement of the performance of non-oriented electrical steel sheets is strongly demanded as an urgent issue.

周知のように、無方向性電磁鋼板においては、その性能向上に対して数多の手段がとられてきた。鉄損低減についてみると、一般には電気抵抗増大による渦電流損低減の観点から、SiあるいはAl等の含有量を高める方法が採られてきた。しかしこの方法では、反面、磁束密度の低下は避け得ないという問題点があった。   As is well known, many measures have been taken to improve the performance of non-oriented electrical steel sheets. In terms of iron loss reduction, in general, from the viewpoint of reducing eddy current loss due to an increase in electrical resistance, a method of increasing the content of Si or Al has been employed. However, this method has a problem that a decrease in magnetic flux density is inevitable.

また、単にSi、あるいはAl等の含有量を高めるのみではなく、C,S,N等の高純度鋼化や、特許文献1に記載されているようなCa添加等の化学的処置による不純物の無害化等による鉄損低減もなされてきた。さらに、特許文献2に記載されているような仕上焼鈍条件の工夫等の製造プロセス上の処置もなされてきた。一方、高磁束密度化についても、特許文献3に記載されているような熱延板焼鈍条件と冷延条件の工夫等の製造プロセス上の処置や、特許文献4に記載されているようなSn,Cu等の合金元素添加による一次再結晶集合組織改善による処置等がなされてきた。   In addition to simply increasing the content of Si, Al, or the like, impurities such as C, S, N, etc. made of high purity steel, or chemical treatment such as Ca addition as described in Patent Document 1 are also introduced. Iron loss has been reduced by detoxification and the like. Furthermore, measures in the manufacturing process such as a device for finishing annealing as described in Patent Document 2 have been taken. On the other hand, with regard to increasing the magnetic flux density, treatments in the manufacturing process such as hot strip annealing conditions and cold rolling conditions as described in Patent Document 3 and Sn as described in Patent Document 4 Treatments have been made by improving the primary recrystallization texture by adding alloying elements such as Cu and Cu.

しかし上記のような処置により、無方向性電磁鋼板の磁気特性の向上はなされても、回転機等の鉄心として電気機器に使用される場合には、通常、JIS等で規定されている鋼板圧延方向およびその鋼板面内直角方向の平均的磁気特性のみでなく、鋼板の板面内全周磁気特性、すなわち面内での等方的に優れた磁気特性が要請される。この目的のためには、無方向性電磁鋼板の{100}集合組織を発達させることが望ましい。   However, even if the magnetic properties of the non-oriented electrical steel sheet are improved by the above-mentioned measures, when the steel core is used as an iron core of a rotating machine, etc. Not only the average magnetic property in the direction perpendicular to the direction of the steel sheet but also the whole-surface magnetic property in the sheet surface of the steel sheet, that is, the isotropically excellent magnetic characteristic in the surface is required. For this purpose, it is desirable to develop a {100} texture of the non-oriented electrical steel sheet.

無方向性電磁鋼板において{100}集合組織を発達させる手段としては、特許文献5に記載されているように、冷間圧延の圧下率を85%以上、望ましくは90%以上の強圧下とし、かつ、仕上焼鈍を700〜1200℃で2分〜1時間の長時間とする方法があるが、このような強圧下冷間圧延および長時間仕上焼鈍を施すことは、生産性の低下や製造コストの上昇、さらには、設備制約上の問題が生じ、実用化には至っていない。
特許文献6や特許文献7に記載されているように、移動更新する冷却体表面によって溶鋼を凝固せしめて薄帯となす急冷凝固法等の特殊な製造方法も開発されているが、設備制約上の問題や安定生産性の問題等が生じ、実用化には至っていない。
特開平 3−126845号公報 特開昭61−231120号公報 特開平 4−325629号公報 特開平 5−140648号公報 特公昭51−942号公報 特開平 5−279740号公報 特開平 5−306438号公報
As a means for developing a {100} texture in a non-oriented electrical steel sheet, as described in Patent Document 5, the rolling reduction ratio of cold rolling is 85% or more, preferably 90% or more, In addition, there is a method in which the finish annealing is performed at 700 to 1200 ° C. for a long time of 2 minutes to 1 hour. However, such strong rolling under cold rolling and long-time finish annealing are performed to reduce productivity and manufacturing cost. As a result, there are problems in terms of equipment restrictions and practical use has not yet been achieved.
As described in Patent Document 6 and Patent Document 7, special manufacturing methods such as a rapid solidification method in which molten steel is solidified by a moving and renewed cooling body surface to form a thin strip have been developed. Problems and stable productivity have occurred, and it has not been put into practical use.
Japanese Patent Laid-Open No. 3-126845 JP-A-61-231120 JP-A-4-325629 Japanese Patent Laid-Open No. 5-140648 Japanese Patent Publication No.51-942 JP-A-5-279740 JP-A-5-306438

上記に鑑み本発明は、無方向性電磁鋼板において{100}集合組織を発達させ、回転機鉄心材料として望ましい、鋼板の板面内全周磁気特性に優れた無方向性電磁鋼板及びその製造方法を提供するものである。   In view of the above, the present invention develops a {100} texture in a non-oriented electrical steel sheet, and is desirable as a rotating machine core material. Is to provide.

本発明者らは、無方向性電磁鋼板の通常の製造工程において、冷間圧延前の結晶組織制御と冷間圧延圧下との組み合わせにより{100}集合組織を発達させ、鋼板の板面内全周磁気特性に優れた無方向性電磁鋼板が得られないかとの観点から鋭意研究を積み重ねた。その結果、鋼板圧延方向磁束密度、およびその板面内垂直方向との磁束密度差、圧延方向から板面内22.5度方向の磁束密度、および67.5度方向,45度方向との磁束密度B50差を一定範囲に制御すれば、回転機鉄心として用いた場合に優れた鉄損特性が得られること、また製造方法としては、冷間圧延前の結晶粒径をある値以上に粗大化させることにより、冷間圧延の圧下率を適切に選べは、短時間連続仕上焼鈍で、板面内全周磁気特性を顕著に向上させることが可能であることを究明した。   In the normal manufacturing process of a non-oriented electrical steel sheet, the inventors have developed a {100} texture by a combination of crystal structure control before cold rolling and cold rolling reduction, and the entire in-plane surface of the steel sheet is developed. From the viewpoint of obtaining non-oriented electrical steel sheets with excellent circumferential magnetic properties, we have conducted extensive research. As a result, the magnetic flux density in the steel sheet rolling direction, the magnetic flux density difference from the vertical direction in the plate surface, the magnetic flux density in the 22.5 degree direction in the plate surface from the rolling direction, and the magnetic flux in the 67.5 degree direction and 45 degree direction. If the difference in density B50 is controlled within a certain range, excellent iron loss characteristics can be obtained when used as a rotating machine core, and as a manufacturing method, the grain size before cold rolling is coarsened to a certain value or more. Thus, it has been found that the proper selection of the rolling reduction of cold rolling can be achieved by remarkably improving the in-plane circumferential magnetic properties by short-time continuous finish annealing.

