FR2974167A1 - Procede et appareil de liquefaction d'un gaz - Google Patents

Procede et appareil de liquefaction d'un gaz Download PDF

Info

Publication number
FR2974167A1
FR2974167A1 FR1153245A FR1153245A FR2974167A1 FR 2974167 A1 FR2974167 A1 FR 2974167A1 FR 1153245 A FR1153245 A FR 1153245A FR 1153245 A FR1153245 A FR 1153245A FR 2974167 A1 FR2974167 A1 FR 2974167A1
Authority
FR
France
Prior art keywords
heat exchanger
exchanger
flow
expanded
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1153245A
Other languages
English (en)
Other versions
FR2974167B1 (fr
Inventor
Arthur Darde
Xavier Traversac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR1153245A priority Critical patent/FR2974167B1/fr
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to US14/111,349 priority patent/US9435582B2/en
Priority to CA2831203A priority patent/CA2831203A1/fr
Priority to CN201280018398.0A priority patent/CN104067078B/zh
Priority to PCT/FR2012/050797 priority patent/WO2012140369A2/fr
Priority to EP12722405.3A priority patent/EP2697583A2/fr
Priority to AU2012241641A priority patent/AU2012241641B2/en
Publication of FR2974167A1 publication Critical patent/FR2974167A1/fr
Application granted granted Critical
Publication of FR2974167B1 publication Critical patent/FR2974167B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0027Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0263Details of the cold heat exchange system using different types of heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/067Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/70Flue or combustion exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/80Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
    • F25J2220/82Separating low boiling, i.e. more volatile components, e.g. He, H2, CO, Air gases, CH4
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/42Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/80Quasi-closed internal or closed external carbon dioxide refrigeration cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Procédé de liquéfaction d'un gaz d'alimentation, par exemple un gaz riche en dioxyde de carbone, dans lequel on condense le gaz d'alimentation mélangé avec un gaz de cycle pour former un liquide à la première pression, on refroidit le liquide à la première pression dans un premier échangeur de chaleur (E2), on sort le liquide refroidi du premier échangeur et on le détend jusqu'à une deuxième pression inférieure à la première pression pour former un débit détendu, on refroidit au moins une partie du débit détendu dans un deuxième échangeur de chaleur, on sort le débit détendu du deuxième échangeur de chaleur (E1), on le divise en au moins deux parties dont une première partie et une deuxième partie, la première partie du débit détendu constitue le produit liquéfié, la deuxième et de préférence une troisième partie se vaporise dans le deuxième échangeur de chaleur et le au moins un gaz de cycle ainsi formé est donc mélangé au gaz d'alimentation et comprimé dans un compresseur, après ou avant d'être mélangé au gaz d'alimentation,

