ES2582005T3 - Proteínas F del RSV modificadas y métodos de su uso - Google Patents

Proteínas F del RSV modificadas y métodos de su uso Download PDF

Info

Publication number
ES2582005T3
ES2582005T3 ES09836751.9T ES09836751T ES2582005T3 ES 2582005 T3 ES2582005 T3 ES 2582005T3 ES 09836751 T ES09836751 T ES 09836751T ES 2582005 T3 ES2582005 T3 ES 2582005T3
Authority
ES
Spain
Prior art keywords
protein
rsv
modified
vlps
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES09836751.9T
Other languages
English (en)
Inventor
Peter Pushko
Yingyun Wu
Michael Massare
Ye Liu
Gale Smith
Bin Zhou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novavax Inc
Original Assignee
Novavax Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42310119&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=ES2582005(T3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Novavax Inc filed Critical Novavax Inc
Application granted granted Critical
Publication of ES2582005T3 publication Critical patent/ES2582005T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/155Paramyxoviridae, e.g. parainfluenza virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5258Virus-like particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18511Pneumovirus, e.g. human respiratory syncytial virus
    • C12N2760/18522New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18511Pneumovirus, e.g. human respiratory syncytial virus
    • C12N2760/18523Virus like particles [VLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18511Pneumovirus, e.g. human respiratory syncytial virus
    • C12N2760/18534Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18511Pneumovirus, e.g. human respiratory syncytial virus
    • C12N2760/18561Methods of inactivation or attenuation
    • C12N2760/18562Methods of inactivation or attenuation by genetic engineering
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18511Pneumovirus, e.g. human respiratory syncytial virus
    • C12N2760/18571Demonstrated in vivo effect

Abstract

Una proteína de fusión (F) del virus sincitial respiratorio (RSV) codificada por un ácido nucleico que tiene la secuencia de la SEQ ID NO: 7.

