EP4122071A1 - Verfahren zum betreiben eines lithium-akkumulators an einem auf bleiakkumulatoren ausgelegten bordnetz in einem unterseeboot - Google Patents

Verfahren zum betreiben eines lithium-akkumulators an einem auf bleiakkumulatoren ausgelegten bordnetz in einem unterseeboot

Info

Publication number
EP4122071A1
EP4122071A1 EP21711217.6A EP21711217A EP4122071A1 EP 4122071 A1 EP4122071 A1 EP 4122071A1 EP 21711217 A EP21711217 A EP 21711217A EP 4122071 A1 EP4122071 A1 EP 4122071A1
Authority
EP
European Patent Office
Prior art keywords
submarine
electrical system
voltage
voltage converter
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21711217.6A
Other languages
English (en)
French (fr)
Inventor
Jakob REICHENBÄCHER
Philip Frank
Boris Nagorny
Holger JEDTBERG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp AG
ThyssenKrupp Marine Systems GmbH
Original Assignee
ThyssenKrupp AG
ThyssenKrupp Marine Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp AG, ThyssenKrupp Marine Systems GmbH filed Critical ThyssenKrupp AG
Publication of EP4122071A1 publication Critical patent/EP4122071A1/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/268Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for dc systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/08Propulsion

Definitions

  • the invention relates to a DC / DC converter for a lithium battery, which can be used as a replacement for a lead-acid battery in a submarine, and wherein the lithium battery in the event of a short circuit behaves like a lead-acid battery due to the DC / DC converter and so the fuses that are on the Lead-acid batteries are designed to be able to trigger.
  • submarines are regularly equipped with lead-acid batteries. This is due, among other things, to the proven system, its availability as a certified component and the simple enlargement of the individual cell. As a result, the electrical systems of current submarines are designed for the lead-acid batteries used. This also applies, for example, to the fuses used in the submarines.
  • the use of rechargeable batteries based on lithium is currently being discussed increasingly, as these can have a higher energy density than comparable lead-acid batteries.
  • the new batteries are preferably designed in the form factor of the previous lead-acid batteries, making them easy to replace. Since the individual elementary cells in a lithium accumulator are significantly smaller than the individual elementary cells in a lead accumulator and due to the different voltages, lithium accumulators are often connected to the submarine's on-board network via DC voltage converters. Furthermore, lithium accumulators have a very low internal resistance and, due to the smaller cells, many are connected in parallel, so that very high short-circuit currents would occur in a lithium accumulator that is addressed directly. This problem can also be avoided by using a DC voltage converter and the resulting separation of the networks.
  • the DC voltage converter creates a galvanic separation between the lithium batteries and the on-board network. It has therefore turned out to be a problem that the fuses designed for lead-acid batteries with new lithium batteries no longer reliably trigger when a short circuit occurs, since the short-circuit currents necessary for triggering are regulated down by the DC voltage converter.
  • a DC voltage converter for lithium batteries is known from DE 10 2017 009 527 A1.
  • DE 10 2017 002 113 A1 discloses a submarine and a method for operating a drive system of a submarine.
  • a method and a device for supplying energy to a low-voltage load are known from DE 10 2015 105 476 A1.
  • a power supply device and a method for limiting an input current of a power supply device are known from DE 10 2013 113 648 A1.
  • DE 10 2005 031 833 A1 discloses a method and an electronic power supply device for supplying energy to a low-voltage load secured by a protective device.
  • DE 10 2015 016 000 A1 discloses a switching arrangement for a motor vehicle and a method for discharging Y capacitances in vehicles with a high-voltage electrical system.
  • a device and a method for monitoring a switch of a battery as well as a battery module, a battery, a battery system, a vehicle, a computer program and a computer program product are known.
  • a vehicle with a fuel cell or battery-powered energy supply network is known.
  • the object of the invention is to enable a submarine to be converted from lead-acid batteries to lithium batteries without having to convert the entire on-board network.
  • the method according to the invention is used to operate a DC voltage converter on board a submarine.
  • the DC / DC converter is arranged between at least one first lithium battery and a first on-board network of the submarine, the method comprising the following steps: a) measuring the voltage applied to the on-board network, b) measuring the current flowing into the on-board network, c) detecting a potential Short circuit in the vehicle electrical system due to the voltage measured in step a) and the current measured in step b), d) temporary increase in the current output up to a maximum current for the detected voltage in the vehicle electrical system.
  • the method according to the invention thus balances the risks.
  • An increase in the maximum current represents an increased risk for the consumers connected to the on-board network and also increases, for example, the risk of fire due to the greater amount of heat released in a short circuit.
  • the fuse should respond selectively to the short circuit and only remove the consumer affected by the short circuit from the network.
  • other consumers remain unaffected and can continue to be used to the full, for example to at least to be able to surface the submarine.
  • the procedure thus serves to weigh up interests and accepts an increase in the risk for a short time in order to be able to continue operating all other systems.
  • Such a consideration is of considerable importance on board a submarine due to the risk to the crew if the technical systems fail and distinguishes the application in a submarine from all other applications, for example in motor vehicles.
  • the on-board network of the submarine is preferably designed for connection to a lead-acid battery.
  • a lead-acid battery in the submarine was particularly preferably exchanged for a lithium battery.
  • the DC voltage converter also known as the DC chopper or DC-DC converter, electrically connects the lithium battery with the on-board network.
  • the electrical circuit arrangement of a DC voltage converter is generally known and can be implemented in various circuit topologies known per se. It is essential for the invention that a topology is selected which leads to a galvanic separation of the battery from the vehicle electrical system. Examples of suitable topologies are flyback converters, single-ended flux converters, push-pull flux converters or resonance converters.
  • the direct current is first converted into alternating current, transformed and then converted back into direct current.
  • the DC voltage converter is preferably constructed symmetrically.
  • the voltage provided by the lithium battery is adapted to the voltage of the on-board network by the DC voltage converter.
  • An example of such a DC voltage converter is shown, for example, in DE 102017009527 A1 in FIG. 4 and the associated description.
  • the DC / DC converter shown in the example has two H-bridges with four MOSFETs each. For separation, all eight MOSFETs are preferably non-conductive.
  • two diagonally opposite MOSFETS are always conductive and the other two diagonally opposite non-conductive ones, with this circuit being constantly changed. This continuous circuit ensures the conversion of direct current into alternating current, which is then transformed and on the other side analogously converted back into direct current.
  • the symmetrical design allows current to flow in both directions in order to enable both charging and discharging of the first accumulator.
  • the measurement of the voltage applied to the vehicle electrical system in step a) and the measurement of the current flowing from the DC voltage converter into the vehicle electrical system in step b) can take place simultaneously or in any order. Both measurements are preferably carried out continuously. The measurements are preferably carried out directly at the connection of the DC voltage converter in the vehicle electrical system. However, they can also be carried out at a different point in the vehicle electrical system away from the DC / DC converter. The voltage and the current can also be measured at different points, for example the current can be measured directly at the connection of the DC voltage converter to the vehicle electrical system and the voltage can be measured at a remote point.