Description

L'invention est relative à un procédé et un appareil de liquéfaction d'un gaz d'alimentation, par exemple un gaz riche en dioxyde de carbone, contenant par exemple au moins 60% mol. de dioxyde de carbone, voire au moins 80% mol de dioxyde de carbone. La présente invention vise à réduire le coût et la complexité de la ligne d'échange d'un liquéfacteur.
Selon un objet de l'invention, il est prévu un procédé de liquéfaction d'un gaz d'alimentation, par exemple un gaz riche en dioxyde de carbone, dans lequel on condense le gaz d'alimentation mélangé avec un gaz de cycle pour former un liquide à la première pression, on refroidit le liquide à la première pression dans un premier échangeur de chaleur, on sort le liquide refroidi du premier échangeur et on le détend jusqu'à une deuxième pression inférieure à la première pression pour former un débit détendu, on refroidit au moins une partie du débit détendu dans un deuxième échangeur de chaleur, on sort le débit détendu du deuxième échangeur de chaleur, on le divise en au moins deux parties dont une première partie et une deuxième partie, la première partie du débit détendu constitue le produit liquéfié, la deuxième et de préférence une troisième partie se vaporise dans le deuxième échangeur de chaleur et le au moins un gaz de cycle ainsi formé est donc mélangé au gaz d'alimentation et comprimé dans un compresseur, après ou avant d'être mélangé au gaz d'alimentation, Selon d'autres aspects facultatifs : - une partie du débit détendu se refroidit dans un deuxième échangeur de chaleur jusqu'à une température intermédiaire de celui-ci et au moins une fraction de cette partie est détendue, se réchauffe dans le deuxième échangeur de chaleur et est envoyée au compresseur, éventuellement après avoir été comprimée. - une partie du débit détendu est de nouveau détendue, se réchauffe dans le premier échangeur de chaleur et est envoyée au compresseur. - la partie du débit détendu se refroidit dans un deuxième échangeur de chaleur jusqu'à une température intermédiaire de celui-ci avant d'être de nouveau détendu. - seuls le liquide à la première pression et un autre fluide échangent de la chaleur dans le premier échangeur. - aucun débit envoyé au deuxième échangeur n'a une pression supérieure à 60 bars. - les débits envoyés au premier échangeur ont une pression supérieure à 40 bars.
Le gaz d'alimentation et le gaz de cycle peuvent être mélangés avant toute compression et puis comprimés ensemble. Le gaz d'alimentation peut être comprimé jusqu'à la pression d'un des gaz de cycle ou du gaz de cycle avant de les mélanger et éventuellement les comprimer ensemble.
Le gaz d'alimentation peut être mélangé à la pression de sortie du compresseur de gaz de cycle et le mélange n'est pas comprimé en amont de la condensation. Selon un autre objet de l'invention, il est prévu un appareil de liquéfaction d'un gaz d'alimentation comprenant un compresseur, un premier échangeur de chaleur, un deuxième échangeur de chaleur distinct du premier échangeur de chaleur, des moyens de condensation reliés au compresseur, une conduite pour amener le gaz d'alimentation mélangé avec un gaz de cycle jusqu'aux moyens de condensation, une conduite pour amener au moins une partie du liquide condensé par les moyens de condensation au premier échangeur pour former un liquide refroidi à la première pression, une vanne, une conduite pour envoyer le liquide refroidi à la vanne pour le détendre jusqu'à une deuxième pression inférieure à la première pression pour former un débit détendu, une conduite pour envoyer au moins une partie du débit détendu au deuxième échangeur de chaleur, une conduite pour sortir le débit détendu du deuxième échangeur de chaleur, une conduite pour transporter une première partie du débit détendu constituant le produit liquéfié, des conduites pour amener une deuxième et de préférence une troisième partie du débit détendu se vaporiser dans le deuxième échangeur de chaleur pour former un gaz de cycle, au moins une conduite pour amener le gaz de cycle au compresseur, des moyens pour mélanger le gaz de cycle et le gaz d'alimentation en amont ou en aval du compresseur et éventuellement au moins un moyen de compression en amont du compresseur pour comprimer le gaz de cycle. Selon d'autres aspects facultatifs, l'appareil comprend : - une conduite pour envoyer une partie du débit détendu à un moyen de détente et une conduite pour envoyer la partie depuis le moyen de détente au premier échangeur et éventuellement une conduite pour envoyer la partie du débit détendu se refroidir dans le deuxième échangeur de chaleur en amont du moyen de détente. - une conduite pour envoyer une partie du débit détendu refroidi dans le deuxième échangeur de chaleur jusqu'à une température intermédiaire de celui-ci à un moyen de détente et une conduite pour envoyer la partie depuis le moyen de détente au deuxième échangeur. Le premier échangeur comprend éventuellement seulement des moyens permettant l'échange de chaleur entre seulement deux fluides, par exemple seulement deux séries de passages d'échange.
