JP2000012028A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000012028A
JP2000012028A JP10177505A JP17750598A JP2000012028A JP 2000012028 A JP2000012028 A JP 2000012028A JP 10177505 A JP10177505 A JP 10177505A JP 17750598 A JP17750598 A JP 17750598A JP 2000012028 A JP2000012028 A JP 2000012028A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
specific surface
surface area
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10177505A
Other languages
Japanese (ja)
Inventor
Katsunori Suzuki
克典 鈴木
Yasushi Uraoka
靖 浦岡
Koji Higashimoto
晃二 東本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP10177505A priority Critical patent/JP2000012028A/en
Publication of JP2000012028A publication Critical patent/JP2000012028A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To suppress the deterioration of charging/discharging cycles, by using as a positive electrode, a lithium-manganese composite oxide capable of storing/ discharging lithium by charging/discharging, and using, as a negative electrode, a carbon material having a specific surface area within a specific range. SOLUTION: A lithium-manganese composite oxide as a positive-electrode active material, a carbon powder of a different bulk density as a conductive assistant, and polyvinylidene fluoride as a binder. are mixed together at a wt. ratio of 82:12:6, a slurry-like solution is made by adding thereto N-methyl-2- pyrolidone, both surfaces of copper foil are coated therewith and dried, then rolled by a roller press and cut, thus a positive electrode is made. As a negative electrode active material, a carbon material with a specific surface area of 3 m2/g or more is used, the carbon material of 90 wt.% and a binder of vinylidene fluoride of 10 wt.% are mixed together, N-methyl-2-pyrolidone is added thereto and mixed therewith, thus a slurry-like solution is made, both surfaces of copper foil are coated therewith and dried, then rolled by a roller press and cut, thus a negative electrode is made, and a secondary battery is obtained by a specified method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】携帯用電話機、コードレス電話器、ビデ
オカメラなどの映像機器、パソコンなどの事務用機器、
家電機器、電気自動車などの主電源あるいはバックアッ
プ用電源として、長時間使用できるリチウムイオン二次
電池が強く要求されている。なお、これらのリチウムイ
オン二次電池に使用されている正極用活物質としては、
リチウムコバルト複合酸化物、リチウムニッケル複合酸
化物、リチウムマンガン複合酸化物などが用いられてお
り、その中でも資源的に豊富で安価なマンガンを主原料
としたリチウムマンガン複合酸化物が注目をされてい
る。
2. Description of the Related Art Mobile phones, cordless phones, video equipment such as video cameras, office equipment such as personal computers,
There is a strong demand for a lithium ion secondary battery that can be used for a long time as a main power supply or a backup power supply for home appliances and electric vehicles. In addition, as a positive electrode active material used in these lithium ion secondary batteries,
Lithium cobalt composite oxide, lithium nickel composite oxide, lithium manganese composite oxide, etc. are used. Among them, lithium manganese composite oxide using manganese as a raw material, which is abundant and inexpensive as a raw material, is attracting attention. .

【0003】このリチウムマンガン複合酸化物は、リチ
ウムを吸蔵、放出しやすいスピネル構造をとっている。
しかしながら、リチウムマンガン複合酸化物を正極活物
質に用いた場合には、初期のサイクル特性や放置特性は
ある程度満足できるものの、充放電サイクルの進行や放
置期間の長期化に伴い放電容量が劣化する。この理由と
して、正極活物質中のマンガンがイオンとなって電解液
中に溶出し、溶出したマンガンイオンが負極の活物質表
面で析出し、負極炭素へのリチウムイオンの吸蔵、放出
を阻害するため放電容量が劣化することが明らかになっ
ている。特に、50℃以上の高温下においては、充放電
サイクル寿命が短くなるといった課題を有している。
[0003] The lithium manganese composite oxide has a spinel structure that easily absorbs and releases lithium.
However, when the lithium manganese composite oxide is used for the positive electrode active material, the initial cycle characteristics and the leaving characteristics can be satisfied to some extent, but the discharge capacity is deteriorated as the charge / discharge cycle progresses and the leaving period becomes longer. The reason for this is that manganese in the positive electrode active material becomes ions and elutes into the electrolytic solution, and the eluted manganese ions precipitate on the surface of the negative electrode active material, thereby impeding the occlusion and release of lithium ions into the negative electrode carbon. It has been found that the discharge capacity deteriorates. In particular, at a high temperature of 50 ° C. or higher, there is a problem that the charge / discharge cycle life is shortened.