Description

imagen1
imagen2
imagen3
imagen4
imagen5
imagen6
imagen7
15
25
35
45
55
65
% homólogas y la relación antigénica es del 5 % (Walsh et al. (1987) J. Infect. Dis. 155, 1198-1204; y Johnson et al. (1987) Proc. Natl. Acad. Sci. USA 84,5625-5629). A la inversa, anticuerpos creados contra la proteína F muestran un alto grado de reactividad cruzada entre virus del subtipo A y B.
La proteína F del RSV dirige la penetración del RSV por fusión entre la proteína de envuelta del virión y la membrana plasmática de la célula hospedadora. Posteriormente a la infección, la proteína F expresada sobre la superficie celular puede mediar la fusión con células vecinas para formar sincitios. La proteína F es una proteína superficial transmembrana de tipo I que tiene un péptido señal escindido N-terminal y un anclaje de membrana cerca del extremo C-terminal. La proteína F del RSV se sintetiza como un precursor F0 inactivo que se ensambla en un homotrímero y se activa por escisión en el complejo trans-Golgi por una endoproteasa celular para producir dos subunidades unidas por disulfuro, las subunidades F1 y F2. El extremo N-terminal de la subunidad F1 que se crea por escisión contiene un dominio hidrófobo (el péptido de fusión) que se inserta directamente en la membrana diana para iniciar la fusión. La subunidad F1 también contiene repeticiones de siete unidades que se asocian durante la fusión, dirigiendo un desplazamiento conformacional que pone las membranas vírica y celular en cercana proximidad (Collins y Crowe, 2007, Fields Virology, 5ª ed., D.M Kipe et al., Lipincott, Williams and Wilkons, pág. 1604). La SEQ ID NO: 2 (N.º de acceso a GenBank AAB59858) representa una proteína F RSV representativa, que está codificada por el gen mostrado en la SEQ ID NO: 1 (N.º de acceso a GenBank M11486).
En la naturaleza, la proteína F del RSV se expresa como un único precursor polipeptídico, de 574 aminoácidos de longitud, denominado FO. In vivo, FO se oligomeriza en el retículo endoplasmático y se procesa proteolíticamente por una furina proteasa en dos secuencias consenso de furina conservadas (sitios de escisión de furina), RARR (SEQ ID NO: 23) (secundaria) y KKRKRR (SEQ ID NO: 24) (primaria) para generar un oligómero que consiste en dos fragmentos unidos por disulfuro. El más pequeño de estos fragmentos se llama F2 y se origina a partir de la parte N-terminal del precursor FO. Se reconocerá por los expertos en la materia que las abreviaturas FO, F1 y F2 se denominan habitualmente F0, F1 y F2 en la bibliografía científica. El más grande, el fragmento F1 C-terminal ancla la proteína F en la membrana mediante una secuencia de aminoácidos hidrófobos, que están adyacentes a una cola citoplasmática de 24 aminoácidos. Tres dímeros F2-F1 se asocian para formar una proteína F madura, que adopta una conformación prefusogénica ("prefusión") metaestable que se activa para experimentar un cambio conformacional tras contacto con una membrana celular diana. Este cambio conformacional expone una secuencia hidrófoba, conocida como el péptido de fusión, que se asocia con la membrana de la célula hospedadora y promueve la fusión de la membrana del virus, o una célula infectada, con la membrana celular diana.
El fragmento F1 contiene al menos dos dominios de repetición de siete unidades, denominados HRA y HRB, y se sitúa en proximidad al péptido de fusión y los dominios de anclaje transmembrana, respectivamente. En la conformación prefusión, el dímero F2-F1 forma una estructura de cabeza globular y tallo, en que los dominios HRA están en una conformación segmentada (ampliada) en la cabeza globular. En contraste, los dominios HRB forman un tallo súper-enrollado de tres hebras que se extiende desde la región de cabeza. Durante la transición de las conformaciones prefusión a postfusión, los dominios HRA colapsan y se ponen en proximidad a los dominios HRB para formar un haz de seis hélices anti-paralelo. En el estado postfusión, el péptido de fusión y los dominios transmembrana se yuxtaponen para facilitar la fusión de membrana.
Aunque la descripción conformacional proporcionada anteriormente se basa en el modelado molecular de datos cristalográficos, las distinciones estructurales entre las conformaciones prefusión y postfusión pueden controlarse sin recurrir a cristalografía. Por ejemplo, puede usarse micrografía electrónica para distinguir entre las conformaciones prefusión y postfusión (denominadas alternativamente prefusogénica y fusogénica, como se demuestra por Calder et al., Virology, 271:122-131 (2000) y Morton et al., Virology, 311: 275-288.
La conformación prefusión también puede distinguirse de la conformación fusogénica (postfusión) por ensayos de asociación de liposomas como se describe por Connolly et al, Proc. Natl. Acad. Sci. USA, 103:17903-17908 (2006).
Adicionalmente, las conformaciones prefusión y fusogénica pueden distinguirse usando anticuerpos (por ejemplo, anticuerpos monoclonales) que reconocen específicamente epítopos conformacionales presentes en una con la otra forma prefusión o fusogénica de la proteína F del RSV, pero no en la otra forma. Dichos epítopos conformacionales pueden deberse a exposición preferente de un determinante antigénico sobre la superficie de la molécula. Como alternativa, pueden surgir epítopos conformacionales de la yuxtaposición de aminoácidos que no están contiguos en el polipéptido lineal.
Proteínas F modificadas o mutadas del RSV
Los presentes inventores han descubierto que, pueden conseguirse niveles sorprendentemente altos de expresión de la proteína de fusión (F) cuando se hacen modificaciones específicas a la estructura de la proteína F del RSV. Dichas modificaciones también reducen inesperadamente la toxicidad celular de la proteína F del RSV en una célula hospedadora. Además, las proteínas F modificadas de la presente invención muestran una capacidad mejorada de mostrar la morfología de "piruleta" postfusión en oposición a la homología de "varilla" prefusión. Por tanto, en un aspecto, las proteínas F modificadas de la presente invención también pueden mostrar inmunogenicidad mejorada (por ejemplo, potenciada) en comparación con proteínas F de tipo silvestre (por ejemplo, ejemplificadas por la SEQ
imagen8
15
25
35
45
55
65
La proteína G del RSV es una glucoproteína transmembrana de tipo II con una única región hidrófoba cerca del extremo N-terminal que sirve tanto como péptido señal no escindido y como anclaje de membrana, que conduce a dos tercios C-terminales de la molécula orientados de forma externa. La proteína G del RSV también se expresa como proteína secretada que surge del inicio de la traducción en el segundo AUG en la ORF (en aproximadamente el aminoácido 48), que recae dentro de la señal/anclaje. La mayor parte del ectodominio de la proteína G del RSV es muy divergente entre cepas l RSV (Id., pág. 1607). La SEQ ID NO: 26 representa una proteína G del RSV representativa, que está codiciada por la secuencia génica mostrada en la SEQ ID NO: 25. Se abarcan en esta invención proteínas G del RSV que son al menos aproximadamente un 20 %, aproximadamente un 30 %, aproximadamente un 40 %, aproximadamente un 50 %, aproximadamente un 60 %, aproximadamente un 70 % o aproximadamente un 80 %, aproximadamente un 85 %, aproximadamente un 90 %, aproximadamente un 95 %, aproximadamente un 96 %, aproximadamente un 97 %, aproximadamente un 98 %, o aproximadamente un 99 %, idénticas a la SEQ ID NO: 26, y todos los fragmentos y variantes (incluyendo proteínas quiméricas) de las mismas.
La proteína SH del RSV es una proteína transmembrana de tipo II que contiene 64 (subgrupo A del RSV) o 65 restos de aminoácido (subgrupo B del RSV). Algunos estudios han sugerido que la proteína SH del RSV puede tener un papel en la fusión vírica o en el cambio de la permeabilidad de la membrana. Sin embargo, los RSV que carecen del gen SH son viables, causan formación de sincitios y crecen igual de bien que el virus de tipo silvestre, lo que indica que la proteína SH no es necesaria para que el virus entre en las células hospedadoras o para la formación de sincitios. La proteína SH del RSV ha demostrado la capacidad de inhibir la señalización de TNF-α. La SEQ ID NO: 27 representa una secuencia de aminoácidos representativa de la proteína SH del RSV. Se abarcan en esta invención proteínas SH del RSV que son al menos aproximadamente un 20 %, aproximadamente un 30 %, aproximadamente un 40 %, aproximadamente un 50 %, aproximadamente un 60 %, aproximadamente un 70 % o aproximadamente un 80 %, aproximadamente un 85 %, aproximadamente un 90 %, aproximadamente un 95 %, aproximadamente un 96 %, aproximadamente un 97 %, aproximadamente un 98 %, o aproximadamente un 99 %, idénticas a la SEQ ID NO: 27, y todos los fragmentos y variantes (incluyendo proteínas quiméricas) de las mismas.
Vacunas contra RSV
Actualmente, el único enfoque apropiado para la profilaxis de enfermedad por RSV es inmunización pasiva. Se obtuvieron evidencias iniciales que sugieren un papel protector para IgG a partir de observaciones que implican anticuerpos maternos en hurones (Prince, G.A., Ph.D. diss., University of California, Los Angeles, 1975) y seres humanos (Lambrecht et al., (1976) J. Infect. Dis. 134,211-217; y Glezen et al. (1981) J. Pediatr. 98,708-715). Hemming et al. (Morell et al., eds., 1986, Clinical Use of Intravenous Immunoglobulins, Academic Press, London en las páginas 285-294) reconocieron la posible utilidad de anticuerpos contra RSV en el tratamiento o prevención de infección por RSV durante estudios que implicaban la farmacocinética de una inmunoglobulina intravenosa (IVIG) en recién nacidos sospechosos de tener sepsis neonatal. Apreciaron que un bebé, cuyas secreciones respiratorias producían RSV, se recuperaba rápidamente después de infusión con IVIG. El análisis posterior del lote de IVIG reveló un título inusualmente alto de anticuerpo neutralizante del RSV. Este mismo grupo de investigadores después examinó la capacidad de suero hiperinmune o inmunoglobulina, enriquecida para anticuerpo neutralizante del RSV, de proteger ratas del algodón y primates contra infección por RSV (Prince et al. (1985) Virus Res. 3, 193-206; Prince et al. (1990) J. Virol. 64, 3091-3092). Los resultados de estos estudios sugirieron que anticuerpos neutralizantes del RSV dados de forma profiláctica inhibían la replicación en el tracto respiratorio del RSV en ratas del algodón. Cuando se administran terapéuticamente, los anticuerpos contra RSV reducían la replicación vírica pulmonar tanto en ratas del algodón como en un modelo de primate no humano. Además, la infusión pasiva de suero inmune o inmunoglobulina no producía patología pulmonar potenciada en ratas del algodón posteriormente expuestas con RSV.
Como la infección por RSV puede prevenirse proporcionando anticuerpos neutralizantes a un vertebrado, una vacuna que comprenda una proteína F modificada o mutada del RSV puede inducir, cuando se administra a un vertebrado, anticuerpos neutralizantes in vivo. Las proteínas F modificadas o mutadas del RSV se usan favorablemente para la prevención y/o tratamiento de infección por RSV. Por tanto, otro aspecto de esta descripción se refiere a la proteína de la invención para su uso en un método para provocar una respuesta inmunitaria contra el RSV. El método implica administrar una cantidad inmunológicamente eficaz de una composición que contiene una proteína F modifica o mutada del RSV a un sujeto (tal como un sujeto humano o animal). La administración de una cantidad inmunológicamente eficaz de la composición provoca una respuesta inmunitaria específica para epítopos presentes en la proteína F modifica o mutada del RSV. Dicha respuesta inmunitaria puede incluir una respuesta de células B (por ejemplo, la producción de anticuerpos neutralizantes) y/o respuestas de células T (por ejemplo, la producción de citoquinas). Preferiblemente, la respuesta inmunitaria provocada por la proteína F modificada o mutada del RSV incluye elementos que son específicos para al menos un epítopo conformacional presente en la proteína F modificada o mutada del RSV. En una realización, la respuesta inmunitaria se especifica para un epítopo presente en una proteína F del RSV encontrada en el estado activo postfusión de "piruleta". Las proteínas F del RSV y composiciones pueden administrarse a un sujeto sin potenciar la enfermedad vírica después del contacto con el RSV. Preferiblemente, las proteínas F modificadas o mutadas del RSV descritas en este documento y composiciones inmunogénicas formuladas adecuadamente provocan una respuesta inmunitaria desviada a Th1 que reduce o previene la infección con un RSV y/o reduce o previene una respuesta patológica después de infección con un RSV.
imagen9
imagen10
15
25
35
45
55
65
fagémidos, transposones, cromosomas artificiales, y similares, que se replican de forma autónoma o pueden integrarse en un cromosoma de una célula hospedadora. Un vector también puede ser un polinucleótido de ARN desnudo, un polinucleótido de ADN desnudo, un polinucleótido compuesto tanto por ADN como por ARN dentro de la misma hebra, un ADN o ARN conjugado con polilisina, un ADN o ARN conjugado con péptido, un ADN conjugado con liposoma, o similares, es decir, sin replicación autónoma. En muchas realizaciones habituales, pero no todas, los vectores de la presente invención son plásmidos o bácmidos.
Por tanto, la invención comprende nucleótidos que codifican proteínas, incluyendo moléculas quiméricas, clonadas en un vector de expresión que puede expresarse en una célula que induce la formación de VLP de la invención. Un "vector de expresión" es un vector, tal como un plásmido que es capaz de promover la expresión, así como la replicación de un ácido nucleico incorporado en el mismo. Normalmente, el ácido nucleico a expresarse está "unido de forma funcional" a un promotor y/o potenciador, y está sujeto a control regulador de la transcripción por el promotor y/o potenciador. En la presente invención, los nucleótidos codifican una proteína F modificada o mutada del RSV (como se ha analizado anteriormente). En una realización, el vector comprende adicionalmente nucleótidos que codifican las proteínas M y/o G del RSV. En otra realización, el vector comprende adicionalmente nucleótidos que codifican las proteínas M y/o N del RSV. En otra realización, el vector comprende adicionalmente nucleótidos que codifican las proteínas M, G, y/o N del RSV. En otra realización, el vector comprende adicionalmente nucleótidos que codifican una proteína M de BRSV y/o proteínas N del RSV. En otra realización, el vector comprende adicionalmente nucleótidos que codifican una proteína M y/o G de BRSV, o una proteína HA y/o NA de la gripe. En otra realización, los nucleótidos codifican una proteína F del RSV y/o G del RSV modifica o mutada con una proteína HA y/o NA de la gripe. En otra realización, el vector de expresión es un vector de baculovirus.
En algunas realizaciones de la invención, las proteínas pueden comprender mutaciones que contienen alteraciones que producen sustituciones, adiciones, o deleciones silenciosas, pero no alteran las propiedades o actividades de la proteína codificada o el modo en que se fabrican las proteínas. Pueden producirse variantes nucleotídicas por una diversidad de razones, por ejemplo, para optimizar la expresión de codones para un hospedador particular (cambio de codones en el ARNm humano por aquellos preferidos por células de insecto tales como células Sf9. Véase la publicación de patente de Estados Unidos 2005/0118191).
