HRP20191626T1 - Electrolytic generation of manganese (iii) ions in strong sulfuric acid - Google Patents

Electrolytic generation of manganese (iii) ions in strong sulfuric acid Download PDF

Info

Publication number
HRP20191626T1
HRP20191626T1 HRP20191626T HRP20191626T1 HR P20191626 T1 HRP20191626 T1 HR P20191626T1 HR P20191626 T HRP20191626 T HR P20191626T HR P20191626 T1 HRP20191626 T1 HR P20191626T1
Authority
HR
Croatia
Prior art keywords
manganese
ions
solution
iii
acid
Prior art date
Application number
Other languages
Croatian (hr)
Inventor
Trevor Pearson
Terence Clarke
Roshan V Chapaneri
Craig Robinson
Alison Hyslop
Amrik Singh
Original Assignee
Macdermid Acumen Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/795,382 external-priority patent/US9534306B2/en
Application filed by Macdermid Acumen Inc filed Critical Macdermid Acumen Inc
Publication of HRP20191626T1 publication Critical patent/HRP20191626T1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/21Manganese oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • C23C18/24Roughening, e.g. by etching using acid aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics

Claims (12)

1. Elektrolitička ćelija koja sadrži: otopinu elektrolita koja sadrži manganove (III) ione i manganove (II) ione u otopini koja sadrži sumpornu kiselinu i dodatnu kiselinu odabranu iz skupine koja se sastoji od metanske sulfonske kiseline, metanske disulfonske kiseline i njihovih kombinacija, pri čemu otopina sadrži sumpornu kiselinu od najmanje 8M, katodu u dodiru s otopinom elektrolita i anodu u dodiru s otopinom elektrolita.1. Electrolytic cell containing: an electrolyte solution containing manganese (III) ions and manganese (II) ions in a solution containing sulfuric acid and an additional acid selected from the group consisting of methane sulfonic acid, methane disulfonic acid and combinations thereof, wherein the solution contains sulfuric acid of at least 8M, the cathode in contact with the electrolyte solution i the anode in contact with the electrolyte solution. 2. Elektrolitička ćelija u skladu s patentnim zahtjevom 1., pri čemu otopina može sadržavati sumpornu kiselinu od najmanje 12M i/ili pri čemu otopina može sadržavati metansku sulfonsku kiselinu ili metansku disulfonsku kiselinu od 1M do 6M i/ili pri čemu otopina može sadržavati sumpornu kiselinu molarne mase između 9 i 15 i metansku sulfonsku kiselinu koncentracije između 1M i 6M.2. Electrolytic cell according to patent claim 1, wherein the solution can contain sulfuric acid of at least 12M and/or whereby the solution may contain methane sulfonic acid or methane disulfonic acid from 1M to 6M and/or whereby the solution can contain sulfuric acid with a molar mass between 9 and 15 and methane sulfonic acid with a concentration between 1M and 6M. 3. Elektrolitička ćelija u skladu s patentnim zahtjevom 1., pri čemu je područje anode veće od područja katode i/ili pri čemu anoda sadrži materijal odabran iz skupine koja se sastoji od staklastog ugljika, retikuliranog staklastog ugljika, tkanih karbonskih vlakana, olova, legure olova, platiniranog titana, platine, iridijevog/tantalovog oksida, niobija, dijamanta dopiranog borom i kombinacija jednog ili više prethodno navedenih elemenata, po mogućnosti olova ili legure olova, pri čemu, kada anoda sadrži olovo ili olovnu leguru, elektrolitička ćelija također može sadržavati sredstvo za praćenje koncentracije Mn (II) u otopini.3. An electrolytic cell according to claim 1, wherein the anode area is larger than the cathode area and/or wherein the anode contains a material selected from the group consisting of glassy carbon, reticulated glassy carbon, woven carbon fibers, lead, alloy lead, platinized titanium, platinum, iridium/tantalum oxide, niobium, boron-doped diamond and a combination of one or more of the aforementioned elements, preferably lead or a lead alloy, wherein, when the anode contains lead or a lead alloy, the electrolytic cell may also contain means for monitoring the concentration of Mn (II) in the solution. 4. Elektrolitička ćelija prema zahtjevu 1., pri čemu katoda sadrži materijal odabran iz skupine koja se sastoji od platine, platiniranog titana, iridijevog/tantalovog oksida, niobija i olova, pri čemu katoda može sadržavati olovo ili pri čemu katoda sadrži platinirani titan ili platinu.4. Electrolytic cell according to claim 1, wherein the cathode contains a material selected from the group consisting of platinum, platinized titanium, iridium/tantalum oxide, niobium and lead, where the cathode may contain lead or wherein the cathode contains platinized titanium or platinum. 