EP4158264B1 - Kühler zum kühlen von schüttgut - Google Patents

Kühler zum kühlen von schüttgut Download PDF

Info

Publication number
EP4158264B1
EP4158264B1 EP21725194.1A EP21725194A EP4158264B1 EP 4158264 B1 EP4158264 B1 EP 4158264B1 EP 21725194 A EP21725194 A EP 21725194A EP 4158264 B1 EP4158264 B1 EP 4158264B1
Authority
EP
European Patent Office
Prior art keywords
cooler
sealing
seal
bulk material
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21725194.1A
Other languages
English (en)
French (fr)
Other versions
EP4158264A1 (de
EP4158264C0 (de
Inventor
Ludwig KÖNNING
Justin Bisping
Stefanie Richter
Michael Streffing
Rolf Rieger
Frank Crabus
Jochen Altfeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thyssenkrupp Polysius GmbH
ThyssenKrupp AG
Original Assignee
Thyssenkrupp Polysius GmbH
ThyssenKrupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102020206819.4A external-priority patent/DE102020206819A1/de
Priority claimed from BE20205389A external-priority patent/BE1028415B1/de
Application filed by Thyssenkrupp Polysius GmbH, ThyssenKrupp AG filed Critical Thyssenkrupp Polysius GmbH
Publication of EP4158264A1 publication Critical patent/EP4158264A1/de
Application granted granted Critical
Publication of EP4158264B1 publication Critical patent/EP4158264B1/de
Publication of EP4158264C0 publication Critical patent/EP4158264C0/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • F27D15/0206Cooling with means to convey the charge
    • F27D15/0213Cooling with means to convey the charge comprising a cooling grate
    • F27D15/022Cooling with means to convey the charge comprising a cooling grate grate plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • F27D15/0206Cooling with means to convey the charge
    • F27D15/0213Cooling with means to convey the charge comprising a cooling grate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/38Arrangements of cooling devices
    • F27B7/383Cooling devices for the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • F27D15/0206Cooling with means to convey the charge
    • F27D15/0213Cooling with means to convey the charge comprising a cooling grate
    • F27D15/022Cooling with means to convey the charge comprising a cooling grate grate plates
    • F27D2015/0233Cooling with means to convey the charge comprising a cooling grate grate plates with gas, e.g. air, supply to the grate