Le premier échangeur peut être un échangeur en aluminium brasé à plaques et à ailettes. Le premier échangeur peut être un échangeur à tube et à calandre. Dans ce cas, le séparateur de phases en amont du premier échangeur peut être éliminé, la calandre remplissant ce rôle.
Selon ce procédé, on condense le gaz, par exemple du CO2, contre une source de froid disponible. Cette source peut être un débit d'air ou d'eau à une pression d'entre 70 et 100 bars. Il faut ensuite sous-refroidir le gaz condensé dans un échangeur avant de le diviser pour former plusieurs débits liquides qui sont ensuite vaporisés à différents niveaux de pression. Ces niveaux de pression différents sont atteints en détendant au moins un des débits liquides. Les liquides sont vaporisés dans l'échangeur pour fournir du froid, tandis que la production liquide restante est envoyée aux stockages. L'inconvénient du schéma de base est de sous-refroidir le liquide jusqu'à - 50°C en une étape, ce qui revient à imposer à toute la ligne d'échange sa pression de conception qui est supérieur à 80 bars. Cette forte pression crée des contraintes sur l'échangeur dont la section de passage doit être réduite, ainsi que le nombre de boites permettant l'entrée ou la sortie de fluide. L'invention vise à sous-refroidir le liquide dans un échangeur simple à deux fluides et dimensionné pour la pression maximale. Le liquide sous-refroidi est alors détendu, mais à une pression suffisamment élevée pour ne pas se vaporiser. L'échangeur suivant peut ainsi être dimensionné avec une contrainte en pression nettement plus faible. Il est nécessaire de prendre garde à ne pas trop détendre le liquide sous-refroidi entre les deux échangeurs pour éviter une phase gaz qui tournerait en rond, et qui imposerait d'utiliser un pot de séparation gaz/liquide De préférence, on séparera aussi le liquide détendu en aval du premier échangeur en deux flux. L'un d'eux est sous refroidi uniquement de manière à pouvoir détendre à une pression d'environ 18 à 26 bars (ce qui correspond à la pression d'aspiration de la troisième roue de compression lorsqu'il y en a quatre jusqu'à la pression de condensation) sans production de gaz (ce qui évite l'investissement d'un pot séparateur). Ces deux flux alimentent en fait les deux vaporisations à plus haute pression (« HP » et « HHP »). Cela évite de sous-refroidir ces liquides à -50°C environ, ce qui induisait des pertes énergétiques importantes par écart thermique. Dans ces cas, on ne pouvait sortir le fluide à un niveau intermédiaire car cela augmente le nombre de boites sur l'échangeur. Tous les pourcentages relatifs à des puretés sont des pourcentages molaires. L'invention sera décrite en plus de détail en se référant aux figures qui représentent des procédés selon l'invention.
Dans la Figure 1, un gaz d'alimentation 1 pouvant être un gaz riche en dioxyde de carbone contenant 98% de dioxyde de carbone et 2% d'azote. Le gaz 1 est comprimé dans un compresseur C3 jusqu'à une pression de 43 bars. Ensuite il est comprimé jusqu'à 80 bars dans un compresseur C4. Le gaz à 80 bars est condensé dans un condenseur E4 pour produire un liquide supercritique 5. Le liquide 5 est refroidi dans un premier échangeur E2 et ensuite détendu dans une vanne 9 jusqu'à une pression de 55 bars sans produire de gaz. Le premier échangeur E2 est un échangeur à plaques et à ailettes en aluminium brasé ou un échangeur à calandre et à tube, par exemple. Le liquide détendu est divisé en deux débits 11, 13. Le liquide 13 est refroidi dans un deuxième échangeur El jusqu'au bout froid de celui-ci. Le liquide 13 est divisé en trois. Une partie 18 constitue la production liquide du procédé et est envoyé à un stockage à 7 bars. Une partie 7 est détendue à 12 bars sans produire de gaz, réchauffée dans le deuxième échangeur El et envoyée en amont d'un compresseur C2. La partie restante est détendue dans une vanne 43 et envoyé à un séparateur de phases 35. La fraction gazeuse 37 formée dans le séparateur de phases et la fraction liquide 39 se réchauffent séparément dans le deuxième échangeur El, qui est un échangeur à plaques en aluminium brasé. La fraction liquide se vaporise et est