IL178452A - Sintered flux for submerged arc welding - Google Patents

Sintered flux for submerged arc welding

Info

Publication number
IL178452A
IL178452A IL178452A IL17845206A IL178452A IL 178452 A IL178452 A IL 178452A IL 178452 A IL178452 A IL 178452A IL 17845206 A IL17845206 A IL 17845206A IL 178452 A IL178452 A IL 178452A
Authority
IL
Israel
Prior art keywords
welding
flux
sintered flux
submerged arc
slag
Prior art date
Application number
IL178452A
Other versions
IL178452A0 (en
Inventor
Noh Tae Hoon
Original Assignee
Kiswel Ltd
Noh Tae Hoon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kiswel Ltd, Noh Tae Hoon filed Critical Kiswel Ltd
Publication of IL178452A0 publication Critical patent/IL178452A0/en
Publication of IL178452A publication Critical patent/IL178452A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • B23K35/406Filled tubular wire or rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

Provided is sintered flux for submerged arc welding including: 12.0-24.0wt% SiO2, 24.0-38.0wt% AI2O3, 6.0-13.0wt% TiO2, 2.0-9.0wt% CaO, 7.0- 14.0wt% CaF2, 12.0-23.0wt% MnO, 2.0-17.0wt% MgO, and 1.0-5.0wt% Na2O, K2O, Li2O or a mixture thereof. Basicity (B) of the sintered flux satisfies 2.0 £ ° s 6.5. In addition, the sintered flux for submerged arc welding includes 5.0wt% or less particles larger than 1.00mm, 90.0wt% or more particles of 0.20-1.00mm, and 5.0wt% or less particles smaller than 0.20mm. Therefore, it is possible to apply the sintered flux to welding of steel frames, bridges, pipes, ships, marine structures, and so on, requiring for good welding workability even during high-speed welding.[IN-DEL-2006-02149A]