5. Postupak elektrokemijske oksidacije manganovih (II) iona u manganove (III) ione koji obuhvaća korake: dobave elektrolita koji sadrži otopinu manganovih (II) iona u otopini sumporne kiseline u koncentraciji od najmanje 8M, te dodatnu kiselinu odabranu iz skupine koja se sastoji od metanske sulfonske kiseline, metanske disulfonske kiseline i njihovih kombinacija u elektrolitičkoj ćeliji, pri čemu elektrolitička ćelija sadrži anodu i katodu, primjenu struje između anode i katode i oksidiranja elektrolita za stvaranje manganovih (III) iona, pri čemu manganovi (III) ioni tvore metastabilni kompleks.5. The process of electrochemical oxidation of manganese (II) ions into manganese (III) ions, which includes the following steps: supplying an electrolyte containing a solution of manganese (II) ions in a sulfuric acid solution in a concentration of at least 8M, and an additional acid selected from the group consisting of methane sulfonic acid, methane disulfonic acid and their combinations in the electrolytic cell, wherein the electrolytic cell contains an anode and the cathode, application of current between anode and cathode i of electrolyte oxidation to form manganese (III) ions, whereby manganese (III) ions form a metastable complex. 6. Postupak u skladu s patentnim zahtjevom 5., pri čemu elektrolit sadrži metansku sulfonsku kiselinu koncentracije između 1M i 6M.6. The method according to claim 5, wherein the electrolyte contains methane sulfonic acid with a concentration between 1M and 6M. 7. Postupak u skladu s patentnim zahtjevom 5., pri čemu anoda sadrži olovo ili olovnu leguru, osim toga, može sadržavati i korak praćenja nakupljanja manganovih (III) iona u otopini, osim toga, metoda može uključivati korak praćenja nakupljanja manganovih (III) iona u otopini, pri čemu potencijalno najviše 50 % prvotne koncentracije manganovih (II) iona oksidira u manganove (III) ione, a po mogućnosti najviše 25 % izvorne koncentracije manganovih (II) iona oksidira u manganove (III) ione, i/ili osim toga, u slučajevima gdje metoda može uključivati korak praćenja nakupljanja manganovih (III) iona u otopini, nakupljanje manganovih (III) iona može se pratiti pomoću redoks-elektrode, pri čemu se elektroliza zaustavlja kada sadržaj mangana (III) dosegne željenu razinu, i/ili osim toga, u slučajevima gdje metoda može uključivati korak praćenja nakupljanja manganovih (III) iona u otopini, nakupljanje manganovih (III) iona može se pratiti pomoću titracije otopine za jetkanje, pri čemu se elektroliza zaustavlja kada sadržaj mangana (III) dosegne željenu razinu, i/ili osim toga, u slučajevima gdje metoda može uključivati korak praćenja nakupljanja manganovih (III) iona u otopini, metoda se sastoji i od praćenja koncentracije manganovih (II) iona u otopini.7. The method according to claim 5, wherein the anode contains lead or a lead alloy, in addition, it may contain a step of monitoring the accumulation of manganese (III) ions in the solution, in addition, the method may include the step of monitoring the accumulation of manganese (III) ions in the solution, whereby potentially no more than 50% of the original manganese (II) ion concentration is oxidized to manganese (III) ions, and preferably no more than 25% of the original manganese (II) concentration ion oxidizes into manganese (III) ions, and/or in addition, in cases where the method may include the step of monitoring the accumulation of manganese (III) ions in the solution, the accumulation of manganese (III) ions may be monitored using a redox electrode, the electrolysis being stopped when the manganese (III) content reaches a desired level, and /or furthermore, in cases where the method may include the step of monitoring the accumulation of manganese (III) ions in the solution, the accumulation of manganese (III) ions may be monitored by titration of the etching solution, the electrolysis being stopped when the manganese (III) content reaches a desired level, and/or in addition, in cases where the method may include the step of monitoring the accumulation of manganese (III) ions in the solution, the method also consists of monitoring the concentration of manganese (II) ions in the solution. 8. Postupak u skladu s patentnim zahtjevom 5. koji sadrži korak povremene promjene smjera struje u elektrolitičkoj ćeliji, pri čemu se sprječava nakupljanje manganovog dioksida na anodi.8. The method according to patent claim 5, which contains the step of periodically changing the direction of the current in the electrolytic cell, whereby the accumulation of manganese dioxide on the anode is prevented. 