本発明は上記知見に基づきなされたものであり、その要旨は次の通りである。
(1) 質量%で、
C :0.002%以下、 Si:0.8%以上4.0%以下、
Al:0.1%以上2.0以下、 Mn:0.1%以上1.5%以下
を含有し、かつ、
Si+2Al−Mn:2%以上で、
残部Feおよび不可避不純物元素よりなる鋼であり、熱延板焼鈍後の平均結晶粒径を438μm以上とし、冷間圧延を圧下率80%以上90%以下で施すものであって、圧延方向の磁束密度B50が1.69T以上でその板面内垂直方向の磁束密度B50との差が0.03T未満であり、また圧延方向から板面内22.5度方向の磁束密度B50が1.65T以上で67.5度方向の磁束密度B50との差が0.04T未満であり、かつ、45度方向の磁束密度B50との差が0.06T未満であることを特徴とする無方向性電磁鋼板。
(2) 質量%でさらに、
Sn:0.02〜0.40%、 Cu:0.1〜1.0%
の1種または2種を含有することを特徴とする前記(1)に記載の無方向性電磁鋼板。
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) In mass%,
C: 0.002% or less, Si: 0.8% or more and 4.0% or less,
Al: 0.1% or more and 2.0 or less, Mn: 0.1% or more and 1.5% or less, and
Si + 2Al-Mn: 2% or more,
The steel is composed of the remaining Fe and inevitable impurity elements, the average grain size after hot-rolled sheet annealing is 438 μm or more, and cold rolling is performed at a rolling reduction of 80% or more and 90% or less, and the magnetic flux in the rolling direction The density B50 is 1.69T or more, the difference from the magnetic flux density B50 in the vertical direction in the plate surface is less than 0.03T, and the magnetic flux density B50 in the 22.5 degree direction in the plate surface from the rolling direction is 1.65T or more. The non-oriented electrical steel sheet is characterized in that the difference from the magnetic flux density B50 in the 67.5 degree direction is less than 0.04T and the difference from the magnetic flux density B50 in the 45 degree direction is less than 0.06T. .
(2) Further in mass%,
Sn: 0.02-0.40%, Cu: 0.1-1.0%
The non-oriented electrical steel sheet according to (1) above, which contains one or two of the above.

(3) 質量%で、
C :0.002%以下、 Si:0.8%以上4.0%以下、
Al:0.1%以上2.0以下、 Mn:0.1%以上1.5%以下
を含有し、かつ、
Si+2Al−Mn:2%以上で、
残部Feおよび不可避不純物元素よりなる鋼を、熱間圧延後、熱延板焼鈍を施し、一回の冷間圧延により最終板厚とした後、仕上焼鈍を施す無方向性電磁鋼板の製造方法において、熱延板焼鈍後の平均結晶粒径を438μm以上とし、冷間圧延を圧下率:80%以上90%以下で施し、仕上焼鈍を800℃以上950℃以下で10秒以上1分以下施すことを特徴とする無方向性電磁鋼板の製造方法。
(4) 質量%でさらに、不可避不純物としてのS,N,Tiをそれぞれ0.002%以下とした鋼を用いることを特徴とする前記(3)に記載の無方向性電磁鋼板の製造方法。
(5) 質量%でさらに、不可避不純物としてのV,Zr,Nb,Asをそれぞれ0.003%以下とした鋼を用いることを特徴とする前記(3)または(4)に記載の無方向性電磁鋼板の製造方法。
(3) In mass%,
C: 0.002% or less, Si: 0.8% or more and 4.0% or less,
Al: 0.1% or more and 2.0 or less, Mn: 0.1% or more and 1.5% or less, and
Si + 2Al-Mn: 2% or more,
In the method for producing a non-oriented electrical steel sheet, the steel comprising the remaining Fe and inevitable impurity elements is subjected to hot rolling, followed by hot-rolled sheet annealing, the final sheet thickness is obtained by a single cold rolling, and then finish annealing. The average grain size after hot-rolled sheet annealing is set to 438 μm or more, cold rolling is performed at a reduction ratio of 80% to 90%, and finish annealing is performed at 800 ° C. to 950 ° C. for 10 seconds to 1 minute. The manufacturing method of the non-oriented electrical steel sheet characterized by the above-mentioned.
(4) The method for producing a non-oriented electrical steel sheet according to the above (3), wherein the steel further uses 0.002% or less of S, N, and Ti as inevitable impurities in mass%.
(5) Nondirectionality as described in (3) or (4) above, wherein the steel further uses less than 0.003% of V, Zr, Nb and As as inevitable impurities in mass%. A method for producing electrical steel sheets.

以上のように、本発明によれば、回転機鉄心材料として実用上好ましい特性を有する、鋼板の板面内全周磁気特性に優れた無方向性電磁鋼板を提供することができため、電気機器、特に無方向性電磁鋼板がその鉄心材料として使用される回転機等の分野における要請に十分に応えることができ、その工業的価値は極めて高いものである。   As described above, according to the present invention, it is possible to provide a non-oriented electrical steel sheet having practically preferable characteristics as a rotating machine iron core material and excellent in the in-plane magnetic properties of the steel sheet. In particular, the non-oriented electrical steel sheet can sufficiently meet the demands in the field of rotating machines and the like in which the core material is used, and its industrial value is extremely high.

以下、本発明を詳細に説明する。
まず、本発明の鋼成分の限定理由について述べる。
Cは、鉄損を高める有害な成分で、磁気時効の原因ともなるので、0.002%以下とする。
Hereinafter, the present invention will be described in detail.
First, the reasons for limiting the steel components of the present invention will be described.
C is a harmful component that increases iron loss and causes magnetic aging, so it is 0.002% or less.

Siは、前記のように、電気抵抗を増大させて渦電流損を減少させることにより、鉄損を低減する作用のある成分であり、この作用を奏するためには、0.8%以上含有させる必要がある。一方、その含有量が増えると、前記のように、磁束密度が低下し、かつ、硬度の上昇を招いて、打ち抜き加工性を劣化させ、また、無方向性電磁鋼板の製造工程そのものにおいても、冷延等の作業性の低下、コスト高ともなるので、4.0%以下とする。   As described above, Si is a component having an action of reducing iron loss by increasing electric resistance and reducing eddy current loss. To achieve this action, Si is contained in an amount of 0.8% or more. There is a need. On the other hand, when the content is increased, as described above, the magnetic flux density is decreased, and the hardness is increased, the punching processability is deteriorated, and also in the manufacturing process itself of the non-oriented electrical steel sheet, Since workability such as cold rolling deteriorates and costs increase, the content is set to 4.0% or less.