  • the voltage is measured at several points in the vehicle electrical system and fed to the controller, so that either a plurality of voltages or an average value is taken into account.
  • the active control of the DC voltage converter takes place in particular by means of the voltage measured in step a). If it is determined that at a very low voltage (first sign of a short circuit) a high current is flowing (second sign of a short circuit), this means that for a short, limited period of time in step d) the control of the DC / DC converter controls the maximum current flowing raises. The time limit is necessary to avoid permanent overloading of the cables and connectors with high short-circuit currents and the resulting damage.
  • the purpose of limiting the maximum current flowing is to prevent a corresponding load and, in extreme cases, thermal runaway of the lithium battery and to protect the components installed in the on-board network from the very high short-circuit currents of the lithium batteries. Due to the temporary increase, a sufficiently high current can be made available so that a fuse designed for a lead-acid battery can also respond in the event of a short circuit.
  • a potential short circuit in the vehicle electrical system is detected on the basis of the voltage measured in step a) and the current measured in step b).
  • the resistance of the on-board network can be determined continuously from current and voltage. For example, a rapid drop or fall below a threshold value can be used to detect a short circuit in the simplest case.
  • the speed and strength of the increase in the current flow must also be taken into account, with a shorter time being evaluated as an indicator of a short circuit for a steeper increase and accordingly having to take place over a longer period of time if the increase is less pronounced.
  • other methods known to the person skilled in the art for detecting a short circuit can also be used. It can also be taken into account that capacitive loads, for example power supplies, can also occur as very short-term voltage sources and thus lead to a flattening of the drop in the detected resistance.
  • the selective detection of the short circuit can take place via various characteristics of the current and the voltage.
  • the voltage can be measured and in the event of a rapid drop and depending on the depth of the dip, the control can initiate the method after various times have elapsed.
  • the change in the current and / or the voltage is recorded over time, so that a short circuit is quickly detected in the event of particularly strong changes that are outside normal load jumps.
  • control can be connected to other controls so that the charge status of all batteries connected to the on-board network, switching statuses and / or statuses of systems on board are recorded, so that it is recognized whether the change in voltage or current is due to the charge statuses of others Lithium batteries, switching operations on board or control interventions of other systems takes place. For example, this would prevent switching on a higher load level on the traction motor from being mistakenly recognized as a short circuit.
  • Lithium accumulator is to be understood broadly in the context of the invention.
  • a submarine for example, usually does not have a single accumulator, but one cascaded system of accumulators.
  • the energy store of a submarine usually consists of about 10 to 50 strings, each string being connected to the on-board network via a DC voltage converter.
  • a string is therefore usually to be equated with a lithium accumulator for the purposes of the invention.
  • Each string usually has about 4 to 10 modules and each module consists, for example, of 20 to 500 single-cell accumulators.
  • the limited increase in the maximum current in step d) takes place for a period of 100 ms to 2 s, preferably from 200 ms to 1 s, more preferably from 200 ms to 500 ms, particularly preferably from 200 ms to 400 ms.
  • a period of 100 ms to 2 s preferably from 200 ms to 1 s, more preferably from 200 ms to 500 ms, particularly preferably from 200 ms to 400 ms.
  • the maximum current is temporarily increased to 1.5 to 3 times the normal maximum current, preferably to 1.75 to 2.5 times the normal maximum current.
  • the temporary increase in the maximum current takes place for a period of 300 ms to twice the normal maximum current.
  • the invention relates to a submarine with an on-board network and at least one lithium battery.
  • the vehicle electrical system and the at least one lithium accumulator are connected via a galvanically isolating DC voltage converter, the DC voltage converter being designed to carry out the method according to the invention.
  • the hull of the submarine is used as electrical earth.
  • the submarine has a first resistance measuring device between the electrical system and the hull. This resistance measurement is common to determine insulation defects. If only one defect occurs, this is not critical, but can easily be determined by measuring the resistance and thus be remedied. If a second insulation defect occurs, a short circuit could occur across the hull.
  • a second resistance measuring device is arranged between the circuit between the lithium accumulator and the DC voltage converter and the hull. Due to the galvanic isolation by the DC voltage converter, a separate measurement must be made for each individual network. If several strings are connected to the vehicle electrical system via DC voltage converters, each network of a string has its own resistance measuring device. This enables insulation defects in the on-board network or in the line networks to be identified quickly and easily.
  • the submarine according to the invention is explained in more detail below with reference to an exemplary embodiment shown in the drawing.
  • FIG. 1 Schematic sketch of a submarine according to the invention
  • the submarine has a hull 10, which is usually made of metal and is therefore electrically conductive.
  • the submarine also has a first lithium battery 20 and a second lithium battery 22, which serve as energy stores.
  • the first lithium accumulator 20 is connected to the vehicle electrical system 60 via a first DC voltage converter 30, the second lithium accumulator 22 is connected to the vehicle electrical system 60 via a second DC voltage converter 32.
  • the first DC voltage converter 30 is controlled via a first control unit 40 and the second DC voltage converter 32 is controlled via a second control unit 42.
  • a first consumer 80 is connected to the vehicle electrical system 60 via a first fuse 70 and a second consumer 82 via a second fuse 72 separates the first consumer 80 from the vehicle electrical system 60.
  • the second consumer 82 can continue to be supplied with energy.
  • the first fuse 70 and the second fuse 72 are designed for their behavior in the event of a short circuit.
  • the lead batteries are replaced by lithium batteries 20, 22, so it is necessary to control the first DC voltage converter 30 via the first control unit and the second DC voltage converter 32 via the second control unit 42 in such a way that the first fuse 70 in the event of a Short circuit in the first consumer 80 still responds.
  • the voltage on the vehicle electrical system 60 drops, and a high current flows at the same time.
  • first control unit 40 and the second control unit 42 and the first DC voltage converter 30 and the second DC voltage converter 32 are then controlled for a period of 200 ms to 1 s, for example for a period of 500 ms, in such a way that a higher current is applied the vehicle electrical system 60 can be delivered.
  • the first fuse 70 can respond and disconnect the defective first consumer 80 from the vehicle electrical system 60.
  • the first lithium accumulator 20 consists of a string of 6 modules, each module consisting of 100 single-cell accumulators.
  • the second lithium accumulator 22 also consists of a string of 6 modules, each module consisting of 100 single-cell accumulators.
  • the submarine has three resistance measuring devices 50, 52, 90. About the first
  • Resistance measuring device 90 is used to detect insulation defects in on-board electrical system 60. Insulation defects in the networks of the accumulators cannot be detected via the first resistance measuring device 90, since the first DC voltage converter 30 and the second DC voltage converter 32 create a galvanic separation.
  • the network of the first lithium accumulator 20 therefore has a second resistance measuring device 50 and the network of the second lithium accumulator 22 has a third resistance measuring device 52.
  • first fuse On-board network, first fuse, second fuse, first consumer, second consumer, first resistance measuring device