【0004】[0004]

【発明が解決しようとする課題】本発明は、正極活物質
にリチウムマンガン複合酸化物を用い、充放電サイクル
による容量の劣化が少ない非水電解液二次電池を提供す
ることを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a non-aqueous electrolyte secondary battery in which a lithium manganese composite oxide is used as a positive electrode active material and whose capacity is less deteriorated by charge / discharge cycles. It is.

【0005】[0005]

【発明が解決しようとする手段】上記した課題を解決す
るために、充放電によりリチウムを吸蔵、放出が可能な
リチウムマンガン複合酸化物を正極に、炭素材料を負極
にそれぞれ用いた非水電解液二次電池において、前記炭
素材料の比表面積が3m2/g以上であることを特徴とし
ている。
In order to solve the above-mentioned problems, a non-aqueous electrolyte using a lithium manganese composite oxide capable of inserting and extracting lithium by charging and discharging as a positive electrode and a carbon material as a negative electrode, respectively. In a secondary battery, the specific surface area of the carbon material is 3 m 2 / g or more.

【0006】[0006]

【発明の実施の形態】以下に本発明の実施の形態につい
て述べる。但し本発明は、これらに限定されるものでは
ない。 1.正極 正極活物質としては、平均粒径10μmのリチウムマン
ガン複合酸化物、導電助剤としてはかさ密度の異なる炭
素粉末、結着剤としてポリフッ化ビニリデン(以下、P
VdFと略す)を82:12:6の重量%で混合する。
そこに、N−メチル−2−ピロリドンを投入混合して、
スラリー状の溶液を作製する。このスラリーを厚み20
μmのアルミニウム箔の両面にこの混合溶液を塗布し、
溶剤を乾燥した後、ローラプレス機にて圧延して、正極
合剤電極を作製し、50mm幅で長さが450mmに切
断して短細状の正極を作製した。
Embodiments of the present invention will be described below. However, the present invention is not limited to these. 1. Positive electrode As the positive electrode active material, a lithium manganese composite oxide having an average particle diameter of 10 μm, carbon powders having different bulk densities as the conductive additive, and polyvinylidene fluoride (hereinafter, P
VdF) at 82: 12: 6 wt%.
There, N-methyl-2-pyrrolidone was charged and mixed,
A slurry-like solution is prepared. This slurry is applied to a thickness of 20
Apply this mixed solution to both sides of a μm aluminum foil,
After drying the solvent, the mixture was rolled with a roller press to produce a positive electrode mixture electrode, and cut into a length of 450 mm and a width of 50 mm to produce a short and thin positive electrode.

【0007】2.負極 後述するリチウムイオンを吸蔵、放出でき、比表面積の
異なる炭素材料を負極活物質として使用した。炭素材料
90wt.%、フッ化ビニリデン(PVdF)の結着剤
10wt.%とを混合し、N−メチル−2−ピロリドン
を投入混合して、スラリー状の溶液を作製する。このス
ラリー状の溶液を厚み10μmの銅箔の両面に塗布し、
溶剤を乾燥した後、ローラプレス機にて圧延して、負極
合剤電極を作製し、その後50mm幅で、長さが500
mmに切断して短冊状の負極を作製した。なお、炭素材
料の比表面積の測定には、柴田化学器械工業株式会社製
ASA−2000を使用した。
[0007] 2. Negative Electrode Carbon materials capable of occluding and releasing lithium ions described later and having different specific surface areas were used as the negative electrode active material. 90 wt. %, A binder of vinylidene fluoride (PVdF) 10 wt. %, And N-methyl-2-pyrrolidone is added and mixed to prepare a slurry-like solution. This slurry-like solution is applied to both sides of a copper foil having a thickness of 10 μm,
After drying the solvent, it was rolled with a roller press to produce a negative electrode mixture electrode, and then 50 mm wide and 500 mm long.
mm to produce a strip-shaped negative electrode. The specific surface area of the carbon material was measured using ASA-2000 manufactured by Shibata Chemical Instrument Co., Ltd.