Definitions

  • the invention relates to a cooler for cooling bulk material, wherein the cooler has a seal for sealing the gap between the movable conveyor planks.
  • Coolers for cooling bulk material are used, for example, in cement plants to cool clinker fired in a furnace.
  • the cooler usually has a conveyor unit for transporting the material along a support surface through which cooling air can flow.
  • conveyor planks are used to transport the material, which are arranged next to one another to form a ventilation floor on which the material to be cooled rests.
  • the conveyor planks are moved, for example, simultaneously in the conveying direction and at different times against the conveying direction, whereby the material is transported in the conveying direction.
  • a cooler for cooling bulk material in particular cement clinker, comprises a ventilation floor through which cooling gas can flow for receiving bulk material and for transporting the bulk material in the conveying direction.
  • the ventilation floor comprises a plurality of conveyor planks which are mounted so as to be movable in the conveying direction and against the conveying direction, with a seal being mounted between two adjacent conveyor planks which has at least two sealing elements mounted so as to be movable relative to one another.
  • the sealing elements each have a sealing profile, with the sealing profiles interacting with one another in such a way that a sealing gap is formed between them.
  • the sealing gap has at least a double or multiple U-profile. It is also conceivable for the sealing gap to have a triple or quadruple U-profile.
  • the sealing elements are preferably designed and arranged relative to one another in such a way that the sealing gap formed between them has at least a double or multiple U-profile.
  • the sealing gap is formed between the sealing elements of the seal and represents the path that the material must travel to get through the seal into the gap between two adjacent conveyor planks.
  • a double U-profile has at least six changes of direction within the sealing gap that the material must overcome in order to completely pass through the seal. The seal therefore reliably prevents bulk material from falling through the gap formed between two adjacent conveyor planks.
  • a double U-profile can also be referred to as an M-profile, for example.
  • the invention offers the advantage that no material accumulates within the seal and a relative movement of the sealing elements is reliably guaranteed.
  • the sealing profiles of the respective sealing elements overlap at least twice.
  • the sealing gap has at least six, in particular seven or eight, angles of approximately 80° to 100°, preferably 90°.
  • the cooler is in particular part of a cement production plant with a preheater for preheating raw meal in cross flow and a kiln for burning the preheated raw meal to clinker.
  • the cooler is preferably directly connected to the kiln downstream so that the fired clinker falls into the cooler due to gravity, for example.
  • the cooler inlet area is connected to the material inlet of the cooler and has, for example, a static grate which is arranged below the kiln outlet so that the bulk material emerging from the kiln falls onto the static grate due to gravity.
  • the static grate is, for example, a grate set at an angle to the horizontal of 10° to 35°, preferably 12° to 33°, in particular 13° to 21°, through which cooling air flows from below.
  • the cooler has a ventilation floor, which is connected to the static grate, for example, and which is formed by a plurality of parallel conveyor planks arranged next to one another.
  • the ventilation floor receives the bulk material to be cooled and preferably has a plurality of cooling air passages, so that cooling air can flow through the ventilation floor from below.
  • the material resting on the ventilation floor is cooled in cross-flow and is moved in the conveying direction of the cooler.
  • the conveyor planks are mounted so that they can move relative to one another in the conveying direction.
  • the conveying direction is in particular the longitudinal direction of the cooler, in particular essentially horizontally. To convey the bulk material in the conveying direction, the conveyor planks are in particular all moved together simultaneously in the conveying direction and at different times against the conveying direction.
  • the material resting on the conveyor planks is also moved in the conveying direction when the conveyor planks move in the conveying direction at the same time.
  • the material largely remains in its position because only individual conveyor planks are moved underneath the material. This process is repeated several times until the cooled material reaches the cooler outlet.
  • a seal is fitted between two adjacent conveyor planks.
  • a seal is preferably fitted between the outer conveyor planks and the fixed cooler edge in order to seal the respective gap between the conveyor plank and the cooler wall.
  • a sealing profile is designed as a U-profile.
  • at least one sealing profile is designed as a simple U-profile and in particular has exactly one U-profile.
  • the U-profile is preferably formed from two parallel webs and a web orthogonal to these, wherein the orthogonal web connects the two parallel webs to one another.
  • the parallel webs of the sealing profile are preferably aligned vertically.
  • At least one of the sealing profiles is designed as a double U-profile.
  • the sealing element preferably has a sealing profile that has exactly two U-profiles, with one U-profile corresponding to the one described above.
  • the sealing profile has in particular three parallel webs, which are spaced apart from one another and preferably have the same length. For example, only the outer webs have the same length, with the inner, middle web being shorter than the outer webs.
  • the seal comprises a first sealing element with a sealing profile designed as a single U-profile and a second sealing element with a sealing profile designed as a double U-profile.
  • the first sealing element is preferably formed below the second sealing element.
  • the second sealing element encloses the first sealing element, so that the surface on which the bulk material lies is only formed by the second sealing element.
  • the first and second sealing elements are preferably arranged relative to one another in such a way that the sealing gap with the double U-profile is formed between them.
  • the sealing elements are arranged so that they do not touch one another.
  • the sealing elements of a seal are each attached to adjacent conveyor planks. It is also conceivable for the seal to have more than two sealing elements, with at least one or a plurality of sealing elements of a seal preferably being attached to each conveyor plank.
  • the seal has a chamber for collecting bulk material that has entered the sealing gap, and wherein the chamber is formed between the at least two sealing profiles of a seal.
  • the chamber is an extension of the sealing gap and is preferably arranged in the middle of the seal.
  • the chamber is preferably formed between the two U-profiles within the sealing gap. This offers the advantage that material that has passed through one of the U-profiles of the sealing gap is collected in a chamber so that it can be removed from this before it passes further through the sealing gap.
  • the chamber is arranged, for example, between the two webs of the sealing profile designed as a single U-profile and is preferably limited at the top by the middle web of the sealing profile designed as a double U-profile.
  • the chamber preferably forms a low point of the sealing gap, so that material collected in the chamber would have to be moved against gravity in order to get out of the chamber.
  • the seal has a compressed air generating device that is connected to the chamber for supplying the chamber with compressed air.