Description

178452 j7'Ji. I 453530 mx ηηοι» 'nwj? "juvn nav iuvn am Sintered Flux For Submerged Arc Welding SINTERED FLUX FOR SUBMERGED ARC WELDING BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to sintered flux for submerged arc welding, and more particularly, to sintered flux for submerged arc welding of mild steel and high tensile steel of 50kgf/mm2 used in steel frames, bridges, pipes, ships, marine structures, and so on, the sintered flux is capable of obtaining good arc stability, pockmark resistance, slag detachability, pit resistance, and bead shape when used in high-speed welding. 2. Description of the Related Art Submerged arc welding is a welding method in which powder flux is distributed to a certain thickness on a part to be welded, an electrode wire is inserted into the flux, and an arc is generated between an end of the wire and a base metal. Heat from the generated arc melts the wire, the base metal, and the flux. The melted flux forms slag, and the melted metal forms a welding bead. In submerged arc welding, since the welding arc is generated in the flux, it is not exposed to the exterior.
In submerged arc welding, since the flux is not in a melted state at the moment welding starts, current does not flow. Therefore, to facilitate generation of arc, steel wool is inserted between the base metal and the wire, or a high frequency is used. When the arc is generated, fused slag and gas are generated by arc heat, and the arc is continuously maintained.
Flux for submerged arc welding may be classified as fused flux or sintered flux depending on the manufacturing method. Fused flux is manufactured by mixing raw materials, melting and cooling them in an electric furnace, and crushing them into a predetermined particle size, thereby creating crushed glass particle shapes. Fused flux has advantages of uniform chemical composition, relatively easy removal of slag, low moisture adsorption facilitating storage and treatment, and consistent particle size and composition upon reuse.
However, since fused flux should be formed through a high-temperature melting process, it is impossible to add a deoxidizer or an alloy element. That is, since the necessary alloy element should be supplied from a wire, it is very important to appropriately select the wire in the case of using fused flux. The particle size of the fused flux affects fusibility of the flux, a gas discharge state, a bead shape, and so on. The finer the particles, the higher the current applied to the particles.
When high current is applied to large flux particles, it is likely to deteriorate arc protection, make beads rough, and generate defects such as pores and undercuts.
Sintered flux is manufactured by crushing raw ore and alloy elements to an appropriate size and mixing them, adding a binder such as sodium silicate to bind them to a certain size, and drying and sintering them within a temperature range in which the raw materials are not dissolved. Since there is little loss of a deoxidizer such as Fe-Si, Fe-Mn, and so on, or an alloying agent such as Ni, Cr, Mo, V, and so on from the sintered flux, it is relatively easy to deoxidize the melted metal, adjust the chemical composition of the deposited metal, and adjust the microstructure of the deposited metal.
Therefore, sintered flux is mainly used in high-tensile steel and low alloy steel requiring strong deoxidation or adjustment of chemical composition. On the other hand, sintered flux has disadvantages of relatively easy adsorption, variation in chemical components of the deposited metal in accordance with the welding conditions, variation in the chemical composition of each layer in multi-layer welding, difficulty in reuse due to atomization upon first use. Therefore, sintered flux should be carefully selected, treated, stored, and used.
Recently, engineers seek to increase welding speed and improve productivity in the construction of steel frames, bridges, pipes, ships, marine structures, and so on, using submerged arc welding. However, when welding at high speed with conventional sintered flux for submerged arc welding, it is difficult to obtain arc stability, pockmark resistance, slag detachability, pit resistance, and bead shape, thus lowering welding workability and productivity.
Japanese Publication No. JP2003245794 discloses a manufacturing method of sintered flux by providing and sintering a mixture of flux raw material and binder, 35-90 wt% Fe-containing flux raw material, less than 4.0 wt% Na20, 30-70 wt% Si02, 5-30 wt% MnO, 3-30 wt% MgO, 2-20 wt% A1203, less than 10 wt% CaO, less than 15 wt% CaF2 is contained in the mixture. Japanese Patent No. JP3620383 discloses sintered flux containing Si02 20-60 wt%, MgO 10-40 wt%, A1203 5-25 wt%, CaF2 1- 10 wt%, CaO2~20 wt%, MnO2~20 wt%, C02 2-20 wt%.
SUMMARY OF THE INVENTION The present invention solves the above problems associated with conventional sintered flux for submerged arc welding by providing sintered flux for submerged arc welding appropriate for mild steel and high tensile steel of 50kgf/mm2, and is capable of obtaining good arc stability, pockmark resistance, slag detachability, pit resistance, and bead shape when used in high-speed welding.
In order to accomplish the above objects, sintered flux for submerged arc welding consisting of 12.0-24.0 wt% SiO2, 24.0-38.0 wt% AI2O3, 6.0-13.0 wt% Ti02( 2.0-9.0 wt% CaO, 7.0-14.0 wt% CaF2, 12.0-23.0 wt% MnO, 2.0- 17.0 wt% MgO, and 1.0-5.0 wt% Na2O, K2O, Li20 or a mixture thereof and wherein basicity(B) expressed by Formula 1.
[Formula 1] 2(CaF1+MnO) 2 0≤ CaO+MgO ≤6 5 More preferably, the sintered flux for submerged arc welding in accordance with the present invention includes 5.0wt% or less particles larger than 1.00mm, 90.0wt% or more particles of 0.20-1.00mm, and 5.0wt% or less particles smaller than 0.20mm.
