FR3116214B1 - Device for collinear synthesis of nanoparticles by laser pyrolysis, associated system and method - Google Patents

Device for collinear synthesis of nanoparticles by laser pyrolysis, associated system and method Download PDF

Info

Publication number
FR3116214B1
FR3116214B1 FR2011839A FR2011839A FR3116214B1 FR 3116214 B1 FR3116214 B1 FR 3116214B1 FR 2011839 A FR2011839 A FR 2011839A FR 2011839 A FR2011839 A FR 2011839A FR 3116214 B1 FR3116214 B1 FR 3116214B1
Authority
FR
France
Prior art keywords
reactor
longitudinal axis
nanoparticles
channel
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
FR2011839A
Other languages
French (fr)
Other versions
FR3116214A1 (en
Inventor
Olivier Sublemontier
Henri Perez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Priority to FR2011839A priority Critical patent/FR3116214B1/en
Priority to PCT/EP2021/082097 priority patent/WO2022106517A1/en
Priority to EP21811354.6A priority patent/EP4247543A1/en
Publication of FR3116214A1 publication Critical patent/FR3116214A1/en
Application granted granted Critical
Publication of FR3116214B1 publication Critical patent/FR3116214B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/008Pyrolysis reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/42Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed subjected to electric current or to radiations this sub-group includes the fluidised bed subjected to electric or magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00761Discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

TITRE : Dispositif de synthèse colinéaire de nanoparticules par pyrolyse laser, système et procédé associés. L’invention concerne un dispositif (DS) de synthèse de nanoparticules par pyrolyse laser, caractérisé en ce qu’il comporte : au moins un réacteur (R) se présentant sous la forme d’une conduite munie d’un axe longitudinal (X0), le réacteur (R) comprenant, à une première extrémité (PE), une première fenêtre (FE) pour un faisceau laser (FL) et, à une deuxième extrémité (DE) opposée à la première extrémité selon l’axe longitudinal (X0) du réacteur (R), une deuxième fenêtre (FS) pour le faisceau laser (FL) ;un dispositif optique (DO) comprenant un laser (L) agencé pour émettre un faisceau laser (FL) apte à se propager dans le réacteur (R) depuis la première fenêtre (FE) vers la deuxième fenêtre (FS) selon la direction définie par l’axe longitudinal (X0) du réacteur (R) ;au moins un premier canal (PC) débouchant dans le réacteur (R) au niveau d’une entrée (EP) de réacteur, le premier canal (PC), muni d’un axe longitudinal (X1), étant agencé de sorte que son axe longitudinal (X1) définisse, avec l’axe longitudinal (X0) du réacteur (R), un angle A01 aigu mais non nul, ainsi qu’un deuxième canal (DC) sortant du réacteur (R) au niveau d’une sortie (SNP) de réacteur ; le premier canal (PC) étant ainsi apte à amener dans le réacteur (R), pour synthétiser les nanoparticules par pyrolyse laser, un flux de gaz porteur comportant au moins un précurseur de nanoparticules apte à interagir colinéairement avec le faisceau laser (FL) le long de l’axe longitudinal (X0) du réacteur (R) entre l’entrée (EP) et la sortie (SNP) du réacteur et le deuxième canal (DC) étant alors apte à récupérer les nanoparticules ainsi formées par pyrolyse laser dans le flux de gaz porteur. Figure pour l’abrégé : Figure 1.TITLE: Device for collinear synthesis of nanoparticles by laser pyrolysis, associated system and process. The invention relates to a device (DS) for synthesizing nanoparticles by laser pyrolysis, characterized in that it comprises: at least one reactor (R) in the form of a pipe provided with a longitudinal axis (X0) , the reactor (R) comprising, at a first end (PE), a first window (FE) for a laser beam (FL) and, at a second end (DE) opposite the first end along the longitudinal axis (X0 ) of the reactor (R), a second window (FS) for the laser beam (FL);an optical device (DO) comprising a laser (L) arranged to emit a laser beam (FL) able to propagate in the reactor ( R) from the first window (FE) towards the second window (FS) along the direction defined by the longitudinal axis (X0) of the reactor (R);at least one first channel (PC) opening into the reactor (R) at the level of a reactor inlet (EP), the first channel (PC), provided with a longitudinal axis (X1), being arranged so that its longitudinal axis (X1) defines, with the longitudinal axis (X0) of the reactor (R), an acute but non-zero angle A01, as well as a second channel (DC) exiting the reactor (R) at a reactor outlet (SNP); the first channel (PC) thus being capable of bringing into the reactor (R), in order to synthesize the nanoparticles by laser pyrolysis, a flow of carrier gas comprising at least one precursor of nanoparticles capable of interacting collinearly with the laser beam (FL) the along the longitudinal axis (X0) of the reactor (R) between the inlet (EP) and the outlet (SNP) of the reactor and the second channel (DC) then being able to recover the nanoparticles thus formed by laser pyrolysis in the carrier gas flow. Figure for abstract: Figure 1.