  • the compressed air generating device is, for example, a fan.
  • the compressed air generating device designed as a fan is mounted below the ventilation floor and serves in particular additionally to generate cooling air flowing through the bulk material.
  • the chamber preferably has an outlet for discharging bulk material from the chamber, so that the bulk material can be blown out of the chamber by means of the compressed air generating device.
  • the compressed air generating device is preferably designed in such a way that it generates compressed air that is suitable for conveying bulk material from the chamber in the direction of an outlet.
  • the compressed air generating device is designed such that it supplies the chamber with compressed air in the conveying direction. This enables easy transport of the bulk material collected in the chamber, while reliably preventing the bulk material from being blown back into the sealing gap.
  • the seal comprises a plurality of sealing segments that are arranged one behind the other in the conveying direction and are connected to one another. The sealing segments are preferably identical in design, so that they can be easily replaced, for example in the event of wear.
  • the seal extends in the conveying direction over the entire length of the conveying elements.
  • the sealing elements are made of different materials, for example.
  • Fig.1 shows a cooler 10 for cooling hot bulk material 20, in particular cement clinker.
  • the cooler 10 is preferably downstream of a Fig.1 not shown furnace, in particular rotary kiln, for burning cement clinker, so that hot bulk material 20 emerging from the furnace falls onto the cooler 10, for example due to gravity.
  • the cooler 10 has a material inlet 18 for admitting hot bulk material 20 into the cooler 10.
  • the material inlet 18 is, for example, the area between the furnace outlet and the ventilation floor of the cooler 10, wherein the bulk material 20 preferably falls through the material inlet 18 due to gravity.
  • the bulk material 20 to be cooled has, for example, a temperature of 1200 to 1450°C in the material inlet 18.
  • the cooler 10 has a ventilation floor 12, which serves to accommodate the bulk material 20 to be cooled.
  • the ventilation floor 12 comprises a plurality of conveyor planks 14, which are arranged next to one another and together form the ventilation floor 12, on which the bulk material 20 to be cooled rests.
  • the conveyor planks 14 extend in the conveying direction F, for example, over the entire length of the cooler 10.
  • the ventilation floor 12, in particular each of the conveyor planks 14, has a plurality of cooling air passages or is designed, for example, as a grate, so that cooling air can flow from below the ventilation floor 12 through it and the bulk material 20 lying on it.
  • Below the ventilation floor for example, two fans 22, 24 are arranged for supplying the bulk material 20 with cooling air.
  • the cooler 10 also has a housing 26 for separating the cooling space inside the cooler 10 from the ambient air.
  • a recuperation air outlet 28 is arranged, through which cooling air heated in the cooler 10 leaves the cooler 10 and is fed, for example, to the upstream furnace, preheater or calciner.
  • the cooler 10 has a material outlet 30 through which the cooled bulk material 20 leaves the cooler 10.
  • the cooler of the Fig.1 can additionally have a static grate which is arranged upstream of the ventilation floor and in particular forms the inlet area of the cooler, which is first hit by the bulk material to be cooled emerging from the furnace.
  • the static grate is, for example, a grate set at an angle to the horizontal of 10° to 35°, preferably 12° to 33°, in particular 13° to 21°, through which cooling air flows from below.
  • FIG.2 A section of the cooler is shown.
  • the Fig.2 a detailed view of a seal 16 between two adjacent conveyor planks 14, wherein two adjacent conveyor planks 14 are at least partially shown.
  • the two adjacent conveyor planks 14 are mounted in such a way that they can be moved relative to one another in the conveying direction F and against the conveying direction F.
  • a gap 32 is formed between the adjacent conveyor planks 14, through which the bulk material 20 lying on the upper side of the conveyor planks 14 can fall, in particular when the bulk material is being conveyed and the conveyor planks 14 are moving relative to one another.
  • Conveying elements 42, 44 are attached to the upper side of each of the conveyor planks 14, for example, which preferably run transversely to the conveying direction F and simplify the transport of the bulk material 20 in the conveying direction.
  • the cooler 10 has a seal 16 which is arranged between two adjacent conveyor planks 14.
  • the seal comprises, for example, two sealing elements 34, 36.
  • Each of the sealing elements 34, 36 is fastened to a respective conveyor plank 14.
  • the sealing elements 34, 36 are each screwed to the respective conveyor plank using screws 38, 40.
  • the sealing elements each have a sealing profile 46, 48, wherein the sealing profiles 46, 48 interact with one another in such a way that a preferably substantially uniformly wide sealing gap 50 is formed between them.
  • the seal 16 is, for example, a double labyrinth seal.
  • a labyrinth seal is a seal in which the sealing gap 50 has at least two angles of at least 90°. This significantly increases the flow path of the bulk material 20 to penetrate into the gap 32 between the adjacent conveyor planks 14.
  • one of the sealing profiles 46 is designed as a U-profile and has in particular two parallel and spaced apart webs.
  • the webs extend, for example, in a vertical direction and are preferably of the same length.
  • the other Sealing profile 48 is designed, for example, as a double U-profile and in particular has three parallel webs, each of which is spaced apart from one another and preferably has the same length.
  • the middle web is designed to be shorter than the two outer webs.
  • the two outer webs of the sealing profile 48 designed as a double U-profile enclose the webs of the sealing profile 46 interacting with it, at least partially or completely.
  • a chamber 52 is formed within the seal 16 in which material that has penetrated into the sealing gap 50 collects.
  • the chamber 52 is formed, for example, between two webs of a respective sealing profile 46, 48.
  • the chamber 52 is an extension of the sealing gap 50 and is preferably arranged in the middle of the seal 16.
  • the chamber 52 is arranged, for example, between the two webs of the sealing profile 46 designed as a simple U-profile and is preferably limited at the top by the middle web of the sealing profile 48 designed as a double U-profile.
  • the chamber 52 preferably extends over the entire length of the seal 16.
  • the chamber 52 is connected to a compressed air generating device 54, which for reasons of clarity is shown in Fig.2 is only indicated schematically.
  • the compressed air generating device 54 serves to supply the chamber 52 with compressed air, whereby the compressed air generating device 54 is, for example, a fan.
  • the chamber 52 preferably has an outlet for discharging bulk material from the chamber 52, so that the bulk material can be blown out of the chamber 52 by means of the compressed air generating device 54.
  • the chamber 52 preferably forms a low point of the sealing gap 50.
  • the compressed air generation device 54 can alternatively be formed by one of the fans 22, 24, so that the chamber 52 is supplied with compressed air via the cooling air below the ventilation floor 12. In this case, there is a natural, unforced, air flow in the chamber 52.
  • the seal 16 has, for example, a plurality of sealing segments arranged one behind the other in the conveying direction F, which are not shown in the figures. Adjacent sealing segments are preferably connected to one another and together form the seal 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)