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben eines Gleichspannungswandlers (30, 32) an Bord eines Unterseeboots, wobei der Gleichspannungswandler (30, 32) zwischen wenigstens einem ersten Lithium-Akkumulator (20) und einem ersten Bordnetz (60) des Unterseeboots angeordnet wird, wobei das Verfahren die folgenden Schritte aufweist: a) Messen der am Bordnetz (60) anliegenden Spannung, b) Messen des in das Bordnetz (60) fließenden Stromes, c) Detektieren eines potentiellen Kurzschlusses im Bordnetz (60) aufgrund geringer Spannung und hohen Stromes, d) befristetes Anheben des maximalen Stromes für die anliegende Spannung.

Description

Verfahren zum Betreiben eines Lithium-Akkumulators an einem auf Bleiakkumulatoren ausgelegten Bordnetz in einem Unterseeboot
Die Erfindung betrifft einen Gleichspannungswandler für einen Lithium-Akkumulator, welcher als Ersatz für einen Bleiakkumulator in einem Unterseeboot eingesetzt werden kann, und wobei der Lithium-Akkumulator im Falle eines Kurzschlusses sich durch den Gleichspannungswandler wie ein Bleiakkumulator verhält und so die Sicherungen, welche auf die Bleiakkumulatoren ausgelegt sind, auszulösen vermag.
Aktuell werden Unterseeboote regelmäßig mit Bleiakkumulatoren ausgestattet. Dieses liegt unter anderen an der Bewährtheit des Systems, der Verfügbarkeit als zertifiziertes Bauteil sowie der einfachen Vergrößerung der einzelnen Zelle. Im Ergebnis sind die elektrischen Systeme aktueller Unterseeboote auf die verwendeten Bleiakkumulatoren ausgelegt. Dieses betrifft auch beispielsweise die in den Unterseebooten verwendeten Sicherungen.
Aktuell wird zunehmend die Verwendung von Akkumulatoren auf Lithium-Basis diskutiert, da diese eine höhere Energiedichte aufweisen können als vergleichbare Bleiakkumulatoren. Um bestehende Unterseebooten nachrüsten zu können, werden die neuen Akkumulatoren vorzugsweise im Formfaktor der bisherigen Bleiakkumulatoren konstruiert, wodurch diese einfach austauschbar werden. Da die einzelnen Elementarzellen bei einem Lithium-Akkumulator deutlich kleiner sind als die einzelnen Elementarzellen bei einem Bleiakkumulator und aufgrund der unterschiedlichen Spannungen werden Lithium-Akkumulatoren oft strangweise über Gleichspannungswandler mit dem Bordnetz des Unterseebootes verbunden. Des Weiteren haben Lithium-Akkumulatoren einen sehr geringen Innenwiderstand und aufgrund der kleineren Zellen werden viele parallel geschaltet, sodass bei einem Lithium- Akkumulator, welcher direkt angesprochen wird, sehr hohe Kurzschlussströme auftreten würden. Dieses Problem kann ebenfalls durch einen Gleichspannungswandler und die dadurch erzeugte Trennung der Netze vermieden werden.
Durch die Gleichspannungswandler kommt es zu einer galvanischen Trennung zwischen Lithium-Akkumulatoren und dem Bordnetz. Es hat sich daher als Problem herausgestellt, dass die auf Bleiakkumulatoren ausgelegten Sicherungen mit neuen Lithium- Akkumulatoren nicht mehr zuverlässig auslösen, wenn ein Kurzschluss auftritt, da die zum Auslösen notwendigen Kurzschlussströme durch die Gleichspannungswandler herab geregelt werden.
Aus der DE 10 2017 009 527 A1 ist ein Gleichspannungswandler für Lithium- Akkumulatoren bekannt.
Aus der DE 10 2017 002 113 A1 ist ein Unterseeboot und ein Verfahren zum Betreiben eines Antriebssystems eines Unterseebootes bekannt.
Aus der DE 10 2015 105 476 A1 ist ein Verfahren und eine Vorrichtung zur Energieversorgung einer Niederspannungslast bekannt.
Aus der DE 10 2013 113 648 A1 ist eine Stromversorgungseinrichtung und ein Verfahren zum Begrenzen eines Eingangsstroms einer Stromversorgungseinrichtung bekannt.
Aus der DE 10 2005 031 833 A1 ist ein Verfahren und eine elektronische Stromversorgungsvorrichtung zur Energieversorgung einer durch eine Schutzeinrichtung gesicherten Niederspannungslast bekannt.
Aus der US 2014 / 0 117 759 A1 ist ein Verfahren und eine Vorrichtung für das Auslösen einer Sicherung bei einem Lastausgang mit mehreren Lasten bekannt.
Aus der DE 10 2015 016 000 A1 ist eine Schaltanordnung für ein Kraftfahrzeug und ein Verfahren zur Entladung von Y-Kapazitäten in Fahrzeugen mit Hochvoltbordnetz bekannt.
Aus der DE 10 2014 223 274 A1 ist eine Vorrichtung und ein Verfahren zur Überwachung eines Schalters einer Batterie sowie ein Batteriemodul, eine Batterie, ein Batteriesystem, ein Fahrzeug, ein Computerprogramm und ein Computerprogrammprodukt bekannt. Aus der DE 195 03 749 C1 ist ein Fahrzeug mit einem brennstoffzellen- oder batteriegespeisten Energieversorgungsnetzt bekannt.
Aus der US 2013 / 0 334 820 A1 ist eine Energieversorgungsvorrichtung für ein Fahrzeug bekannt.
Aufgabe der Erfindung ist es, die Umrüstung eines Unterseeboots von Bleiakkumulatoren auf Lithium-Akkumulatoren zu ermöglichen, ohne das gesamte Bordnetz umbauen zu müssen.
Gelöst wird diese Aufgabe durch das Verfahren mit den in Anspruch 1 angegebenen Merkmalen sowie durch das Unterseeboot mit den in Anspruch 3 angegebenen Merkmalen. Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung sowie der Zeichnung.