FR2011839A 2020-11-18 2020-11-18 Device for collinear synthesis of nanoparticles by laser pyrolysis, associated system and method Active FR3116214B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR2011839A FR3116214B1 (en) 2020-11-18 2020-11-18 Device for collinear synthesis of nanoparticles by laser pyrolysis, associated system and method
PCT/EP2021/082097 WO2022106517A1 (en) 2020-11-18 2021-11-18 Device for collinear synthesis of nanoparticles by laser pyrolysis, associated system and method
EP21811354.6A EP4247543A1 (en) 2020-11-18 2021-11-18 Device for collinear synthesis of nanoparticles by laser pyrolysis, associated system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2011839A FR3116214B1 (en) 2020-11-18 2020-11-18 Device for collinear synthesis of nanoparticles by laser pyrolysis, associated system and method
FR2011839 2020-11-18

Publications (2)

Publication Number Publication Date
FR3116214A1 FR3116214A1 (en) 2022-05-20
FR3116214B1 true FR3116214B1 (en) 2023-04-28

Family

ID=74183404

Family Applications (1)

Application Number Title Priority Date Filing Date
FR2011839A Active FR3116214B1 (en) 2020-11-18 2020-11-18 Device for collinear synthesis of nanoparticles by laser pyrolysis, associated system and method

Country Status (3)

Country Link
EP (1) EP4247543A1 (en)
FR (1) FR3116214B1 (en)
WO (1) WO2022106517A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895628A (en) * 1985-02-12 1990-01-23 The Dow Chemical Company Process for the preparation of submicron-sized boron carbide powders
WO1997009454A1 (en) * 1995-09-07 1997-03-13 The Penn State Research Foundation High production rate of nano particles by laser liquid interaction
US6974367B1 (en) 1999-09-02 2005-12-13 Micron Technology, Inc. Chemical mechanical polishing process
US7981396B2 (en) * 2003-12-03 2011-07-19 Honda Motor Co., Ltd. Methods for production of carbon nanostructures
FR2877591B1 (en) 2004-11-09 2007-06-08 Commissariat Energie Atomique SYSTEM AND PROCESS FOR PRODUCING CONTINUOUS FLOW OF NANOMETRIC OR SUB-MICROMETRIC POWDERS UNDER LASER PYROLYSIS
FR2894493B1 (en) 2005-12-08 2008-01-18 Commissariat Energie Atomique SYSTEM AND PROCESS FOR PRODUCING CONTINUOUS FLOW OF NANOMETRIC OR SUB-MICROMETRIC POWDERS UNDER LASER PYROLYSIS
US20080191193A1 (en) * 2007-01-22 2008-08-14 Xuegeng Li In situ modification of group iv nanoparticles using gas phase nanoparticle reactors
FR2998485B1 (en) 2012-11-26 2015-01-02 Commissariat Energie Atomique DEVICE FOR THE SYNTHESIS OF LASER PYROLYSIS CORE - SHELL TYPE NANOPARTICLES AND ASSOCIATED METHOD.
FR3068619A1 (en) * 2017-07-07 2019-01-11 Commissariat A L'energie Atomique Et Aux Energies Alternatives PROCESS FOR THE PREPARATION OF NANOPARTICLES EXEMPT FROM NOBLE METALS AND THEIR USE IN REDUCTION OF OXYGEN

Also Published As

Publication number Publication date
WO2022106517A1 (en) 2022-05-27
EP4247543A1 (en) 2023-09-27
FR3116214A1 (en) 2022-05-20

Similar Documents

Publication Publication Date Title
KR0158676B1 (en) Method and apparatus for optically coupling an element analysis system and a laser to liquid metal in a melting vessel
WO2007047176A3 (en) System and method for coherent anti-stokes raman scattering endoscopy
FR3116214B1 (en) Device for collinear synthesis of nanoparticles by laser pyrolysis, associated system and method
CN101076428A (en) Method and apparatus for laser welding
Huang et al. Correlation between gas-dynamic behaviour of a vapour plume and oscillation of keyhole size during laser welding of 5083 Al-alloy
Miao et al. Comparative study of hybrid laser–MIG leading configuration on porosity in aluminum alloy bead-on-plate welding
Ye et al. Laser illumination-induced dramatic catalytic activity change on Au nanospheres
Praeger et al. Laser-induced backward transfer of monolayer graphene
Peng et al. High-speed X-ray transmission and numerical study of melt flows inside the molten pool during laser welding of aluminum alloy
Deng et al. Effect of filler materials on the porosity formation of aluminum alloy by laser welding with filler wire
US20180161748A1 (en) Fluid-segmentation device, flow mixing and segmentation device, continuous-flow reactor system, and method for producing nanoparticles
Zhao et al. Force enhanced wire laser additive manufacturing of aluminum and titanium alloys
FR2716130B1 (en) Method and device for the continuous casting of very small diameter metal wires directly from liquid metal.
JP2008527314A (en) Apparatus for detecting the temperature of molten metal in a metallurgical melting vessel and analyzing the molten metal
De et al. Towards stable trapping of single macromolecules in solution
JP2006500576A5 (en)
EP1567281A1 (en) Method and installation for pointing a fine fluid jet, in particular in welding, or laser hardfacing
Kurita et al. Influence of the laser-induced plume on welding behavior in keyhole welding for stainless steel using a 16 kW disk laser
Zhao et al. Analysis of dynamic characteristics of vapor plume of oscillating laser welding of SUS301L-HT stainless steel
Randall et al. Evidence for a four-center mechanism in the photoreaction of HI clusters
Coste et al. Laser welding using Nd: YAG lasers up to 12 kW. Application to high thickness welding
FR3097005B1 (en) Frame and process for implementing such a frame
CN213972627U (en) Ultrasonic transmitter for welding machine
EP3680010B1 (en) Nanoparticle production reactor
CN216922132U (en) Track mounting rack, pipeline extension device and heading machine

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20220520

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4