DETAILED DESCRIPTION OF THE INVENTION It should be noted that potions of the description outside the scope of the claimed invention are not part of the invention.
Hereinafter, each element of the above composition will be described in detail.
SiO?: 12.0 - 24.0wt% S1O2 is an acidic component and functions to adjust basicity, viscosity, and melting point of fused slag to make a uniform bead shape. ΤΊ02 is an acidic component and a slag generator which functions to transfer Ti into welded metal during welding to improve toughness and slag detachability of the welded metal.
When 6.0wt% or less Ti02 is contained in the flux, slag detachability is likely to decrease, toughness of the welded metal is reduced, and undercuts may be formed. In addition, when 13.0wt% or more T1O2 is contained in the flux, the arc is unstable, causing beads with rough grains. Further, the welded metal contains an excessive amount of Ti, which increases the probability of low-temperature cracks.
T1O2 may be derived from sources such as Rutile (T1O2), llmenite (FeTiOs), and so on.
CaO: 2.0 - 9.0wt% CaO is a basic component useful in adjusting basicity and viscosity, and reducing oxygen in the welded metal, thereby effectively increasing toughness of the welded metal.
When 2.0wt% or less CaO is contained in the flux, there is little effect. When 9.0wt% or more CaO is contained in the flux, bead shape and welding workability are deteriorated to generate pockmarks, and viscosity increases resulting in irregular beads.
CaO may be derived from sources such as Wollastonite (CaSiOa), Dolomite (MgCO3'CaCO3), Anorthite (CaOAI2(V2Si02), and so on.
CaF2: 7.0 - 14.0wt% CaF2 is a basic component useful in improving fluidity of slag, and generating fluorine gas to reduce vapor partial pressure, thereby effectively decreasing an amount of hydrogen in the deposited metal.
When 7.0wt% or less CaF2 is contained in the flux, there is little effect for shielding the welded metal. When 14.0wt% or more CaF2 is contained in the flux, the arc is unstable and bead shape is deteriorated, gas is generated to produce a rank smell, and pockmarks and undercuts are generated.
CaF2 may be derived from sources such as Fluospar (CaF2), and so on.
MnO: 12.0 - 23.0wt% MnO is a basic component useful in improving bead shape and adjusting a melting point and viscosity of slag during high-speed welding.
When 12.0wt% or less MnO is contained in the flux, there is little effect. When 23.0wt% or more MnO is contained in the flux, CO excessively reacts with a melted part to remarkably deteriorate bead shape or slag detachability.
MnO may be derived from sources such as Ferro-Manganese, Manganese oxide (MnO), and so on.
MqO: 2.0 - 17.0wt% MgO is a basic component useful in increasing basicity of the fused slag, and moves hydrogen in the metal into the slag, thereby reducing hydrogen to improve toughness.
When 2.0wt% or less MgO is contained in the flux, its effect is insufficient such that the slag is attached to the surface of the welding beads to deteriorate detachability. When 17.0wt% or more MgO is contained in the flux, the arc is unstable to form convex beads, and the melting point of the slag excessively increases, thereby deteriorating detachability.
MgO may be derived from sources such as Magnesite (MgCOs), Magnesia clinker (MgO), Dolomite (MgCO3»CaCO3), and so on.
NaaO. K20. Li2Q. or a mixture thereof: 1.0 - 5.0wt% Na2O, K2O, and Li2O are important components for obtaining arc stability, specifically, maintaining arc stability during high-speed welding.
When 1.0wt% or less Na2O, K2O, Li2O, or a mixture thereof is contained in the flux, arc stability is significantly decreased, weld penetration is shortened, and slag inclusion is generated. When 5.0wt% or more Na2O, K2O, Li2O, or a mixture thereof is contained in the flux, convex beads are formed to deteriorate welding workability, and the arc is considerably unstable resulting in reduced moisture adsorption resistance.
Na2O, K2O, and Li2O may be derived from sources such as water glass, Cryolite (Na3AIF6), Potassium titanate (K2TiO3), Li-Si, and so on, used to manufacture sintered flux for submerged arc welding.
Meanwhile, in addition to flux having the above composition, basicity (B) expressed by Formula 1 is preferably within the range of 2.0-6.5.
[Formula 1] 2(CaF2+MnO) .0≤ CaO+MgO ≤6 5 In Formula 1 , CaF2 and MnO are low-melting point chemical components, and CaO and MgO are high-melting point chemical components. That is, the ratio of the sum of CaF2 and MnO (wt%) to the sum of CaO and MgO (wt%) affects the melting point and fluidity of the slag in the sintered flux for submerged arc welding in accordance with the present invention. As a result, welding workability such as arc stability, slag detachability, bead shape, and so on, are largely affected. Therefore, it is possible to limit the range of values of Formula 1 to control a melting point and fluidity of the slag on the basis of an appropriate weight ratio between the low-melting point chemical components and the high-melting point chemical components, thereby obtaining good welding workability, i.e., good arc stability, slag detachability, bead shape, and so on, which is required in the present invention.
When the basicity (B), expressed by Formula 1 as the weight ratio of low-melting point chemical components to high-melting point chemical components is smaller than 2.0, the melting point and viscosity of the slag are excessively increased, thus deteriorating bead shape and slag detachability. In addition, pockmarks are likely to be generated. When the basicity (B) is larger than 6.5, arc stability is decreased, thus lowering the melting point of the slag and deteriorating slag detachability.