Das erfindungsgemäße Verfahren dient dem Betreiben eines Gleichspannungswandlers an Bord eines Unterseeboots. Der Gleichspannungswandler ist zwischen wenigstens einem ersten Lithium-Akkumulator und einem ersten Bordnetz des Unterseeboots angeordnet, wobei das Verfahren die folgenden Schritte aufweist: a) Messen der am Bordnetz anliegenden Spannung, b) Messen des in das Bordnetz fließenden Stromes, c) Detektieren eines potentiellen Kurzschlusses im Bordnetz aufgrund der in Schritt a) gemessenen Spannung und des in Schritt b) gemessenen Stromes, d) befristetes Anheben der Stromabgabe bis zu einem maximalen Strom für die detektierte Spannung im Bordnetz.
Das erfindungsgemäße Verfahren stellt damit eine Ausbalancierung der Risiken dar. Eine Erhöhung des maximalen Stromes stellt ein erhöhtes Risiko für die an das Bordnetz angeschlossenen Verbraucher dar und erhöht ebenso beispielsweise das Brandrisiko durch die an einem Kurzschluss größere freigesetzte Wärmemenge. Auf der anderen Seite soll hierdurch durch die Sicherung selektiv auf den Kurzschluss ansprechen und nur den vom Kurzschluss betroffenen Verbraucher vom Netz nehmen. Dadurch bleiben andere Verbraucher unberührt und können weiter voll genutzt werden, beispielsweise um das Unterseeboot wenigstens auftauchen zu können. Das Verfahren dient also der Interessenabwägung und nimmt eine Erhöhung des Risikos für kurze Zeit in Kauf, um alle anderen Systeme weiter betreiben zu können. Eine solche Abwägung ist an Bord eines Unterseebootes aufgrund der Gefährdung der Besatzung beim Ausfall der technischen Anlagen von erheblicher Bedeutung und unterscheidet die Anwendung in einem Unterseeboot von allen anderen Anwendungen, beispielsweise in Kraftfahrzeugen.
Bevorzugt ist das Bordnetz des Unterseebootes auf die Anbindung an einen Bleiakkumulator ausgelegt. Besonders bevorzugt wurde ein Bleiakkumulator des Unterseebootes durch einen Lithium-Akkumulator ausgetauscht.
Der Gleichspannungswandler, auch Gleichstromsteller oder DC-DC-Wandler genannt, verbindet elektrisch den Lithium-Akkumulator mit dem Bordnetz. Die elektrische Schaltungsanordnung eines Gleichspannungswandlers ist allgemein bekannt und kann in verschiedenen an sich bekannten Schaltungstopologien realisiert werden. Für die Erfindung wesentlich ist, dass eine Topologie gewählt wird, die zu einer galvanischen Trennung der Batterie vom Bordnetz führt. Beispiele für geeignete Topologien sind Sperrwandler, Eintaktflusswandler, Gegentaktflusswandler oder Resonanzwandler. Beispielsweise wird beim Gegentaktflusswandler der Gleichstrom zunächst in Wechselstrom umgewandelt, transformiert und anschließend wieder in Gleichstrom umgewandelt. Um den Lithium-Akkumulator entladen und laden zu können, ist der Gleichspannungswandler bevorzugt symmetrisch aufgebaut. Durch den Gleichspannungswandler wird die vom Lithium-Akkumulator bereit gestellte Spannung an die Spannung des Bordnetzes angepasst. Ein Beispiel für einen solchen Gleichspannungswandler ist zum Beispiel in der DE 102017009527 A1 in Figur 4 und der dazu gehörenden Beschreibung gezeigt. Der im Beispiel gezeigte Gleichspannungswandler weist zwei H-Brücken mit jeweils vier MOSFETS auf. Zur Trennung werden bevorzugt alle acht MOSFETS nichtleitend. Im Betrieb, also im elektrisch leitenden Zustand des Lastschalters werden immer jeweils zwei diagonal gegenüberliegende MOSFETS leitend und die anderen beiden diagonal gegenüberliegenden nichtleitend, wobei diese Schaltung ständig gewechselt wird. Diese kontinuierliche Schaltung sorgt für die Umwandlung des Gleichstroms in Wechselstrom, der dann transformiert und auf der anderen Seite analog wieder in Gleichstrom gewandelt wird. Die symmetrische Ausführung erlaubt dabei einen Stromfluss in beide Richtungen, um sowohl ein Laden als auch ein Entladen des ersten Akkumulators zu ermöglichen.
Das Messen der am Bordnetz anliegenden Spannung in Schritt a) und das Messen des aus dem Gleichspannungswandler in das Bordnetz fließenden Stromes in Schritt b) können gleichzeitig oder in beliebiger Reihenfolge erfolgen. Bevorzugt werden beide Messungen kontinuierlich durchgeführt. Die Messungen erfolgen dabei bevorzugt direkt am Anschluss des Gleichspannungswandlers im Bordnetz. Sie können aber auch entfernt vom Gleichspannungswandler an einem anderen Punkt im Bordnetz erfolgen. Die Spannung und der Strom können auch an verschiedenen Punkten gemessen werden, beispielsweise kann der Strom direkt am Anschluss des Gleichspannungswandlers am Bordnetz und die Spannung an einem entfernten Punkt gemessen werden. Es kann besonders bevorzugt sein, dass die Spannung an mehreren Punkten im Bordnetz gemessen wird und der Steuerung zugeführt wird, so dass entweder eine Mehrzahl an Spannungen oder ein Mittelwert berücksichtigt wird. Im Normalfall erfolgt insbesondere mittels der in Schritt a) gemessenen Spannung die aktive Steuerung des Gleichspannungswandlers. Wird festgestellt, dass bei einer sehr geringen Spannung (erstes Anzeichen auf einen Kurzschluss) ein hoher Strom fließt (zweites Anzeichen