Alも、前記のように、Siと同様に電気抵抗を増大させて渦電流損を減少させることにより、鉄損を低減する作用のある成分であり、また、熱延板焼鈍時の結晶粒成長性を促進する作用を有する。これらの作用を奏するためには、0.1%以上含有させる必要がある。一方、その含有量が増えると磁束密度が低下し、かつ降伏比の減少を招いて打ち抜き加工性を劣化させるので、2.0%以下とする。   As described above, Al is also a component having an action of reducing iron loss by increasing electric resistance and reducing eddy current loss in the same manner as Si, and crystal grain growth during hot-rolled sheet annealing. Has the effect of promoting sex. In order to exhibit these effects, it is necessary to contain 0.1% or more. On the other hand, if the content is increased, the magnetic flux density is lowered and the yield ratio is reduced to deteriorate the punching workability.

Mnも、電気抵抗を増大させて渦電流損を減少させることにより、鉄損を低減する作用を有する。この目的のためには0.1%以上含有させる必要がある。しかしその含有量が増えると、熱延板焼鈍時の結晶粒成長性そのものが低下するので、1.5%以下とする。   Mn also has an effect of reducing iron loss by increasing electric resistance and reducing eddy current loss. For this purpose, it is necessary to contain 0.1% or more. However, if the content is increased, the crystal grain growth itself during the hot-rolled sheet annealing is lowered, so the content is made 1.5% or less.

なお、上記の合金元素成分Si,Al,Mn相互の間には、Si+2Al−Mn:2%以上の関係を満足する必要がある。これは、Si+2Al−Mnが2%未満では、α−γ変態が存在する化学成分系となり、無方向性電磁鋼板の製造工程における焼鈍時、特に本発明の特徴とする熱延板焼鈍時に変態が生じ、熱延板焼鈍後の結晶粒径の粗大化を阻害し、続く冷間圧延の圧下率制御をもってしても、仕上焼鈍後の{100}集合組織の発達が抑制され、板面内全周磁気特性の向上が阻まれるためである。   In addition, it is necessary to satisfy the relationship of Si + 2Al-Mn: 2% or more between the alloy element components Si, Al, and Mn. If Si + 2Al-Mn is less than 2%, it becomes a chemical component system in which an α-γ transformation exists, and the transformation occurs during annealing in the manufacturing process of a non-oriented electrical steel sheet, particularly during hot-rolled sheet annealing, which is a feature of the present invention. And the growth of {100} texture after finish annealing is suppressed even if the rolling reduction control of the subsequent cold rolling is inhibited. This is because improvement of the peripheral magnetic characteristics is hindered.

Snは、鋼板の一次再結晶集合組織を磁気特性に望ましい(100)、もしくは(110)集合組織に発達させ、かつ、磁気特性に望ましくない(111)集合組織を抑制する効果を有するので、必要に応じて添加する。この目的のためには0.02%以上含有させる必要がある。一方、その含有量が増えても作用は飽和し、むしろ焼鈍時の結晶粒成長性が抑制され、磁気特性が劣化する結果となるので、0.40%以下とする。   Sn is necessary because it has the effect of developing the primary recrystallized texture of the steel sheet to a desirable (100) or (110) texture for magnetic properties and suppressing the undesirable (111) texture for magnetic properties. Add as appropriate. For this purpose, it is necessary to contain 0.02% or more. On the other hand, even if the content is increased, the action is saturated, rather the crystal grain growth property during annealing is suppressed and the magnetic properties are deteriorated, so the content is made 0.40% or less.

CuもSnと同様に、鋼板の一次再結晶集合組織を磁気特性に望ましいものに発達させる効果を有するので、必要に応じて添加する。この効果を発揮させるためには0.1%以上含有させる必要がある。しかし、その含有量が増えると熱間脆化を招き、無方向性電磁鋼板の製造工程における熱延等での作業性を低下させるので、1.0%以下とする。   Similarly to Sn, Cu has the effect of developing the primary recrystallization texture of the steel sheet to a desirable one for magnetic properties, so it is added as necessary. In order to exhibit this effect, it is necessary to contain 0.1% or more. However, when the content increases, hot embrittlement is caused, and workability in hot rolling or the like in the manufacturing process of the non-oriented electrical steel sheet is lowered.

Sは、MnS等の硫化物の微細析出により、熱間圧延後の再結晶および結晶粒成長を阻害し、熱延板焼鈍後の結晶粒径の粗大化、およびこれに伴う熱延板集合組織のランダム化を阻むので、0.002%以下とする。   S inhibits recrystallization and grain growth after hot rolling due to fine precipitation of sulfides such as MnS, coarsening of crystal grain size after hot-rolled sheet annealing, and accompanying hot-rolled sheet texture Therefore, the content is made 0.002% or less.

Nは、AlNをはじめTiN等の窒化物の微細析出により、熱間圧延後の再結晶および結晶粒成長を阻害し、熱延板焼鈍後の結晶粒径の粗大化、およびこれに伴う熱延板集合組織のランダム化を阻むので、0.002%以下とする。   N inhibits recrystallization and grain growth after hot rolling due to fine precipitation of nitrides such as TiN as well as AlN, coarsening of the crystal grain size after hot-rolled sheet annealing, and accompanying hot rolling. In order to prevent randomization of the plate texture, the content is made 0.002% or less.

Tiは、再結晶温度を上昇させ、無方向性電磁鋼板の製造工程における焼鈍時に再結晶およびそれに続く結晶粒成長を遅らせる。また、無方向性電磁鋼板の磁気特性にとって好ましくない{111}集合組織を発達させる。さらに、TiNやTiC等の微細析出とも相俟って、熱延板焼鈍後の結晶粒径の粗大化、およびこれに伴う熱延板集合組織のランダム化を阻害するので、0.002%以下とする。   Ti raises the recrystallization temperature and delays the recrystallization and the subsequent grain growth during annealing in the manufacturing process of the non-oriented electrical steel sheet. In addition, a {111} texture that is undesirable for the magnetic properties of the non-oriented electrical steel sheet is developed. Furthermore, in combination with fine precipitation of TiN, TiC, etc., it inhibits the coarsening of the crystal grain size after the hot-rolled sheet annealing and the randomization of the hot-rolled sheet texture accompanying this, so 0.002% or less And

V,Zr,Nbは,VN,VC等の炭化物や窒化物の微細析出により、熱間圧延後の再結晶および結晶粒成長を阻害し、熱延板焼鈍後の結晶粒径の粗大化、およびこれに伴う熱延板集合組織のランダム化を阻むので、それぞれ、0.003%以下とする。   V, Zr, and Nb, due to fine precipitation of carbides and nitrides such as VN and VC, inhibit recrystallization and grain growth after hot rolling, increase the grain size after hot-rolled sheet annealing, and Since randomization of the hot-rolled sheet texture accompanying this is hindered, each is made 0.003% or less.