【0008】3.電池 上記した方法で作製した正極と負極とを厚さ25μm、
幅58mmのポリエチレン微多孔膜からなるセパレータ
を介して捲回し、スパイラル状の捲回群を作製する。こ
の捲回群を電池缶に挿入し、予め負極集電体の銅箔に溶
接しておいたニッケルタブ端子を電池缶底に溶接する。
次にエチレンカーボネートとジメチルカーボネートを体
積比で1:1に混合した溶液に、LiPF6を1mol
/lの濃度で溶解した電解液を電池容器に5ml注入し
た。次に、予め正極集電体のアルミニウム箔に溶接した
アルミニウムタブ端子を蓋に溶接して、蓋を絶縁性のガ
スケットを介して電池缶の上部に配置させ、この部分を
かしめて密閉し、直径18mm、高さ65mmの円筒型
電池を作製した。
[0008] 3. Battery The positive electrode and the negative electrode produced by the method described above were 25 μm thick,
It is wound through a separator made of a microporous polyethylene film having a width of 58 mm to form a spiral wound group. The wound group is inserted into a battery can, and a nickel tab terminal previously welded to the copper foil of the negative electrode current collector is welded to the bottom of the battery can.
Next, 1 mol of LiPF 6 was added to a solution in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1.
5 ml of the electrolytic solution dissolved at a concentration of / l was injected into the battery container. Next, an aluminum tab terminal previously welded to the aluminum foil of the positive electrode current collector was welded to the lid, and the lid was placed on the top of the battery can via an insulating gasket. A cylindrical battery having a size of 18 mm and a height of 65 mm was produced.

【0009】なお、前記非水溶媒としては、エチレンカ
ーボネイト、プロピレンカーボネイト、ブチレンカーボ
ネイト、ジメチルカーボネイト、γ―ブチロラクトン、
アセトニトリル、スルホラン、1,2−ヂメトキシエタ
ン、1,3−ヂメトキシプロパン、ヂメチルエーテル、
テトラヒドロプラン、2−メチルテトラヒドロプラン、
炭酸ヂメチル、炭酸ヂエチル、及びエチルメチルカーボ
ネイトから選べられる1種以上の溶媒を挙げることがで
きる。また、前記電解質としては、たとえば、過塩素酸
リチウム(LiCiO4)、六フッ化燐酸リチウム(L
iPF6)、ホウフッ化リチウム(LiBF4)六フッ化
ヒ素リチウム(LiAsF6)、トリフルオロメタンス
ルホン酸リチウム(LiCF3SO3)などのリチウム塩
を挙げることができる。
The non-aqueous solvent includes ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, γ-butyrolactone,
Acetonitrile, sulfolane, 1,2-dimethoxyethane, 1,3-dimethoxypropane, methyl ether,
Tetrahydroplan, 2-methyltetrahydroplan,
Examples thereof include one or more solvents selected from dimethyl carbonate, ethyl carbonate, and ethyl methyl carbonate. Examples of the electrolyte include lithium perchlorate (LiCiO 4 ) and lithium hexafluorophosphate (L
iPF 6), lithium borofluoride (LiBF 4) lithium hexafluoroarsenate (LiAsF 6), lithium trifluoromethanesulfonate (LiCF 3 SO 3) and lithium salt, such as.

【0010】4.初期充放電試験及びサイクル試験 作製した電池を25℃にて24時間放置後、初期の充放
電試験をした。すなわち、初期の充放電条件として、充
電電圧4.2V(ただし、制限電流900mA)で3時
間充電した後、放電電流300mAで放電終止電圧2.
7Vの条件下で10サイクル行った。初期充放電試験を
した電池は、50℃にて充電電流900mA(充電終止
電圧4.2V、最長で4時間)、放電電流900mA
(放電終止電圧2.5V)の条件下で充放電サイクル試
験を行った。
[0010] 4. Initial charge / discharge test and cycle test After the produced battery was left at 25 ° C. for 24 hours, an initial charge / discharge test was performed. That is, as an initial charge / discharge condition, after charging for 3 hours at a charging voltage of 4.2 V (however, a limiting current of 900 mA), a discharge end voltage of 2.0 was charged at a discharging current of 300 mA.
10 cycles were performed under the condition of 7V. The battery subjected to the initial charge / discharge test has a charging current of 900 mA at 50 ° C. (charging end voltage 4.2 V, a maximum of 4 hours), and a discharging current of 900 mA
A charge-discharge cycle test was performed under the condition of (discharge end voltage 2.5 V).

【0011】[0011]

【実施例】(実施例1)実施例1として負極活物質とし
てリチウムイオンを吸蔵、放出できる比表面積が4.2
2/gの炭素粉末(商品名:NG−12、関西熱化学
(株)製)を用いた。その他の電極及び電池の作製条件
は、上記したものである。
(Example 1) As Example 1, a specific surface area capable of occluding and releasing lithium ions as a negative electrode active material was 4.2.
m 2 / g carbon powder were used: (trade name NG-12, Kansai Thermochemical Co., Ltd.). Other conditions for manufacturing the electrode and the battery are as described above.

【0012】(実施例2)実施例2として、比表面積が
1.9m2/gの炭素材料(商品名:MCMB、大阪ガ
ス(株)製)に、比表面積が約1000m2/gの活性炭を
0.3wt%添加し、混合物としての比表面積を3.3
2/gとした。その他の電極及び電池の作製条件は、
上記したものである。
Example 2 As Example 2, a carbon material having a specific surface area of 1.9 m 2 / g (trade name: MCMB, manufactured by Osaka Gas Co., Ltd.) was activated carbon having a specific surface area of about 1000 m 2 / g. Was added in an amount of 0.3 wt%, and the specific surface area as a mixture was 3.3.
m 2 / g. Other electrode and battery manufacturing conditions are as follows:
As described above.

【0013】(比較例1)比較例として前記した比表面
積が1.9m2/gの炭素材料(商品名:MCMB、大
阪ガス(株)製)を用いた。その他の電極及び電池の作
製条件は、上記したものである。
Comparative Example 1 As a comparative example, the above-mentioned carbon material having a specific surface area of 1.9 m 2 / g (trade name: MCMB, manufactured by Osaka Gas Co., Ltd.) was used. Other conditions for manufacturing the electrode and the battery are as described above.

【0014】以上、3種類の電池の初期放電容量及び1
00サイクル充放電後の放電容量を表1に示す。表1よ
り、これらの電池の初期放電容量は935〜943mA
hであった。そして、炭素材料の比表面積が3m2/g
以上であると、サイクル回数に伴う容量低下が少ないこ
とが分かる。
The initial discharge capacities of the three types of batteries and 1
Table 1 shows the discharge capacity after 00 cycles of charging and discharging. From Table 1, the initial discharge capacity of these batteries was 935-943 mA.
h. And the specific surface area of the carbon material is 3 m 2 / g
From the above, it can be seen that the capacity decrease with the number of cycles is small.

【0015】[0015]

【表1】 [Table 1]

【0016】なお、活性炭の比表面積や添加量は、実施
例2に用いた数値に限定されるものではない。すなわ
ち、活性炭などの比表面積の大きな炭素材料の添加によ
り、負極活物質の比表面積が3m2/g以上を達成でき
れば、サイクル寿命特性が向上することがわかった。
The specific surface area and the amount of the activated carbon are not limited to the values used in Example 2. That is, it was found that the cycle life characteristics were improved if the specific surface area of the negative electrode active material could be at least 3 m 2 / g by adding a carbon material having a large specific surface area such as activated carbon.

【0017】[0017]

【発明の効果】本発明により、負極活物質として炭素材
料の比表面積が3m2/g以上を有するものを用いるこ
とにより、サイクル寿命特性の優れた非水電解液二次電
池を得ることができる。
According to the present invention, a non-aqueous electrolyte secondary battery having excellent cycle life characteristics can be obtained by using a carbon material having a specific surface area of 3 m 2 / g or more as a negative electrode active material. .

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA04 BB01 BB02 BB05 BD05 5H014 AA02 EE08 EE10 HH06 5H029 AJ05 AK03 AL06 AM01 AM02 AM03 AM04 AM05 AM07 BJ02 HJ07  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H003 AA04 BB01 BB02 BB05 BD05 5H014 AA02 EE08 EE10 HH06 5H029 AJ05 AK03 AL06 AM01 AM02 AM03 AM04 AM05 AM07 BJ02 HJ07

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】放電、充電によりリチウムを吸蔵、放出が
可能なリチウムマンガン複合酸化物を正極に用い、炭素
材料を負極にそれぞれ用いた非水電解液二次電池におい
て、前記炭素材料の比表面積が3m2/g以上であること
を特徴とする非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery in which a lithium manganese composite oxide capable of inserting and extracting lithium by discharging and charging is used for a positive electrode and a carbon material is used for a negative electrode. Is 3 m 2 / g or more.
JP10177505A 1998-06-24 1998-06-24 Nonaqueous electrolyte secondary battery Pending JP2000012028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10177505A JP2000012028A (en) 1998-06-24 1998-06-24 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10177505A JP2000012028A (en) 1998-06-24 1998-06-24 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000012028A true JP2000012028A (en) 2000-01-14

Family

ID=16032090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10177505A Pending JP2000012028A (en) 1998-06-24 1998-06-24 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000012028A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503804A (en) * 2007-11-05 2011-01-27 ナノテク インスツルメンツ インク Composite negative electrode compound for lithium-ion batteries mainly composed of nanographene platelets
CN106025341A (en) * 2016-06-27 2016-10-12 国润金华(北京)国际投资管理有限公司 Lithium-ion power battery capable of being quickly charged and discharged and long in service life

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503804A (en) * 2007-11-05 2011-01-27 ナノテク インスツルメンツ インク Composite negative electrode compound for lithium-ion batteries mainly composed of nanographene platelets
CN106025341A (en) * 2016-06-27 2016-10-12 国润金华(北京)国际投资管理有限公司 Lithium-ion power battery capable of being quickly charged and discharged and long in service life

Similar Documents

Publication Publication Date Title
JP4035760B2 (en) Nonaqueous electrolyte secondary battery
JP2008034368A (en) Lithium ion storage battery containing contains tio2-b as anode active substance
JP3491529B2 (en) Non-aqueous electrolyte secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JP2003331825A (en) Nonaqueous secondary battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JP3244389B2 (en) Lithium secondary battery
US8980482B2 (en) Nonaqueous electrolyte lithium ion secondary battery
JP2000021442A (en) Nonaqueous electrolyte secondary battery
JP3580209B2 (en) Lithium ion secondary battery
JP4691775B2 (en) Lithium secondary battery
JP4780361B2 (en) Lithium secondary battery
JP2004259485A (en) Nonaqueous electrolyte secondary battery
JP2009004357A (en) Nonaqueous electrolyte lithium-ion secondary battery
JP2000012079A (en) Nonaqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP2000012026A (en) Nonaqueous electrolyte secondary battery
JPH1154122A (en) Lithium ion secondary battery
JPH07105977A (en) Non-aqueous electrolyte secondary battery
JP2007294654A (en) Electrochemical capacitor
JP2007323827A (en) Secondary battery, electronic equipment and transport equipment using secondary battery
JP2000012028A (en) Nonaqueous electrolyte secondary battery
JPH1131527A (en) Nonaqueous electrolyte secondary battery
JP2000058118A (en) Nonaqueous electrolyte secondary battery