9. Postupak u skladu s patentnim zahtjevom 5. koji dodatno sadrži korak dodira plastične mase s metastabilnim kompleksom na određeno vremensko razdoblje u svrhu jetkanja plastične mase, pri čemu plastična masa može sadržavati akrilonitril butadien stiren ili akrilonitril butadien stiren / polikarbonat, i/ili pri čemu se prije dodira plastične plastike s metastabilnim kompleksom plastična masa dovodi u dodir sa sastavom za predobradu radi prilagodbe površine plastične mase, a sastav za predobradu sadrži otapalo izabrano iz skupine koja se sastoji od propilen karbonata, gama butirolaktona i njihovih kombinacija, pri čemu je poželjno da otapalo sadrži propilen karbonat, pri čemu otopina za predobradu također može sadržavati organsku hidroksi- kiselinu, a poželjno je da je organska hidroksi- kiselina odabrana iz skupine koja se sastoji od mliječne kiseline, glikolne kiseline, glukonske kiseline i kombinacija jednog ili više prethodno navedenih elemenata, u slučajevima gdje otopina za predobradu sadrži organsku hidroksi- kiselinu, također se sastav za predobradu održava na temperaturi između 20 i 70 °C i plastična je masa u dodiru sa sastavom za predobradu tijekom 2 do 10 minuta.9. The procedure in accordance with patent claim 5, which additionally contains the step of contacting the plastic mass with a metastable complex for a certain period of time for the purpose of etching the plastic mass, whereby the plastic mass may contain acrylonitrile butadiene styrene or acrylonitrile butadiene styrene / polycarbonate, and/or where before the contact of the plastic with the metastable complex, the plastic mass is brought into contact with the pretreatment composition in order to adapt the surface of the plastic mass, and the pretreatment composition contains a solvent selected from the group consisting of propylene carbonate, gamma butyrolactone and their combinations, whereby preferably the solvent contains propylene carbonate, whereby the pretreatment solution can also contain an organic hydroxy acid, and it is preferable that the organic hydroxy acid is selected from the group consisting of lactic acid, glycolic acid, gluconic acid and a combination of one or more of the aforementioned elements, in cases where the pretreatment solution contains an organic hydroxy acid, the pretreatment composition is also maintained at a temperature between 20 and 70 °C and the plastic mass is in contact with the pretreatment composition for 2 to 10 minutes. 10. Postupak u skladu s patentnim zahtjevom 5., pri čemu su manganovi (II) ioni izvedeni iz spoja odabranog iz skupine koja se sastoji od manganovog sulfata, manganovog karbonata i manganovog hidroksida i/ili pri čemu se otopina dodatno sastoji od koloidnog manganovog dioksida i/ii pri čemu je koncentracija manganovih (II) iona u elektrolitu između 0,005 mola i zasićenja i/ili pri čemu elektrolit ne sadrži permanganat.10. The method according to claim 5, wherein the manganese (II) ions are derived from a compound selected from the group consisting of manganese sulfate, manganese carbonate and manganese hydroxide and/or whereby the solution additionally consists of colloidal manganese dioxide i/ii where the concentration of manganese (II) ions in the electrolyte is between 0.005 mol and saturation and/or where the electrolyte does not contain permanganate. 11. Metoda prema zahtjevu 5., pri čemu katoda sadrži materijal odabran iz skupine koja se sastoji od platine, platiniranog titana, iridijevog/tantalovog oksida, niobija i olova, pri čemu katoda može sadržavati olovo i/ili pri čemu katoda sadrži platinirani titan ili platinu.11. The method according to claim 5, wherein the cathode contains a material selected from the group consisting of platinum, platinized titanium, iridium/tantalum oxide, niobium and lead, wherein the cathode may contain lead and/or wherein the cathode contains platinized titanium or platinum. 12. Postupak u skladu s patentnim zahtjevom 5., pri čemu je gustoća anodne struje između 0,1 i 0,4 A/dm2 i/ili pri čemu se temperatura elektrolita održava na razini između 30 °C i 80 °C.12. The method according to claim 5, wherein the anode current density is between 0.1 and 0.4 A/dm2 and/or whereby the temperature of the electrolyte is maintained at a level between 30 °C and 80 °C.
HRP20191626 2013-03-12 2019-09-10 Electrolytic generation of manganese (iii) ions in strong sulfuric acid HRP20191626T1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/795,382 US9534306B2 (en) 2012-01-23 2013-03-12 Electrolytic generation of manganese (III) ions in strong sulfuric acid
EP14779082.8A EP2971260B1 (en) 2013-03-12 2014-03-07 Electrolytic generation of manganese (iii) ions in strong sulfuric acid
PCT/US2014/021618 WO2014164272A1 (en) 2013-03-12 2014-03-07 Electrolytic generation of manganese (iii) ions in strong sulfuric acid