Asは、それ自身では、本発明の鋼成分範囲内では上述のような微細析出物を形成することはない。ただし、Asが含有されるとMnS等の硫化物の微細析出を促進し、熱間圧延後の再結晶および結晶粒成長を阻害することとなり、熱延板焼鈍後の結晶粒径の粗大化、およびこれに伴う熱延板集合組織のランダム化を阻むので、0.003%以下とする。 上述の成分以外は、Feおよび不可避不純物元素である。   As itself does not form fine precipitates as described above within the steel component range of the present invention. However, when As is contained, the fine precipitation of sulfides such as MnS is promoted, and recrystallization and crystal grain growth after hot rolling will be hindered. In order to prevent randomization of the hot rolled sheet texture accompanying this, the content is made 0.003% or less. Other than the above-described components, Fe and unavoidable impurity elements.

次に、本発明の特徴とする、鋼板の板面内での全周磁気特性変化と回転機鉄心として用いた場合の鉄損との関係について述べる。
表1に示した成分の鋼スラブを用い、熱間圧延条件、熱延板焼鈍条件、冷間圧延条件等を調整し、表2に示した全周磁気特性を有する0.35mm厚の6種類の無方向性電磁鋼板を得た。これらの無方向性電磁鋼板を4極モータコアに加工,積層し、モータコア鉄損/素材鉄損の比、すなわちBF(ビルディングファクタ)を測定した。その測定結果を表3に示す。
Next, the relationship between the change in the entire circumference magnetic properties within the plate surface of the steel sheet and the iron loss when used as a rotating machine iron core, which is a feature of the present invention, will be described.
Using steel slabs with the components shown in Table 1, hot rolling conditions, hot rolled sheet annealing conditions, cold rolling conditions, etc. are adjusted, and six types of 0.35 mm thickness having all-around magnetic properties shown in Table 2 A non-oriented electrical steel sheet was obtained. These non-oriented electrical steel sheets were processed and laminated into a 4-pole motor core, and the ratio of motor core iron loss / material iron loss, that is, BF (building factor) was measured. The measurement results are shown in Table 3.

Figure 0004319889
Figure 0004319889

Figure 0004319889
Figure 0004319889

Figure 0004319889
Figure 0004319889

鋼板の製造条件を操作して板面内での全周磁気特性を変化させることにより、{100}<Ovw>集合組織が発達した場合に得られるような鋼板の板面内すべての方向について均一な磁気特性が必ずしも実現されなくても、モータコア鉄損/素材鉄損の比、すなわちBF(ビルディングファクタ)を低減することができ、回転機鉄心素材として実用上好ましい無方向性電磁鋼板となることがわかる。
特に、圧延方向の磁束密度B50が1.69T以上でその板面内垂直方向との磁束密度B50差が0.03T未満、圧延方向から板面内22.5度方向の磁束密度B50が1.65T以上で67.5度方向との磁束密度B50差が0.04T未満、45度方向との磁束密度B50差が0.06T未満であるNo.6では、著しくBFが低く、モータコア素材として優れた無方向性電磁鋼板が実現されている。
Uniform in all directions in the plate surface of the steel plate as obtained when {100} <Ovw> texture develops by manipulating the manufacturing conditions of the steel plate and changing the magnetic properties around the plate surface Even if the magnetic characteristics are not necessarily realized, the ratio of motor core iron loss / material iron loss, that is, BF (building factor) can be reduced, and a non-oriented electrical steel sheet that is practically preferred as a rotating machine core material can be obtained. I understand.
In particular, the magnetic flux density B50 in the rolling direction is 1.69 T or more, the magnetic flux density B50 difference from the vertical direction in the plate surface is less than 0.03 T, and the magnetic flux density B50 in the 22.5 degree direction in the plate surface from the rolling direction is 1. The magnetic flux density B50 difference with the direction of 67.5 degrees is less than 0.04T at 65T or more, and the magnetic flux density B50 difference with the direction of 45 degrees is less than 0.06T. In No. 6, a non-oriented electrical steel sheet having an extremely low BF and excellent as a motor core material is realized.

このように、本発明の特徴は、鋼板圧延方向磁束密度、およびその板面内垂直方向との磁束密度差、圧延方向から板面内22.5度方向の磁束密度、および67.5度方向、45度方向との磁束密度B50差を一定範囲に制御することにより、回転機鉄心として用いた場合に実用上優れた鉄損特性を有する無方向性電磁鋼板を提供することにある。   As described above, the present invention is characterized by the magnetic flux density in the rolling direction of the steel sheet, the magnetic flux density difference from the vertical direction in the plate surface, the magnetic flux density in the 22.5 degree direction in the plate surface from the rolling direction, and the 67.5 degree direction. It is intended to provide a non-oriented electrical steel sheet having practically excellent iron loss characteristics when used as a rotating machine iron core by controlling the magnetic flux density B50 difference with respect to the 45 degree direction within a certain range.

この場合、鋼板圧延方向磁束密度B50は1.69T以上とする必要がある。1.69T未満では、回転機の使用磁場を下げざるを得ず、またBFも増加し鉄損特性が劣化する。 鋼板圧延方向磁束密度B50とその板面内垂直方向磁束密度B50との差は0.03T未満とする必要がある。0.03T以上の差ではBFが増加する。
さらに、圧延方向から板面内22.5度方向の磁束密度B50は1.65T以上とする必要がある。1.65T未満では、回転機の使用磁場を下げざるを得ず、またBFも増加し鉄損特性が劣化する。
圧延方向から板面内22.5度方向の磁束密度B50と67.5度方向との磁束密度B50との差は0.04T未満、かつ、45度方向との磁束密度B50との差は0.06T未満とする必要がある。これらの差がそれぞれ0.04T以上,0.06T以上では、BFが増加する。尚、本発明に規定した化学成分を有する鋼であれば、以下に述べるような製造条件によって、優れた全周磁気特性を得ることが出来る。
In this case, the steel plate rolling direction magnetic flux density B50 needs to be 1.69 T or more. If it is less than 1.69T, the magnetic field in use of the rotating machine must be lowered, and BF also increases and the iron loss characteristics deteriorate. The difference between the steel plate rolling direction magnetic flux density B50 and the in-plate vertical magnetic flux density B50 needs to be less than 0.03T. BF increases with a difference of 0.03T or more.
Furthermore, the magnetic flux density B50 in the 22.5 degree direction in the plate surface from the rolling direction needs to be 1.65 T or more. If it is less than 1.65T, the working magnetic field of a rotating machine must be lowered, and BF also increases and the iron loss characteristics deteriorate.
The difference between the magnetic flux density B50 in the 22.5 degree direction in the plate direction from the rolling direction and the magnetic flux density B50 in the 67.5 degree direction is less than 0.04T, and the difference between the magnetic flux density B50 in the 45 degree direction is 0. Must be less than 06T. When these differences are 0.04T or more and 0.06T or more, BF increases. In addition, if it is steel which has the chemical component prescribed | regulated to this invention, the outstanding all-around magnetic characteristic can be obtained on the manufacturing conditions as described below.