Therefore, in order to obtain sintered flux for submerged arc welding having good welding workability even during high-speed welding, the basicity(B) defined in the present invention should be in the range of 2.0-6.5.
In order to obtain welding workability, such as good arc stability, slag detachability, bead shape, and so on, as required in the present invention, the completed flux should have an appropriate particle size distribution. When the flux has an inappropriate particle size distribution, arc protection is deteriorated the beads become rough, and defects such as pores and undercuts are likely generated.
An appropriate particle size distribution of the sintered flux for submerged arc welding having the above chemical composition and the basicity (B) may include 5.0wt% or less particles larger than 1.00mm, 90.0wt% or more particles of 0.20- .00mm, and 5.0wt% or less particles smaller than 0.20mm.
When the flux particles larger than 1.00mm are more than 5.0wt%, a space between the particles becomes too large and arc protection is reduced, making the beads rough and readily forming pockmarks.
In addition, when the flux particles of 0.20-1.00mm are less than 90.0wt%, convex beads are generated and bead grains become rough.
Finally, when the flux particles smaller than 0.20mm are more than 5.0wt%, since gas generated during the submerged arc welding is insufficiently discharged, pockmarks are generated and pits are likely generated. In addition, slag detachability is also deteriorated.
Specific welding characteristics of the flux in accordance with the present invention will be understood through the following embodiments.
Hereinafter, exemplary embodiments of the present invention will be described in detail, but the following description is not intended to limit the invention in any way.
Flux samples having the chemical compositions and basicities listed in the following Table 1 were manufactured. After distributing particles of the flux compositions into a water glass, the water glass was dried and sintered to obtain sintered flux for submerged arc welding having the compositions listed below.
"Etc" in Table 1 refers to a mixture of Zr02, BaO, and FeO, finely contained in each flux composition.
[Table 1 ] CE 6 21.020.0 12.011.09.0 14.0 7.5 4.5 1.0100.02.5 CE 7 12.0 26.0 8.5 4.0 8.5 15.0 24.5 1.0 0.5 100.0 1.6 CE 8 17.5 27.5 3.0 6.0 9.5 16.5 12.0 7.0 1.0 100.0 2.9 CE 9 18.0 25.0 7.0 4.5 17.0 23.0 1.0 4.0 0.5 100.0 14.5 Ε = Invention example, *CE = Comparative example Welding of a welding wire of Table 3 below to a base metal of Table 2 below was performed using the flux compositions listed in Table 1.
Welding conditions are listed in Table 4 below, and welding workability evaluation results are arranged in Tables 5 to 7 below. Tables 5 to 7 list test results of welding workability at welding speeds of 100cm/min, 150cm/min, and 200cm/min, and the same polarity, current, and voltage. Symbols appearing in Tables 5 to 7 have the following meanings: o: good. A : normal, *: poor [Table 21 [Table 3] [Table 4] [Table 5] Welding conditions: AC 750A-34V-100cm/min.
[Table 6] Welding conditions: AC 750A-34V-150cm/min.
[Table 7l Welding conditions: AC 750A-34V-200cm/min.
Referring to Tables 5 to 7, it will be appreciated that the Exemplary Embodiments of the present invention have good welding workability, i.e., arc stability, pockmark resistance, slag detachability, pit resistance, bead shape, and so on, even when welding speed is increased.
Meanwhile, in the case of Comparative Example 1 , since S1O2 content is higher than the range of the present invention, CaO content is lower than the range of the present invention, and the basicity(B) as defined herein is higher than the range of the present invention, Table 5 does not list good results in arc stability, pockmark resistance, slag detachability, and bead shape at a welding speed of 100cm/min. In addition, Table 6 shows that when welding speed is increased to 150cm/min, pockmark resistance and slag detachability are further deteriorated. And, Table 7 shows that when welding speed is further increased to 200cm/min, arc stability is also deteriorated.
In the case of Comparative Example 2, since AI2O3 content is higher than the range of the present invention, and MnO content is lower than the range of the present invention, Table 5 does not list good results for bead shape at a welding speed of 10Ocm/min. Moreover, Table 6 shows that when welding speed is increased to 150cm/min, slag detachability becomes poor, and Table 7 indicates that when welding speed is further increased to 200cm/min, bead shape further deteriorates.
In the case of Comparative Example 3, since T1O2 content is higher than the range of the present invention, and content of Na2O, K2O, L12O, or a mixture thereof is lower than the range of the present invention, Table 5 does not list good results for arc stability and bead shape at a welding speed of 100cm/min. In addition, Table 6 shows that when welding speed is increased to 150cm/min, bead shape results are poor, and Table 7 indicates that when welding speed is further increased to 200cm/min, arc stability deteriorates.
In the case of Comparative Example 4, since SiO2 content is lower than the range of the present invention, Table 5 does not list good results for bead shape at a welding speed of 100cm/min. In addition, Table 6 shows that when welding speed is increased to 150cm/min, bead shape results are poor, and Table 7 indicates that when welding speed is further increased to 200cm/min, bead shape remains poor.