mélangée avec la fraction gazeuse, le mélange étant envoyé au compresseur Cl. Le débit comprimé dans le compresseur Cl est mélangé avec le débit 7 et comprimé dans le compresseur C2 avant d'être mélangé avec le gaz d'alimentation 1 et le débit 15. L'autre partie de liquide 11 provenant de la vanne 9 est refroidie jusqu'à une température intermédiaire de l'échangeur El. Ensuite la partie est divisée en deux débits. Le débit 17 est détendu jusqu'à 43 bars dans une vanne 21 sans production de gaz et réchauffé dans le premier échangeur E2 avant d'être recyclé en amont du compresseur C4 à 43 bars. Le gaz formé dans le pot séparateur court-circuite l'échangeur E2 et se mélange avec le liquide vaporisé en amont du compresseur C4. L'autre débit 15 est détendu dans une vanne 19 de 55 bars à entre 18 et 26 bars, sans production de gaz, par exemple à 24 bars. Ensuite le débit 15 est renvoyé au deuxième échangeur El à une température intermédiaire, réchauffé et recyclé en aval du compresseur C2 et en amont du compresseur C3.
Dans la Figure 2, à la différence de la Figure 1, le débit 17 n'est pas refroidi dans le deuxième échangeur El mais est détendu, sans avoir été refroidi au-delà de la température la plus froide de l'échangeur E2, jusqu'à 43 bars dans une vanne 21 et envoyé à un pot séparateur 22. Le liquide formé 28 se réchauffe et se vaporise dans le premier échangeur E2 avant d'être recyclé en amont du compresseur C4 à 43 bars. Le gaz 26 formé dans le pot séparateur court-circuite l'échangeur E2 et se mélange avec le liquide vaporisé 28 en amont du compresseur C4. Dans la Figure 3, le liquide formé dans le séparateur de phases 22 est divisé en deux. Une partie 13 se refroidit entièrement dans le deuxième échangeur El et l'autre débit 28 se vaporise dans le premier échangeur E2 avant d'être mélangé au premier débit. Pour réduire le coût de l'échangeur El, celui-ci est divisé en deux échangeurs El, EIA. Le débit liquide du séparateur de phases 35 est divisé en deux parties. Une partie 39 se réchauffe dans l'échangeur EIA et l'autre se réchauffe en parallèle dans l'échangeur El A. Ici nous voyons que le débit 18 peut être traité ultérieurement par séparation dans des séparateurs de phases P1, P2, P3 à température subambiante. Le débit 18 détendu dans une vanne 49 est envoyé au séparateur de phases P1. Le liquide 23 du séparateur de phases est vaporisé dans l'échangeur EIA puis envoyé au séparateur de phases P3 pour produire un débit de CO2 liquide 25. Le gaz de tête 27 du séparateur P3 et le gaz de tête du séparateur P1 sont mélangés, réchauffés dans l'échangeur EIA, comprimé par un compresseur C5 éventuellement, refroidis dans un échangeur 31 puis refroidi dans l'échangeur EIA avant d'être envoyés à un séparateur de phases P2. Le gaz de tête 33 du séparateur P2 se réchauffe dans l'échangeur EIA et le liquide de cuve 36 est envoyé au séparateur P1. Ici on voit que le nombre de fluides dans l'échangeur El est réduit au minimum puisque seul le débit basse pression 19 s'y vaporise. La Figure 4 présente une version plus complexe de la Figure 3 où trois 30 débits 5, 7, 9 à trois pressions différentes se vaporisent dans le deuxième échangeur E1.
Ainsi dans toutes les figures, le premier échangeur E2 ne contient que deux séries de passages et donc permet l'échange de chaleur entre deux seuls fluides. Dans ce procédé, seul le deuxième échangeur El a une boîte d'entrée de gaz.
Les refroidisseurs entre les compresseurs Cl, C2, C3 et C4 des Figures 1 et 2 n'ont pas été illustrés pour des raisons de simplification. Aucun débit envoyé au deuxième échangeur El n'a une pression supérieure à 60 bars. Les deux débits 5,17 envoyés au premier échangeur E2 ont une pression supérieure à 40 bars. Dans les figures, HHP désigne «très haute pression», HP « haute pression », M P « moyenne pression » et BP « basse pression », les références étant citées en ordre en pression, du plus haut au plus bas. Les compresseurs Cl, C2, C3, C4 peuvent constituer des étages d'un ou deux compresseurs. Dans les figures, la vaporisation du débit 7 dans le deuxième échangeur El n'est pas absolument essentielle mais permet d'améliorer l'efficacité de l'échange. Les figures 1 à 4 présentent la séparation d'un débit 1 qui est introduit à la pression d'entrée du compresseur C3. Il est évident que le débit peut être introduit à l'entrée d'un autre des compresseurs, C1, C2, C4, voire à la sortie du compresseur C4 s'il est à très haute pression ; De préférence la vaporisation du liquide de cycle s'effectue à autant de pression qu'il y a d'étages Cl, C2, C3, C4 de compression, quatre pouvant être un optimum.25