次に、本発明の特徴とする、熱延板焼鈍後の結晶粒径と冷間圧延の圧下率との組み合わせが磁気特性に及ぼす効果について述べる。表4に示した成分の鋼スラブを2.8mm厚に熱間圧延後、表5に示した焼鈍条件で熱延板焼鈍を施し、熱延板焼鈍後の結晶粒径を変化させ、また、冷間圧延圧下率も変化させ、900℃で30秒の仕上焼鈍を施した後、角度別(圧延方向,22.5度方向,45度方向,67.5度方向,圧延方向に垂直方向)にエプスタイン試料を採取し、磁気特性(磁束密度:B50)を測定した。その測定結果も併せて表5に示す。   Next, the effect of the combination of the crystal grain size after hot-rolled sheet annealing and the cold rolling reduction ratio, which is a feature of the present invention, on the magnetic properties will be described. After hot-rolling a steel slab having the components shown in Table 4 to a thickness of 2.8 mm, it is subjected to hot-rolled sheet annealing under the annealing conditions shown in Table 5, and the crystal grain size after the hot-rolled sheet annealing is changed. After changing the cold rolling reduction ratio and finishing annealing at 900 ° C. for 30 seconds, by angle (rolling direction, 22.5 degree direction, 45 degree direction, 67.5 degree direction, perpendicular direction to the rolling direction) Epstein samples were taken and magnetic properties (magnetic flux density: B50) were measured. The measurement results are also shown in Table 5.

Figure 0004319889
Figure 0004319889

Figure 0004319889
Figure 0004319889

冷間圧延前、すなわち熱延板焼鈍後の平均結晶粒径と冷間圧延の圧下率との組み合わせにより、900℃で30秒の短時間連続仕上焼鈍で、板面内全周磁気特性を向上できることがわかる。特に、熱延板焼鈍後の平均結晶粒径を438μm以上に粗大化させ、かつ、冷間圧延の圧下率を85%に制御したNo.5では、著しくB50(全周平均値)が高く、全周磁気特性の優れた無方向性電磁鋼板が得られる。この場合、熱延板焼鈍後の平均結晶粒径を438μm以上に粗大化させることにより、熱延板集合組織のランダム化も促進されており、熱延板焼鈍後、すなわち冷間圧延前の平均結晶粒径の粗大化とランダム集合組織が、冷間圧延の圧下率制御との相乗効果により、仕上焼鈍後の{100}集合組織の発達を促進し、板面内全周磁気特性の顕著な向上に寄与しているものと推察される。
このように本発明の特徴は、熱延板焼鈍後の結晶粒径と冷間圧延の圧下率との組み合わせにより、短時間連続仕上焼鈍で、板面内全周磁気特性の優れた無方向性電磁鋼板を製造することにある。
By combining the average grain size before cold rolling, that is, after hot-rolled sheet annealing, and the rolling reduction ratio of cold rolling, short-term continuous finish annealing at 900 ° C for 30 seconds improves the in-plane magnetic properties around the plate surface. I understand that I can do it. In particular, the average grain size after hot-rolled sheet annealing was coarsened to 438 μm or more, and the rolling reduction of cold rolling was controlled to 85%. No. 5, a non-oriented electrical steel sheet having a remarkably high B50 (circumference average value) and excellent all-round magnetic properties can be obtained. In this case, by making the average grain size after hot-rolled sheet annealing coarser to 438 μm or more, randomization of the hot-rolled sheet texture is also promoted, and after hot-rolled sheet annealing, that is, before cold rolling. The coarsening of the average grain size and the random texture promote the development of the {100} texture after finish annealing due to the synergistic effect of the cold rolling reduction ratio control, and the remarkable in-plane magnetic properties in the plate surface It is assumed that it contributes to the improvement.
As described above, the feature of the present invention is that the combination of the crystal grain size after hot-rolled sheet annealing and the reduction ratio of cold rolling is a short-time continuous finish annealing and excellent non-directionality in the in-plane circumferential magnetic properties. It is to manufacture an electromagnetic steel sheet.

熱延板焼鈍後の平均結晶粒径は438μm以上にする必要がある。熱延板平均結晶粒径が438mm未満では、冷間圧延の圧下率を制御しても板面内全周磁気特性を向上させることはできない。なお、本発明に規定した鋼の不純物元素含有量であれば、熱延板焼鈍条件、すなわち焼鈍温度と時間を、無方向性電磁鋼板の通常の製造工程範囲内で適宜選定することにより、熱延板焼鈍後の平均結晶粒径を438μm以上にすることができる。 The average crystal grain size after hot-rolled sheet annealing needs to be 438 μm or more. If the average grain size of hot-rolled sheet is less than 438 mm, the in-plane circumferential magnetic properties cannot be improved even if the rolling reduction of cold rolling is controlled. In addition, if the impurity element content of the steel specified in the present invention, the hot-rolled sheet annealing conditions, that is, the annealing temperature and time are appropriately selected within the normal manufacturing process range of the non-oriented electrical steel sheet. The average crystal grain size after the sheet annealing can be set to 438 μm or more.

冷間圧延の圧下率は、80%以上90%以下とする。80%未満では、磁気特性の異方性が大きくなり、板面内全周磁気特性が向上しない。一方90%超では、磁気特性の異方性は減少するものの、無方向性電磁鋼板の磁気特性にとって好ましくない{111}集合組織が発達し、磁束密度が低下する。   The rolling reduction of cold rolling is 80% or more and 90% or less. If it is less than 80%, the magnetic property anisotropy becomes large, and the in-plane circumferential magnetic property is not improved. On the other hand, if it exceeds 90%, the magnetic property anisotropy decreases, but a {111} texture unfavorable for the magnetic property of the non-oriented electrical steel sheet develops, and the magnetic flux density decreases.

仕上焼鈍は800℃以上950℃以下で10秒以上1分以下とする。800℃未満では、磁気特性の異方性が大きくなり、板面内全周磁気特性が向上しない。一方、950℃超では、磁気特性の異方性は減少するものの、無方向性電磁鋼板の磁気特性にとって好ましくない{111}集合組織が発達し、磁束密度が低下する。また10秒未満では、結晶粒の整粒性が悪く、磁束密度の低下や鉄損の増加を招く。一方1分超では、その効果は飽和し、かつ生産性の低下や製造コストの上昇をも招く。   Finish annealing is performed at 800 ° C. or more and 950 ° C. or less for 10 seconds or more and 1 minute or less. If it is less than 800 ° C., the anisotropy of the magnetic characteristics increases, and the in-plane circumferential magnetic characteristics do not improve. On the other hand, if it exceeds 950 ° C., the magnetic property anisotropy decreases, but a {111} texture unfavorable for the magnetic properties of the non-oriented electrical steel sheet develops, and the magnetic flux density decreases. If the time is less than 10 seconds, the crystal grain size is poor, leading to a decrease in magnetic flux density and an increase in iron loss. On the other hand, if it exceeds 1 minute, the effect is saturated, and the productivity is lowered and the manufacturing cost is increased.