Además, los nucleótidos pueden secuenciarse para asegurar que se clonaron las regiones codificantes correctas y no contienen ninguna mutación indeseada. Los nucleótidos pueden subclonarse en un vector de expresión (por ejemplo, baculovirus) para su expresión en cualquier célula. Lo anterior es solamente un ejemplo del modo en que pueden clonarse proteínas víricas del RSV. Un experto en la materia entiende que están disponibles y son posibles métodos adicionales.
La solicitud también describe construcciones y/o vectores que comprenden nucleótidos del RSV que codifican genes estructurales del RSV, incluyendo F, M, G, N, SH, o partes de las mismas y/o cualquier molécula quimérica descrita anteriormente. El vector puede ser, por ejemplo, un fago, plásmido, vector vírico, o retrovírico. Las construcciones y/o vectores que comprenden genes estructurales del RSV , incluyendo F, M, G, N, SH, o partes de los mismos y/o cualquier molécula quimérica descrita anteriormente, deben unirse de forma funcional a un promotor apropiado, tal como el promotor de la polihedrina de AcMNPV (u otro baculovirus), el promotor PL del fago lambda, los promotores lac. phoA y tac de E. coli, los promotores tempranos y tardíos de SV40, y promotores de LTR retrovíricas que son ejemplos no limitantes. Otros promotores adecuados serán conocidos para los expertos en la materia dependiendo de la célula hospedadora y/o la tasa de expresión deseada. Las construcciones de expresión contendrán adicionalmente sitios para el inicio de la transcripción, la terminación, y, en la región transcrita, un sitio de unión al ribosoma para la traducción. La parte codificante de los transcritos expresada por las construcciones incluirá preferiblemente un codón de inicio de la traducción al inicio y un codón de terminación apropiadamente posicionado al final del polipéptido a traducir.
Los vectores de expresión incluirán preferiblemente al menos un marcador de selección. Dichos marcadores incluyen resistencia a dihidrofolato reductasa, G418 o neomicina para cultivo de células eucariotas y genes de resistencia a tetraciclina, kanamicina o ampicilina para cultivo en E. coli y otras bacterias. Entre los vectores preferidos están los vectores víricos, tales como baculovirus, poxvirus (por ejemplo, virus vaccinia, virus de la viruela aviar, virus de la viruela del canario, virus de la viruela de las aves de corral, virus de la viruela del mapache, virus de la viruela porcina, etc.), adenovirus (por ejemplo, adenovirus canino), herpesvirus, y retrovirus. Otros vectores que pueden usarse con la invención comprenden vectores para su uso en bacterias que comprenden pQE70, pQE60 y pQE-9, vectores pBluescript, vectores Phagescript, pNH8A, pNH16a, pNH18A, pNH46A, ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5. Entre los vectores eucariotas preferidos están pFastBac1 pWINEO, pSV2CAT, pOG44, pXT1 y pSG, pSVK3, pBPV, pMSG, y pSVL. Otros vectores adecuados serán fácilmente evidentes para los expertos en la materia. En una realización, el vector que comprende nucleótidos que codifican genes del RSV incluyendo genes F modificados o mutados del RSV, así como genes para M, G, N, SH o partes de las mismas, y/o cualquier molécula quimérica descrita anteriormente, es pFastBac.
Las construcciones recombinantes mencionadas anteriormente podrían usarse para transfectar, infectar, o transformar y pueden expresar proteínas del RSV, incluyendo una proteína F modificada o mutada del RSV y al menos un inmunógeno. En una realización, la construcción recombinante comprende una proteína F, M, G, N, SH, modifica o mutada del RSV, o partes de las mismas, y/o cualquier molécula descrita anteriormente, en células
10
15
20
25
30
35
40
45
50
55
60
65
eucariotas y/o células procariotas. Por tanto, la invención proporciona células hospedadoras que comprenden un vector (o vectores) que contiene ácidos nucleicos que codifican genes estructurales del RSV, incluyendo una proteína F modificada o mutada del RSV; y al menos un inmunógeno tal como, aunque sin limitación, proteína G, N, y SH del RSV, o partes de las mismas y/o cualquier molécula descrita anteriormente, y que permite la expresión de genes, incluyendo F, G, N, M, o SH del RSV o partes de los mismos, y/o cualquier molécula descrita anteriormente en la célula hospedadora en condiciones que permitan la formación de VLP.
Entre las células hospedadores eucariotas están células hospedadoras de levadura, insecto, aviar, vegetales, de C. elegans (o nemátodos) y de mamífero. Ejemplos no limitantes de células de insectos son células de Spodoptera frugiperda (Sf), por ejemplo, Sf9, Sf21, células de Trichoplusia ni, por ejemplo, células High Five, y células S2 de Drosophila. Ejemplos de células hospedadoras de hongos (incluyendo levaduras) son S. cerevisiae, Kluyveromyces lactis (K. lactis), especies de Cándida incluyendo C. albicans y C. glabrata, Aspergillus nidulans, Schizosaccharomyces pombe (S. pombe), Pichia pastoris, y Yarrowia lipolytica. Ejemplos de células de mamífero son células COS, células renales de cría de hámster, células L de ratón, células LNCaP, células de ovario de hámster chino (CHO), células renales embrionarias humanas (HEK), y células de mono verde africano, células CV1, células HeLa, células MDCK, células Vero y Hep-2. También pueden usarse ovocitos de Xenopus laevis, u otras células de origen anfibio. Ejemplos de células hospedadoras procariotas incluyen células bacterianas, por ejemplo, E. coli, B. subtilis, Salmonella typhi y micobacterias.
Los vectores, por ejemplo, vectores que comprenden polinucleótidos de una proteína F modificada o mutada del RSV; y al menos un inmunógeno incluyendo, aunque sin limitación, proteína G, N o SH del RSV o partes de las mismas, y/o cualquier molécula quimérica descrita anteriormente, pueden transfectarse en células hospedadoras de acuerdo con métodos bien conocidos en la técnica. Por ejemplo, la introducción de ácidos nucleicos en células eucariotas puede ser por coprecipitación con fosfato cálcico, electroporación, microinyección, lipofección, y transfección empleando reactivos de transfección de poliamina. En una realización, el vector es un baculovirus recombinante. En otra realización, el baculovirus recombinante se transfecta en una célula eucariota. En una realización preferida, la célula es una célula de insecto. En otra realización, la célula de insecto es una célula Sf9.
Esta solicitud también describe construcciones y métodos que aumentarán la eficacia de la producción de VLP. Por ejemplo, la adición de secuencia líder a la proteína F, M, G, N, SH, del RSV o partes de las mismas y/o cualquier molécula quimérica o heteróloga descrita anteriormente, puede mejorar la eficacia del transporte de proteínas dentro de la célula. Por ejemplo, puede fusionarse una secuencia señal heteróloga a la proteína F, M, G, N, SH o partes de las mismas y/o cualquier molécula quimérica o heteróloga descrita anteriormente. En una realización, la secuencia señal puede obtenerse del gen de una célula de insecto y fusionarse a la proteína F, M, G, N, SH o partes de las mismas, y/o cualquier molécula quimérica o heteróloga descrita anteriormente. En otra realización, el péptido señal es la secuencia señal de quitinasa, que trabaja de forma eficaz en sistemas de expresión de baculovirus.
Otro método para aumentar la eficacia de la producción de VLP es optimizar los codones de los nucleótidos que codifican RSV incluyendo una proteína F modificada o mutada, M, G, N, SH del RSV o partes de las mismas y/o cualquier molécula quimérica o heteróloga descrita anteriormente para un tipo celular específico. Para ejemplos de optimización de codones de ácidos nucleicos para la expresión en células Sf9 véanse las SEQ ID No: 3, 5, 7, 9, 13, 17, 19, y 25.
La solicitud también describe métodos de producción de VLP, comprendiendo los métodos expresar genes del RSV incluyendo una proteína F modificada o mutada del RSV, y al menos una proteína adicional, incluyendo, aunque sin limitación, la proteína M, G, N, SH del RSV o partes de las mismas y/o cualquier molécula quimérica o heteróloga descrita anteriormente en condiciones que permite la formación de VLP. Dependiendo del sistema de expresión y la célula hospedadora seleccionada, las VLP se producen cultivando células hospedadoras transformadas por un vector de expresión en condiciones mediante las cuales se expresan las proteínas recombinantes y se forman VLP. En una realización, el método de producción de una VLP comprende transfectar vectores que codifican al menos una proteína F modificada o mutada del RSV en una célula hospedadora adecuada y expresar la proteína F modificada o mutada del RSV en condiciones que permiten la formación de VLP. En otra realización, la célula eucariota se selecciona del grupo que consiste en células de levadura, insecto, anfibio, ave, o mamífero. La selección de las condiciones apropiadas de cultivo pertenece a las habilidades de los expertos en la materia.
Los métodos para cultivar células modificadas por ingeniería para producir VLP de la invención incluyen, aunque sin limitación, técnicas de cultivo celular discontinuo, semicontinuo, continuo y por perfusión. Cultivo celular significa el crecimiento y propagación de células en un biorreactor (una cámara de fermentación) donde las células se propagan y expresan proteína (por ejemplo, proteínas recombinantes) para su purificación y aislamiento. Típicamente, el cultivo celular se realiza en condiciones estériles de temperatura y atmósfera controladas en un biorreactor. Un biorreactor es una cámara usada para cultivar células en que las condiciones ambientales tales como temperatura, atmósfera, agitación y/o pH pueden controlarse. En una realización, el biorreactor es una cámara de acero inoxidable. En otra realización, el biorreactor es una bolsa de plástico preesterilizada (por ejemplo, Cellbag®, Wave Biotech, Bridgewater, NJ). En otra realización, las bolsas de plástico preesterilizadas son bolsas de aproximadamente 50 l a 1000 l.
15
25
35
45
55
65
Las VLP después se aíslan usando métodos que conservan la integridad de las mismas, tal como por centrifugación en gradiante, por ejemplo, cloruro de cesio, sacarosa o iodixanol, así como técnicas convencionales de purificación incluyendo, por ejemplo, cromatografía de intercambio iónico y de filtración en gel.
Lo siguiente es un ejemplo del modo en que las VLP de la invención pueden prepararse, aislarse y purificarse. Habitualmente, se producen VLP a partir de líneas celulares recombinantes modificadas por ingeniería para crear VLP cuando las células se cultivan en cultivo celular (véase anteriormente). Un experto en la materia entendería que existen métodos adicionales que pueden utilizarse para preparar y purificar VLP de la invención. Por tanto, la invención no se limita al método descrito.
La producción de VLP de la invención puede comenzar sembrando células Sf9 (no infectadas) en matraces de agitación, permitiendo que las células se expandan y aumenten en escala según crecen las células y se multiplican (por ejemplo, desde un matraz de 125 ml hasta una bolsa Wave de 50 l). El medio usado para cultivar la célula se formula para la línea celular apropiada (preferiblemente, medio sin suero, por ejemplo, medio de insecto ExCell-420, JRH). A continuación, las células se infectan con baculovirus recombinante a la multiplicidad más eficaz de infección (por ejemplo, de aproximadamente 1 a aproximadamente 3 unidades formadoras de placas por célula). Una vez ha sucedido la infección, la proteína F modificada o mutada, M, G, N, SH del RSV o partes de las mismas, y/o cualquier molécula quimérica o heteróloga descrita anteriormente, se expresa a partir del genoma del virus, se autoensambla en VLP y se secreta de las células aproximadamente 24 a 72 horas postinfección. Habitualmente, la infección es más eficaz cuando las células están en fase semi-log de crecimiento (4-8 x 106 células/ml) y son al menos aproximadamente un 90 % viables.
Las VLP de la invención pueden recogerse aproximadamente 48 a 96 horas postinfección, cuando los nivele de VLP en el medio de cultivo celular están cerca del máximo, pero antes de lisis celular extensiva. La densidad de células Sf9 y viabilidad en el tiempo de recolección puede ser de aproximadamente 0,5 x 106 células/ml hasta aproximadamente 1,5 x 106 células/ml con al menos un 20 % de viabilidad, como se muestra por el ensayo de exclusión de colorante. A continuación, el medio se retira y aclara. Puede añadirse NaCl al medio hasta una concentración de aproximadamente 0,4 a aproximadamente 1,0 M, preferiblemente hasta aproximadamente 0,5 M, para evitar la agregación de VLP. La retirada de células y desechos celulares del medio de cultivo celular que contiene VLP de la invención puede conseguirse por filtración en flujo tangencial (TFF) con un cartucho de filtro de 0,5 o 1,00 µm de fibra hueca preesterilizada de un único uso o un dispositivo similar.
A continuación, las VLP en el medio de cultivo aclarado pueden concentrarse por ultrafiltración usando un cartucho de fibra hueca de punto de corte de peso molecular de 500.000 preesterilizado, desechable. Las VLP concentradas pueden diafiltrarse frente a 10 volúmenes de solución salina tampona con fosfato (PBS) de pH 7,0 a 8,0 que contiene NaCl 0,5 M para retirar los componentes residuales del medio.
Las VLP diafiltradas y concentradas pueden purificarse adicionalmente en un gradiente de sacarosa discontinuo del 20 % al 60 % en tampón PBS pH 7,2 con NaCl 0,5 M por centrifugación a 6.500 x g durante 18 horas a aproximadamente 4 ºC hasta aproximadamente 10 ºC. Habitualmente, las VLP formarán una banda visible distintiva entre sacarosa a aproximadamente el 30 % hasta aproximadamente el 40 % o en la superficie de contacto (en un gradiente por etapas del 20 % y el 60 %) que puede recogerse del gradiente y almacenarse. Este producto puede diluirse para que comprenda 200 mM de NaCl en la preparación para la siguiente etapa en el proceso de purificación. Este producto contiene VLP y puede contener partículas intactas de baculovirus.
La purificación adicional de VLP puede conseguirse por cromatografía de intercambio aniónico, o centrifugación en lecho isopícnico de sacarosa al 44 %. En cromatografía de intercambio aniónico, la muestra procedente del gradiente de sacarosa (véase anteriormente) se carga en columna que contiene un medio con un anión (por ejemplo, Matrix Fractogel EMD TMAE) y se eluye mediante un gradiente salino (desde aproximadamente 0,2 M hasta aproximadamente 1,0 M de NaCl) que puede separar las VLP de otros contaminantes (por ejemplo, baculovirus y ADN/ARN). En el método de lecho de sacarosa, la muestra que comprende las VLP se añade a un lecho de sacarosa al 44 % y se centrifuga durante aproximadamente 18 horas a 30.000 g. Las VLP forman una banda en la parte superior de la sacarosa al 44 %, mientras que el baculovirus precipita en el fondo y otras proteínas contaminantes permanecen en la capa de sacarosa al 0 % en la parte superior. Se recoge el pico o banda de VLP.