In the case of Comparative Example 5, since CaF2 content is lower than the range of the present invention, and MnO content is higher than the range of the present invention, Table 5 does not list good results for pockmark resistance, slag detachability, and bead shape at a welding speed of 100cm/min. Further, Table 6 shows that when welding speed is increased to 150cm/min, slag detachability further deteriorates, and Table 7 indicates that when welding speed is further increased to 200cm/min, bead shape deteriorates.
In the case of Comparative Example 6, since Al203 content is lower than the range of the present invention, and CaO content is higher than the range of the present invention, Table 5 does not list good results for pockmark resistance, and bead shape at a welding speed of 100cm/min. In addition, Table 6 shows that when welding speed is increased to 150cm/min, pockmark resistance is poor, and Table 7 indicates that when welding speed is further increased to 200cm/min, bead shape also deteriorates.
In the case of Comparative Example 7, since MgO content is higher than the range of the present invention, and basicity(B) as defined herein is lower than the range of the present invention, Table 5 does not list good results for pockmark resistance, slag detachability, and bead shape at a welding speed of 100cm/min. In addition, Table 6 shows that when welding speed is increased to 150cm/min, pockmark resistance is poor, and Table 7 indicates that when welding speed is further increased to 200cm/min, pit resistance and bead shape deteriorate.
In the case of Comparative Example 8, since T1O2 content is lower than the range of the present invention, and content of Na2O, K2O, U2O, or a mixture thereof is higher than the range of the present invention, Table 5 does not list good results for arc stability, slag detachability, and pit resistance at a welding speed of 100cm/min. In addition, Table 6 shows that when welding speed is increased to 150cm/min, slag detachability is poor, and Table 7 indicates that when welding speed is further increased to 200cm/min, arc stability deteriorates.
In the case of Comparative Example 9, since CaF2 content is higher than the range of the present invention, MgO content is lower than the range of the present invention, and basicity(B) as defined herein is higher than the range of the present invention, Table 5 does not list good results for arc stability, slag detachability, bead shape, and pockmark resistance at a welding speed of 100cm/min. In addition, Table 6 shows that when welding speed is increased to 150cm/min, arc stability is poor, and Table 7 indicates that when welding speed is further increased to 200cm/min, slag detachability deteriorates.
The sintered flux for submerged arc welding of Exemplary Embodiment 1 of Table 1 , whose basicity (B) satisfies 2.0≤ B = 2(CaF2+MnO)/(CaO+MgO) < 6.5, was divided into eight flux particle size distributions listed in Table 8. Welding workability evaluation results of the sintered flux for submerged arc welding having the particle size distributions of Table 8 are listed in Table 9. Welding conditions were AC 750A-34V-100cm/min.
Symbols used in Table 9 have the following meanings: o: good, Δ : normal, *: poor.
[Table 8] [Table 9] Referring to Tables 8 and 9, it will be appreciated that the present invention provides good arc stability, pockmark resistance, slag detachability, pit resistance, and bead shape when the sintered flux for submerged arc welding includes 5.0wt% or less particles larger than 1.00mm, 90.0wt% or more particles of 0.20-1.00mm, and 5.0wt% or less particles smaller than 0.20mm.
Meanwhile, in the case of Comparative Example 10 of Table 8, since the content of particles larger than 1.00mm is higher than the range of the present invention, Table 9 shows poor results for arc stability, pockmark resistance, and bead shape.
In the case of Comparative Example 11 of Table 8, since the content of particles smaller than 0.20mm is higher than the range of the present invention, Table 9 shows poor results for pockmark resistance and pit resistance.
In the case of Comparative Example 12 of Table 8, since the content of particles larger than 1.0mm is higher than the range of the present invention, and the content of particles of 0.20mm-1.00mm is lower than the range of the present invention, Table 9 lists poor results for arc stability, pockmark resistance, slag detachability, and bead shape.
In the case of Comparative Example 13 of Table 8, since the content of particles of 0.20mm-1.00mm is lower than the range of the present invention, and the content of particles smaller than 0.20mm is higher than the range of the present invention, Table 9 lists poor results for the pockmark resistance, slag detachability, pit resistance, and bead shape.
As can be seen from the foregoing, the present invention provides a chemical composition used in sintered flux for submerged arc welding whose basicity (B) 2(CaF2+MnO) satisfies 2.0≤ < 6.5, and which includes 5.0wt% or less particles larger than 1.00mm, 90.0wt% or more particles of 0.20-1.00mm, and 5.0wt% or less particles smaller than 0.20m.m. Accordingly, it is possible to obtain sintered flux for submerged arc welding having good welding workability, i.e., arc stability, pockmark resistance, slag detachability, pit resistance, and bead shape, even when welding speed is increased.
Although the present invention has been described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that a variety of modifications and variations may be made to the present invention without departing from the spirit or scope of the present invention defined in the appended claims, and their equivalents.