なお、本発明の特徴とする化学成分を有する鋼は、転炉あるいは電気炉等で溶製され、連続鋳造あるいは造塊後の分塊圧延によりスラブとされた後、上記の熱間圧延以降の処理が施される。   In addition, the steel having the chemical component characterized by the present invention is melted in a converter or an electric furnace, and is made into a slab by continuous rolling or ingot rolling after ingot forming, and then after the above hot rolling. Processing is performed.

次に本発明の実施例を示す。
(実施例1)
表6に示した成分を含有し、表7に示した全周磁気特性を有する0.50mm厚の無方向性電磁鋼板を8極モータコアに加工,積層し、モータコア鉄損/素材鉄損の比、すなわちBF(ビルディングファクタ)を測定した。その測定結果も併せて表7に示す。
Next, examples of the present invention will be described.
Example 1
A non-oriented electrical steel sheet of 0.50 mm thickness containing the components shown in Table 6 and having the entire circumference magnetic properties shown in Table 7 is processed and laminated into an 8-pole motor core, and the ratio of motor core iron loss / material iron loss That is, BF (building factor) was measured. The measurement results are also shown in Table 7.

Figure 0004319889
Figure 0004319889

Figure 0004319889
Figure 0004319889

表7において、比較例のNo.11および12は、所定の全周磁気特性、すなわち、圧延方向の磁束密度B50が1.69T以上でその板面内垂直方向との磁束密度B50差が0.03T未満、圧延方向から板面内22.5度方向の磁束密度B50が1.65T以上で67.5度方向との磁束密度B50差が0.04T未満、45度方向との磁束密度B50差が0.06T未満の条件のいずれかを満たさないため、BFが大きい。
また、比較例のNo.14,15および16は、所定の全周磁気特性を満たさないためBFが大きい。特に、Si+2Al−Mnが2%未満であるため、{100}<Ovw>集合組織の発達が難しくなっており、BFの増加を助長している。
それに対して本発明例のNo.13は、所定の全周磁気特性を満足しているため素材鉄損が低いとともに、BFも著しく低い。
このように、本発明により、回転機鉄心として用いた場合に優れた鉄損特性が得られる全周磁気特性に優れた無方向性電磁鋼板を提供できることがわかる。
In Table 7, No. of the comparative example. Nos. 11 and 12 are predetermined circumferential magnetic characteristics, that is, the magnetic flux density B50 in the rolling direction is 1.69 T or more and the difference in magnetic flux density B50 from the vertical direction in the plate surface is less than 0.03 T. Any of the conditions where the magnetic flux density B50 in the 22.5 degree direction is 1.65T or more and the magnetic flux density B50 difference with the 67.5 degree direction is less than 0.04T and the magnetic flux density B50 difference with the 45 degree direction is less than 0.06T. Since BF is not satisfied, BF is large.
Moreover, No. of the comparative example. 14, 15 and 16 have a large BF because they do not satisfy the predetermined circumferential magnetic characteristics. In particular, since Si + 2Al—Mn is less than 2%, it is difficult to develop a {100} <Ovw> texture, which promotes an increase in BF.
On the other hand, No. of the present invention example. No. 13 satisfies the predetermined all-round magnetic characteristics, so that the material iron loss is low and the BF is remarkably low.
Thus, according to the present invention, it can be seen that a non-oriented electrical steel sheet excellent in all-around magnetic characteristics that can provide excellent iron loss characteristics when used as a rotating machine core can be provided.

(実施例2)
表8に示した成分を含有し、表9に示した全周磁気特性を有する0.35mm厚の無方向性電磁鋼板を4極モータコアに加工,積層し、モータコア鉄損/素材鉄損の比、すなわちBF(ビルディングファクタ)を測定した。その測定結果も併せて表9に示す。
(Example 2)
A non-oriented electrical steel sheet having a thickness of 0.35 mm containing the components shown in Table 8 and having the entire magnetic properties shown in Table 9 is processed and laminated on a 4-pole motor core, and the ratio of motor core iron loss / material iron loss That is, BF (building factor) was measured. The measurement results are also shown in Table 9.

Figure 0004319889
Figure 0004319889

Figure 0004319889
Figure 0004319889

表9において、比較例のNo.21〜24は、所定の全周磁気特性、すなわち、圧延方向の磁束密度B50が1.69T以上でその板面内垂直方向との磁束密度B50差が0.03T未満、圧延方向から板面内22.5度方向の磁束密度B50が1.65T以上で67.5度方向との磁束密度B50差が0.04T未満、45度方向との磁束密度B50差が0.06T未満の条件のいずれかを満たさないため、BFが大きい。
それに対して本発明例のNo.25は、所定の全周磁気特性を満足しているため、BFが著しく低い。
本発明により、回転機鉄心として用いた場合に優れた鉄損特性が得られる全周磁気特性に優れた無方向性電磁鋼板を提供できることがわかる。
In Table 9, No. of the comparative example. Nos. 21 to 24 have predetermined circumferential magnetic characteristics, that is, the magnetic flux density B50 in the rolling direction is 1.69 T or more and the magnetic flux density B50 difference from the vertical direction in the plate surface is less than 0.03 T. Any of the conditions where the magnetic flux density B50 in the 22.5 degree direction is 1.65T or more and the magnetic flux density B50 difference with the 67.5 degree direction is less than 0.04T and the magnetic flux density B50 difference with the 45 degree direction is less than 0.06T. Since BF is not satisfied, BF is large.
On the other hand, No. of the present invention example. No. 25 satisfies a predetermined all-round magnetic characteristic, so BF is remarkably low.
By this invention, it turns out that the non-oriented electrical steel sheet excellent in the perimeter magnetic characteristic from which the excellent iron loss characteristic is obtained when it uses as a rotary machine core can be provided.