Publications (1)

Publication Number Publication Date
HRP20191626T1 true HRP20191626T1 (en) 2019-12-13

Family

ID=51658840

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP20191626 HRP20191626T1 (en) 2013-03-12 2019-09-10 Electrolytic generation of manganese (iii) ions in strong sulfuric acid

Country Status (18)

Country Link
EP (1) EP2971260B1 (en)
JP (1) JP6167222B2 (en)
KR (1) KR101749947B1 (en)
CN (1) CN105209667B (en)
AU (1) AU2014249521B2 (en)
BR (1) BR112015021067B1 (en)
CA (2) CA2955467C (en)
DK (1) DK2971260T3 (en)
ES (1) ES2745071T3 (en)
HR (1) HRP20191626T1 (en)
HU (1) HUE045344T2 (en)
LT (1) LT2971260T (en)
MX (1) MX2015012584A (en)
PL (1) PL2971260T3 (en)
PT (1) PT2971260T (en)
SI (1) SI2971260T1 (en)
TW (1) TWI489007B (en)
WO (1) WO2014164272A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267077B2 (en) * 2013-04-16 2016-02-23 Rohm And Haas Electronic Materials Llc Chrome-free methods of etching organic polymers with mixed acid solutions
KR20180077326A (en) * 2013-10-22 2018-07-06 오꾸노 케미칼 인더스트리즈 컴파니,리미티드 Composition for etching treatment of resin material
CN105483715B (en) * 2015-12-09 2018-01-30 哈尔滨工业大学 The template 3D etching preparation methods of the micro-nano combined multi-stage Porous materials of magnesium based metal
CN106830204B (en) * 2017-03-13 2020-04-28 重庆大学 Method and device for degrading pollutants in water by exciting permanganate through electrochemical cathode
MX2019015038A (en) * 2017-07-10 2020-08-17 Srg Global Llc Hexavalent chromium free etch manganese recovery system.
CN109256180B (en) * 2018-07-03 2022-02-11 南昌立德生物技术有限公司 Sensitivity analysis algorithm for computer-aided pilot medicament optimization design
JP7336126B2 (en) * 2019-03-11 2023-08-31 国立研究開発法人産業技術総合研究所 High-value manganese production method and production apparatus
EP3825441A1 (en) * 2019-11-21 2021-05-26 COVENTYA S.p.A. An electrolytic treatment device for preparing plastic parts to be metallized and a method for etching plastic parts
US11842958B2 (en) * 2022-03-18 2023-12-12 Chun-Ming Lin Conductive structure including copper-phosphorous alloy and a method of manufacturing conductive structure