Claims (10)

  1. REVENDICATIONS1. Procédé de liquéfaction d'un gaz d'alimentation, par exemple un gaz riche en dioxyde de carbone, dans lequel on condense le gaz d'alimentation mélangé avec un gaz de cycle pour former un liquide à la première pression, on refroidit le liquide à la première pression dans un premier échangeur de chaleur (E2), on sort le liquide refroidi du premier échangeur et on le détend jusqu'à une deuxième pression inférieure à la première pression pour former un débit détendu, on refroidit au moins une partie du débit détendu dans un deuxième échangeur de chaleur, on sort le débit détendu du deuxième échangeur de chaleur (El), on le divise en au moins deux parties dont une première partie et une deuxième partie, la première partie du débit détendu constitue le produit liquéfié, la deuxième et de préférence une troisième partie se vaporise dans le deuxième échangeur de chaleur et le au moins un gaz de cycle ainsi formé est donc mélangé au gaz d'alimentation et comprimé dans un compresseur, après ou avant d'être mélangé au gaz d'alimentation.
  2. 2. Procédé selon la revendication 1 dans lequel une partie du débit détendu se refroidit dans le deuxième échangeur de chaleur (El) jusqu'à une température intermédiaire de celui-ci et au moins une fraction de cette partie est détendue, se réchauffe dans le deuxième échangeur de chaleur et est envoyée au compresseur (un des compresseurs), éventuellement après avoir été comprimée.
  3. 3. Procédé selon la revendication 1 ou 2 dans lequel une partie du débit détendu est détendue de nouveau, se réchauffe dans le premier échangeur de chaleur et est envoyée au compresseur (C3, C4), éventuellement dans lequel une partie du débit détendu se refroidit dans le deuxième échangeur de chaleur (El) jusqu'à une température intermédiaire de celui-ci avant d'être détendue de nouveau
  4. 4. Procédé selon l'une des revendications précédentes dans lequel dans lequel seuls le liquide à la première pression et un autre fluide échangent de la chaleur dans le premier échangeur (E2).
  5. 5. Procédé selon l'une des revendications précédentes dans lequel aucun débit envoyé au deuxième échangeur (El) n'a une pression supérieure à 60 bars.
  6. 6. Procédé selon l'une des revendications précédentes dans lequel les 10 débits envoyés au premier échangeur (E2) ont une pression supérieure à 40 bars.
  7. 7. Appareil de liquéfaction d'un gaz d'alimentation comprenant un compresseur (C3, C4), un premier échangeur de chaleur (E2), un deuxième échangeur de chaleur (El) distinct du premier échangeur de chaleur, des moyens 15 de condensation reliés au compresseur, une conduite pour amener le gaz d'alimentation mélangé avec un gaz de cycle jusqu'aux moyens de condensation, une conduite pour amener au moins une partie du liquide condensé par les moyens de condensation au premier échangeur pour former un liquide refroidi à la première pression, une vanne (9), une conduite pour envoyer le liquide refroidi à la 20 vanne pour le détendre jusqu'à une deuxième pression inférieure à la première pression pour former un débit détendu, une conduite pour envoyer au moins une partie du débit détendu au deuxième échangeur de chaleur, une conduite pour sortir le débit détendu du deuxième échangeur de chaleur, une conduite pour transporter une première partie du débit détendu constituant le produit liquéfié, des 25 conduites pour amener une deuxième et de préférence une troisième partie du débit détendu se vaporiser dans le deuxième échangeur de chaleur pour former un gaz de cycle, au moins une conduite pour amener le gaz de cycle au compresseur, des moyens pour mélanger le gaz de cycle et le gaz d'alimentation en amont ou en aval du compresseur et éventuellement au moins un moyen de compression (Cl, 30 C2) en amont du compresseur pour comprimer le gaz de cycle.
  8. 8. Appareil selon la revendication 7 comprenant une conduite pour envoyer une partie du débit détendu à un moyen de détente (21) et une conduite pour envoyer la partie depuis le moyen de détente au premier échangeur (E2) et éventuellement une conduite pour envoyer la partie du débit détendu se refroidir dans le deuxième échangeur de chaleur (E1) en amont du moyen de détente.
  9. 9. Appareil selon la revendication 7 ou 8 comprenant une conduite pour envoyer une partie du débit détendu refroidi dans le deuxième échangeur de chaleur (El) jusqu'à une température intermédiaire de celui-ci à un moyen de détente (19) et une conduite pour envoyer la partie depuis le moyen de détente au deuxième échangeur.
  10. 10. Appareil selon l'une des revendications 7 à 9 dans lequel le premier échangeur (E2) comprend seulement des moyens permettant l'échange de chaleur entre seulement deux fluides, par exemple seulement deux séries de passages d'échange.
FR1153245A 2011-04-14 2011-04-14 Procede et appareil de liquefaction d'un gaz Active FR2974167B1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
FR1153245A FR2974167B1 (fr) 2011-04-14 2011-04-14 Procede et appareil de liquefaction d'un gaz
CA2831203A CA2831203A1 (fr) 2011-04-14 2012-04-12 Procede et appareil de liquefaction d'un gaz ou refroidissement d'un gaz d'alimentation a pression supercritique
CN201280018398.0A CN104067078B (zh) 2011-04-14 2012-04-12 用于液化气体或冷却超临界压力下的原料气的方法和设备
PCT/FR2012/050797 WO2012140369A2 (fr) 2011-04-14 2012-04-12 Procede et appareil de liquefaction d'un gaz ou refroidissement d'un gaz d'alimentation a pression supercritique
US14/111,349 US9435582B2 (en) 2011-04-14 2012-04-12 Method and apparatus for liquefying a gas or cooling a feed gas at supercritical pressure
EP12722405.3A EP2697583A2 (fr) 2011-04-14 2012-04-12 Procede et appareil de liquefaction d'un gaz ou refroidissement d'un gaz d'alimentation a pression supercritique
AU2012241641A AU2012241641B2 (en) 2011-04-14 2012-04-12 Method and apparatus for liquefying a gas or cooling a feed gas at supercritical pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1153245A FR2974167B1 (fr) 2011-04-14 2011-04-14 Procede et appareil de liquefaction d'un gaz