auf einen Kurzschluss) führt dieses dazu, dass für einen kurzen, befristeten Zeitraum in Schritt d) die Steuerung des Gleichspannungswandlers den maximal fließenden Strom anhebt. Die zeitliche Begrenzung ist notwendig, um eine dauerhafte Überlastung der Kabel und Stecker mit hohen Kurzschlussströmen und daraus resultierende Schäden zu vermeiden. Die Begrenzung des maximal fließenden Stromes soll gerade dazu dienen, eine entsprechende Belastung und dadurch im Extremfall ein thermisches Durchgehen des Lithium-Akkumulators zu verhindern und die am Bordnetz verbauten Komponenten vor den sehr hohen Kurzschlussströmen der Lithium-Akkumulatoren zu schützen. Durch die zeitlich begrenzte Anhebung, kann ein ausreichend hoher Strom zur Verfügung gestellt werden, sodass auch eine auf einen Bleiakkumulator ausgelegte Sicherung bei einem Kurzschluss ansprechen kann.
Das Detektieren eines potentiellen Kurzschlusses im Bordnetz erfolgt aufgrund die in Schritt a) gemessenen Spannung und dem in Schritt b) gemessenem Strom. Im einfachsten Fall kann aus Strom und Spannung kontinuierlich der Widerstand des Bordnetzes ermittelt werden. Beispielsweise kann ein rasches Absinken oder ein Unterschreiten eines Schwellwertes zur Detektion eines Kurzschlusses im einfachsten Fall herangezogen werden. Hierbei sind insbesondere auch die Geschwindigkeit und die Stärke des Anstiegs des Stromflusses zu berücksichtigen, wobei für einen steileren Anstieg bereits eine kürzere Zeit als Indikator für einen Kurzschluss gewertet wird und entsprechend bei einem weniger starken Anstieg dieser über eine längere Zeit erfolgen muss. Neben einfachen Methoden können auch andere, dem Fachmann bekannte Methoden zur Detektion eines Kurzschlusses herangezogen werden. Weiter kann berücksichtigt werden, dass kapazitive Verbraucher, beispielsweise Netzteile, auch als sehr kurzfriste Spannungsquellen eintreten können und so zu einer Abflachung des Absinkens des erfassten Widerstands führen können.
Die selektive Erfassung des Kurzschlusses kann dabei über verschiedene Charakteristiken des Stroms und der Spannung erfolgen. Die Spannung kann gemessen werden und bei einem schnellen Abfall und je nach Tiefe des Einbruchs kann die Steuerung nach Ablauf verschiedener Zeiten das Auslösen des Verfahrens durchführen.
Es kann weiter vorgesehen sein, dass zusätzlich oder alternativ die Veränderung des Stroms und/oder der Spannung über die Zeit erfasst wird, so dass bei besonders starken Änderungen, die außerhalb normaler Lastsprünge liegen ein Kurzschluss schnell erkannt wird.
Des Weiteren kann die Steuerung mit anderen Steuerungen verbunden sein, so dass die Ladezustände aller am Bordnetz angeschlossenen Batterien, Schaltzustände und/oder Zustände von Systemen an Bord erfasst werden, so dass erkannt wird, ob die Veränderung der Spannung oder des Stroms aufgrund der Ladezustände anderer Lithium-Akkumulatoren, Schaltvorgängen an Bord oder Steuerungseingriffen anderer Systeme erfolgt. Beispielsweise würde so verhindert, dass ein Zuschalten einer höheren Laststufe am Fahrmotor irrtümlich als Kurzschluss erkannt wird.
Lithium-Akkumulator ist im Sinne der Erfindung breit zu verstehen. Ein Unterseeboot weist beispielsweise üblicherweise nicht einen einzelnen Akkumulator auf, sondern ein kaskadiertes System aus Akkumulatoren. Der Energiespeicher eines Unterseebootes besteht üblicherweise aus etwa 10 bis 50 Strängen, wobei jeder Strang über einen Gleichspannungswandler mit dem Bordnetz verbunden ist. Daher ist üblicherweise ein Strang mit einem Lithium-Akkumulator im Sinne der Erfindung gleichzusetzen. Jeder Strang weist üblicher Weise etwa 4 bis 10 Module auf und jedes Modul besteht beispielsweise aus 20 bis 500 Ein-Zellen-Akkumulatoren.
In einer weiteren Ausführungsform der Erfindung erfolgt das befristete Anheben des maximalen Stromes in Schritt d) für einen Zeitraum von 100 ms bis 2 s, bevorzugt von 200 ms bis 1 s, weiter bevorzugt von 200 ms bis 500 ms, besonders bevorzugt von 200 ms bis 400 ms. Innerhalb dieses Zeitraumes ist eine erhöhte Belastung der am Bordnetz verbauten Komponenten unkritisch. Bei längeren Zeiten würde das Risiko überproportional ansteigen. Kürze Zeiten reichen üblicherweise hingegen nicht aus, um die auf Bleiakkumulatoren ausgelegten Sicherungen zum Ansprechen zu bringen.
In einer weiteren Ausführungsform der Erfindung erfolgt das befristete Anheben des maximalen Stromes auf das 1 ,5-fache bis 3-fache des normalen maximalen Stromes, bevorzugt auf das 1 ,75-fache bis 2,5-fache des normalen maximalen Stromes.
Beispielsweise und insbesondere erfolgt das befristete Anheben des maximalen Stromes für einen Zeitraum vom 300 ms auf das doppelte des normalen maximalen Stromes.
In weiteren Aspekt betrifft die Erfindung ein Unterseeboot mit einem Bordnetz und wenigstens einem Lithium-Akkumulator. Das Bordnetz und der wenigstens eine Lithium- Akkumulator sind über einen galvanisch trennenden Gleichspannungswandler verbunden, wobei der Gleichspannungswandler zur Durchführung des erfindungsgemäßen Verfahrens ausgebildet ist.