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3065155A (en) 1960-09-02 1962-11-20 Manganese Chemicals Corp Electrolytic manganese dioxide process
US3793171A (en) * 1970-09-04 1974-02-19 Carrier Corp Process for removing pollutants from gas streams
JPS51764A (en) * 1974-06-25 1976-01-06 Mitsui Mining & Smelting Co MUDENKAIDOMETSUKIHAISUINO SHORIHOHO
US3941677A (en) * 1974-06-27 1976-03-02 Carrier Corporation Electrolytic regeneration cell
AU4083878A (en) * 1977-11-02 1980-04-24 Diamond Shamrock Techn Dislodging electrolytic manganese dioxide
US4279705A (en) * 1980-02-19 1981-07-21 Kerr-Mcgee Corporation Process for oxidizing a metal of variable valence by constant current electrolysis
JPS6013087A (en) * 1983-07-05 1985-01-23 Kawasaki Kasei Chem Ltd Electrolyzing method of cerous sulfate
JPS6447890A (en) * 1987-08-13 1989-02-22 Kenzo Yamaguchi Electrolytic synthesis method
US5213665A (en) * 1988-02-29 1993-05-25 Nippon Shokubai Kagaku Kogyo, Co., Ltd. Process for producing 1-aminoanthraquinones
US4911802A (en) * 1988-03-09 1990-03-27 Macdermid, Incorporated Conversion of manganate to permanganate
US4936970A (en) * 1988-11-14 1990-06-26 Ebonex Technologies, Inc. Redox reactions in an electrochemical cell including an electrode comprising Magneli phase titanium oxide
US5318803A (en) * 1990-11-13 1994-06-07 International Business Machines Corporation Conditioning of a substrate for electroless plating thereon
JPH05112872A (en) * 1991-10-21 1993-05-07 Okuno Seiyaku Kogyo Kk Method for electroless-plating polyimide resin and pre-etching composition
US5246553A (en) * 1992-03-05 1993-09-21 Hydro-Quebec Tetravalent titanium electrolyte and trivalent titanium reducing agent obtained thereby
JP3806181B2 (en) * 1996-05-31 2006-08-09 株式会社大和化成研究所 Method for producing naphthalene aldehydes
GB9714275D0 (en) * 1997-07-08 1997-09-10 Ciba Geigy Ag Oxidation process
US6616828B2 (en) * 2001-08-06 2003-09-09 Micron Technology, Inc. Recovery method for platinum plating bath
WO2006054996A1 (en) * 2004-11-19 2006-05-26 Honeywell International Inc. Selective removal chemistries for semiconductor applications, methods of production and uses thereof
JP5585980B2 (en) * 2007-05-22 2014-09-10 奥野製薬工業株式会社 Pretreatment method of electroless plating for resin molding, plating method for resin molding, and pretreatment agent
ATE445667T1 (en) * 2007-08-10 2009-10-15 Enthone CHROME-FREE STAIN FOR PLASTIC SURFACES
CN102341946B (en) * 2010-03-12 2013-05-01 住友电气工业株式会社 Redox flow battery
US10260000B2 (en) * 2012-01-23 2019-04-16 Macdermid Acumen, Inc. Etching of plastic using acidic solutions containing trivalent manganese
US8603352B1 (en) * 2012-10-25 2013-12-10 Rohm and Haas Electroncis Materials LLC Chrome-free methods of etching organic polymers
CN104838044B (en) * 2012-11-15 2017-12-05 麦克德米德尖端有限公司 Electrolysis produces manganese (III) ion in strength sulfuric acid