El baculovirus intacto puede inactivarse, si se desea. La inactivación puede conseguirse por métodos químicos, por ejemplo, formalina o β-propiolactona (BPL). La retirada y/o inactivación de baculovirus intacto también puede conseguirse en gran medida usando precipitación selectiva y métodos cromatográficos conocidos en la técnica, como se ha ejemplificado anteriormente. Los métodos de inactivación comprenden incubar la muestra que contiene las VLP en un 0,2 % de BPL durante 3 horas a aproximadamente 25 ºC hasta aproximadamente 27 ºC. El baculovirus también puede inactivarse incubando la muestra que contiene las VLP en BPL al 0,05 % a 4 ºC durante 3 días, después a 37 ºC durante una hora.
Después de la etapa de inactivación/retirada el producto que comprende VLP puede procesarse a través de otra etapa de diafiltración para retirar cualquier reactivo de la etapa de inactivación y/o cualquier sacarosa residual, y para colocar las VLP en el tampón deseado (por ejemplo, PBS). La solución que comprende VLP puede esterilizarse
15
25
35
45
55
65
por métodos conocidos en la técnica (por ejemplo, filtración estéril) y almacenarse en el refrigerador o congelador.
Las técnicas anteriores pueden ponerse en práctica a través de una diversidad de escalas. Por ejemplo, matraces en T, matraces de agitación, frascos rotativos, hasta biorreactores de tamaño industrial. Los biorreactores pueden comprender un tanque de acero inoxidable o una bolsa de plástico preesterilizada (por ejemplo, el sistema vendido por Wave Biotech, Bridgewater, NJ). Un experto en la materia sabrá lo que es más deseable para estos propósitos.
La expansión y producción de vectores de expresión de baculovirus e infección de células con baculovirus recombinante para producir VLP del RSV recombinante pueden conseguirse en células de insecto, por ejemplo, células de insecto Sf9 como se ha descrito previamente. En una realización, las células son Sf9 infectadas con baculovirus recombinante modificado por ingeniería para producir VLP del RSV.
Formulaciones farmacéuticas o de vacuna y administración
Las composiciones farmacéuticas útiles en este documento contienen un vehículo farmacéuticamente aceptable, incluyendo cualquier diluyente o excipiente adecuado, que incluye cualquier agente farmacéutico que no induzca por sí mismo la producción de una respuesta inmunitaria dañina para el vertebrado que recibe la composición, y que puede administrarse sin toxicidad excesiva y una proteína F modificada o mutada del RSV , una micela F del RSV que comprende una proteína F modificada o mutada del RSV , o una VLP que comprende una proteína F modificada
o mutada del RSV de la invención. Como se usa en este documento, la expresión "farmacéuticamente aceptable" significa que está aprobado por una agencia reguladora del gobierno federal o estatal o enumerado en la Farmacopea de Estados Unidos, Farmacopea Europea u otra farmacopea generalmente reconocida para su uso en mamíferos, y más particularmente en seres humanos. Estas composiciones pueden ser útiles como una vacuna y/o composiciones antigénicas para inducir una respuesta inmunitaria protectora en un vertebrado.
La invención abarca una composición de vacuna farmacéuticamente aceptable que comprende VLP que comprenden al menos una proteína F modificada o mutada del RSV , y al menos una proteína adicional, incluyendo, aunque sin limitación, proteína M, G, N, SH del RSV o partes de las mismas, y/o cualquier molécula quimérica o heteróloga descrita anteriormente. En una realización, la composición de vacuna farmacéuticamente aceptable comprende VLP que comprenden al menos una proteína F modificada o mutada del RSV y al menos un inmunógeno adicional. En otra realización, la composición de vacuna farmacéuticamente aceptable comprende VLP que comprenden al menos una proteína F modificada o mutada del RSV y al menos una proteína M del RSV. En otra realización, la composición de vacuna farmacéuticamente aceptable comprende VLP que comprenden al menos una proteína F modificada o mutada del RSV y al menos una proteína M de BRSV. En otra realización, la composición de vacuna farmacéuticamente aceptable comprende VLP que comprenden al menos una proteína F modificada o mutada del RSV y al menos una proteína M1 de la gripe. En otra realización, la composición de vacuna farmacéuticamente aceptable comprende VLP que comprenden al menos una proteína F modificada o mutada del RSV y al menos una proteína M1 de la gripe aviar.
En otra realización, la composición de vacuna farmacéuticamente aceptable comprende VLP que comprenden adicionalmente una proteína G del RSV, incluyendo, aunque sin limitación, una proteína G de HRSV, BRSV o RSV aviar. En otra realización, la composición de vacuna farmacéuticamente aceptable comprende VLP que comprenden adicionalmente la proteína N del RSV, incluyendo, aunque sin limitación, una proteína N de HRSV, BRSV o RSV aviar. En otra realización, la composición de vacuna farmacéuticamente aceptable comprende VLP que comprenden adicionalmente la proteína SH del RSV, incluyendo, aunque sin limitación, una proteína SH de HRSV, BRSV o RSV aviar.
En otra realización, la invención abarca una composición de vacuna farmacéuticamente aceptable que comprende VLP quiméricas tales como VLP que comprenden la proteína M de BRSV y una proteína F modificada o mutada del RSV y/o proteína G, H, o SH de un RSV y opcionalmente la proteína HA o NA obtenida de un virus de la gripe, donde la proteína HA o NA está fusionada a un dominio transmembrana y cola citoplasmática de la proteína F y/o G del RSV.
La invención también abarca una composición de vacuna farmacéuticamente aceptable que comprende la proteína F modificada o mutada del RSV, una micela F del RSV que comprende una proteína F modificada o mutada del RSV, o una VLP que comprende una proteína F modificada o mutada del RSV como se ha descrito anteriormente.
En una realización, la composición de vacuna farmacéuticamente aceptable comprende VLP que comprenden una proteína F modificada o mutada del RSV y al menos una proteína adicional. En otra realización, la composición de vacuna farmacéuticamente aceptable comprende VLP que comprenden adicionalmente la proteína M del RSV, tal como, aunque sin limitación, una proteína M de BRSV. En otra realización, la composición de vacuna farmacéuticamente aceptable comprende VLP que comprenden adicionalmente la proteína G del RSV, incluyendo, aunque sin limitación, una proteína G de HRSV. En otra realización, la composición de vacuna farmacéuticamente aceptable comprende VLP que comprenden adicionalmente la proteína N del RSV, incluyendo, aunque sin limitación, una proteína N de HRSV, BRSV o RSV aviar. En otra realización, la composición de vacuna farmacéuticamente aceptable comprende VLP que comprenden adicionalmente la proteína SH del RSV, incluyendo,
10
15
20
25
30
35
40
45
50
55
60
65
aunque sin limitación, una proteína SH de HRSV, BRSV o RSV aviar. En otra realización, la composición de vacuna farmacéuticamente aceptable comprende VLP que comprenden la proteína M de BRSV y la proteína F y/o G del grupo A de HRSV. En otra realización, la composición de vacuna farmacéuticamente aceptable comprende VLP que comprenden la proteína M de BRSV y la proteína F y/o G del grupo B de HRSV. En otra realización, la invención abarca una composición de vacuna farmacéuticamente aceptable que comprende VLP quiméricas tales como VLP que comprenden proteína M quimérica de un BRSV y opcionalmente la proteína HA obtenida de un virus de la gripe, donde la proteína M está fusionada a la proteína HA de la gripe. En otra realización, la invención abarca una composición de vacuna farmacéuticamente aceptable que comprende VLP quiméricas tales como VLP que comprenden la proteína M de BRSV, y una proteína F y/o G quimérica de un RSV y opcionalmente la proteína HA obtenida de un virus de la gripe, donde la proteína HA de la gripe quimérica está fusionada al dominio transmembrana y la cola citoplasmática de la proteína F y/o G del RSV. En otra realización, la invención abarca una composición de vacuna farmacéuticamente aceptable que comprende VLP quiméricas tales como VLP que comprenden la proteína M de BRSV y una proteína F y/o G quimérica de un RSV y opcionalmente la proteína HA o NA obtenida de un virus de la gripe, donde la proteína HA o NA está fusionada al dominio transmembrana y la cola citoplasmática de la proteína F y/o G del RSV.
La invención también abarca una composición de vacuna farmacéuticamente aceptable que comprende una VLP quimérica que comprende al menos una proteína del RSV. En una realización, la composición de vacuna farmacéuticamente aceptable comprende VLP que comprenden una proteína F modificada o mutada del RSV y al menos un inmunógeno de un agente infeccioso heterólogo o célula enferma. En otra realización, el inmunógeno de un agente infeccioso heterólogo es una proteína vírica. En otra realización, la proteína vírica de un agente infeccioso heterólogo es una proteína asociada con la envuelta. En otra realización, la proteína vírica de un agente infeccioso heterólogo se expresa sobre la superficie de las VLP. En otra realización, la proteína de un agente infeccioso comprende un epítopo que generará una respuesta inmunitaria protectora en un vertebrado.
La solicitud también describe un kit para inmunizar un vertebrado, tal como un sujeto humano, que comprende VLP que comprenden al menos una proteína del RSV. En una realización, el kit comprende VLP que comprenden una proteína F modificada o mutada del RSV. En una realización, el kit comprende adicionalmente una proteína M del RSV tal como una proteína M del BRSV. En una realización, el kit comprende adicionalmente una proteína G del RSV. En otra realización, la solicitud describe un kit que comprende VLP que comprenden una proteína M quimérica de un BRSV y opcionalmente una proteína HA obtenida de un virus de la gripe, donde la proteína M está fusionada a la proteína M de BRSV. En otra realización, la solicitud describe un kit que comprende VLP que comprenden una proteína M quimérica de un BRSV, una proteína F y/o G del RSV y un inmunógeno de un agente infeccioso heterólogo. En otra realización, la solicitud describe un kit que comprende VLP que comprenden una proteína M de un BRSV, una proteína F y/o G quimérica del RSV y opcionalmente una proteína HA obtenida de un virus de la gripe, donde la proteína HA está fusionada al dominio transmembrana y la cola citoplasmática de la proteína F o G del RSV. En otra realización, la solicitud describe un kit que comprende VLP que comprenden la proteína M de un BRSV, una proteína F y/o G quimérica del RSV y opcionalmente una proteína HA o NA obtenida de un virus de la gripe, donde la proteína HA está fusionada al dominio transmembrana y cola citoplasmática de la proteína F y/o G del RSV.
En una realización, la invención comprende una formulación inmunogénica que comprende al menos una dosis eficaz de una proteína F modificada o mutada del RSV. En otra realización, la invención comprende una formulación inmunogénica que comprende al menos una dosis eficaz de una micela F del RSV que comprende una proteína F modificada o mutada del RSV. En otra realización más, la invención comprende una formulación inmunogénica que comprende al menos una dosis eficaz de una VLP que comprende una proteína F modificada o mutada del RSV como se ha descrito anteriormente.
La formulación inmunogénica de la invención comprende una proteína F modificada o mutada del RSV , una micela S del RSV que comprende una proteína F modificada o mutada del RSV , o una VLP que comprende una proteína F modificada o mutada del RSV , y un vehículo o excipiente farmacéuticamente aceptable. Los vehículos farmacéuticamente aceptables incluyen, aunque sin limitación, solución salina, solución salina tamponada, dextrosa, agua, glicerol, tampón acuoso isotónico estéril, y combinaciones de los mismos. Se presenta un análisis minucioso de vehículos, diluyentes, y otros excipientes farmacéuticamente aceptables en Remington’s Pharmaceutical Sciences (Mack Pub. Co. N.J. edición actual). La formulación debe adecuarse al modo de administración. En una realización preferida, la formulación es adecuada para administración a seres humanos, preferiblemente es estéril, no particulada y/o no pirógena.
La composición, si se desea, también puede contener cantidades minoritarias de un agentes humectantes o emulsionantes, o agentes tamponantes del pH. La composición puede ser una forma sólida, tal como un polvo liofilizado adecuado para reconstitución, una solución líquida, suspensión, emulsión, comprimido, píldora, cápsula, formulación de liberación sostenida, o polvo. La formulación oral puede incluir vehículos convencionales tales como calidades farmacéuticas de manitol, lactosa, almidón, estearato de magnesio, sacarina sódica, celulosa, carbonato de magnesio, etc.
15
25
35
45
55
65
La solicitud también describe un envase o kit farmacéutico que comprende uno o más recipientes llenados con uno o más de los ingredientes de las formulaciones de vacuna de la invención. En una realización preferida, el kit comprende dos recipientes, uno que contiene una proteína F modificada o mutada del RSV , una micela F del RSV que comprende una proteína F modificada o mutada del RSV , o una VLP que comprende una proteína F modificada
o mutada del RSV , y el otro que contiene un adyuvante. Asociado con dicho recipiente o recipientes puede haber una notificación en forma prescrita por una agencia gubernamental que regula la fabricación, uso y venta de productos farmacéuticos o biológicos, reflejando dicha notificación la aprobación por la agencia de fabricación, uso y venta para administración a seres humanos.
La formulación puede envasarse en un recipiente sellado herméticamente tal como una ampolla o sobrecito que indica la cantidad de composición. En una realización, la composición se suministra como un líquido, en otra realización, como un polvo liofilizado y esterilizado seco o concentrado sin agua en un recipiente sellado herméticamente y puede reconstituirse, por ejemplo, con agua o solución salina a la concentración apropiada para administración a un sujeto.
En una realización alternativa, la composición se suministra en forma líquida en un recipiente sellado herméticamente que indica la cantidad y concentración de la composición. Preferiblemente, la forma líquida de la composición se suministra en un recipiente sellado herméticamente de al menos aproximadamente 50 µg/ml, más preferiblemente al menos aproximadamente 100 µg/ml, al menos aproximadamente 200 µg/ml, al menos 500 µg/ml,
o al menos 1 mg/ml.
Como un ejemplo, se administran VLP del RSV quimérico que comprenden una proteína F modificada o mutada del RSV de la invención en una cantidad o cuantía eficaz (como se ha definido anteriormente) suficiente para estimular una respuesta inmunitaria, cada una, una respuesta contra una o más cepas del RSV. La administración de la proteína F modificada o mutada del RSV, una micela F del RSV que comprende una proteína F modificada o mutada del RSV, o VLP de la invención provoca inmunidad contra RSV. Normalmente, la dosis puede ajustarse dentro de este intervalo basándose en, por ejemplo, la edad, estado físico, peso corporal, sexo, dieta, tiempo de administración, y otros factores clínicos. La formulación de vacuna profiláctica se administra de forma sistémica, por ejemplo, por inyección subcutánea o intramuscular usando una aguja o jeringa, o un dispositivo de inyección sin aguja. Como alternativa, la formulación de vacuna se administra por vía intranasal, mediante gotas, aerosol de partículas grandes (mayores de 10 micrómetros), o pulverización en el tracto respiratorio superior. Aunque cualquiera de las vías anteriores de suministro provoca una respuesta inmunitaria, la administración intranasal confiere el beneficio añadido de provocar inmunidad en la mucosa en el sitio de entrada de muchos virus, incluyendo RSV y gripe .