Claims (3)

178452/2
1. Sintered flux for submerged arc welding consisting of: 12.0-24.0wt% Si02, 24.0-38.0wt% Al203l 6.0-13.0wt% Ti02, 2.0-9.0wt% CaO, 7.0-14.0wt% CaF2, 12.0-23.0wt% MnO, 2.0-17.0wt% MgO, and 1.0-5.0wt% Na2O, K2O, Li2O or a mixture thereof And wherein basicity (B) of the sintered flux satisfies the following Formula 1 : [Formula 1] 2(CaF2+MnO) 2.0 < CaO+MgO < 6.5.
2. The sintered flux for submerged arc welding according to claim 1 ,
3. The sintered flux for submerged arc welding according claim 1 or 2, wherein the sintered flux for submerged arc welding comprises 5.0wt% or less particles larger than 1.00mm, 90.0wt% or more particles of 0.20-1.00mm, and 5.0wt% or less particles smaller than 0.20mm.
IL178452A 2005-11-17 2006-10-04 Sintered flux for submerged arc welding IL178452A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050109937A KR100706026B1 (en) 2005-11-17 2005-11-17 High speed submerged arc welding flux

Publications (2)

Publication Number Publication Date
IL178452A0 IL178452A0 (en) 2008-01-20
IL178452A true IL178452A (en) 2011-08-31

Family

ID=38161468

Family Applications (1)

Application Number Title Priority Date Filing Date
IL178452A IL178452A (en) 2005-11-17 2006-10-04 Sintered flux for submerged arc welding

Country Status (5)