In einer weiteren Ausführungsform der Erfindung wird der Schiffskörper des Unterseebootes als elektrische Erde verwendet. Das Unterseeboot weist eine erste Widerstandsmessvorrichtung zwischen dem Bordnetz und dem Schiffskörper auf. Diese Widerstandsmessung ist üblich, um Isolationsdefekte festzustellen. Tritt nur ein Defekt auf, so ist dieses unkritisch, kann aber über die Widerstandsmessung leicht festgestellt werden und somit behoben werden. Würde ein zweiter Isolationsdefekt auftreten, könnte es zu einem Kurzschluss über den Schiffskörper kommen. Zusätzlich ist zwischen dem Stromkreis zwischen Lithium-Akkumulator und dem Gleichspannungswandler und dem Schiffskörper eine zweite Widerstandsmessvorrichtung angeordnet. Durch die galvanische Trennung durch den Gleichspannungswandler muss für jedes einzelne Netz eine getrennte Messung vorgenommen werden. Werden mehrere Stränge über Gleichspannungswandler mit dem Bordnetz verbunden, so weist jedes Netz eines Stranges eine eigene Widerstandsmessvorrichtung auf. Hierdurch können Isolationsdefekte im Bordnetz oder in den Strangnetzen leicht und schnell identifiziert werden.
Nachfolgend ist das erfindungsgemäße Unterseeboot anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert.
Fig. 1 Schematische Skizze eines erfindungsgemäßen Unterseebootes
In Fig. 1 ist eine schematische Skizze eines erfindungsgemäßen Unterseeboots gezeigt. Das Unterseeboot weist einen Schiffskörper 10 auf, welche üblicherweise aus Metall und somit elektrisch leitfähig gefertigt ist. Das Unterseeboot weist ferner einen ersten Lithium- Akkumulator 20 und einen zweiten Lithium-Akkumulator 22 auf, welche als Energiespeicher dienen. Der erste Lithium-Akkumulator 20 ist über einen ersten Gleichspannungswandler 30 mit dem Bordnetz 60 verbunden, der zweite Lithium- Akkumulator 22 ist über einen zweiten Gleichspannungswandler 32 mit dem Bordnetz 60 verbunden. Der erste Gleichspannungswandler 30 wird über eine erste Steuereinheit 40 gesteuert und der zweite Gleichspannungswandler 32 wird über eine zweite Steuereinheit 42 gesteuert. Weiter ist am Bordnetz 60 ein erster Verbraucher 80 über eine erste Sicherung 70 angeschlossen sowie ein zweiter Verbraucher 82 über eine zweite Sicherung 72. Tritt nun beispielsweise am ersten Verbraucher 80 ein Kurzschluss auf, so ist es wünschenswert, dass die erste Sicherung 70 anspricht und in den ersten Verbraucher 80 vom Bordnetz 60 trennt. Hierdurch kann der zweite Verbraucher 82 weiter mit Energie versorgt werden. War das Unterseeboot ursprünglich für die Verwendung von Bleiakkumulatoren ausgelegt, so sind die erste Sicherung 70 und die zweite Sicherung 72 auf deren Verhalten im Kurzschlussfall ausgelegt. Wurden zur Erhöhung der Speicherkapazität des Unterseeboots die Bleiakkumulatoren durch Lithium-Akkumulatoren 20, 22 ausgetauscht, so ist es notwendig, über die erste Steuereinheit den ersten Gleichspannungswandler 30 und über die zweite Steuereinheit 42 den zweiten Gleichspannungswandler 32 so zu steuern, dass die erste Sicherung 70 bei einem Kurzschluss im ersten Verbraucher 80 dennoch anspricht. Durch den Kurzschluss im ersten Verbraucher 80 sinkt die Spannung am Bordnetz 60, gleichzeitig fließt ein hoher Strom. Dieses wird von der ersten Steuereinheit 40 und der zweiten Steuereinheit 42 festgestellt und daraufhin der erste Gleichspannungswandler 30 und der zweite Gleichspannungswandler 32 für einen Zeitraum von 200 ms bis 1 s, beispielsweise für einen Zeitraum von 500 ms, so angesteuert, dass ein höherer Strom an das Bordnetz 60 abgegeben werden kann. Hierdurch kann die erste Sicherung 70 ansprechen und den defekten ersten Verbraucher 80 vom Bordnetz 60 trennen.
Im gezeigten Beispiel besteht der erste Lithium-Akkumulator 20 aus einem Strang aus 6 Modulen, wobei jedes Modul aus 100 Ein-Zellen-Akkumulatoren besteht. Der zweite Lithium-Akkumulator 22 besteht ebenfalls aus einem Strang aus 6 Modulen, wobei jedes Modul aus 100 Ein-Zellen-Akkumulatoren besteht.
Um Isolationsdefekte in den Netzen feststellen zu können, weist das Unterseeboot drei Widerstandsmessvorrichtungen 50, 52, 90 auf. Über die erste
Widerstandsmessvorrichtung 90 werden Isolationsdefekte des Bordnetzes 60 detektiert. Isolationsdefekte in den Netzen der Akkumulatoren können über die erste Widerstandsmessvorrichtung 90 nicht detektiert werden, da der erste Gleichspannungswandler 30 und der zweite Gleichspannungswandler 32 eine galvanische Trennung erstellen. Daher verfügt das Netz des ersten Lithium-Akkumulators 20 über eine zweite Widerstandsmessvorrichtung 50 und das Netz des zweiten Lithium- Akkumulators 22 über eine dritte Widerstandsmessvorrichtung 52.
Bezugszeichen 10 Schiffskörper 20 erster Lithium-Akkumulator 22 zweiter Lithium-Akkumulator 30 erster Gleichspannungswandler zweiter Gleichspannungswandler erste Steuereinheit zweite Steuereinheit zweite Widerstandsmessvorrichtung dritte Widerstandsmessvorrichtung
Bordnetz erste Sicherung zweite Sicherung erster Verbraucher zweiter Verbraucher erste Widerstandsmessvorrichtung