Publications (2)

Publication Number Publication Date
FR2974167A1 true FR2974167A1 (fr) 2012-10-19
FR2974167B1 FR2974167B1 (fr) 2015-11-06

Family

ID=46146905

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1153245A Active FR2974167B1 (fr) 2011-04-14 2011-04-14 Procede et appareil de liquefaction d'un gaz

Country Status (7)

Country Link
US (1) US9435582B2 (fr)
EP (1) EP2697583A2 (fr)
CN (1) CN104067078B (fr)
AU (1) AU2012241641B2 (fr)
CA (1) CA2831203A1 (fr)
FR (1) FR2974167B1 (fr)
WO (1) WO2012140369A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4375602A1 (fr) 2022-11-28 2024-05-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil de liquéfaction et éventuellement de séparation de co2 par distillation

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2896453B1 (fr) 2012-09-13 2018-11-07 Mitsubishi Heavy Industries Compressor Corporation Système de compression et méthode de compression de gaz
FR3016436B1 (fr) * 2014-01-10 2019-05-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil de liquefaction d’un courant de co2 gazeux
JP7003236B2 (ja) 2017-09-29 2022-01-20 エクソンモービル アップストリーム リサーチ カンパニー 高圧膨張プロセスによる天然ガス液化
FR3083854B1 (fr) * 2018-07-11 2020-12-18 Engie Dispositif et procede de liquefaction d'un flux de dioxyde de carbone
FR3120429B1 (fr) 2021-03-03 2023-09-22 Air Liquide Procédé de liquéfaction d’un courant riche en CO2

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3315477A (en) * 1964-07-15 1967-04-25 Conch Int Methane Ltd Cascade cycle for liquefaction of natural gas
US6006545A (en) * 1998-08-14 1999-12-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Liquefier process
US6658890B1 (en) * 2002-11-13 2003-12-09 Conocophillips Company Enhanced methane flash system for natural gas liquefaction
GB2416389A (en) * 2004-07-16 2006-01-25 Statoil Asa Multi-step cooling and compression to form liquid carbon dioxide
US20080196585A1 (en) * 2007-02-16 2008-08-21 Bao Ha Process for Vaporizing the Product CO2 at Two Different Pressures during CO2 Separation
US20090013868A1 (en) * 2007-07-11 2009-01-15 Arthur Darde Process and apparatus for the separation of a gaseous mixture

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1626325B1 (de) * 1964-11-03 1969-10-23 Linde Ag Verfahren und Einrichtung zum Verfluessigen von tiefsiedenden Gasen
RU2233411C2 (ru) * 2002-07-15 2004-07-27 Открытое акционерное общество криогенного машиностроения Способ сжижения природного газа в дроссельном цикле