Country Link
KR (1) KR100706026B1 (en)
AU (1) AU2006225236B2 (en)
EG (1) EG24317A (en)
IL (1) IL178452A (en)
SA (1) SA06270412B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5334725B2 (en) 2009-07-27 2013-11-06 株式会社神戸製鋼所 Sintered flux for 9% Ni steel submerged arc welding
JP5415891B2 (en) 2009-10-07 2014-02-12 株式会社神戸製鋼所 Titanium oxide raw material for welding materials, flux cored wire, coated arc welding rod and flux for submerged arc welding
KR101340448B1 (en) * 2011-12-22 2013-12-11 현대종합금속 주식회사 Agglomerated flux for submerged arc welding
JP6104090B2 (en) * 2013-08-05 2017-03-29 株式会社神戸製鋼所 Submerged arc welding flux and manufacturing method thereof
JP6104146B2 (en) * 2013-12-13 2017-03-29 株式会社神戸製鋼所 Submerged arc welding flux and manufacturing method thereof
JP6737567B2 (en) * 2015-02-02 2020-08-12 株式会社神戸製鋼所 Submerged arc welding flux
KR101760829B1 (en) 2016-03-25 2017-07-24 현대종합금속 주식회사 Submerged arc welding flux for thin plate welding
CN109454361A (en) * 2018-11-28 2019-03-12 东莞理工学院 A kind of low-hygroscopicity submerged-arc welding sintered flux and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714496A (en) 1980-06-27 1982-01-25 Kobe Steel Ltd Molten type flux for submerged arc welding
JPS62270297A (en) 1986-05-20 1987-11-24 Kawasaki Steel Corp Fused flux for submerged arc welding
KR100462037B1 (en) * 2000-07-10 2004-12-16 현대종합금속 주식회사 Flux for using butt submerged arc welding
KR100466204B1 (en) * 2002-11-26 2005-01-13 고려용접봉 주식회사 A flux composition for submerged arc welding

Also Published As

Publication number Publication date
AU2006225236A1 (en) 2007-05-31
SA06270412B1 (en) 2010-06-28
EG24317A (en) 2009-01-20
KR100706026B1 (en) 2007-04-12
IL178452A0 (en) 2008-01-20
AU2006225236B2 (en) 2008-07-31

Similar Documents

Publication Publication Date Title
IL178452A (en) Sintered flux for submerged arc welding
CN108296667B (en) Flux-cored wire for underwater welding and preparation method
WO2008072835A1 (en) Sintered flux for submerged arc welding
CN101585123A (en) Sintered flux for stainless steel
JPH11188496A (en) Burning type flux for submerged arc welding, and manufacture
KR100671068B1 (en) 570mpa grade agglomerated flux with high impact-value for submerged arc welding
CN102785041B (en) All positon alkaline gas protection flux-cored wire
JP6437420B2 (en) Firing flux for submerged arc welding of high strength steel
CN113245748B (en) 14Cr1MoR matched high-toughness welding electrode for hydrogen-contacting steel
JP3433681B2 (en) Sintered flux for submerged arc welding and method for producing the same
SU1606297A1 (en) Flux for electric arc welding and surfacing
JP4581842B2 (en) Fused flux for submerged arc welding
JP2544479B2 (en) Bond flux for submerged arc welding
CN115213581A (en) High-toughness welding rod for X80 grade pipeline steel
JP3577995B2 (en) Manufacturing method of fired flux for submerged arc welding
JPH01150497A (en) Low hydrogen covered electrode for fillet welding
JPH0513040B2 (en)
JP2015033700A (en) Flux for one-side submerged arc welding
JP6152316B2 (en) Flux for single-sided submerged arc welding
KR20030016731A (en) Sintered flux for submerged arc welding
CN109483091B (en) Welding wire flux-cored powder, rutile type seamless flux-cored wire, preparation and application
JP2018069294A (en) Melting type flux for submerged arc welding
JPH07100689A (en) Bonded flux for submerged arc welding downward facing fillet
WO2019188122A1 (en) Flux for submerged arc welding
JPS6352794A (en) Baked flux for submerged arc welding

Legal Events

Date Code Title Description
FF Patent granted
KB Patent renewed
KB Patent renewed
KB Patent renewed
KB Patent renewed