Claims

Patentansprüche
1. Verfahren zum Betreiben eines Gleichspannungswandlers (30, 32) an Bord eines Unterseeboots, wobei der Gleichspannungswandler (30, 32) zwischen wenigstens einem ersten Lithium-Akkumulator (20) und einem ersten Bordnetz (60) des Unterseeboots angeordnet wird, wobei das Verfahren die folgenden Schritte aufweist: a) Messen der am Bordnetz (60) anliegenden Spannung, b) Messen des in das Bordnetz (60) fließenden Stromes, c) Detektieren eines potentiellen Kurzschlusses im Bordnetz (60) aufgrund der in Schritt a) gemessenen Spannung und dem in Schritt b) gemessenen Strom, d) befristetes Anheben der Stromabgabe bis zu einem maximalen Strom für die detektierte Spannung im Bordnetz.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das befristete Anheben in Schritt d) für einen Zeitraum von 100 ms bis 2 s, bevorzugt von 200 ms bis 1 s, erfolgt.
3. Unterseeboot mit einem Bordnetz (60) und wenigstens einem Lithium- Akkumulator (20, 22), wobei das Bordnetz (60) und der wenigstens eine Lithium- Akkumulator (20, 22) über einen galvanisch trennenden Gleichspannungswandler (30, 32) verbunden sind, wobei der Gleichspannungswandler (30, 32) zur Durchführung des Verfahrens nach einem der vorstehenden Ansprüche ausgebildet ist.
4. Unterseeboot nach Anspruch 3, wobei der Schiffskörper (10) als elektrische Erde verwendet wird, wobei das Unterseeboot eine erste Widerstandsmessvorrichtung (90) zwischen dem Bordnetz (60) und dem Schiffskörper (10) aufweist, dadurch gekennzeichnet, dass zwischen dem Stromkreis zwischen Lithium-Akkumulator (20, 22) und dem Gleichspannungswandler (30, 32) und dem Schiffskörper (10) eine zweite Widerstandsmessvorrichtung (50, 52) angeordnet ist.
EP21711217.6A 2020-03-18 2021-03-09 Verfahren zum betreiben eines lithium-akkumulators an einem auf bleiakkumulatoren ausgelegten bordnetz in einem unterseeboot Pending EP4122071A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020203469.9A DE102020203469A1 (de) 2020-03-18 2020-03-18 Verfahren zum Betreiben eines Lithium-Akkumulators an einem auf Bleiakkumulatoren ausgelegtem Bordnetz in einem Unterseeboot
PCT/EP2021/055868 WO2021185630A1 (de) 2020-03-18 2021-03-09 Verfahren zum betreiben eines lithium-akkumulators an einem auf bleiakkumulatoren ausgelegten bordnetz in einem unterseeboot

Publications (1)

Publication Number Publication Date
EP4122071A1 true EP4122071A1 (de) 2023-01-25

Family

ID=74870824

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21711217.6A Pending EP4122071A1 (de) 2020-03-18 2021-03-09 Verfahren zum betreiben eines lithium-akkumulators an einem auf bleiakkumulatoren ausgelegten bordnetz in einem unterseeboot

Country Status (3)

Country Link
EP (1) EP4122071A1 (de)
DE (1) DE102020203469A1 (de)
WO (1) WO2021185630A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022208979A1 (de) 2022-08-30 2024-02-29 Thyssenkrupp Ag Verfahren zur Steigerung der Reichweite eines getauchten Unterseebootes