Por tanto, la solicitud también describe un método de formulación de una vacuna o composición antigénica que induce inmunidad contra una infección o al menos un síntoma de enfermedad de la misma a un mamífero, que comprende añadir a la formulación una dosis eficaz de una proteína F modificada o mutada del RSV, una micela F del RSV que comprende una proteína F modificada o mutada del RSV, o una VLP que comprende una proteína F modificada o mutada del RSV. En una realización, la infección es una infección por RSV.
Aunque la estimulación de la inmunidad con una única dosis es posible, pueden administrarse dosificaciones adicionales, por la misma vía o una vía diferente, para conseguir el efecto deseado. En neonatos y bebés, por ejemplo, pueden requerirse múltiples administraciones para producir niveles suficientes de inmunidad. La administración puede continuar a intervalos durante toda la infancia, según sea necesario para mantener niveles suficientes de protección contra las infecciones, por ejemplo, infección por RSV. Asimismo, los adultos que son particularmente susceptibles a infecciones repetidas o graves, tales como, por ejemplo, trabajadores sanitarios, trabajadores de guarderías, miembros de la familia de niños pequeños, los ancianos, e individuos con función cardiopulmonar comprometida pueden requerir múltiples inmunizaciones para establecer y/o mantener respuestas inmunitarias protectoras. Los niveles de inmunidad inducida pueden controlarse, por ejemplo, midiendo las cantidades de anticuerpos de secreción y séricos neutralizantes, y ajustando las dosis o vacunaciones repetidas según lo necesario para producir y mantener niveles deseados de protección.
Los métodos de administración de una composición que comprende una proteína F modificada o mutada del RSV , una micela F del RSV que comprende una proteína F modificada o mutada del RSV , o una VLP que comprende una proteína F modificada o mutada del RSV(por ejemplo, formulaciones de vacuna y/o antigénicas) incluyen, aunque sin limitación, administración parenteral (por ejemplo, intradérmica, intramuscular, intravenosa y subcutánea), epidural, y a la mucosa (por ejemplo, vías intranasal y oral o pulmonar o por supositorios). En una realización específica, las composiciones de la presente invención se administran por vía intramuscular, intravenosa, subcutánea, transdérmica o intradérmica. Las composiciones pueden administrarse por cualquier vía conveniente, por ejemplo, por infusión o inyección en bolo, por absorción a través del revestimiento epitelial o mucocutáneo (por ejemplo, moco oral, colon, conjuntiva, nasofaringe, orofaringe, vagina, uretra, vejiga urinaria y mucosa intestinal, etc.) y pueden administrarse junto con otros agentes biológicamente activos. En algunas realizaciones, las vías intranasales u otras vías a la mucosa de administración de una composición de la invención pueden inducir una respuesta de anticuerpos u otra respuesta inmunitaria que es sustancialmente mayor que otras vías de administración. En otra realización, las vías intranasal u otras vías a la mucosa de administración de una
15
25
35
45
55
65
composición de la invención pueden inducir una respuesta de anticuerpos u otra respuesta inmunitaria que inducirá protección cruzada contra otras cepas del RSV. La administración puede ser sistémica o local.
En otra realización más, la vacuna y/o formulación inmunogénica se administra de tal modo que se abordan tejidos de la mucosa para provocar una respuesta inmunitaria en el sitio de inmunización. Por ejemplo, los tejidos de la mucosa tales como el tejido linfoide asociado al intestino (GALT) pueden abordarse para inmunización usando administración oral de composiciones que contienen adyuvantes con propiedades particulares de direccionamiento a la mucosa. También pueden abordarse tejidos adicionales de la mucosa, tales como tejido linfoide nasofaríngeo (NALT) y tejido linfoide asociado con los bronquios (BALT).
Las vacunas y/o formulaciones inmunogénicas de la invención también pueden administrarse en un programa de dosificación, por ejemplo, una administración inicial de la composición de vacuna con posteriores administraciones de refuerzo. En realizaciones particulares, se administra una segunda dosis de la composición en cualquier momento desde dos semanas a un año, preferiblemente de aproximadamente 1, aproximadamente 2, aproximadamente 3, aproximadamente 4, aproximadamente 5 a aproximadamente 6 meses, después de la administración inicial. Adicionalmente, puede administrarse una tercera dosis después de la segunda dosis y desde aproximadamente tres meses hasta aproximadamente dos años, incluso más, preferiblemente aproximadamente 4, aproximadamente 5, o aproximadamente 6 meses, o aproximadamente 7 meses hasta aproximadamente un año después de la administración inicial. La tercera dosis puede administrarse opcionalmente cuando no se detectan o se detectan niveles bajos de inmunoglobulinas específicas en el suero y/o la orina o secreciones de la mucosa del sujeto después de la segunda dosis. En una realización preferida, se administra una segunda dosis aproximadamente un mes después de la primera administración y se administra una tercera dosis aproximadamente seis meses después de la primera administración. En otra realización, la segunda dosis se administra aproximadamente seis meses después de la primera administración. En otra realización, las composiciones de la invención pueden administrarse como parte de una terapia de combinación. Por ejemplo, las composiciones de la invención pueden formularse con otras composiciones inmunogénicas, antivíricos y/o antibióticos.
La dosificación de la composición farmacéutica puede determinarse fácilmente por un experto en la materia, por ejemplo, identificando primero dosis eficaces para provocar una respuesta inmunitaria profiláctica o terapéutica, por ejemplo, midiendo el título en suero de inmunoglobulinas específicas del virus o midiendo la relación inhibidora de anticuerpos en muestras de suero, o muestras de orina, o secreciones de la mucosa. Las dosificaciones pueden determinarse para estudios en animales. Una lista no limitante de animales usados para estudiar la eficacia de vacunas incluye cobaya, hámster, hurón, chinchilla, ratón y rata del algodón. La mayoría de los animales no son hospedadores naturales para los agentes infecciosos, pero aún pueden servir en los estudios de diversos aspectos de la enfermedad. Por ejemplo, a cualquiera de los animales anteriores se les puede dosificar un candidato de vacuna, por ejemplo, proteínas F modificadas o mutadas del RSV, una micela F del RSV que comprende una proteína F modificada o mutada del RSV, o VLP de la invención, para caracterizar parcialmente la respuesta inmunitaria inducida, y/o para determinar si se ha producido algún anticuerpo neutralizante. Por ejemplo, se han realizado muchos estudios en el modelo de ratón porque los ratones son de tamaño pequeño y su bajo coste permite a los investigadores realizar estudios a mayor escala.
Además, pueden realizarse estudios clínicos en seres humanos para determinar la dosis eficaz preferida para seres humanos por un experto en la materia. Dichos estudios clínicos son rutinarios y bien conocidos en la técnica. La dosis precisa a emplear también dependerá de la vía de administración. Las dosis eficaces pueden extrapolarse de las curvas de respuesta a dosis obtenidas sistemas de ensayo in vivo o en animales.
Como también se sabe bien en la técnica, la inmunogenicidad de una composición particular puede potenciarse mediante el uso de estimuladores no específicos de la respuesta inmunitaria, conocidos como adyuvantes. Los adyuvantes se han usado experimentalmente para promover un aumento generalizado en la inmunidad contra antígenos desconocidos (por ejemplo, patente de Estados Unidos N.º 4.877.611). Los protocolos de inmunización han usado adyuvantes para estimular respuestas durante muchos años, y por tanto, los adyuvantes son bien conocidos para los expertos en la materia. Algunos adyuvantes afectan al modo en que se presentan los antígenos. Por ejemplo, la respuesta inmunitaria se aumenta cuando los antígenos proteicos se precipitan por alumbre. La emulsificación de antígenos también prolonga la duración de la presentación del antígeno. La inclusión de cualquier adyuvante descrito en Vogel et al., "A Compendium of Vaccine Adjuvants and Excipients (2ª Edición)", está prevista dentro del alcance de esta invención.
Adyuvantes ejemplares incluyen adyuvante completo de Freund (un estimulador no específico de la respuesta inmunitaria que contiene Mycobacterium tuberculosis inactivado), adyuvante incompleto de Freundy adyuvante de hidróxido de aluminio. Otros adyuvantes comprenden GMCSP, BCG, hidróxido de aluminio, compuestos MDP, tales como thur-MDP y nor-MDP, CGP (MTP-PE), lípido A, y monofosforil lípido A (MPL). También se contempla RIBI, que contiene tres componentes extraídos de bacterias, MPL, dimicolato de trehalosa (TDM) y esqueleto de pared celular (CWS) en una emulsión de ecualeno/Tween 80. También puede usarse MF-59, Novasomes®, antígenos MHC.
En una realización de la invención, el adyuvante es una vesícula lipídica paucilamelar que tiene aproximadamente dos a diez bicapas dispuestas en forma de carcasas sustancialmente esféricas separadas por capas acuosas que
imagen11
15
25
35
45
55
65
proteína para su uso en un método de vacunación de un mamífero contra infección por RSV, que comprende administrar al menos una dosis eficaz de VLP del RSV, donde las VLP comprenden la proteína F modificada o mutada del RSV, proteínas M, G, SH, y/o N.
Las VLP pueden consistir esencialmente en proteínas M de BRSV (incluyendo M quimérica), y F, G, y/o N del RSV. Las VLP pueden comprender proteínas adicionales del RSV y/o contaminantes proteicos en concentraciones insignificantes.
Las VLP pueden consistir en proteína M de BRSV (incluyendo M quimérica), G y/o F del RSV.
Las VLP pueden comprender proteínas del RSV, donde las proteínas RSV consisten en proteína M (incluyendo M quimérica), F, G, y/o N de BRSV, incluyendo proteínas F, G, y/o N quiméricas. Estas VLP contienen proteínas M de BRSV (incluyendo M quimérica), F, G, y/o N del RSV y pueden contener constituyentes celulares adicionales tales como proteínas celulares, proteínas de baculovirus, lípidos, carbohidratos, etc., pero no contienen proteínas adicionales del RSV (diferentes a fragmentos de proteína M de BRSV (incluyendo M quimérica), F, G, y/o N de BRSV/RSV). En otra realización, el sujeto es un vertebrado. En una realización, el vertebrado es un mamífero. En otra realización el mamífero es un ser humano. En otra realización, la formulación puede administrarse en una dosis. En otra realización, la formulación puede administrarse en múltiples dosis.
La solicitud también describe la inducción de inmunidad contra una infección, o al menos un síntoma de la misma en un sujeto, causada por un agente infeccioso, que comprende administrar al menos una dosis eficaz de la proteína F modificada o mutada del RSV, una micela F del RSV que comprende la proteína F modificada o mutada del RSV, o una VLP que comprende la proteína F modificada o mutada del RSV.
En una realización, el método comprende administrar VLP que comprenden una proteína F modificada o mutada del RSV y al menos una proteína de un agente infeccioso heterólogo. En una realización, el método comprende administrar VLP que comprenden una proteína F modificada o mutada del RSV y al menos una proteína del mismo agente infeccioso o uno heterólogo. En otra realización, la proteína del agente infeccioso heterólogo es una proteína vírica. En otra realización, la proteína del agente infeccioso es una proteína asociada con envuelta. En otra realización, la proteína del agente infeccioso se expresa sobre la superficie de VLP. En otra realización, la proteína del agente infeccioso comprende un epítopo que generará una respuesta inmunitaria protectora en un vertebrado. En otra realización, la proteína del agente infeccioso puede asociarse con la proteína M del RSV tal como proteína M de BRSV, proteína F, G y/o N del RSV. En otra realización, la proteína del agente infeccioso está fusionada a una proteína del RSV tal como proteína M de BRSV, proteína F, G y/o N del RSV. En otra realización, solamente una parte de una proteína del agente infeccioso está fusionada a una proteína del RSV tal como una proteína M de BRSV, proteína F, G y/o N del RSV. En otra realización, solamente una parte de una proteína del agente infeccioso está fusionada a una parte de una proteína del RSV tal como una proteína M de BRSV, proteína F, G y/o N del RSV. En otra realización, la parte de la proteína del agente infeccioso fusionada a la proteína del RSV se expresa sobre la superficie de VLP. En otra realización, la proteína del RSV, o parte de la misma, fusionada a la proteína del agente infeccioso se asocia con la proteína M del RSV. En otra realización, la proteína del RSV, o parte de la misma se obtiene de la proteína F, G, N y/o P del RSV. En otra realización, las VLP quiméricas comprenden adicionalmente la proteína N y/o P del RSV. En otra realización, las VLP quiméricas comprenden más de una proteína del mismo agente infeccioso y/o uno heterólogo. En otra realización, las VLP quiméricas comprenden más de una proteína de agente infeccioso, creando de ese modo una VLP multivalente.
Las composiciones de la invención pueden inducir inmunidad sustancial en un vertebrado (por ejemplo, un ser humano) cuando se administran al vertebrado. La inmunidad sustancial resulta de una respuesta inmunitaria contra composiciones de la invención que protege o mejora la infección o al menos reduce un síntoma de infección en el vertebrado. En algunos casos, si el vertebrado se infecta, la infección será asintomática. La respuesta puede no ser una respuesta completamente protectora. En este caso, si el vertebrado se infecta con un agente infeccioso, el vertebrado experimentará síntomas reducidos o una duración más corta de los síntomas, en comparación con un vertebrado no inmunizado.
La invención comprende la proteína para su uso en un método de vacunación de un mamífero contra el RSV, que comprende administrar al mamífero una cantidad inductora de protección de la proteína F modificada o mutada del RSV, una micela F del RSV que comprende la proteína F modificada o mutada del RSV, o una VLP que comprende la proteína F modificada o mutada del RSV.
En una realización, el método comprende administrar VLP que comprende adicionalmente una proteína M del RSV, tal como proteína M del BRSV. En otra realización, el método comprende adicionalmente administrar VLP que comprenden proteína G del RSV, por ejemplo, una proteína G del HRSV. En otra realización, el método comprende adicionalmente administrar VLP que comprenden proteína N del grupo A del HRSV. En otra realización, el método comprende adicionalmente administrar VLP que comprenden proteína N del grupo B del HRSV. En otra realización, el método comprende administrar VLP que comprenden proteína M quimérica del BRSV y proteína F y/o G obtenida del RSV, donde las proteínas F y/o G están fusionadas a la cola transmembrana y citoplasmática de la proteína M. En otra realización, el método comprende administrar VLP que comprenden proteína M del BRSV y proteína F y/o G