Also Published As

Publication number Publication date
PL2971260T3 (en) 2020-03-31
CA2955467C (en) 2021-03-16
EP2971260A1 (en) 2016-01-20
KR101749947B1 (en) 2017-06-22
JP6167222B2 (en) 2017-07-19
HUE045344T2 (en) 2019-12-30
ES2745071T3 (en) 2020-02-27
BR112015021067B1 (en) 2021-06-08
JP2016512574A (en) 2016-04-28
TWI489007B (en) 2015-06-21
BR112015021067A2 (en) 2017-07-18
CN105209667B (en) 2017-12-05
CA2901589C (en) 2019-01-22
EP2971260A4 (en) 2017-04-19
MX2015012584A (en) 2016-01-14
CA2955467A1 (en) 2014-10-09
TW201500593A (en) 2015-01-01
AU2014249521A1 (en) 2015-08-27
SI2971260T1 (en) 2019-12-31
PT2971260T (en) 2019-09-27
CN105209667A (en) 2015-12-30
AU2014249521B2 (en) 2018-03-01
EP2971260B1 (en) 2019-06-19
KR20150126935A (en) 2015-11-13
WO2014164272A1 (en) 2014-10-09
DK2971260T3 (en) 2019-09-23
CA2901589A1 (en) 2014-10-09
LT2971260T (en) 2019-09-25

Similar Documents

Publication Publication Date Title
HRP20191626T1 (en) Electrolytic generation of manganese (iii) ions in strong sulfuric acid
Han et al. A study on the electrodeposited Ni–S alloys as hydrogen evolution reaction cathodes
CN105621541A (en) Transition-metal doped lead dioxide electrode for wastewater treatment as well as preparation method and application thereof
JP4404871B2 (en) Electroplating bath
CN103887524A (en) Modified treatment method of positive electrode graphite felt electrode of all-vanadium redox flow battery
Han et al. Study of amorphous Ni–S–Co alloy used as hydrogen evolution reaction cathode in alkaline medium
Han et al. Hydrogen evolution reaction on amorphous Ni–S–Co alloy in alkaline medium
Rojas-Montes et al. Selenium reaction mechanism in manganese electrodeposition process
US20140027301A1 (en) Selective reductive electrowinning apparatus and method
Ilea et al. The electrodeposition of manganese from aqueous solutions of MnSO4. IV: electrowinning by galvanostatic electrolysis
Scott et al. An investigation of anode materials in the anodic oxidation of sulphur dioxide in sulphuric acid solutions
WO2009114217A8 (en) Method of electrolytically dissolving nickel into electroless nickel plating solutions
RU2013111433A (en) METHOD FOR ELECTROLYSIS OF ALKALI METAL CHLORIDES USING ELECTROLYTE CELL WITH MICROZAZORNY CONFIGURATION (OPTIONS)
WO2013078004A1 (en) In situ regeneration of diamond electrodes after anodic oxidation
US9624586B2 (en) Electrolysis cell and method for operating an electrolysis cell
Tang et al. Energy-saving synthesis of potassium iodate via electrolysis of potassium iodine and O 2 in a membraneless cell
JP2008208434A (en) Electrode for reverse electrolysis
KR101338287B1 (en) Oxidation Method of Electro-activated Catalyst to Apply in Odor Gases Removal, And Oxidation Apparatus Thereof
Britto-Costa et al. Optimization of copper electrowinning from synthetic copper sulfate solution using a pulsed bed electrode
CN103320845A (en) Electrolyte formula
Han et al. Study of amorphous Ni–S (La) alloy used as HER cathode in alkaline medium
NO20100526L (en) Control of bypass current in multipolar light metal reduction cells
RU2409705C1 (en) Method making electrode for electrochemical processes
Racz et al. Electrochemical behavior of metallic titanium in MnO2 electrosynthesis from spent battery leach liquors
XU et al. Preparations and Characterizations of Ti/PbO 2 Electrodes Modified with Rare Earth of Praseodymium and PVP in Electrochemical Degradation of Organics