Description

  • Die Erfindung betrifft einen Kühler zum Kühlen von Schüttgut, wobei der Kühler eine Dichtung zur Abdichtung des Spalts zwischen den bewegbaren Förderplanken aufweist. Kühler zum Kühlen von Schüttgut werden beispielsweise in Zementwerken zur Kühlung des in einem Ofen gebrannten Klinkers eingesetzt. Der Kühler weist üblicherweise eine Fördereinheit zum Transport des Materials entlang einer mit Kühlluft durchströmbaren Auflagefläche auf. Vorzugsweise werden zum Transport des Materials Förderplanken verwendet, die nebeneinander angeordnet einen Belüftungsboden ausbilden, auf dem das zu kühlende Material aufliegt. Zum Transport werden die Förderplanken beispielsweise gleichzeitig in Förderrichtung uns ungleichzeitig entgegen der Förderrichtung bewegt, wodurch ein Transport des Materials in Förderrichtung erfolgt. Bei der Relativbewegung der einzelnen benachbarten Förderplanken kommt es zu einem Materialdurchfall durch den zwischen den Förderplanken ausgebildeten Spalt. Aus dem Stand der Technik ist es bekannt, diesen Spalt mittels einer Dichtung abzudichten. Die DE 20 2006 012 333 U1 zeigt eine Dichtung für einen nach dem "walking-floor-Prinzip" arbeitendem Kühler, wobei sich zwei Dichtungssegmente einfach überlappen. Ein Eintreten von Material in den Spalt zwischen den Förderplanken wird dadurch nicht vollständig verhindert. Weitere Dichtungsanordnungen werden in der DE 20 2004 020573 U1 und der DE 10 2004 060207 A1 beschrieben.
  • Davon ausgehend ist es Aufgabe der vorliegenden Erfindung, einen Kühler zum Kühlen vor Schüttgut bereitzustellen, der eine Dichtung zum Abdichten eines Spalts zwischen zwei Förderplanken aufweist, die zuverlässig einen Materialdurchfall durch den Spalt verhindert.
  • Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung mit den Merkmalen des unabhängigen Vorrichtungsanspruchs 1 und durch ein Verfahren mit den Merkmalen des unabhängigen Verfahrensanspruchs 10 gelöst. Vorteilhafte Weiterbildungen ergeben sich aus den abhängigen Ansprüchen.
  • Eine Kühler zum Kühlen von Schüttgut, insbesondere Zementklinker, umfasst nach einem ersten Aspekt einen von Kühlgas durchströmbaren Belüftungsboden zur Aufnahme von Schüttgut und zum Transport des Schüttguts in Förderrichtung. Der Belüftungsboden umfasst eine Mehrzahl von Förderplanken die in Förderrichtung und entgegen der Förderrichtung bewegbar angebracht sind, wobei zwischen zwei benachbarten Förderplanken jeweils eine Dichtung angebracht ist, die zumindest zwei relativ zueinander bewegbar angebrachte Dichtelemente aufweist. Die Dichtelemente weisen jeweils ein Dichtprofil auf, wobei die Dichtprofile derart miteinander zusammenwirken, dass zwischen ihnen ein Dichtspalt ausgebildet ist. Der Dichtspalt weist ein zumindest doppeltes oder mehrfaches U-Profil auf. Es ist ebenfalls denkbar, dass der Dichtspalt ein dreifaches oder vierfaches U-Profil aufweist. Vorzugsweise sind die Dichtelemente derart ausgebildet und zueinander angeordnet, dass der zwischen diesen ausgebildete Dichtspalt ein zumindest doppeltes oder mehrfaches U-Profil aufweist.
  • Der Dichtspalt ist zwischen den Dichtelementen der Dichtung ausgebildet und stellt den Weg dar, den das Material zurücklegen muss, um durch die Dichtung in den Spalt zwischen zwei benachbarten Förderplanken zu gelangen. Ein doppeltes U-Profil weist mindestens sechs Richtungsänderungen innerhalb des Dichtspalts auf, die das Material überwinden muss, um die Dichtung vollständig zu durchlaufen. Die Dichtung verhindert daher zuverlässig, dass Schüttgut durch den zwischen zwei benachbarten Förderplanken ausgebildeten Spalt fällt. Ein doppeltes U-Profil kann beispielsweise auch als M-Profil bezeichnet werden. Die Erfindung bietet den Vorteil, dass sich innerhalb der Dichtung kein Material anstaut und eine Relativbewegung der Dichtungselemente zuverlässig gewährleistet ist.
  • Vorzugsweise überlappen sich die Dichtprofile der jeweiligen Dichtelemente zumindest zweimal. Der Dichtspalt weist zumindest sechs, insbesondere sieben oder acht, Winkel von etwa 80° bis 100°, vorzugsweise 90°, auf.
  • Der Kühler ist insbesondere Teil einer Zementherstellungsanlage mit einem Vorwärmer zum Vorwärmen von Rohmehl im Querstrom und einem Ofen zum Brennen des vorgewärmten Rohmehls zu Klinker. Der Kühler ist vorzugsweise dem Ofen direkt nachgeschaltet, sodass der gebrannte Klinker beispielsweise schwerkraftbedingt in den Kühler fällt. An den Materialeinlass des Kühlers schließt sich beispielsweise der Kühlereinlaufbereich an und weist beispielsweise einen statischen Rost auf, der unterhalb des Ofenauslaufs angeordnet ist, sodass das aus dem Ofen austretende Schüttgut schwerkraftbedingt auf den statischen Rost fällt. Bei dem statischen Rost handelt es sich beispielsweise um ein in einem Winkel zur Horizontalen von 10° bis 35°, vorzugsweise 12° bis 33°, insbesondere 13° bis 21° angestellten Rost, der von unten mit Kühlluft durchströmt wird.
  • Der Kühler weist einen sich beispielsweise an den statischen Rost anschließenden Belüftungsboden auf, der von einer Mehrzahl von parallelen, nebeneinander angeordneten Förderplanken gebildet wird. Der Belüftungsboden nimmt das zu kühlende Schüttgut auf und weist vorzugsweise eine Mehrzahl von Kühlluftdurchlässen auf, sodass der Belüftungsboden von unten mit Kühlluft durchströmbar ist. Das auf dem Belüftungsboden aufliegende Material wird im Querstrom gekühlt und dabei in Förderrichtung des Kühlers bewegt. Die Förderplanken sind relativ zueinander in Förderrichtung bewegbar angebracht. Bei der Förderrichtung handelt es sich insbesondere um die Längsrichtung des Kühlers, insbesondere im Wesentlichen horizontal. Zur Förderung des Schüttguts in Förderrichtung werden die Förderplanken insbesondere alle gemeinsam gleichzeitig in Förderrichtung und ungleichzeitig entgegen der Förderrichtung bewegt. Das auf den Förderplanken aufliegende Material wird bei einer gleichzeitigen Bewegung der Förderplanken in Förderrichtung ebenfalls in Förderrichtung bewegt. Bei der ungleichzeitigen Bewegung entgegen der Förderrichtung verbleibt das Material größtenteils an seiner Position da lediglich einzelne Förderplanken unterhalb des Materials bewegt werden. Dieser Prozess wird mehrmals wiederholt bis das gekühlte Material den Kühlerauslass erreicht hat.
  • Zwischen zwei benachbarten Förderplanken ist eine Dichtung angebracht. Zusätzlich ist vorzugsweise zwischen den äußeren Förderplanken und der feststehenden Kühlennrand ebenfalls jeweils eine Dichtung angebracht, um den jeweiligen Spalt zwischen der Förderplanke und der Kühlerwand abzudichten.