imagen12
15
25
35
45
55
65
Una reducción en un síntoma puede determinarse de forma subjetiva u objetiva, por ejemplo, autoevaluación por un sujeto, por una evaluación del médico o realizando un ensayo o medición apropiada (por ejemplo, temperatura corporal) incluyendo, por ejemplo, una evaluación de calidad de vida, una progresión ralentizada de una infección por RSV o síntomas adicionales, una gravedad reducida de los síntomas del RSV o un ensayo adecuado (por ejemplo, título de anticuerpo y/o ensayo de activación de células T). La evaluación objetiva comprende evaluaciones tanto en animales como en seres humanos.
Esta invención se ilustra adicionalmente por los siguientes ejemplos que no deben interpretarse como limitantes.
Ejemplos
Ejemplo 1
Generación de bácmidos recombinantes, transfección de células de insecto para preparar soluciones madre de virus recombinante, purificación en placa, e infección de células de insecto con solución madre de virus primario.
Para construir virus recombinante, se optimizaron los codones de los genes víricos de interés para la expresión en células de insecto Sf9 y se clonaron en vectores pFastBac™.
Una vez se confirmaron las construcciones deseadas y se purificaron, se descongeló en hielo un vial de células competentes MAX Effciency® DH10Bac™ para cada construcción. Se añadió aproximadamente 1 ng (5 µl) del ADN plasmídico de la construcción pFastBac™ deseada a las células y se mezcló suavemente. Las células se incubaron en hielo durante 30 minutos. Esto estuvo seguido por choque térmico de las células durante 45 segundos a 42 ºC sin agitación. A continuación, los tubos se transfirieron a hielo y se enfriaron durante 2 minutos. Posteriormente, se añadieron 900 ml de medio S.O.C. a temperatura ambiente a cada tubo. Los tubos se pusieron en un agitador a 37 °C a 225 rpm durante 4 horas. Para cada transformación pFastBac™, se prepararon diluciones en serie de factor 10 de las células (10-1, 10-2 y 10-3) usando medio S.O.C. A continuación, se sembraron en placa 100 ml de cada dilución en una placa de agar LB que contenía 50 µg/ml de canamicina, 7 µg/ml de gentamicina, 10 µg/ml de tetraciclina, 100 µg/ml de Bluo-gal, y 40 µg/ml de IPTG. Las placas se incubaron durante 48 horas a 37 °C. Se picaron las colonias blancas para el análisis.
Se prepararon diferentes ADN de bácmido a partir de lo anterior para cada construcción y se aislaron. Estos ADN se precipitaron y añadieron a células Sf9 durante 5 horas.
A continuación, se infectaron 30 ml de células de insecto Sf9 (2 x 106 células/ml) con baculovirus que expresaba proteínas víricas de interés con 0,3 ml de eluato de placa y se incubaron durante 48-72 horas. Se reservó aproximadamente 1 ml de cultivo en bruto (células + medio) y recolecciones de cultivo aclarado para análisis de expresión y el resto se reservó con propósitos de purificación.
Ejemplo 2
Expresión, purificación, y análisis de proteínas F modificadas de HRSV
Se sintetizaron genes que codificaban proteínas F modificadas de HRSV de interés in vitro como oligonucleótidos solapantes, se clonaron y expresaron en células hospedadoras. La clonación y expresión de los genes F modificados del RSV se consiguieron siguiendo los métodos conocidos en la técnica.
Se picaron las placas recombinantes que contenían proteínas víricas de interés y se confirmaron. El virus recombinante después se amplificó por infección de células de insecto Sf9. En algunos casos, se co-infectaron células de insecto Sf9 por un virus recombinante que expresaba proteína F modificada y otro virus recombinante que expresaba otras proteínas víricas (por ejemplo, proteína M de BRSV y/o proteína N de HRSV). Se infectó un cultivo de células de insecto a ~3 MOI (multiplicidad de infección = ffu o pfu/célula de virus) con baculovirus que portaba las diversas construcciones. El cultivo y el sobrenadante se recogieron 48-72 horas postinfección. La recolección en bruto, aproximadamente 30 ml, se aclaró por centrifugación durante 15 minutos a aproximadamente 800 x g. Las recolecciones celulares en bruto resultantes que contenían proteína F modificada de HRSV se purificaron como se describe a continuación.
Se purificaron proteínas F modificadas de HRSV de interés a partir de las recolecciones de cultivo celular de insecto Sf9 infectado. Se usó tensioactivo no iónico Tergitol® NP-9 (Etoxilato de Nonilfenol) para un protocolo de extracción de proteínas de membrana. La extracción en bruto se purificó adicionalmente por pase a través de una cromatografía de intercambio aniónico, afinidad por lectina de lenteja/HIC, y cromatografía de intercambio catiónico.
La expresión de proteínas se analizó por SDS-PAGE y se tiñó para las proteínas totales por tinción de Coomassie. Se cargaron volúmenes iguales de muestras celulares a partir de la recolección en bruto y tampón de muestra 2x que contenía βME (beta-mercaptoetanol), aproximadamente 15 a 20 µl (aproximadamente de 7,5 a 10 µl del cultivo)/carril, en un gel de SDS Laemmli.
10
15
20
25
30
35
40
45
50
55
60
65
En algunos casos, en lugar de cromatografía, las proteínas F modificadas de HRSV en las recolecciones celulares en bruto se concentraron por un método de separación en gradiente de sacarosa al 30 %, y después se analizaron por SDS-PAGE teñido con Coomassie, o transferencia de Western usando anticuerpo monoclonal anti-F del RSV.
La recolección celular en bruto que contenía proteínas F recombinantes modificadas, proteínas F recombinantes purificadas, o proteínas F recombinantes concentradas por gradiente de sacarosa puede analizarse adicionalmente por transferencia de Western usando anticuerpo monoclonal anti-F del RSV y/o anticuerpo policlonal anti-F del RSV.
Ejemplo 3
Gen de F modificado de HRSV que codifica la proteína F BV n.º 541
Los intentos iniciales por expresar la proteína F de longitud completa de HRSV demostraron ser insatisfactorios en conseguir altos niveles de expresión. La secuencia del gen de F usada en la expresión fue la SEQ ID NO: 1 (gen de F de tipo silvestre de HRSV, N.º de acceso a GenBank M11486). Codifica un precursor inactivo (Fo) de 574 aa. Este precursor se escinde dos veces por proteasas tipo furina durante la maduración para producir dos polipéptidos unidos por disulfuro, la subunidad F2 desde el extremo N-terminal y F1 desde el extremo C-terminal (Figura 1). Los dos sitios de escisión son en los restos 109 y 136, que están precedidos por motivos de reconocimiento de furina (RARR, aa 106-109 (SEQ ID NO: 23) y KKRKRR, aa 131-136 (SEQ ID NO: 24)). La secuencia del gen de F de la SEQ ID NO: 1 contiene un uso sub-óptimo de codones para la expresión en células de insecto Sf9 y alberga tres errores, que producen una proteína que puede mostrar plegamiento menor del óptimo (SEQ ID NO: 2, N.º de acceso a GenBank AAB59858). Además, se identificó un posible sitio de poli(A) adenilación (ATAAAA) en la región que codifica la subunidad F2. Además, la secuencia génica de F de tipo silvestre es aproximadamente un 65 % rica en AT, mientras que la relación deseada de GT-AT de una secuencia génica en un sistema de expresión de células de insecto Sf9 es aproximadamente 1:1.
En un intento por superar los malos niveles de expresión de la proteína F de HRSV, se diseñó una nueva secuencia génica de F de modo que:
(a)
se corrigieran los tres errores de secuenciación de GenBank;
(b)
se modificara el sitio críptico de poli(A) en la región que codifica la subunidad de F2;
(c)
se optimizaran los codones para el gen de F; y
(d)
el gen de F codifique una proteína F modificada con sitio de escisión primario inactivado.
Los tres errores de aminoácido corregidos fueron P102A, I379V, y M447V. El sitio críptico de poli(A) en el gen de F de HRSV se corrigió sin cambiar la secuencia de aminoácidos.
El esquema de optimización de codones se basó en los siguientes criterios: (1) abundancia de aminoacil-ARNt para un codón particular en especies de lepidópteros de células de insecto para un aminoácido dado como se describe por Levin, D.B. et al. (Journal of General Virology, 2000, vol. 81, pág. 2313-2325), (2) mantenimiento de la relación GC-AT en secuencias génicas a aproximadamente 1:1, (3) introducción mínima de estructuras de ADN palindrómicas o de tronco-lazo, y (4) introducción mínima de secuencias de elementos represores de la transcripción y posttranscripción. Se mostró un ejemplo de secuencia génica de F optimizada como la SEQ ID NO: 19 (F del RSVBV n.º 368).
Para inactivar el sitio de escisión primario (1° CS, KKRKRR, aa 131-136) de la proteína F de HRSV, se mutó el sitio de reconocimiento de furina KKQKQQ (SEQ ID NO: 28) o GRRQQR (SEQ ID NO: 29). Se evaluaron varias proteínas F modificadas con dichas mutaciones en el sitio de escisión para determinar la eficacia de la prevención de escisión. La Figura 2 muestra varias de las proteínas F modificadas que se evaluaron. Los resultados indican que el sitio de escisión primario de la proteína F de HRSV puede inactivarse por tres cambios conservativos de aminoácido, R133Q, R135Q, y R136Q. estos cambios conservativos de aminoácido de arginina (R) que es una molécula cargada polar, a glutamina (Q) que es una molécula neutra polar, alteró el estado de carga en estos sitios y evitó la escisión por proteasas de tipo furina (véase la Figura 3), conservando aún al mismo tiempo la estructura 3D de la proteína F. La prevención de la escisión en el 1º CS provocó actividad reducida de fusión con la membrana de la proteína F.
Una secuencia génica ejemplar no limitante de F modificada de HRSV diseñada para tener todas las modificaciones mencionadas anteriormente se muestra en la Figura 4. Este gen F modificado (SEQ ID NO: 5, F del RSVBV n.º 541) codifica una proteína F modificada de la SEQ ID NO: 6. La secuencia génica se sintetizó in vitro como oligonucleótidos solapantes, clonados y expresados en células hospedadoras. Se purificó la proteína F modificada de HRSV BV n.º 541 a partir de las recolecciones de cultivo celular de insecto Sf9 infectado, y se analizó por SDS-PAGE teñido por Coomassie. En el Ejemplo 2 se describe el método de purificación y el análisis de SDS-PAGE. El nivel de expresión de la proteína F del RSVBV n.º 541 (por ejemplo, proteína F 541) se mejoró en comparación con la proteína F0 de tipo silvestre en células de insecto Sf9.
15
25
35
45
55
65
Ejemplo 4
Proteína F modificada de HRSV con deleción parcial del dominio de fusión de la subunidad F1
Para mejorar adicionalmente la expresión de la proteína F del RSV, se diseñaron genes de F adicionalmente modificados de HRSV que comprendían las siguientes modificaciones:
(a)
se corrigieron los tres errores de secuenciación de GenBank;
(b)
se modificó el sitio críptico poli(A) en la región que codifica la subunidad de F2;
(c)
se optimizaron los codones para el gen de F; y
(d)
las secuencias de nucleótidos que codifican el dominio de fusión de la subunidad F1 se delecionaron parcialmente. En un experimento, se delecionó la secuencia de nucleótidos que codifica los primeros 10 aminoácidos del dominio de fusión de la subunidad F1 (correspondiente a los aminoácidos 137-146 de la SEQ ID NO: 2).
Se muestra un gen de F modificado del RSV ejemplar no limitante que comprende dichas modificaciones en la Figura 5, denominado SEQ ID NO: 9 (F del RSVBV n.º 622, por ejemplo, proteína F 622), que codifica una proteína F modificada de la SEQ ID NO: 10. La proteína F modificada de HRSV BV n.º 622 se purificó a partir de las recolecciones de cultivo celular de insecto Sf9 infectado, y se analizó por SDS-PAGE teñido con Coomassie. El método de purificación y análisis de SDS-PAGE se describe en el Ejemplo 2. Se observaron altos niveles de expresión de proteína F de HRSV BV n.º 622, como se presenta en la SDS-PAGE en la Figura 6.
Ejemplo 5
Proteína F modificada de HRSV con sitio de escisión primario inactivado y también deleción parcial del dominio de fusión F1
Para determinar si la combinación de sitio de escisión primario inactivado y deleción parcial del dominio de fusión F1 puede promover adicionalmente la expresión de la proteína F del RSV , particularmente en las células de insecto Sf9, se diseñó otro gen de F modificado del RSV que comprende las siguientes modificaciones:
(a)
se corrigieron los tres errores de secuenciación de GenBank;
(b)
se modificó el sitio críptico poli(A) en la región que codifica la subunidad de F2;
(c)
se optimizaron los codones para el gen de F; y
(d)
se inactivó el sitio de escisión primario; y
(e)
la secuencia de nucleótidos que codifica el dominio de fusión de la subunidad F1 se delecionó parcialmente. En un experimento, se delecionó la secuencia de nucleótidos que codifica los primeros 10 aminoácidos del dominio de fusión de la subunidad F1 (correspondiente a los aminoácidos 137-146 de la SEQ ID NO: 2).
Se muestra un gen de F del RSV modificado ejemplar no limitante que comprende dichas modificaciones en la Figura 7, denominado SEQ ID NO: 7 (F del RSVBV n.º 683, por ejemplo, proteína F 683), que codifica la proteína F modificada de la SEQ ID NO: 8. La proteína F modificada del RSVBV n.º 683 (por ejemplo, proteína F 683) se purificó a partir de las recolecciones de cultivo celular de insecto Sf9 infectado y se analizó por SDS-PAGE teñido con Coomassie. El método de purificación y análisis de SDS-PAGE se describe en el Ejemplo 2. Se consiguieron potenciaciones adicionales en los niveles de expresión, como se presenta en la SDS-PAGE en la Figura 8.
Ejemplo 6
Expresión y purificación de proteína F modificada de HRSV BV n.º 683
Se expresó la proteína F modificada de HRSV BV n.º 683 (por ejemplo, proteína F 683, SEQ ID NO: 8) en sistema de expresión de baculovirus como se describe en el Ejemplo 1, y se picaron placas recombinantes que expresaban la proteína F de HRSV BV n.º 683 y se confirmaron. El virus recombinante después se amplificó por infección de células de insecto Sf9. Se infectó un cultivo de células de insecto a ~3 MOI (multiplicidad de infección = ffu o pfu/célula de virus) con baculovirus. El cultivo y el sobrenadante se recogieron 48-72 horas postinfección. La recolección en bruto, aproximadamente 30 ml, se aclaró por centrifugación durante 15 minutos a aproximadamente 800 x g. Las recolecciones celulares en bruto resultantes que contenían la proteína F de HRSV BV n.º 683 se purificaron como se describe a continuación.
La proteína F de HRSV BV n.º 683 se purificó a partir de las recolecciones de cultivo celular de insecto Sf9 infectado. Se usó el tensioactivo no iónico Tergitol® NP-9 (Etoxilato de Nonilfenol) para un protocolo de extracción de proteínas de membrana. La extracción en bruto se purificó adicionalmente por pase a través de una cromatografía de intercambio aniónico, afinidad por lectina de lenteja/HIC, y cromatografía de intercambio catiónico.
Se analizó la proteína F purificada de HRSV BV n.º 683 por SDS-PAGE teñido con Coomassie, y transferencia de Western usando anticuerpo monoclonal anti-F del RSV como se ha descrito en el Ejemplo 2. Los resultados se
imagen13
imagen14