(実施例3)
表10に示した成分の鋼を、1.5mm厚、2.7mm厚、4.2mm厚にそれぞれ熱間圧延後、1000℃で2分間の熱延板焼鈍を施し、0.35mm厚に冷間圧延した後、850℃で30秒の仕上焼鈍を施した。その後、角度別(圧延方向,22.5度方向,45度方向,67.5度方向,圧延方向に垂直方向)にエプスタイン試料を採取し、磁気特性を測定した。その測定結果を表11に示す。なお、磁気特性の全周平均値は、(圧延方向+2・22.5度方向+2・45度方向+2・67.5度方向+圧延方向に垂直方向)/8により求めた。
本発明により、板面内全周磁気特性の優れた無方向性電磁鋼板の製造が可能であることがわかる。
(Example 3)
Steels having the components shown in Table 10 were hot-rolled to 1.5 mm thickness, 2.7 mm thickness, and 4.2 mm thickness, respectively, and then subjected to hot-rolled sheet annealing at 1000 ° C. for 2 minutes, and then cooled to 0.35 mm thickness. After hot rolling, finish annealing was performed at 850 ° C. for 30 seconds. Thereafter, Epstein samples were taken for each angle (rolling direction, 22.5 degree direction, 45 degree direction, 67.5 degree direction, perpendicular to the rolling direction), and the magnetic properties were measured. The measurement results are shown in Table 11. The average value of the entire circumference of the magnetic properties was obtained by (rolling direction + 2-22.5 degree direction + 2.45 degree direction + 2.67.5 degree direction + direction perpendicular to the rolling direction) / 8.
By this invention, it turns out that manufacture of the non-oriented electrical steel sheet excellent in the in-plate all-around magnetic characteristic is possible.

Figure 0004319889
Figure 0004319889

Figure 0004319889
Figure 0004319889

(実施例4)
表12に示した成分の鋼を、3.3mm厚に熱間圧延後、1020℃で2分間の熱延板焼鈍を施し、0.50mm厚に冷間圧延(冷間圧延の圧下率:84.8%)した後、930℃で40秒の仕上焼鈍を施し、その後、角度別(圧延方向,22.5度方向,45度方向,67.5度方向,圧延方向に垂直方向)にエプスタイン試料を採取し、磁気特性を測定した。その測定結果を表13に示す。なお、磁気特性の全周平均値は、(圧延方向+2・22.5度方向+2・45度方向+2・67.5度方向+圧延方向に垂直方向)/8により求めた。
本発明により、板面内全周磁気特性の優れた無方向性電磁鋼板が得られることがわかる。
(Example 4)
The steel having the components shown in Table 12 was hot-rolled to a thickness of 3.3 mm, subjected to hot-rolled sheet annealing at 1020 ° C. for 2 minutes, and then cold-rolled to a thickness of 0.50 mm (cold rolling reduction ratio: 84 8%), and then annealed at 930 ° C. for 40 seconds, and then Epstein by angle (rolling direction, 22.5 degrees direction, 45 degrees direction, 67.5 degrees direction, perpendicular to the rolling direction). A sample was taken and the magnetic properties were measured. The measurement results are shown in Table 13. The average value of the entire circumference of the magnetic properties was obtained by (rolling direction + 2-22.5 degree direction + 2.45 degree direction + 2.67.5 degree direction + direction perpendicular to the rolling direction) / 8.
According to the present invention, it can be seen that a non-oriented electrical steel sheet having excellent in-plane magnetic properties can be obtained.

Figure 0004319889
Figure 0004319889

Figure 0004319889
Figure 0004319889

Claims (5)

質量%で、
C :0.002%以下、 Si:0.8%以上4.0%以下、
Al:0.1%以上2.0以下、 Mn:0.1%以上1.5%以下
を含有し、かつ、
Si+2Al−Mn:2%以上で、
残部Feおよび不可避不純物元素よりなる鋼であり、熱延板焼鈍後の平均結晶粒径を438μm以上とし、冷間圧延を圧下率80%以上90%以下で施すものであって、圧延方向の磁束密度B50が1.69T以上でその板面内垂直方向の磁束密度B50との差が0.03T未満であり、また圧延方向から板面内22.5度方向の磁束密度B50が1.65T以上で67.5度方向の磁束密度B50との差が0.04T未満であり、かつ、45度方向の磁束密度B50との差が0.06T未満であることを特徴とする無方向性電磁鋼板。
% By mass
C: 0.002% or less, Si: 0.8% or more and 4.0% or less,
Al: 0.1% or more and 2.0 or less, Mn: 0.1% or more and 1.5% or less, and
Si + 2Al-Mn: 2% or more,
It is a steel composed of the remaining Fe and inevitable impurity elements, the average grain size after hot-rolled sheet annealing is set to 438 μm or more, and cold rolling is performed at a rolling reduction of 80% or more and 90% or less. The magnetic flux density B50 is 1.69T or more, the difference from the magnetic flux density B50 in the vertical direction in the plate surface is less than 0.03T, and the magnetic flux density B50 in the 22.5 degree direction in the plate surface from the rolling direction is 1.65T. The non-directional electromagnetic wave characterized in that the difference from the magnetic flux density B50 in the 67.5 degree direction is less than 0.04T and the difference from the magnetic flux density B50 in the 45 degree direction is less than 0.06T. steel sheet.
質量%でさらに、
Sn:0.02〜0.40%、 Cu:0.1〜1.0%
の1種または2種を含有することを特徴とする請求項1に記載の無方向性電磁鋼板。
In addition by mass%
Sn: 0.02-0.40%, Cu: 0.1-1.0%
The non-oriented electrical steel sheet according to claim 1, comprising one or two of the following.
質量%で、
C :0.002%以下、 Si:0.8%以上4.0%以下、
Al:0.1%以上2.0以下、 Mn:0.1%以上1.5%以下
を含有し、かつ、
Si+2Al−Mn:2%以上で、
残部Feおよび不可避不純物元素よりなる鋼を、熱間圧延後、熱延板焼鈍を施し、一回の冷間圧延により最終板厚とした後、仕上焼鈍を施す無方向性電磁鋼板の製造方法において、熱延板焼鈍後の平均結晶粒径を438μm以上とし、冷間圧延を圧下率:80%以上90%以下で施し、仕上焼鈍を800℃以上950℃以下で10秒以上1分以下施すことを特徴とする無方向性電磁鋼板の製造方法。
% By mass
C: 0.002% or less, Si: 0.8% or more and 4.0% or less,
Al: 0.1% or more and 2.0 or less, Mn: 0.1% or more and 1.5% or less, and
Si + 2Al-Mn: 2% or more,
In the method for producing a non-oriented electrical steel sheet, the steel comprising the remaining Fe and inevitable impurity elements is subjected to hot rolling, followed by hot-rolled sheet annealing, the final sheet thickness is obtained by a single cold rolling, and then finish annealing. The average grain size after hot-rolled sheet annealing is set to 438 μm or more, cold rolling is performed at a reduction ratio of 80% to 90%, and finish annealing is performed at 800 ° C. to 950 ° C. for 10 seconds to 1 minute. The manufacturing method of the non-oriented electrical steel sheet characterized by the above-mentioned.
質量%でさらに、不可避不純物としてのS,N,Tiをそれぞれ0.002%以下とした鋼を用いることを特徴とする請求項3に記載の無方向性電磁鋼板の製造方法。 The method for producing a non-oriented electrical steel sheet according to claim 3, wherein the steel further comprises, in mass%, S, N, and Ti as inevitable impurities of 0.002% or less. 質量%でさらに、不可避不純物としてのV,Zr,Nb,Asをそれぞれ0.003%以下とした鋼を用いることを特徴とする請求項3または4に記載の無方向性電磁鋼板の製造方法。 5. The method for producing a non-oriented electrical steel sheet according to claim 3, wherein the steel further uses 0.003% or less of V, Zr, Nb, and As as inevitable impurities.
JP2003366026A 2002-12-06 2003-10-27 Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same Expired - Fee Related JP4319889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003366026A JP4319889B2 (en) 2002-12-06 2003-10-27 Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002355208 2002-12-06
JP2003366026A JP4319889B2 (en) 2002-12-06 2003-10-27 Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004197217A JP2004197217A (en) 2004-07-15
JP4319889B2 true JP4319889B2 (en) 2009-08-26