  • Gemäß einer ersten Ausführungsform ist ein Dichtprofil als U-Profil ausgebildet. Vorzugsweise ist zumindest ein Dichtprofil als einfaches U-Profil ausgebildet und weist insbesondere genau ein U-Profil auf. Das U-Profil ist vorzugsweise aus zwei parallelen Stegen und einem zu diesen orthogonalen Steg ausgebildet, wobei der orthogonale Steg die beiden parallelen Stege miteinander verbindet. Die parallelen Stege des Dichtprofils sind vorzugsweise vertikal ausgerichtet.
  • Gemäß einer weiteren Ausführungsform ist zumindest eines der Dichtprofile als doppeltes U-Profil ausgebildet. Vorzugsweise weist das Dichtelement ein Dichtprofil auf, dass genau zwei U-Profile aufweist, wobei ein U-Profil dem voran beschriebenen entspricht. Das Dichtprofi weist insbesondere drei parallele Stege auf, die jeweils zueinander beabstandet sind und vorzugsweise die gleiche Länge aufweisen. Beispielsweise weisen lediglich die äußeren Stege die gleiche Länge auf, wobei der innere, mittlere Steg kürzer ausgebildet ist als die äußeren Stege.
  • Beispielsweise umfasst die Dichtung ein erstes Dichtelement mit einem als einfaches U-Profil ausgebildetem Dichtprofil und ein zweites Dichtelement mit einem als doppeltes U-Profil ausgebildetem Dichtprofil. Das erste Dichtelement ist vorzugsweise unterhalb des zweiten Dichtelements ausgebildet. Insbesondere umschließt das zweite Dichtelement das erste Dichtelement, sodass die Oberfläche, auf der das Schüttgut liegt, lediglich von dem zweiten Dichtelement gebildet wird. Das erste und das zweite Dichtelement werden vorzugsweise derart relativ zueinander angeordnet, dass sich zwischen ihnen der Dichtspalt mit dem doppelten U-Profil ausbildet. Insbesondere sind die Dichtelemente berührungsfrei zueinander angeordnet.
  • Gemäß einer weiteren Ausführungsform sind die Dichtelemente einer Dichtung jeweils an zueinander benachbarten Förderplanken angebracht. Es ist ebenfalls denkbar, dass die Dichtung mehr als zwei Dichtelemente aufweist, wobei vorzugsweise an jeder Förderplanke zumindest ein oder eine Mehrzahl von Dichtelementen einer Dichtung angebracht sind.
  • Gemäß einer weiteren Ausführungsform weist die Dichtung eine Kammer zum Sammeln von in den Dichtspalt eingetretenes Schüttgut auf und wobei die Kammer zwischen den zumindest zwei Dichtprofilen einer Dichtung ausgebildet ist. Insbesondere ist die Kammer eine Erweiterung des Dichtspalts und vorzugsweise in der Mitte der Dichtung angeordnet. Die Kammer ist vorzugsweise zwischen den beiden U-Profilen innerhalb des Dichtspalts ausgebildet. Dies bietet den Vorteil, dass Material, das durch eines der U-Profile des Dichtspalts gelangt ist, in einer Kammer gesammelt wird, sodass es aus dieser entfernbar ist, bevor es den Dichtspalt weiter durchläuft.
  • Die Kammer ist beispielsweise zwischen den beiden Stegen, des als einfaches U-Profil ausgebildeten Dichtprofils angeordnet und wird vorzugsweise nach oben von dem mittleren Steg des als doppeltes U-Profil ausgebildeten Dichtprofils begrenzt. Die Kammer bildet vorzugsweise einen Tiefpunkt des Dichtspalts aus, sodass in der Kammer gesammeltes Material entgegen der Schwerkraft bewegt werden müsste, um aus der Kammer zu gelangen.
  • Gemäß einer weiteren Ausführungsform weist die Dichtung eine Drucklufterzeugungseinrichtung auf, die mit der Kammer zur Beaufschlagung der Kammer mit Druckluft in Verbindung steht. Bei der Drucklufterzeugungseinrichtung handelt es sich beispielsweise um einen Ventilator. Beispielsweise ist die als Ventilator ausgebildete Drucklufterzeugungseinrichtung unterhalb des Belüftungsbodens angebracht und dient insbesondere zusätzlich zur Erzeugung von durch das Schüttgut strömenden Kühlluft. Vorzugsweise weist die Kammer einen Auslass zum Auslassen von Schüttgut aus der Kammer auf, sodass das Schüttgut mittels der Drucklufterzeugungseinrichtung aus der Kammer ausgeblasen werden kann. Die Drucklufterzeugungseinrichtung ist vorzugsweise derart ausgebildet, dass sie Druckluft erzeugt, die geeignet ist, Schüttgut aus der Kammer in Richtung eines Auslasses zu befördern.
  • Gemäß einer weiteren Ausführungsform ist die Drucklufterzeugungseinrichtung derart ausgebildet, dass sie die Kammer in Förderrichtung mit Druckluft beaufschlagt. Dies ermöglicht einen einfachen Transport des in der Kammer gesammelten Schüttguts, wobei ein zurückblasen des Schüttguts in den Dichtspalt zuverlässig vermieden wird. Gemäß einer weiteren Ausführungsform umfasst die Dichtung eine Mehrzahl von Dichtungssegmenten, die Förderrichtung hintereinander angeordnet und miteinander verbunden sind. Vorzugsweise sind die Dichtungssegmente identisch ausgebildet, sodass ein einfacher Austausch beispielsweise in einem Verschleißfall möglich ist.
  • Gemäß einer weiteren Ausführungsform erstreckt sich die Dichtung in Förderrichtung über die gesamte Länge der Förderelemente. Die Dichtelemente sind beispielsweise aus unterschiedlichen Werkstoffen ausgebildet.
  • Beschreibung der Zeichnungen
  • Die Erfindung ist nachfolgend anhand mehrerer Ausführungsbeispiele mit Bezug auf die beiliegenden Figuren näher erläutert.
  • Fig. 1
    zeigt eine schematische Darstellung eines Kühlers zum Kühen von Schüttgut in einer Längsschnittsansicht gemäß einer Ausführungsform.
    Fig. 2
    zeigt eine schematische Darstellung eines Ausschnitts eines Belüftungsbodens eines Kühlers mit einer Dichtung in einer Querschnittsansicht gemäß einem Ausführungsbeispiel.
  • Fig. 1 zeigt einen Kühler 10 zum Kühlen von heißem Schüttgut 20, insbesondere Zementklinker. Der Kühler 10 ist vorzugsweise stromabwärts eines in Fig. 1 nicht dargestellten Ofens, insbesondere Drehrohrofens, zum Brennen von Zementklinker angeordnet, sodass aus dem Ofen austretendes heißes Schüttgut 20 beispielsweise schwerkraftbedingt auf den Kühler 10 fällt.
  • Der Kühler 10 weist einen Materialeinlass 18 zum Einlassen von heißem Schüttgut 20 in den Kühler 10 auf. Bei dem Materialeinlass 18 handelt es sich beispielsweise um den Bereich zwischen dem Ofenauslass und dem Belüftungsboden des Kühlers 10, wobei das Schüttgut 20 vorzugsweise schwerkraftbedingt durch den Materialeinlass 18 fällt. Das zu kühlende Schüttgut 20 weist in dem Materialeinlass 18 beispielsweise eine Temperatur von 1200 bis 1450°C auf.
  • Der Kühler 10 weist einen Belüftungsboden 12 auf, der zur Aufnahme des zu kühlenden Schüttguts 20 dient. Der Belüftungsboden 12 umfasst eine Mehrzahl von Förderplanken 14, die nebeneinander angeordnet sind und zusammen den Belüftungsboden 12 ausbilden, auf dem das zu kühlende Schüttgut 20 aufliegt. Die Förderplanken 14 erstrecken sich in Förderrichtung F beispielhaft über die gesamte Länge des Kühlers 10. Der Belüftungsboden 12, insbesondere jede der Förderplanken 14, weist eine Mehrzahl von Kühlluftdurchlässen auf oder ist beispielsweise als Rost ausgebildet, sodass Kühlluft von unterhalb des Belüftungsbodens 12 durch diesen und das darauf liegende Schüttgut 20 strömbar ist. Unterhalb des Belüftungsbodens sind beispielhaft zwei Ventilatoren 22, 24 zur Beaufschlagung des Schüttguts 20 mit Kühlluft angeordnet. Der Kühler 10 weist des Weiteren ein Gehäuse 26 zur Abgrenzung des Kühlraums innerhalb des Kühlers 10 gegen die Umgebungsluft auf. In dem Gehäuse 26 ist beispielhaft ein Rekuperationsluftauslass 28 angeordnet, durch welchen in dem Kühler 10 erwärmte Kühlluft den Kühler 10 verlässt und beispielsweise dem vorgeschalteten Ofen, Vorwärmer oder Kalzinator zugeführt wird. Der Kühler 10 weist einen Materialauslass 30 auf, durch welchen das gekühlte Schüttgut 20 den Kühler 10 verlässt.
  • Innerhalb des Kühlers 10 wird das zu kühlende Schüttgut 20 in Förderrichtung F bewegt. Die Förderplanken 14 sind in Förderrichtung F und entgegen der Förderrichtung F bewegbar innerhalb des Kühlers 10 angebracht. Vorzugsweise sind die Förderplanken 14 nach dem "walking-floor-Prinzip" bewegbar, wobei die Förderplanken 14 alle gleichzeitig in Förderrichtung F und ungleichzeitig entgegen der Förderrichtung F bewegt werden. Der Kühler der Fig. 1 kann zusätzlich einen statischen Rost aufweisen, der dem Belüftungsboden vorgeschaltet ist und insbesondere den Einlaufbereich des Kühlers ausbildet, auf den das aus dem Ofen austretende zu kühlende Schüttgut zuerst auftrifft. Bei dem statischen Rost handelt es sich beispielsweise um ein in einem Winkel zur Horizontalen von 10° bis 35°, vorzugsweise 12° bis 33°, insbesondere 13° bis 21 ° angestellten Rost, der von unten mit Kühlluft durchströmt wird.
  • In Fig. 2 ist ein Ausschnitt des Kühlers dargestellt. Insbesondere zeigt die Fig. 2 eine Detailansicht einer Dichtung 16 zwischen zwei benachbarten Förderplanken 14, wobei zwei benachbarte Förderplanken 14 zumindest teilweise dargestellt sind.
  • Die beiden benachbarten Förderplanken 14 sind derart angebracht, dass sie relativ zueinander in Förderrichtung F und entgegen der Förderrichtung F bewegbar sind. Zwischen den benachbarten Förderplanken 14 ist ein Spalt 32 ausgebildet, durch welchen das auf der Oberseite der Förderplanken 14 liegende Schüttgut 20 durchfallen kann, insbesondere wenn das Schüttgut gefördert wird und die Förderplanken 14 sich relativ zueinander bewegen. An der Oberseite jeder der Förderplanke 14 sind beispielhaft Förderelemente 42, 44 angebracht, die vorzugsweise quer zur Förderrichtung F verlaufen und den Transport des Schüttguts 20 in Förderrichtung vereinfachen.
  • Des Weiteren weist der Kühler 10 eine Dichtung 16 auf, die zwischen zwei benachbarten Förderplanken 14 angeordnet ist. Die Dichtung umfasst beispielhaft zwei Dichtungselemente 34, 36. Jedes der Dichtungselemente 34, 36 ist jeweils an einer jeweiligen Förderplanke 14 befestigt. Beispielhaft sind die Dichtungselemente 34, 36 jeweils mit der jeweiligen Förderplanke über Schrauben 38, 40 verschraubt. Die Dichtungselemente weisen jeweils ein Dichtprofil 46, 48 auf, wobei die Dichtprofile 46, 48 miteinander derart zusammenwirken, dass zwischen ihnen ein vorzugsweise im Wesentlichen gleichmäßig breiter Dichtspalt 50 ausgebildet ist.
  • Bei der Dichtung 16 handelt es sich beispielhaft um eine Doppellabyrinth-Dichtung. Unter einer Labyrinth-Dichtung ist eine Dichtung zu verstehen, bei welcher der Dichtspalt 50 zumindest zwei Winkel von mindestens 90° aufweist. Dadurch wird der Strömungsweg des Schüttguts 20 zum Eindringen in den Spalt 32 zwischen den benachbarten Förderplanken 14 signifikant erhöht.
  • Beispielhaft ist eines der Dichtprofil 46 als U-Profi ausgebildet und weist insbesondere zwei parallele und zueinander beabstandete Stege auf. Die Stege erstrecken sich beispielsweise in vertikaler Richtung und sind vorzugsweise gleich lang. Das andere Dichtprofil 48 ist beispielhaft als doppeltes U-Profil ausgebildet und weist insbesondere drei parallele Stege auf, die jeweils zueinander beabstandet sind und vorzugsweise die gleiche Länge aufweisen. Insbesondere ist der mittlere Steg kürzer als die beiden äußeren Stege ausgebildet. Vorzugsweise umschließen die beiden äußeren Stege der als doppeltes U-Profil ausgebildeten Dichtprofils 48 die Stege des mit diesem zusammenwirkenden Dichtprofils 46 zumindest teilweise oder vollständig.
  • Innerhalb der Dichtung 16 ist beispielhaft eine Kammer 52 ausgebildet, in der sich in den Dichtspalt 50 eingedrungenes Material sammelt. Die Kammer 52 ist beispielsweise jeweils zwischen zwei Stegen eines jeweiligen Dichtprofils 46, 48 ausgebildet. Insbesondere ist die Kammer 52 eine Erweiterung des Dichtspalts 50 und vorzugsweise in der Mitte der Dichtung 16 angeordnet.
  • Die Kammer 52 ist beispielsweise zwischen den beiden Stegen, des als einfaches U-Profil ausgebildete Dichtprofil 46 angeordnet und wird vorzugsweise nach oben von dem mittleren Steg des als doppeltes U-Profil ausgebildeten Dichtprofils 48 begrenzt.
  • Die Kammer 52 erstreckt sich vorzugsweise über die gesamte Länge der Dichtung 16. Insbesondere ist die Kammer 52 mit einer Drucklufterzeugungseinrichtung 54 verbunden, die aus Gründen der Übersichtlichkeit in Fig. 2 lediglich schematisch angedeutet ist. Die Drucklufterzeugungseinrichtung 54 dient der Beaufschlagung der Kammer 52 mit Druckluft, wobei es sich bei der Drucklufterzeugungseinrichtung 54 beispielsweise um einen Ventilator handelt. Vorzugsweise weist die Kammer 52 einen Auslass zum Auslassen von Schüttgut aus der Kammer 52 auf, sodass das Schüttgut mittels der Drucklufterzeugungseinrichtung 54 aus der Kammer 52 ausgeblasen werden kann. Die Kammer 52 bildet vorzugsweise einen Tiefpunkt des Dichtspalts 50 aus.
  • Die Drucklufterzeugungseinrichtung 54 kann alternativ durch einen der Ventilatoren 22, 24 ausgebildet sein, sodass die Kammer 52 über die Kühlluft unterhalb des Belüftungsbodens 12 mit Druckluft beaufschlagt wird. In diesem Fall handelt es sich dann um eine natürliche, nicht erzwungene, Luftströmung in der Kammer 52.
  • Die Dichtung 16 weist beispielsweise eine Mehrzahl von in Förderrichtung F hintereinander angeordneten Dichtungssegmenten auf, die in den Figuren nicht dargestellt sind. Jeweils benachbarte Dichtungssegmente sind vorzugsweise miteinander verbunden und bildet zusammen die Dichtung 16 aus.
  • Bezugszeichenliste
  • 10
    Kühler
    12
    Belüftungsboden
    14
    Förderplanke
    16
    Dichtung
    18
    Materialeinlass
    20
    Schüttgut
    22
    Ventilator
    24
    Ventilator
    26
    Gehäuse
    28
    Rekuperationsluftauslass
    30
    Materialauslass
    32
    Spalt
    34
    Dichtungselement
    36
    Dichtungselement
    38
    Schraube
    40
    Schraube
    42
    Förderelement
    44
    Förderelement
    46
    Dichtprofil
    48
    Dichtprofil
    50
    Dichtspalt
    52
    Kammer
    54
    Drucklufterzeugungseinrichtung
    F
    Förderrichtung

Claims (9)

  1. Kühler (10) zum Kühlen von Schüttgut, insbesondere Zementklinker, aufweisend einen von Kühlgas durchströmbaren Belüftungsboden (12) zur Aufnahme von Schüttgut und zum Transport des Schüttguts in Förderrichtung (F),
    wobei der Belüftungsboden (12) eine Mehrzahl von Förderplanken (14) umfasst, die in Förderrichtung (F) und entgegen der Förderrichtung (F) bewegbar angebracht sind,
    wobei zwischen zwei benachbarten Förderplanken (14) eine Dichtung (16) angebracht ist, die zumindest zwei relativ zueinander bewegbar angebrachte Dichtelemente (34, 36) aufweist, und
    wobei die Dichtelemente (34, 36) jeweils ein Dichtprofil (46, 48) aufweisen, die derart miteinander zusammenwirken, dass zwischen ihnen ein Dichtspalt (50) ausgebildet ist,
    dadurch gekennzeichnet, dass
    der Dichtspalt ein doppeltes oder mehrfaches U-Profil aufweist.
  2. Kühler (10) nach Anspruch 1, wobei eines der Dichtprofile (46, 48) als U-Profil ausgebildet ist.
  3. Kühler (10) nach einem der vorangehenden Ansprüchen, wobei eines der Dichtprofile (46, 48) als doppeltes U-Profil ausgebildet ist.
  4. Kühler nach einem der vorangehenden Ansprüchen, wobei die Dichtelemente (34, 36) jeweils an zueinander benachbarten Förderplanken (14) angebracht sind.
  5. Kühler (10) nach einem der vorangehenden Ansprüche, wobei die Dichtung (16) eine Kammer (52) zum Sammeln von in den Dichtspalt (50) eingetretenes Schüttgut aufweist und wobei die Kammer (52) zwischen den zumindest zwei Dichtprofilen (46, 48) ausgebildet ist.
  6. Kühler (10) nach Anspruch 5, wobei die Dichtung (16) eine Drucklufterzeugungseinrichtung (54) aufweist, die mit der Kammer (52) zur Beaufschlagung der Kammer (52) mit Druckluft in Verbindung steht.
  7. Kühler (10) nach Anspruch 6, wobei die Drucklufterzeugungseinrichtung (54) derart ausgebildet ist, dass sie die Kammer (52) in Förderrichtung (F) mit Druckluft beaufschlagt.
  8. Kühler (10) nach einem der vorangehenden Ansprüche, wobei die Dichtung (16) eine Mehrzahl von Dichtungssegmenten umfasst, die in Förderrichtung (F) hintereinander angeordnet und miteinander verbunden sind.
  9. Kühler (10) nach einem der vorangehenden Ansprüche, wobei sich die Dichtung (16) in Förderrichtung (F) über die gesamte Länge der Förderelemente (14) erstreckt.
EP21725194.1A 2020-06-02 2021-05-17 Kühler zum kühlen von schüttgut Active EP4158264B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102020206819.4A DE102020206819A1 (de) 2020-06-02 2020-06-02 Kühler zum Kühlen von Schüttgut
BE20205389A BE1028415B1 (de) 2020-06-02 2020-06-02 Kühler zum Kühlen von Schüttgut
PCT/EP2021/062924 WO2021244836A1 (de) 2020-06-02 2021-05-17 Kühler zum kühlen von schüttgut