Claims (1)

  1. imagen1
ES09836751.9T 2008-12-09 2009-12-09 Proteínas F del RSV modificadas y métodos de su uso Active ES2582005T3 (es)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US12112608P 2008-12-09 2008-12-09
US121126P 2008-12-09
US16907709P 2009-04-14 2009-04-14
US169077P 2009-04-14
US22478709P 2009-07-10 2009-07-10
US224787P 2009-07-10
PCT/US2009/067269 WO2010077717A1 (en) 2008-12-09 2009-12-09 Modified rsv f proteins and methods of their use

Publications (1)

Publication Number Publication Date
ES2582005T3 true ES2582005T3 (es) 2016-09-08

Family

ID=42310119

Family Applications (2)

Application Number Title Priority Date Filing Date
ES16166033T Active ES2796725T3 (es) 2008-12-09 2009-12-09 Proteínas F del RSV modificadas y métodos de su uso
ES09836751.9T Active ES2582005T3 (es) 2008-12-09 2009-12-09 Proteínas F del RSV modificadas y métodos de su uso

Family Applications Before (1)

Application Number Title Priority Date Filing Date
ES16166033T Active ES2796725T3 (es) 2008-12-09 2009-12-09 Proteínas F del RSV modificadas y métodos de su uso

Country Status (23)

Country Link
US (7) US8715692B2 (es)
EP (3) EP3718566A1 (es)
JP (4) JP5813513B2 (es)
KR (2) KR101801213B1 (es)
CN (2) CN102307591B (es)
AU (1) AU2009333484B2 (es)
BR (1) BRPI0922867B8 (es)
CA (1) CA2746228C (es)
CY (2) CY1117757T1 (es)
DK (2) DK3067064T3 (es)
ES (2) ES2796725T3 (es)
HK (1) HK1161690A1 (es)
HR (2) HRP20160859T1 (es)
HU (2) HUE051666T2 (es)
IL (2) IL213450B (es)
LT (1) LT3067064T (es)
MX (4) MX358836B (es)
PL (2) PL3067064T3 (es)
PT (2) PT3067064T (es)
RU (1) RU2531510C2 (es)
SG (2) SG10201500161XA (es)
SI (2) SI2370099T1 (es)
WO (1) WO2010077717A1 (es)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160000902A1 (en) * 2003-07-11 2016-01-07 Novavax, Inc. Combination vaccine for respiratory syncytial virus and influenza
EP2367844A4 (en) * 2008-11-18 2012-08-01 Ligocyte Pharmaceuticals Inc RSV-F VLP AND MANUFACTURING METHOD AND METHOD OF USE THEREOF
US11446374B2 (en) 2008-12-09 2022-09-20 Novavax, Inc. Modified RSV F proteins and methods of their use
HUE051666T2 (hu) 2008-12-09 2021-03-29 Novavax Inc Módosított RSV F fehérjék és alkalmazásuk módszerei
WO2011008974A2 (en) * 2009-07-15 2011-01-20 Novartis Ag Rsv f protein compositions and methods for making same
US20110097358A1 (en) * 2009-10-12 2011-04-28 Techno Vax, Inc. RESPIRATORY SYNCYTIAL VIRUS (RSV) VIRUS-LIKE PARTICLES (VLPs)
AU2011323090B2 (en) 2010-11-05 2015-02-12 Novavax Inc. Rabies glycoprotein virus-like particles (VLPs)
WO2012089231A1 (en) * 2010-12-30 2012-07-05 Okairòs Ag Paramyxovirus vaccines
HUE043879T2 (hu) 2011-01-26 2019-09-30 Glaxosmithkline Biologicals Sa RSV-immunizálási rend
EP2739307B1 (en) * 2011-08-01 2017-09-06 Emory University Vlps containing ligands and methods related thereto
WO2013031827A1 (ja) 2011-08-29 2013-03-07 国立大学法人徳島大学 Rsv粘膜ワクチン
CN104080476A (zh) * 2011-09-30 2014-10-01 诺瓦瓦克斯股份有限公司 用于呼吸道合胞病毒的重组纳米颗粒rsv f疫苗
CN103239734B (zh) * 2012-02-10 2016-02-24 北京艾棣维欣生物技术有限公司 用于预防和/或治疗呼吸道合胞病毒感染的疫苗
EA201891945A3 (ru) * 2012-08-01 2019-05-31 Бавариан Нордик А/С Вакцина рекомбинантного модифицированного вируса осповакцины анкара (mva) респираторно-синцитиального вируса (rsv)
SG11201503369RA (en) 2012-11-20 2015-06-29 Glaxosmithkline Biolog Sa Rsv f prefusion trimers
US20140227309A1 (en) * 2013-02-11 2014-08-14 Novavax, Inc. Combination vaccine for respiratory syncytial virus and influenza
DE102013004595A1 (de) * 2013-03-15 2014-09-18 Emergent Product Development Germany Gmbh RSV-Impfstoffe
CA2922258C (en) 2013-09-19 2022-11-29 Novavax, Inc. Immunogenic middle east respiratory syndrome coronavirus (mers-cov) compositions and methods
EP2974739A1 (en) 2014-07-15 2016-01-20 Novartis AG RSVF trimerization domains
WO2015195961A1 (en) * 2014-06-18 2015-12-23 Georgia State University And Research Foundation, Inc. Recombinant rsv reporter virus
JP6824154B2 (ja) * 2014-08-08 2021-02-03 ブイエルピー・セラピューティクス・リミテッド・ライアビリティ・カンパニーVLP Therapeutics, LLC 修飾エンベロープタンパク質e3を含むウイルス様粒子
US9630994B2 (en) 2014-11-03 2017-04-25 University Of Washington Polypeptides for use in self-assembling protein nanostructures
CN114796474A (zh) * 2015-09-03 2022-07-29 诺瓦瓦克斯股份有限公司 具有改进的稳定性和免疫原性的疫苗组合物
AU2016379097C1 (en) 2015-12-23 2021-04-08 Pfizer Inc. RSV F protein mutants
WO2017174564A1 (en) * 2016-04-05 2017-10-12 Janssen Vaccines & Prevention B.V. Vaccine against rsv
JP2019523644A (ja) 2016-05-30 2019-08-29 ヤンセン ファッシンズ アンド プリベンション ベーフェーJanssen Vaccines & Prevention B.V. 安定化された融合前rsv fタンパク質
CN106011086A (zh) * 2016-06-15 2016-10-12 湖北省农业科学院畜牧兽医研究所 表达信号肽替换的呼吸道合胞病毒f蛋白的重组新城疫耐热疫苗株及制备方法
MA47787A (fr) 2017-03-15 2020-01-22 Modernatx Inc Vaccin contre le virus respiratoire syncytial
EP3601367A4 (en) * 2017-03-30 2020-09-16 The University of Queensland CHEMERICAL MOLECULES AND ASSOCIATED USES
CN115947873A (zh) 2017-04-04 2023-04-11 华盛顿大学 显示副粘病毒和/或肺炎病毒f蛋白的自组装蛋白纳米结构及其用途
AU2018285412B2 (en) 2017-06-14 2022-06-23 Universität Zürich Cyclic peptides for protection against respiratory syncytial virus
MA54676A (fr) 2018-01-29 2021-11-17 Modernatx Inc Vaccins à base d'arn contre le vrs
EP3758747A1 (en) 2018-02-28 2021-01-06 University of Washington Self-asssembling nanostructure vaccines
AU2019238171A1 (en) 2018-03-19 2020-09-24 Novavax, Inc. Multivalent influenza nanoparticle vaccines
WO2019191623A1 (en) * 2018-03-30 2019-10-03 Georgia State University Research Foundation, Inc. Respiratory syncytial virus (rsv) vaccines
KR20200050264A (ko) 2018-11-01 2020-05-11 에스케이바이오사이언스(주) 재조합 호흡기 세포융합 바이러스 f 단백질 및 이를 포함하는 백신 조성물
CA3121724A1 (en) 2018-12-20 2020-06-25 Virometix Ag Lipopeptide building blocks and synthetic virus-like particles
EP3932424A4 (en) 2019-02-28 2022-10-12 KM Biologics Co., Ltd. F/G CHIMERIC VRS VACCINE
MX2022009167A (es) * 2020-01-27 2022-08-17 Novavax Inc Formulaciones para vacuna contra coronavirus.
US10953089B1 (en) 2020-01-27 2021-03-23 Novavax, Inc. Coronavirus vaccine formulations
GB2594365B (en) 2020-04-22 2023-07-05 BioNTech SE Coronavirus vaccine
CN113855796B (zh) * 2021-07-30 2024-01-26 河北医科大学 卡介苗作为呼吸道合胞病毒灭活疫苗佐剂的应用
WO2023062651A1 (en) * 2021-10-13 2023-04-20 Padmanabh Patil Harshad Virus-like particles for respiratory syncytial virus and method of preparation thereof
US11878055B1 (en) 2022-06-26 2024-01-23 BioNTech SE Coronavirus vaccine