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19503749C1 (de) 1995-02-04 1996-04-18 Daimler Benz Ag Fahrzeug mit einem brennstoffzellen- oder batteriegespeisten Energieversorgungsnetz
DE102005031833B4 (de) 2005-07-06 2017-01-05 Phoenix Contact Gmbh & Co. Kg Verfahren und elektronische Stromversorgungsvorrichtung zur Energieversorgung einer durch eine Schutzeinrichtung gesicherten Niederspannungslast
DE102006051831B4 (de) * 2006-11-03 2008-07-17 Howaldtswerke-Deutsche Werft Gmbh Unterseeboot
DE102008053074A1 (de) * 2008-07-09 2010-01-21 Siemens Aktiengesellschaft Schnellschalteinrichtung für eine Hochleistungs-Batterie in einem Gleichstrominselnetz
WO2013167199A1 (en) 2012-05-11 2013-11-14 Huawei Technologies Co., Ltd. Method and apparatus for clearing a fuse in a single output multi load configuration
DE102012210078A1 (de) 2012-06-15 2013-12-19 Zf Friedrichshafen Ag Energieversorgungsvorrichtung für ein Fahrzeug und selbstfahrender Arbeitszug
FR3005534B1 (fr) * 2013-05-07 2015-06-05 Commissariat Energie Atomique Protection d'une alimentation incluant plusieurs batteries en parallele contre un court circuit externe
DE102013113648A1 (de) 2013-12-06 2015-06-11 Weidmüller Interface GmbH & Co. KG Stromversorgungseinrichtung und Verfahren zum Begrenzen eines Ausgangsstroms einer Stromversorgungseinrichtung
DE102014223274A1 (de) 2014-11-14 2016-05-19 Robert Bosch Gmbh Vorrichtung und Verfahren zur Überwachung eines Schalters einer Batterie sowie Batteriemodul,Batterie, Batteriesystem, Fahrzeug, Computerprogramm und Computerprogrammprodukt
DE102015105476A1 (de) 2015-04-10 2016-10-13 Abb Schweiz Ag Verfahren und Vorrichtung zur Energieversorgung einer Niederspannungslast
DE102015016000A1 (de) 2015-12-10 2016-08-11 Daimler Ag Schaltungsanordnung für ein Kraftfahrzeug und Verfahren zur Entladung von Y-Kapazitäten in Fahrzeugen mit Hochvoltbordnetz
DE102017002113A1 (de) 2017-03-08 2018-09-13 Thyssenkrupp Ag Unterseeboot und Verfahren zum Betreiben eines Antriebssystems eines Unterseebootes
FR3064124B1 (fr) * 2017-03-16 2019-04-19 Dcns Systeme d'alimentation en energie electrique notamment d'un reseau de bord d'un sous-marin
DE102017009527A1 (de) 2017-10-12 2019-04-18 Thyssenkrupp Ag Verfahren zum Versorgen einer Fahranlage eines Unterseebootes mit elektrischer Energie und Fahrnetz eines Unterseebootes
EP3608152B1 (de) * 2018-08-06 2022-06-22 Ningbo Geely Automobile Research & Development Co. Ltd. Verfahren zur detektion eines isolierungsfehlers

Also Published As

Publication number Publication date
WO2021185630A1 (de) 2021-09-23
DE102020203469A1 (de) 2021-09-23

Similar Documents

Publication Publication Date Title
DE102004006022B4 (de) Vorrichtungen zum Entladen eines Batterieverbunds, der aus einer Vielzahl von Sekundärbatterien besteht
AT507703B1 (de) Energiespeicheranordnung und verfahren zum betrieb einer derartigen anordnung
DE102016224002A1 (de) Entladen von einem wenigstens zwei Batteriezellen aufweisenden Batteriemodul einer wenigstens zwei Batteriemodule aufweisenden Batterie
EP2442427B2 (de) Akkumulator-Kontrollvorrichtung, sowie Verfahren und System zur elektrischen Hilfsversorgung
DE4225746A1 (de) Schaltungsvorrichtung
DE102013204510A1 (de) Elektrisch eigensicheres Batteriemodul mit ultraschneller Entladeschaltung und Verfahren zur Überwachung eines Batteriemoduls
DE102013218077A1 (de) Batteriezelleinrichtung und Verfahren zur Bestimmung einer komplexen Impedanz einer in einer Batteriezelleinrichtung angeordneten Batteriezelle
EP0080164A2 (de) Überwachungseinrichtung für eine Batterie
EP2697502A2 (de) Energiespeicheranordnung
EP2858849B1 (de) Verfahren zur bestimmung eines ohmschen innenwiderstandes eines batteriemoduls, batteriemanagementsystem und kraftfahrzeug
DE102014208680A1 (de) Verfahren zur Überwachung von Stromsensoren
DE102019129415B3 (de) Verfahren zum Aufladen und/ oder Entladen eines wiederaufladbaren Energiespeichers
DE102013218081A1 (de) Batteriemoduleinrichtung und Verfahren zur Bestimmung einer komplexen Impedanz eines in einer Batteriemoduleinrichtung angeordneten Batteriemoduls
WO2015078641A1 (de) Elektrische energiespeichervorrichtung und verfahren zum betreiben einer elektrischen energiespeichervorrichtung
EP3676933B1 (de) Vorrichtung zum elektropolieren eines zumindest eine lithium-ionen-zelle aufweisenden energiespeichers, ladegerät, verfahren zum betreiben des ladegeräts
EP4122071A1 (de) Verfahren zum betreiben eines lithium-akkumulators an einem auf bleiakkumulatoren ausgelegten bordnetz in einem unterseeboot
EP2779354B1 (de) Elektrisch eigensicheres Batteriemodul mit umpolbarer Ausgangsspannung und Verfahren zur Überwachung eines Batteriemoduls
DE102013204538A1 (de) Batteriezellmodul und Verfahren zum Betreiben eines Batteriezellmoduls
DE102015120285B4 (de) Batterie, Fahrzeug mit einer solchen Batterie und Verwendung einer solchen Batterie
DE102012012765A1 (de) Verfahren und Vorrichtung zum Laden eines elektrischen Energiespeichers
DE102013009991A1 (de) Fremdstartfähige Integration einer Batterie in ein Kraftfahrzeug-Bordnetz
DE102013204509A1 (de) Batteriemodul und Verfahren zum Überwachen eines Batteriemoduls
DE102019126692A1 (de) Verfahren zum Laden und Entladen eines wiederaufladbaren Energiespeichers und Energiespeichersystem
DE102015003122A1 (de) Kraftfahrzeug mit einer Batterieanordnung und Verfahren zum Betrieb einer Batterieanordnung
DE102015105428A1 (de) Batteriesystem zur elektrischen Verbindung mit einer Komponente

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221018

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)