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3315477A (en) * 1964-07-15 1967-04-25 Conch Int Methane Ltd Cascade cycle for liquefaction of natural gas
US6006545A (en) * 1998-08-14 1999-12-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Liquefier process
US6658890B1 (en) * 2002-11-13 2003-12-09 Conocophillips Company Enhanced methane flash system for natural gas liquefaction
GB2416389A (en) * 2004-07-16 2006-01-25 Statoil Asa Multi-step cooling and compression to form liquid carbon dioxide
US20080196585A1 (en) * 2007-02-16 2008-08-21 Bao Ha Process for Vaporizing the Product CO2 at Two Different Pressures during CO2 Separation
US20090013868A1 (en) * 2007-07-11 2009-01-15 Arthur Darde Process and apparatus for the separation of a gaseous mixture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ASPELUND ET AL: "Gas conditioning-The interface between CO2 capture and transport", 20070616, vol. 1, no. 3, 16 June 2007 (2007-06-16), pages 343 - 354, XP022119495 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4375602A1 (fr) 2022-11-28 2024-05-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil de liquéfaction et éventuellement de séparation de co2 par distillation
FR3142538A1 (fr) 2022-11-28 2024-05-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil de liquéfaction de CO2 ou de séparation de CO2 par distillation

Also Published As

Publication number Publication date
US9435582B2 (en) 2016-09-06
WO2012140369A3 (fr) 2015-01-29
US20140026611A1 (en) 2014-01-30
CA2831203A1 (fr) 2012-10-18
AU2012241641A1 (en) 2013-10-31
CN104067078A (zh) 2014-09-24
WO2012140369A2 (fr) 2012-10-18
CN104067078B (zh) 2016-09-07
AU2012241641B2 (en) 2016-12-08
EP2697583A2 (fr) 2014-02-19
FR2974167B1 (fr) 2015-11-06

Similar Documents

Publication Publication Date Title
EP1946026B1 (fr) Procede de traitement d'un courant de gnl obtenu par refroidissement au moyen d'un premier cycle de refrigeration et installation associee
FR2974167A1 (fr) Procede et appareil de liquefaction d'un gaz
CA2828179C (fr) Procede et appareil de liquefaction de co2
EP1711765A1 (fr) Procede et installationde de separation d'air par distillation cryogenique
CA2832096C (fr) Procede et appareil de liquefaction d'un gaz riche en co2
FR2975478A1 (fr) Procede et appareil de liquefaction d'un debit gazeux riche en dioxyde de carbone
EP2893276B1 (fr) Procédé et appareil de condensation d'un débit gazeux riche en dioxyde de carbone
EP2895811A1 (fr) Procédé et appareil de séparation d'air par distillation cryogénique.
WO2022162041A1 (fr) Procédé et appareil de séparation d'un débit riche en dioxyde de carbone par distillation pour produire du dioxyde de carbone liquide
FR3020668A3 (fr) Procede de purification d'oxygene basse purete provenant d'un appareil de separation par adsorption
WO2013114020A2 (fr) Procédé et appareil de condensation ou de pseudocondensation d'un gaz
WO2014009664A2 (fr) Procédé et appareil de séparation d'un gaz riche en dioxyde de carbone
WO2022238212A1 (fr) Procédé et appareil de liquéfaction d'un gaz riche en dioxyde de carbone
FR3128011A1 (fr) Procédé et appareil de refroidissement d’un débit riche en CO2
EP4348137A1 (fr) Dispositif et procede de pre-refroidissement d'un flux d'un fluide cible a une temperature inferieure ou egale a 90 k
FR3033397A1 (fr) Procede de compression et de refroidissement d’un melange gazeux
WO2022184646A1 (fr) Procédé et appareil de liquéfaction d'un gaz riche en co2
FR3128776A3 (fr) Procédé et appareil de séparation d’air par distillation cryogénique
FR2996909A1 (fr) Procede et appareil de production d'air liquefie
WO2019106250A9 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
FR2945111A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
FR3014180A1 (fr) Procede et appareil de separation d’air par distillation a basse temperature
EP2641043A2 (fr) Procede et appareil de purification d'un debit riche en dioxyde de carbone

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7