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149650A (en) 1986-01-14 1992-09-22 University Of North Carolina At Chapel Hill Vaccines for human respiratory virus
US4877611A (en) 1986-04-15 1989-10-31 Ribi Immunochem Research Inc. Vaccine containing tumor antigens and adjuvants
US4911928A (en) 1987-03-13 1990-03-27 Micro-Pak, Inc. Paucilamellar lipid vesicles
GB8914968D0 (en) * 1989-06-29 1989-08-23 Connaught Lab Production of virus and purification of viral envelope proteins for vaccine use
US6387373B1 (en) 1993-01-15 2002-05-14 Novavax, Inc. Vaccines containing paucilsmellar lipid vesicles as immunological adjuvants
ES2370937T3 (es) 1993-09-13 2011-12-23 Protein Sciences Corporation Un método para producir vacunas antigripales polivalentes a base de hemaglutinina.
US5629021A (en) 1995-01-31 1997-05-13 Novavax, Inc. Micellar nanoparticles
US6020182A (en) * 1996-07-12 2000-02-01 Connaught Laboratories Limited Subunit respiratory syncytial virus vaccine preparation
WO2001066137A1 (en) 2000-03-07 2001-09-13 Merck & Co., Inc. Adenovirus formulations
KR20030055275A (ko) 2000-10-02 2003-07-02 글락소스미스클라인 바이오로지칼즈 에스.에이. 분할 외피 바이러스 제조물
US20040063188A1 (en) 2002-02-14 2004-04-01 Novavax, Inc. Kit for treating gastrointestinal tract
CA2523657A1 (en) 2003-04-25 2005-03-31 Medimmune Vaccines, Inc. Recombinant parainfluenza virus expression systems and vaccines comprising heterologous antigens derived from metapneumovirus
EP1668112A4 (en) * 2003-06-20 2009-04-29 Protein Sciences Corp SARS IMMUNOGENOUS EXPRESSING VECTORS, SUCH VECTORS OR EXPRESSION PRODUCTS COMPRISING THOSE COMPOSITIONS, PROCESSES AND TESTS FOR THE PREPARATION AND USE THEREOF
EP1713824A2 (en) 2003-12-10 2006-10-25 The Uab Research Foundation Recombinant viruses with heterologous envelope proteins
WO2006099360A2 (en) 2005-03-10 2006-09-21 Medimmune Vaccines, Inc. Metapneumovirus strains and their use in vaccine formulations and as vectors for expression of antigenic sequences and methods for propagating virus
US7951384B2 (en) * 2005-08-05 2011-05-31 University Of Massachusetts Virus-like particles as vaccines for paramyxovirus
WO2007149490A1 (en) 2006-06-19 2007-12-27 Progenics Pharmaceuticals, Inc. Processes for recovering stabilized formulations of trimers of retroviral envelope (env) proteins
EP2089515A4 (en) * 2006-11-16 2011-02-23 Novavax Inc VIRUSUAL PARTICLES OF RESPIRATORY SYNZYTIAL VIRUS
WO2008133663A2 (en) * 2006-11-30 2008-11-06 Government Of The United States Of America, As Represented By The Secretary, Codon modified immunogenic compositions and methods of use
EP1972348A1 (en) * 2007-03-14 2008-09-24 Pierre Fabre Medicament Novel vaccine composition for the treatment of respiratory infectious diseases
EP2181121A4 (en) 2007-03-21 2012-07-11 Id Biomedical Corp Quebec CHIMÄRE ANTIGENE
JP2010533737A (ja) 2007-07-19 2010-10-28 ノババックス,インコーポレイテッド キメラ水痘帯状疱疹ウイルス−ウイルス様粒子
EP3508505A1 (en) 2007-12-24 2019-07-10 ID Biomedical Corporation of Quebec Recombinant rsv antigens
BRPI0908861A2 (pt) 2008-02-25 2018-02-06 Novavax Inc partículas semelhantes a vírus de açucar vitrificado (vlps)
HUE051666T2 (hu) 2008-12-09 2021-03-29 Novavax Inc Módosított RSV F fehérjék és alkalmazásuk módszerei
US11446374B2 (en) 2008-12-09 2022-09-20 Novavax, Inc. Modified RSV F proteins and methods of their use
US20110020388A1 (en) 2009-05-27 2011-01-27 Selecta Biosciences, Inc. Targeted synthetic nanocarriers with ph sensitive release of immunomodulatory agents
PL2445526T3 (pl) * 2009-06-24 2017-08-31 Glaxosmithkline Biologicals S.A. Rekombinowane antygeny rsv
WO2011008974A2 (en) * 2009-07-15 2011-01-20 Novartis Ag Rsv f protein compositions and methods for making same
AU2011323090B2 (en) 2010-11-05 2015-02-12 Novavax Inc. Rabies glycoprotein virus-like particles (VLPs)
US11058762B2 (en) 2011-07-06 2021-07-13 Glaxosmithkline Biologicals Sa Immunogenic compositions and uses thereof
CN104080476A (zh) 2011-09-30 2014-10-01 诺瓦瓦克斯股份有限公司 用于呼吸道合胞病毒的重组纳米颗粒rsv f疫苗
US20140037680A1 (en) 2012-08-06 2014-02-06 Glaxosmithkline Biologicals, S.A. Novel method
US20140227309A1 (en) 2013-02-11 2014-08-14 Novavax, Inc. Combination vaccine for respiratory syncytial virus and influenza
CN105188745B (zh) 2013-04-25 2019-10-18 扬森疫苗与预防公司 稳定化的可溶性融合前rsv f多肽
AU2014100888A4 (en) 2014-08-07 2014-09-11 Novartis Ag Virus clearance and protein purification methods
WO2017000105A1 (zh) * 2015-06-29 2017-01-05 尚平 便携式加湿器
CN114796474A (zh) 2015-09-03 2022-07-29 诺瓦瓦克斯股份有限公司 具有改进的稳定性和免疫原性的疫苗组合物

Also Published As

Publication number Publication date
MX2011006205A (es) 2011-09-01
IL247341B (en) 2018-04-30
EP2370099B1 (en) 2016-04-20
US20190134187A1 (en) 2019-05-09
PL2370099T3 (pl) 2016-10-31
WO2010077717A1 (en) 2010-07-08
US20100239617A1 (en) 2010-09-23
US9717786B2 (en) 2017-08-01
SG172022A1 (en) 2011-07-28
JP6462048B2 (ja) 2019-01-30
KR101801213B1 (ko) 2017-11-24
PT3067064T (pt) 2020-06-16
SI3067064T1 (sl) 2020-09-30
EP3718566A1 (en) 2020-10-07
CN102307591B (zh) 2016-08-03
HRP20160859T1 (hr) 2016-09-23
JP6162751B2 (ja) 2017-07-12
US9731000B2 (en) 2017-08-15
HK1161690A1 (zh) 2012-08-03
AU2009333484A1 (en) 2011-07-21
EP3067064B1 (en) 2020-05-13
US8715692B2 (en) 2014-05-06
CY1117757T1 (el) 2017-05-17
JP2018007655A (ja) 2018-01-18
PT2370099T (pt) 2016-07-14
IL213450A0 (en) 2011-07-31
KR20160148720A (ko) 2016-12-26
HUE051666T2 (hu) 2021-03-29
CA2746228C (en) 2021-05-18
ES2796725T3 (es) 2020-11-30
BRPI0922867B8 (pt) 2021-05-25
US20150265698A1 (en) 2015-09-24
CN106146671A (zh) 2016-11-23
CY1123152T1 (el) 2021-10-29
JP2012511579A (ja) 2012-05-24
DK3067064T3 (da) 2020-06-08
KR20110112328A (ko) 2011-10-12
RU2011128371A (ru) 2013-01-20
CN106146671B (zh) 2020-03-31
SG10201500161XA (en) 2015-03-30
CA2746228A1 (en) 2010-07-08
CN102307591A (zh) 2012-01-04
US20140294879A1 (en) 2014-10-02
US11052146B2 (en) 2021-07-06
JP2019069982A (ja) 2019-05-09
HUE029037T2 (en) 2017-01-30
US20150359872A1 (en) 2015-12-17
US20230293667A1 (en) 2023-09-21
EP3067064A1 (en) 2016-09-14
MX345700B (es) 2017-02-10
BRPI0922867B1 (pt) 2020-09-29
US9675685B2 (en) 2017-06-13
KR101691574B1 (ko) 2017-01-02
EP2370099A1 (en) 2011-10-05
MX337932B (es) 2016-03-28
EP2370099A4 (en) 2013-05-29
JP5813513B2 (ja) 2015-11-17
US10022437B2 (en) 2018-07-17
US20150266930A1 (en) 2015-09-24
BRPI0922867A2 (pt) 2016-09-27
LT3067064T (lt) 2020-09-10
PL3067064T3 (pl) 2020-11-02
HRP20200871T1 (hr) 2020-10-30
SI2370099T1 (sl) 2016-08-31
AU2009333484B2 (en) 2014-12-11
DK2370099T3 (en) 2016-08-01
RU2531510C2 (ru) 2014-10-20
MX358836B (es) 2018-09-05
JP2015171378A (ja) 2015-10-01
JP6782289B2 (ja) 2020-11-11
IL213450B (en) 2018-02-28

Similar Documents

Publication Publication Date Title
ES2582005T3 (es) Proteínas F del RSV modificadas y métodos de su uso
US20170319682A1 (en) Recombinant nanoparticle rsv f vaccine for respiratory syncytial virus
US11446374B2 (en) Modified RSV F proteins and methods of their use