Publications (3)

Publication Number Publication Date
EP4158264A1 EP4158264A1 (de) 2023-04-05
EP4158264B1 true EP4158264B1 (de) 2024-05-22
EP4158264C0 EP4158264C0 (de) 2024-05-22

Family

ID=75904958

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21725194.1A Active EP4158264B1 (de) 2020-06-02 2021-05-17 Kühler zum kühlen von schüttgut

Country Status (4)

Country Link
US (1) US20230243590A1 (de)
EP (1) EP4158264B1 (de)
CN (1) CN115917233A (de)
WO (1) WO2021244836A1 (de)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1509737B1 (de) * 2003-05-08 2008-01-09 Claudius Peters Technologies GmbH Verfahren zum Kühlen von schüttfähigem Brenngut
DE102004060207A1 (de) * 2004-12-14 2006-06-22 Polysius Ag Verfahren und Kühler zum Kühlen von stückigem Gut
DE202006012333U1 (de) 2006-08-10 2007-12-13 Claudius Peters Technologies Gmbh Kühler für Schüttgut mit einer Abdichteinrichtung zwischen benachbarten Förderplanken
DE102008003692A1 (de) * 2008-01-09 2009-07-30 Khd Humboldt Wedag Gmbh Dichtung für einen Rostkühler
CN202511636U (zh) * 2012-02-28 2012-10-31 中国中材国际工程股份有限公司 步进式篦冷机活动篦床的列间密封装置
DK3118555T3 (da) * 2015-07-17 2019-01-02 Peters Claudius Projects Gmbh Indretning til behandling, især til afkøling, af materiale i løs vægt med en gas
CN112146451A (zh) * 2020-08-05 2020-12-29 天津市明星恒能科技发展有限公司 一种篦冷机的密封结构

Also Published As

Publication number Publication date
WO2021244836A1 (de) 2021-12-09
CN115917233A (zh) 2023-04-04
EP4158264A1 (de) 2023-04-05
US20230243590A1 (en) 2023-08-03
EP4158264C0 (de) 2024-05-22

Similar Documents

Publication Publication Date Title
EP2516949B1 (de) Verfahren und vorrichtung zum trocknen von gipsplatten
EP2775241A2 (de) Vorrichtung zum Trocknen eines Werkstücks und Verfahren zum Betrieb einer derartigen Vorrichtung
DE202015106039U1 (de) Behandlungseinrichtung
EP1783448B1 (de) Anlage und Verfahren zur Herstellung von Zementklinker
EP4111118A1 (de) Vorrichtung und verfahren zum brennen und/oder kalzinieren von stückigem gut
EP2049858B1 (de) Kühler für schüttgut mit einer abdichteinrichtung zwischen benachbarten förderplanken
EP1430263A1 (de) Anlage zum trocknen von durchlaufenden gipskartonplatten
EP4158264B1 (de) Kühler zum kühlen von schüttgut
DE2856141C2 (de) Einrichtung zur trockenen Kokskühlung
BE1028415B1 (de) Kühler zum Kühlen von Schüttgut
EP2655271B1 (de) Vorrichtung zum vorwärmen von beschickungsgut für glasschmelzanlagen
DE202009017286U1 (de) Vorrichtung zum Trocknen von Gipsplatten
DE202006012333U1 (de) Kühler für Schüttgut mit einer Abdichteinrichtung zwischen benachbarten Förderplanken
DE102020206819A1 (de) Kühler zum Kühlen von Schüttgut
EP3887738A1 (de) Ofen mit einem schutzsegment am ofenauslauf
EP3118555B1 (de) Vorrichtung zum behandeln, insbesondere zum kühlen, von schüttgut mit einem gas
EP4006470A2 (de) Vorrichtung und verfahren zum trocknen eines werkstücks mit kaskadierender wärmezufuhr
WO2021074057A1 (de) Kühler und verfahren zum kühlen von schüttgut
EP3850288A1 (de) Kühler zum kühlen von klinker und verfahren zum betreiben eines kühlers zum kühlen von klinker
BE1028148B1 (de) Kühler zum Kühlen von Schüttgut, insbesondere Zementklinker
BE1027670B1 (de) Kühler zum Kühlen von Schüttgut
EP4118390B1 (de) Kühler zum kühlen von schüttgut, insbesondere zementklinker
DE2809927A1 (de) Schachtkuehler
DE102019114467A1 (de) Verfahren zur Entschwadung von Prozessabluft
EP2920277A1 (de) Mehretagenofen und verfahren zur thermischen behandlung eines stoffstroms

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP AG

Owner name: THYSSENKRUPP POLYSIUS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240129

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502021003802

Country of ref document: DE

Owner name: THYSSENKRUPP POLYSIUS GMBH, DE

Free format text: FORMER OWNER: ANMELDERANGABEN UNKLAR / UNVOLLSTAENDIG, 80297 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502021003802

Country of ref document: DE

Owner name: THYSSENKRUPP AG, DE

Free format text: FORMER OWNER: ANMELDERANGABEN UNKLAR / UNVOLLSTAENDIG, 80297 MUENCHEN, DE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021003802

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240528

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240606