Family

ID=32775093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003366026A Expired - Fee Related JP4319889B2 (en) 2002-12-06 2003-10-27 Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same

Country Status (1)

Country Link
JP (1) JP4319889B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5100000B2 (en) * 2004-12-27 2012-12-19 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet with excellent magnetic properties
JP5025942B2 (en) * 2005-03-14 2012-09-12 新日本製鐵株式会社 Method for producing non-oriented electrical steel sheet
JP4790537B2 (en) * 2006-08-10 2011-10-12 新日本製鐵株式会社 Method for producing non-oriented electrical steel sheet with all-around characteristics and good workability
BR112013002583B1 (en) 2010-08-04 2018-07-10 Nippon Steel & Sumitomo Metal Corporation METHOD OF MANUFACTURING STEEL PLATE FOR NON-ORIENTED GRAIN ELECTRICAL PURPOSES
JP5533958B2 (en) * 2012-08-21 2014-06-25 Jfeスチール株式会社 Non-oriented electrical steel sheet with low iron loss degradation by punching
KR20150073719A (en) 2013-12-23 2015-07-01 주식회사 포스코 Non-orinented electrical steel sheet and method for manufacturing the same
JP6414172B2 (en) * 2015-12-04 2018-10-31 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
PL3633056T3 (en) 2017-06-02 2023-05-15 Nippon Steel Corporation Non-oriented electrical steel sheet
CN110573640B (en) 2017-06-02 2021-08-13 日本制铁株式会社 Non-oriented electromagnetic steel sheet
US10995393B2 (en) 2017-06-02 2021-05-04 Nippon Steel Corporation Non-oriented electrical steel sheet
JP6977436B2 (en) * 2017-09-19 2021-12-08 日本製鉄株式会社 Non-oriented electrical steel sheet and its manufacturing method
US11566303B2 (en) 2018-02-16 2023-01-31 Nippon Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
WO2019160092A1 (en) 2018-02-16 2019-08-22 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, and production method for non-oriented electromagnetic steel sheet
WO2019160087A1 (en) 2018-02-16 2019-08-22 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, and production method for non-oriented electromagnetic steel sheet
EP3783126B1 (en) 2018-03-26 2023-09-06 Nippon Steel Corporation Non-oriented electrical steel sheet
KR102297751B1 (en) * 2019-12-18 2021-09-02 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
CN111235462B (en) * 2020-03-04 2021-12-24 马鞍山钢铁股份有限公司 Easy-blanking electrical steel for high-efficiency fixed-frequency compressor, manufacturing method of easy-blanking electrical steel, iron core prepared from easy-blanking electrical steel and heat treatment method of iron core
WO2023182474A1 (en) 2022-03-24 2023-09-28 日本製鉄株式会社 Non-oriented electromagnetic steel sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2708682B2 (en) * 1991-12-27 1998-02-04 新日本製鐵株式会社 Non-oriented electrical steel sheet having extremely excellent magnetic properties and method for producing the same
JPH07278666A (en) * 1994-04-05 1995-10-24 Nippon Steel Corp Manufacture of non-oriented silicon steel sheet with isotropic magnetic property
JPH0841540A (en) * 1994-07-28 1996-02-13 Nippon Steel Corp Production of nonoriented silicon steel sheet excellent in magnetic property in circumferential direction
JPH08246108A (en) * 1995-03-03 1996-09-24 Nippon Steel Corp Nonoriented silicon steel sheet reduced in anisotropy and its production
JP3308518B2 (en) * 2000-04-11 2002-07-29 新日本製鐵株式会社 Thin non-oriented electrical steel sheet for high frequency use with low anisotropy and excellent surface properties and method for producing the same

Also Published As

Publication number Publication date
JP2004197217A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
JP4319889B2 (en) Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same
JP5437476B2 (en) Method for producing non-oriented electrical steel sheet
JP6842546B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP2006265720A (en) Non-oriented electrical steel sheet excellent in magnetic properties in rolling direction and method of production of the same
JP2008127612A (en) Non-oriented electromagnetic steel sheet for divided core
JP4358550B2 (en) Method for producing non-oriented electrical steel sheet with excellent rolling direction and perpendicular magnetic properties in the plate surface
JP5824965B2 (en) Method for producing non-oriented electrical steel sheet
JP2970423B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP2509018B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2011140683A (en) Non-oriented magnetic steel sheet having excellent magnetic property and blanking workability
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JP2001335897A (en) Nonoriented silicon steel sheet having low core loss and high magnetic flux density and excellent in workability and recyclability
JP4551110B2 (en) Method for producing non-oriented electrical steel sheet
JP2005200755A (en) Method for producing non-oriented silicon steel sheet
JP2001323347A (en) Nonoriented silicon steel sheet excellent in workability, recyclability and magnetic property after strain relieving annealing
JP2001323345A (en) Nonoriented silicon steel sheet having high magnetic flux density and excellent in workability, recyclability and magnetic property after strain relieving annealing
JP2005187846A (en) Non-oriented electromagnetic steel sheet and manufacturing method therefor
JPH0443981B2 (en)
JP2011184787A (en) High tensile strength non-oriented electromagnetic steel sheet having excellent high frequency iron loss
JP2022509670A (en) Non-oriented electrical steel sheet and its manufacturing method
CN115003845B (en) Non-oriented electrical steel sheet and method for manufacturing same
JP2870817B2 (en) Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties
JP2001262289A (en) NONORIENTED SILICON STEEL SHEET EXCELLENT IN MAGNETIC PROPERTY IN &gt;=1 kHz FREQUENCY REGION
JP2005307258A (en) Nonoriented silicon steel sheet having reduced deterioration in core loss caused by compressive stress and its production method
JP6575269B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4319889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees