EP3956264A1 - Procede de synthese rapide d'une zeolithe de type structural afx avec une source de faujasite - Google Patents

Procede de synthese rapide d'une zeolithe de type structural afx avec une source de faujasite

Info

Publication number
EP3956264A1
EP3956264A1 EP20717887.2A EP20717887A EP3956264A1 EP 3956264 A1 EP3956264 A1 EP 3956264A1 EP 20717887 A EP20717887 A EP 20717887A EP 3956264 A1 EP3956264 A1 EP 3956264A1
Authority
EP
European Patent Office
Prior art keywords
fau
zeolite
hours
afx
reaction mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20717887.2A
Other languages
German (de)
English (en)
Inventor
Raquel Martinez Franco
Bogdan Harbuzaru
Eric Llido
David BERTHOUT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP3956264A1 publication Critical patent/EP3956264A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • C01B39/065Galloaluminosilicates; Group IVB- metalloaluminosilicates; Ferroaluminosilicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Definitions

  • the present invention relates to a new process for preparing a zeolite with structure type AFX.
  • This new process makes it possible to synthesize a zeolite with structure type AFX by conversion / transformation under hydrothermal conditions of a zeolite with structure type FAU.
  • said new process makes it possible to carry out the rapid synthesis of a zeolite with structure type AFX, from a zeolite with structure type FAU used as a source of silicon and aluminum and from a specific organic or structuring molecule comprising two quaternary ammonium functions, 1, 6-bis (methylpiperidinium) hexane in its dihydroxide form.
  • Said AFX-structural-type zeolite obtained according to the process of the invention advantageously finds its application as a catalyst, adsorbent or separating agent.
  • Crystallized microporous materials such as zeolites or silicoaluminophosphates, are solids widely used in the petroleum industry as a catalyst, catalyst support, adsorbent or separation agent. Although many microporous crystal structures have been discovered, the refining and petrochemical industry is always on the lookout for new zeolitic structures that exhibit particular properties for applications such as gas purification or separation, gas conversion. carbonaceous or other species.
  • the AFX-structural-type zeolites comprise in particular the SSZ-16 zeolite, and the SAPO-56 and MEAPSO-56 zeotypes.
  • the AFX-structural-type zeolite exhibits a three-dimensional pore system delimited by eight tetrahedra and is formed by two types of cages: gmelinite (GME cage) and a large AFT cage ( ⁇ 8.3 x 13.0 ⁇ ).
  • GME cage gmelinite
  • AFT cage ⁇ 8.3 x 13.0 ⁇
  • the SSZ-16 zeolite was synthesized using nitrogenous organic species derived from type 1, 4-di (1 - azoniabicyclo [2.2.2] octane) butyl dibromide and with a crystallization time typically greater than 3 days (US Patent No. 4,508,837). Chevron Research and Technology Company prepared the SSZ-16 zeolite in the presence of DABCO- C n -diquat cations, where DABCO represents 1, 4-diazabicyclo [2.2.2] octane and n is 3, 4 or 5 with a duration of crystallization typically greater than 3 days (US Patent No. 5, 194,235).
  • SB Hong et al used the diquaternary alkylammonium ion Et6- diquat-n, where Et6-diquat represents N ', N'-bis-triethylpentanediammonium and n is 5, as a structuring agent for the synthesis of SSZ-16 zeolite with a duration of formation of the SSZ-16 zeolite of between 7 and 14 days (Micropor. Mesopor. Mat., 60 (2003) 237-249).
  • H. -Y. Chen et al. Johnson Matthey Company, US2018 / 0093897) used a mixture of cations containing at least 1, 3-bis (adamantyl) imidazolium and a neutral amine to prepare AFX-structural-type JMZ-10 zeolite in the absence of alkali cations with a crystallization time between 1 and 20 days.
  • K.G Strohmaier et al. (Exxon Mobil, WO2017202495A1) used the organic molecule 1, 1 '- (hexane-1, 6-dyil) bis (1 -methylpiperidinium) in the presence of a metal complex stabilized by amine ligands to obtain a zeolite of structural type AFX with a crystallization time ranging from 1 day to about 100 days.
  • the Applicant has discovered that it was possible to shorten the crystallization time by starting with a zeolite of FAU type as a source of silica and alumina, in the presence of a particular structuring agent, 1, 6-bis (methylpiperidinium) hexane in its dihydroxide form, and with special conditions to obtain, by rapid synthesis, an AFX zeolite of high purity.
  • the invention relates to a process for preparing an AFX-structured zeolite comprising at least the following steps:
  • a zeolite of structural type FAU having a molar ratio S1O2 (FAU) / Al2Ü3 (FAU) of between 2.00 and 100, of a nitrogenous organic compound R, R being the dihydroxide of 1, 6- bis (methylpiperidinium) hexane, of at least one source of at least one alkali metal and / or alkaline earth metal M of valence n, n being an integer greater than or equal to 1, chosen from lithium, potassium, sodium, magnesium and calcium and the mixture of at least two of these metals,
  • H 2 0 / (S Î02 (FAU)) between 1 and 100, preferably between 5 and 60
  • R / (SÎ0 2 (FAU)) between 0.01 to 0.6, preferably between 0.1 and 0.4 M 2 / n 0 / (Si0 2 (FAU) ) between 0.005 to 0.45, preferably between 0.07 and 0.22 in which Si0 2 (FAU) denotes the amount of Si0 2 supplied by the FAU zeolite, and AI 2O 3 (FAU) denotes the amount of AI 2O 3 supplied by the FAU zeolite, until a homogeneous precursor gel is obtained;
  • step ii) the hydrothermal treatment of said precursor gel obtained at the end of step i) under autogenous pressure at a temperature between 120 ° C and 250 ° C, for a period of between 4 hours and 12 hours.
  • M is sodium, and preferably, the source of at least one alkali and / or alkaline earth metal M is sodium hydroxide.
  • the reaction mixture from step i) can comprise at least one additional source of an oxide X0 2 , X being one or more tetravalent element (s) chosen from the group formed by the following elements: silicon , germanium, titanium, so that the molar ratio X0 2 / Si0 2 (F AU) is between 0.001 and 33, and preferably between 0.001 and 15, the content of Si0 2 (FAU) in said ratio being the content provided by the zeolite of structural type FAU.
  • X being one or more tetravalent element (s) chosen from the group formed by the following elements: silicon , germanium, titanium, so that the molar ratio X0 2 / Si0 2 (F AU) is between 0.001 and 33, and preferably between 0.001 and 15, the content of Si0 2 (FAU) in said ratio being the content provided by the zeolite of structural type FAU.
  • reaction mixture from step i) advantageously has the following molar composition:
  • R / (X0 2 + SÎ0 2 (FAU)) between 0.01 and 0.6, preferably between 0.1 and 0.4
  • X is silicon
  • the reaction mixture from step i) can comprise at least one additional source of an oxide Y 2 C> 3, Y being one or more trivalent element (s) chosen from the group formed by the elements following: aluminum, boron, gallium, so that the molar ratio Y 2 0 3 / Al 2 0 3 (F AU) is between 0.001 and 45, and preferably between 0.001 and 40, limits included, the content of Al 2 ⁇ 3 (FAU) in said ratio being the content provided by the zeolite with structure type FAU.
  • the reaction mixture from step i) advantageously has the following molar composition:
  • H 2 0 / (Si0 2 (FAU) ) between 1 and 100, preferably between 5 and 60
  • R / (SÎ0 2 (FAU)) between 0.01 and 0.6, preferably between 0.1 and 0.4
  • Si0 2 (FAU) between 0.005 and 0.45, preferably between 0.07 and 0.22 Si0 2 (FAU) being the amount of Si0 2 supplied by the FAU zeolite, and Al 2 03 (FAU) being the amount of Al 2 0 3 supplied by the FAU zeolite.
  • Y is aluminum
  • the precursor gel obtained at the end of step i) has a molar ratio of the total amount expressed in oxides of tetravalent element to the total amount expressed in oxides of trivalent elements of between 2.00 and 100.
  • Seed crystals of a zeolite with structure type AFX can be added to the reaction mixture of step i), preferably in an amount of between 0.01 and 10% of the total mass of the sources of said tetravalent element (s). ) and trivalent (s) in anhydrous form present in the reaction mixture, said seed crystals not being taken into account in the total mass of sources of tetravalent and trivalent elements.
  • Step i) can comprise a step of maturing the reaction mixture at a temperature between 20 and 80 ° C, with or without stirring, for a period of between 30 minutes and 24 hours, preferably between 1 hour and 12 hours.
  • step ii) is advantageously carried out at a temperature between 150 ° C and 230 ° C, for a period of between 4 and 12 hours, upper limit excluded, preferably between 5 hours and 10 hours, so more preferred between 5 hours and 8 hours.
  • the solid phase obtained at the end of step ii) is filtered, washed, and dried at a temperature between 20 and 150 ° C, preferably between 60 and 100 ° C, for a period of between 5 and 24 hours to obtain a dried zeolite.
  • the dried zeolite can then be calcined at a temperature between 450 and 700 ° C for a period of between 2 and 20 hours, the calcination can be preceded by a gradual rise in temperature.
  • the invention also relates to an AFX-structural-type zeolite with a S1O 2 / Al 2 O 3 ratio of between 4.00 and 100, preferably between 4.00 and 60, obtained by the preparation process described above.
  • the invention also relates to a calcined zeolite with structure type AFX with a ratio S1O 2 / Al 2 O 3 of between 4.00 and 100, obtained by the preparation process described above for which the average values of the d hki and relative intensities measured on an X-ray diffraction pattern are as follows: Table 1
  • Figure 1 shows the chemical formula of the nitrogenous organic compound used as a structuring agent in the synthesis process according to the invention.
  • FIG. 2 represents the X-ray diffraction (XRD) diagrams of the AFX zeolite obtained according to Examples 2 to 4.
  • Figure 3 shows an image obtained by scanning electron microscopy (SEM) of the AFX zeolite obtained according to Example 2.
  • Figure 4 shows an image obtained by scanning electron microscopy (SEM) of the AFX zeolite obtained according to Example 3.
  • the present invention relates to a new process for preparing a zeolite with structure type AFX, by conversion / transformation under hydrothermal conditions of a zeolite with structure type FAU with a particular S1O 2 / Al 2 O 3 ratio, in the presence of a nitrogenous or specific structuring organic compound, 1, 6-bis (methylpiperidinium) hexane in its dihydroxide form.
  • the Applicant has discovered that the organic nitrogen compound or structuring 1, 6-bis (methylpiperidinium) hexane in its dihydroxide form being mixed with a zeolite with structure type FAU having a molar ratio S1O 2 (FAU) / AI 2 0 3 (FAU) between 2.00 and 100, used as a source of silicon and aluminum, in the presence or absence of an additional supply, within said mixture, of at least one source of at least one tetravalent element XO 2 , and / or of at least one source of at least one trivalent element Y 2 O 3 , leads to the production of a precursor gel of a zeolite with structure type AFX having a molar ratio of the amount total expressed in oxides of tetravalent elements over the total amount expressed in oxides of trivalent elements between 2.00 and 100, then in the production of a high purity AFX-structural-type zeolite, the total amount in oxides of tetravalent element representing the sum of the
  • a more specific subject of the present invention is a new process for preparing a zeolite allowing the rapid synthesis of a zeolite with structure type AFX comprising at least the following steps:
  • H 2 0 / (S Î0 2 (FAU)) between 1 and 100, preferably between 5 and 60
  • R / (SÎ0 2 (FAU)) between 0.01 and 0.6, preferably between 0.1 and 0.4
  • step ii) hydrothermal treatment of said precursor gel obtained at the end of step i) under autogenous pressure at a temperature between 120 ° C and 250 ° C for a period of between 4 hours and 12 hours, until said AFX-structural-type zeolite is formed.
  • An advantage of the present invention is therefore to provide a new preparation process allowing the rapid formation of a high purity AFX-structural-type zeolite from an FAU-structural-type zeolite, said process being carried out in the presence of an organic structuring agent, 1,6-bis (methylpiperidinium) hexane dihydroxide.
  • the starting FAU-structural-type zeolite having a Si0 2 / Al 2 0 3 molar ratio of between 6.00 (limit included) and 200 can be obtained by any method known to those skilled in the art such as for example by treatment with steam (steaming) and acid washings on a zeolite with structure type FAU with a Si0 2 / Al 2 0 3 molar ratio of less than 6.00.
  • the starting FAU-structural-type zeolite can also be used in its sodium form or any other form or a partial or total exchange of sodium cations with ammonium cations, whether or not followed by a calcination step.
  • X0 2 denotes the molar quantity of the additional tetravalent element (s), expressed in oxide form
  • Y 2 O 3 denotes the molar quantity of the additional trivalent element (s), expressed in oxide form .
  • S1O 2 is the amount of S1O 2 provided by the FAU zeolite and Al 2 O 3 (FAU) is the amount of Al 2 0 3 provided by the FAU zeolite
  • M 2 / n O the molar quantity expressed in the oxide form of M 2 / n O by the source of alkali metal and / or alkaline earth metal.
  • the reaction mixture of step i) also comprises at least one additional source of an oxide XO 2 so that the molar ratio XO 2 / S1O 2 (FAU) is between 0.001 and 33, the mixture advantageously having the following molar composition:
  • R / (X0 2 + SÎ0 2 (FAU)) between 0.01 to 0.6, preferably between 0.1 and 0.4
  • X is one or more selected tetravalent element (s) (s) in the group formed by the following elements: silicon, germanium, titanium,
  • the reaction mixture of step i) also comprises at least one additional source of an oxide Y 2 O 3 so that the molar ratio Y 2 O 3 / Al 2 O 3 (FA u ) is between 0.001 and 45, the mixture advantageously having the following molar composition:
  • H 2 0 / (Si0 2 (FAU) ) between 1 and 100, preferably between 5 and 60
  • R / (Si0 2 (FAU) ) between 0.01 to 0.6, preferably between 0.1 and 0.4
  • Y is one or more selected trivalent element (s) in the group formed by the following elements: aluminum, boron, gallium, preferably Y is aluminum, S1O
  • the source (s) of said tetravalent element (s) can be any compound comprising the element X and capable of releasing this element in aqueous solution in reactive form.
  • Ti (EtO) 4 is advantageously used as the source of titanium.
  • the source of silicon can be any one of said sources commonly used for the synthesis of zeolites, for example powdered silica, silicic acid, colloidal silica, etc. dissolved silica or tetraethoxysilane (TEOS).
  • zeolites for example powdered silica, silicic acid, colloidal silica, etc. dissolved silica or tetraethoxysilane (TEOS).
  • TEOS tetraethoxysilane
  • the powdered silicas it is possible to use precipitated silicas, in particular those obtained by precipitation from an alkali metal silicate solution, pyrogenic silicas, for example "CAB-O-SIL" or "Aerosil” and silica gels.
  • colloidal silicas having different particle sizes, for example with an average equivalent diameter of between 10 and 15 nm or between 40 and 50 nm, such as those marketed under registered trademarks such as "LUDOX".
  • the source of silicon is Aerosil.
  • Y can be one or more trivalent element (s) chosen from the group formed by the following elements: aluminum, boron, gallium, is used in the mixture of step i).
  • Y is aluminum, so that the molar ratio Y2O3 / Al2O3 (FAU) is between 0.001 and 45, and preferably between 0.001 and 40, the content of Al2O3 (FAU) in said ratio being the content provided by zeolite with structure type FAU.
  • the source (s) of said trivalent element (s) Y can be any compound comprising the element Y and capable of releasing this element in aqueous solution in reactive form.
  • the element Y can be incorporated into the mixture in an oxidized form YO b with 1 ⁇ b ⁇ 3 (b being an integer or a rational number) or in any other form.
  • the source of aluminum is preferably aluminum hydroxide or an aluminum salt, for example chloride, nitrate, or sulfate, sodium aluminate, an aluminum alkoxide, or alumina proper, preferably in hydrated or hydratable form, such as for example colloidal alumina, pseudoboehmite, gamma alumina or alpha or beta trihydrate. It is also possible to use mixtures of the sources mentioned above.
  • the organic structuring agent R used is 1, 6-bis (methylpiperidinium) hexane in its dihydroxide form or a mixture of dihydroxide and dibromide forms with an OH / Br molar ratio> 50.
  • R is 1, 6-bis (methylpiperidinium) hexane in its dihydroxide form or a mixture of dihydroxide and dibromide forms with an OH / Br molar ratio> 50.
  • R is 1, 6-bis (methylpiperidinium) hexane in its dihydroxide form or a mixture of dihydroxide and dibromide forms with an OH / Br molar ratio> 50.
  • R is
  • Step (i) of the process according to the invention consists in preparing an aqueous reaction mixture containing a zeolite with structure type FAU, optionally a source of an oxide XO2 or a source of an oxide Y2O3, at least one compound organic nitrogenous R, R being 1, 6-bis (methylpiperidinium) hexane dihydroxide in the presence of at least one source of one or more alkali metal (s) and / or alkaline earth metal, to obtain a precursor gel of a zeolite with structure type AFX.
  • the amounts of said reagents are adjusted as indicated above so as to confer on this gel a composition allowing the crystallization of a zeolite with structure type AFX.
  • the preparation process according to the invention therefore makes it possible to adjust the S1O2 / AI2O3 ratio of the precursor gel containing a zeolite with structure type FAU depending on the zeolite with structure type FAU chosen and on the additional contribution or not, within the reaction mixture of at least one source of at least one tetravalent element XO2 and / or of at least one source of at least one trivalent element Y2O3.
  • seeds of a zeolite with structure type AFX may be added to the reaction mixture during said step i) of the process of the invention in order to reduce the time necessary for the formation of crystals of a zeolite of type AFX.
  • structural AFX and / or the total crystallization time Said crystalline seeds also promote the formation of said AFX-structural-type zeolite to the detriment of impurities.
  • Such seeds include crystalline solids, in particular crystals of a zeolite with structure type AFX.
  • the seed crystals are generally added in a proportion of between 0.01 and 10% of the total mass of the sources of said tetravalent (s) and trivalent (s) element (s) in anhydrous form present in the reaction mixture, said seed crystals n 'being not taken into account in the total mass of the sources of the tetravalent and trivalent elements. Said seeds are also not taken into account in determining the composition of the reaction mixture and / or of the gel, defined above, that is to say in determining the different molar ratios of the composition of the reaction mixture.
  • Stage i) of mixing is carried out until a homogeneous mixture is obtained, preferably for a period greater than or equal to 10 minutes, preferably with stirring by any system known to those skilled in the art at low or high shear rate.
  • a homogeneous precursor gel is obtained.
  • a ripening of the reaction mixture before the hydrothermal crystallization during said step i) of the process of the invention in order to control the size of the crystals of a zeolite with structure type AFX. Said ripening also promotes the formation of said AFX-structural-type zeolite to the detriment of impurities.
  • the maturation of the reaction mixture during said step i) of the process of the invention can be carried out at room temperature or at a temperature between 20 and 80 ° C with or without stirring, for a period advantageously between 30 minutes and 24 minutes. hours.
  • step (ii) of the process according to the invention the precursor gel obtained at the end of step i) is subjected to a hydrothermal treatment under autogenous pressure, carried out at a temperature between 120 ° C. and 250 ° C. ° C for a period of between 4 hours and 12 hours, until said AFX-structural-type zeolite is formed.
  • the precursor gel is advantageously placed under hydrothermal conditions under an autogenous reaction pressure, optionally by adding gas, for example nitrogen, at a temperature preferably between 120 ° C and 250 ° C, preferably between 150 ° C. and 230 ° C, until complete crystallization of a zeolite with structure type AFX.
  • gas for example nitrogen
  • the time necessary to obtain crystallization varies between 4 hours and 12 hours, preferably less than 12 hours, preferably between 5 hours and 10 hours, and more preferably between 5 hours and 8 hours.
  • the reaction is generally carried out with stirring or in the absence of stirring, preferably with stirring.
  • stirring system any system known to those skilled in the art can be used, for example, inclined blades with counter-blades, stirring turbines, Archimedean screws.
  • the solid phase formed from a zeolite of structural type AFX is preferably filtered, washed and then dried.
  • the drying is generally carried out at a temperature of between 20 and 150 ° C, preferably between 60 and 100 ° C, for a period of between 5 and 24 hours.
  • the dried zeolite can then be advantageously calcined.
  • the calcined AFX-structural-type zeolite is generally analyzed by X-ray diffraction, this technique also making it possible to determine the purity of said zeolite obtained by the process of the invention.
  • the process of the invention leads to the formation of a zeolite with structure type AFX, free from any other crystalline or amorphous phase.
  • the AFX zeolite obtained has a purity greater than 90%, preferably greater than 95%, very preferably greater than 97% and even more preferably greater than 99.8%.
  • Said AFX-structural-type zeolite, after the drying step, is then ready for subsequent steps such as calcination and ion exchange. For these steps, all the conventional methods known to those skilled in the art can be used.
  • the loss on ignition of said AFX-structural-type zeolite obtained after drying and before calcination is generally between 5 and 18% by weight.
  • the term “loss on ignition” is understood to mean the percentage loss in mass undergone by a solid compound, a mixture of solid compounds or a paste, preferably in the case of the present invention by said AFX zeolite prepared, during a heat treatment at 1000 ° C for 2 hours, in a static furnace (muffle furnace type), relative to the mass of the solid compound, of the mixture of solid compounds or of the initial paste, preferably in the case of the present invention relative to the mass of dried AFX zeolite tested.
  • Loss on ignition generally corresponds to the loss of solvent (such as water) contained in solids, but also to the removal of organic compounds contained in inorganic solid constituents.
  • the step of calcining a zeolite with structure type AFX obtained according to the process of the invention is preferably carried out at a temperature between 450 and 700 ° C. for a period of between 2 and 20 hours.
  • the AFX-structural-type zeolite obtained at the end of the calcination step is devoid of any organic species and in particular of the organic structuring agent R.
  • the X-ray diffraction makes it possible to verify that the solid obtained by the process according to the invention is indeed a zeolite with structure type AFX.
  • the purity obtained is preferably greater than 99.8%.
  • the solid obtained exhibits the X-ray diffraction diagram including at least the lines listed in Table 1.
  • the X-ray diffraction pattern does not contain other lines of significant intensity (i.e. of intensity greater than about three times the background noise) than those listed in Table 1.
  • the measurement error A (d hki ) on d hki is calculated using the Bragg relation as a function of the absolute error D (2Q) assigned to the measurement of 2Q.
  • An absolute error D (2Q) equal to ⁇ 0.02 ° is commonly accepted.
  • the relative intensity l rei assigned to each value of d hki is measured from the height of the corresponding diffraction peak.
  • the X-ray diffraction diagram of the crystallized solid with structure type AFX according to the invention comprises at least the lines with the values of d hki given in Table 1.
  • d hki the mean values of the inter distances have been indicated.
  • the SO2 / Al2O3 ratio of the AFX-structural-type zeolite is generally between 4.00 and 100, preferably between 4.00 and 60, most preferably between 6.00 and 60.
  • the relative intensity l rei is given in relation to a relative intensity scale where a value of 100 is assigned to the most intense line of the X-ray diffraction pattern: ff ⁇ 15; 15 ⁇ f ⁇ 30; 30 ⁇ mf ⁇ 50; 50 ⁇ m ⁇ 65; 65 ⁇ F ⁇ 85;FF> 85.
  • Table 1 Average values of d hki and relative intensities measured on an X-ray diffraction diagram of the crystallized solid with structure type AFX calcined
  • X-ray fluorescence (FX) spectrometry is a technique of chemical analysis using a physical property of matter, X-ray fluorescence. It allows the analysis of the majority of chemical elements from beryllium (Be) in concentration ranges from a few ppm to 100%, with precise and reproducible results. X-rays are used to excite the atoms in the sample, causing them to emit X-rays with energy characteristic of each element present. The intensity and energy of these x-rays are then measured to determine the concentration of elements in the material.
  • Be beryllium
  • the protonated form of the AFX-structural-type zeolite obtained by the process according to the invention can be obtained by carrying out an ion exchange with an acid, in particular a strong mineral acid such as hydrochloric, sulfuric or nitric acid, or with a compound such as ammonium chloride, sulfate or nitrate .
  • Ion exchange can be carried out by suspending said AFX-structural-type zeolite one or more times with the ion exchange solution.
  • Said zeolite can be calcined before or after ion exchange, or between two ion exchange steps. The zeolite is preferably calcined before the ion exchange, in order to remove any organic substance included in the porosity of the zeolite, since the ion exchange is facilitated.
  • the AFX-structural-type zeolite obtained by the process of the invention can be used after ion exchange as an acidic solid for catalysis in the fields of refining and petrochemistry. It can also be used as an adsorbent or as a molecular sieve.
  • Example 1 preparation of 1,6-bis (methylpiperidinium) hexane dihvdroxide
  • Example 2 preparation of an AFX-structural-type zeolite according to the invention
  • 0.646 g of seeds (10% relative to the mass of CBV720 zeolite) of an AFX-structural-type zeolite are added to the synthesis mixture and kept under stirring for 5 minutes. Then, the reaction mixture undergoes a maturing step for 24 hours at room temperature with stirring (200 rev / min).
  • the molar composition of the precursor gel is as follows: 1 Si0 2 : 0.0298 Al 2 0 3 : 0.18 R: 0.20 Na 2 0: 34 H 2 0, i.e. a Si0 2 / Al 2 0 3 ratio of 33.52.
  • the precursor gel is then transferred, after homogenization, into a 160 mL stainless steel reactor equipped with a stirring system with four inclined blades.
  • the reactor is closed, then heated for 5 hours under autogenous pressure with a temperature rise of 5 ° C./min up to 180 ° C. with stirring at 200 rpm to allow crystallization of the AFX-structural type zeolite.
  • the crystallized product obtained is filtered, washed with deionized water, then dried overnight at 100 ° C. The loss on ignition of the dried solid is 14.82%.
  • the calcination cycle comprises a temperature rise of 1.5 ° C / min up to 200 ° C, a plateau at 200 ° C maintained for 2 hours, a rise of 1 ° C / min up to 550 ° C followed by a plateau at 550 ° C maintained for 12 hours then a return to ambient temperature.
  • the calcined solid product was analyzed by X-ray diffraction and identified as consisting of an AFX-structural-type zeolite with a purity greater than 99% by weight.
  • the X-ray diffraction pattern performed on the calcined solid is given in Figure 2.
  • the scanning electron microscopy (SEM) image performed on the calcined AFX-structural-type solid is given in Figure 3.
  • the product has a Si0 2 / Al 2 0 3 molar ratio of 11.42 as determined by FX.
  • a zeolite with structure type AFX In order to promote the formation of a zeolite with structure type AFX, 0.614 g of seeds (10% relative to the mass of zeolite CBV780) of a zeolite with structure type AFX are added to the synthesis mixture which is kept under stirring for 5 minutes. Then, the reaction mixture undergoes a maturing step for 24 hours at room temperature with stirring (200 rev / min).
  • the molar composition of the precursor gel is as follows: 1 S1O2: 0.05 AI 2 O 3 : 0.167 R: 0.093 Na 2 0: 36.73 H 2 0, i.e. an S1O 2 / AI 2 O 3 ratio of 20.
  • the precursor gel is then transferred, after homogenization, into a 160 ml stainless steel reactor equipped with a stirring system with four inclined blades.
  • the reactor is closed, then heated for 5 hours under autogenous pressure with a temperature rise of 5 ° C./min up to 180 ° C. with stirring at 200 rpm to allow crystallization of the AFX-structural type zeolite.
  • the crystallized product obtained is filtered, washed with deionized water, then dried overnight at 100 ° C. The loss on ignition of the dried solid is 14.69%.
  • the calcination cycle comprises a temperature rise of 1.5 ° C / min up to 200 ° C, a plateau at 200 ° C maintained for 2 hours, a rise of 1 ° C / min up to 550 ° C followed by a plateau at 550 ° C maintained for 12 hours then a return to ambient temperature.
  • the calcined solid product was analyzed by X-ray diffraction and identified as consisting of an AFX-structural-type zeolite with a purity greater than 99% by weight.
  • the X-ray diffraction pattern performed on the calcined solid is given in Figure 2.
  • the scanning electron microscopy (SEM) image performed on the calcined AFX-structural-type solid is given in Figure 4.
  • the product has a S1O 2 / Al 2 O 3 molar ratio of 14.05 as determined by FX.
  • Example 4 preparation of an AFX-structural-type zeolite according to the invention
  • the precursor gel obtained has the following molar composition: 1 Si0 2 : 0.05 Al 2 0 3 : 0.125 R: 0.12 Na 2 0 : 27.55 H 2 0, ie an S1O2 / AI2O3 ratio of 20.
  • the precursor gel are introduced with stirring 0.79 g of AFX-structural type zeolite seeds (8.7% relative to the mass of CBV600 zeolite Anhydrous and silica Aerosil 380). Then the precursor gel containing the AFX zeolite seeds is transferred into a 160 mL stainless steel reactor equipped with a stirring system with 4 inclined blades. The reactor is closed, then heated for 7 hours.
  • the calcination cycle includes a temperature rise of 1.5 ° C / min up to 200 ° C, a plateau at 200 ° C maintained for 2 hours, a rise of 1 ° C / min up to 580 ° C followed by a plateau at 580 ° C maintained for 10 hours then a return to ambient temperature.
  • the calcined solid product was analyzed by X-ray diffraction and identified as consisting of an AFX-structural-type zeolite with a purity greater than 99% by weight.
  • the X-ray diffraction pattern performed on the calcined solid is given in Figure 2.
  • the product has an S1O 2 / Al 2 O 3 molar ratio of 11.2 as determined by FX.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Abstract

La présente invention concerne un procédé de synthèse rapide d'une zéolithe de type structural AFX comprenant au moins: i) le mélange en milieu aqueux, d'une zéolithe de type structural FAU ayant un ratio molaire SiO2 (FAU)/Al2O3 (FAU) compris entre 2,00 et 100, d'un composé organique azoté R, d'au moins une source d'au moins un métal alcalin et/ou alcalino-terreux M de valence n, avec la composition molaire suivante: (SiO2 (FAU))/(Al2O3 (FAU)) compris entre 2,00 et 100, H2O/(SiO2 (FAU)) compris entre 1 et 100, R/(SiO2 (FAU)) compris entre 0,01 à 0,6, M2/nO/(SiO2 (FAU)) compris entre 0,005 à 0,45, dans laquelle SiO2 (FAU) désigne la quantité de SiO2 apportée par la zéolithe FAU, et Al2O3 (FAU) désigne la quantité de Al2O3 apportée par la zéolithe FAU, jusqu'à l'obtention d'un gel précurseur homogène; ii) le traitement hydrothermal dudit gel précurseur obtenu à l'issue de l'étape i) sous pression autogène à une température comprise entre 120°C et 250°C, pendant 4 à 12 heures.

Description

PROCEDE DE SYNTHESE RAPIDE D'UNE ZEOLITHE DE TYPE STRUCTURAL AFX AVEC UNE SOURCE DE FAUJASITE
Domaine technique
La présente invention se rapporte à un nouveau procédé de préparation d'une zéolithe de type structural AFX. Ce nouveau procédé permet de réaliser la synthèse d'une zéolithe de type structural AFX par conversion/transformation sous conditions hydrothermales d’une zéolithe de type structural FAU. En particulier, ledit nouveau procédé permet de réaliser la synthèse rapide d’une zéolithe de type structural AFX, à partir d’une zéolithe de type structural FAU utilisée comme source de silicium et d’aluminium et d'une molécule organique ou structurant spécifique comportant deux fonctions ammonium quaternaire, le 1 ,6-bis(méthylpiperidinium)hexane sous sa forme dihydroxyde. Ladite zéolithe de type structural AFX obtenue selon le procédé de l'invention trouve avantageusement son application en tant que catalyseur, adsorbant ou agent de séparation.
Technique antérieure
Les matériaux microporeux cristallisés, tels que les zéolithes ou les silicoaluminophosphates, sont des solides très utilisés dans l'industrie pétrolière en tant que catalyseur, support de catalyseur, adsorbant ou agent de séparation. Bien que de nombreuses structures cristallines microporeuses aient été découvertes, l'industrie du raffinage et de la pétrochimie est toujours à la recherche de nouvelles structures zéolitiques qui présentent des propriétés particulières pour des applications comme la purification ou la séparation des gaz, la conversion d'espèces carbonées ou autres.
Les zéolithes de type structural AFX comprennent en particulier la zéolithe SSZ-16, et les zéotypes SAPO-56 et MEAPSO-56. La zéolithe de type structural AFX présente un système tridimensionnel de pores délimités par huit tétraèdres et est formé par deux types de cages: gmelinite (cage GME) et une grande cage AFT (~8,3 x 13,0 Â). De nombreuses méthodes de synthèse de zéolithes de type structural AFX, en particulier de la zéolithe SSZ-16, sont connues. La zéolithe SSZ-16 a été synthétisée en utilisant des espèces organiques azotées dérivées de type 1 ,4-di(1 - azoniabicyclo[2.2.2]octane)butyl dibromide et avec une durée de cristallisation typiquement supérieure à 3 jours (US. Patent No. 4,508,837). Chevron Research and Technology Company a préparé la zéolithe SSZ-16 en présence de cations DABCO- Cn-diquat, où DABCO représente le 1 ,4-diazabicyclo[2.2.2]octane et n est 3, 4 ou 5 avec une durée de cristallisation typiquement supérieure à 3 jours (U. S. Patent No.5, 194,235). S. B. Hong et al ont utilisés l’ion alkylammonium diquaternaire Et6- diquat-n, où Et6-diquat représente N’,N’-bis-triethylpentanediammonium et n est 5, comme agent structurant pour la synthèse de la zéolithe SSZ-16 avec une durée de formation de la zéolithe SSZ-16 comprise entre 7 et 14 jours (Micropor. Mesopor. Mat., 60 (2003) 237-249). On peut citer également l'utilisation des cations 1 ,3- bis(adamantyl)imidazolium comme agent structurant pour la préparation de zéolithe de type structural AFX avec une durée de cristallisation comprise entre 7 et 10 jours et généralement comprise entre 2 et 15 jours, respectivement (R. H. Archer et al., Microp. Mesopor. Mat., 130 (2010) 255-265; Johnson Matthey Company W02016077667A1 ). Inagaki Satoshi et al. (JP2016169139A) ont utilisé des cations divalents N,N,N',N'-tétraarquirubicyclo[2.2.2]oct-7-ene-2,3:05,6-dipyrrolidium substitutés avec des groupes alkyle avec une durée de cristallisation généralement comprise entre 20 et 400 heures pour préparer la zéolithe SSZ-16. Chevron U. S. A. (WO2017/200607 A1 ) propose de réaliser la synthèse d’une zéolithe SSZ-16 avec une durée de cristallisation de 1 à 28 jours en utilisant les dications :
1 , 1’-(1 ,4-cyclohexylenedimethylene)bis[1 -methylpiperidinium],
1 , 1’-(1 ,4-cyclohexylenedimethylene)bis[1 -ethylpiperidinium]
1 , 1’-(1 ,4-cyclohexylenedimethylene)bis[1 -methylpyrrolidinium],
1 ,1’-(1 ,4-cyclohexylenedimethylene)bis[1-ethylpyrrolidinium]. H. -Y. Chen et al. (Johnson Matthey Company, US2018/0093897) ont utilisé un mélange de cations contenant au moins le 1 ,3-bis(adamantyl)imidazolium et une amine neutre pour préparer la zéolithe JMZ-10 de type structural AFX en absence de cations alcalins avec une durée de cristallisation entre 1 et 20 jours. H. -Y. Chen et al. (Johnson Matthey Company, US2018/0093259) ont utilisé un mélange de cations contenant une molécule organique choisie parmi le 1 ,3-bis(adamantyl)imidazolium, le N,N- dimethyl-3,5-dimethylpiperidinium, le N,N-diethyl-cis 2,6-dimethylpiperidinium, le N,N,N-1 -trimethyladamantylammonium, le N,N,N-dimethylethylcyclohexylammonium et au moins un cation de métal alcalino-terreux pour obtenir la zéolithe JMZ-7 de type structural AFX qui présente des sites Al proches par rapport à une zéolithe obtenue par une synthèse mettant en oeuvre des cations alcalins. La durée nécessaire pour obtenir cette zéolithe varie de 3 à 15 jours.
K.G Strohmaier et al. (Exxon Mobil, WO2017202495A1 ) ont utilisé la molécule organique 1 ,1’-(hexane-1 ,6-dyil)bis(1 -méthylpipéridinium) en présence d’un complexe métallique stabilisé par des ligands d’amine pour obtenir une zéolithe de type structural AFX avec une durée de cristallisation allant de 1 jour à environ 100 jours.
De manière surprenante la demanderesse a découvert qu’il était possible de raccourcir la durée de cristallisation en partant d’une zéolithe de type FAU comme source de silice et d’alumine, en présence d’un structurant particulier, le 1 ,6-bis (méthylpiperidinium)hexane sous sa forme dihydroxyde, et avec des conditions particulières pour obtenir par une synthèse rapide une zéolithe AFX de haute pureté.
Résumé de l’invention
L’invention concerne un procédé de préparation d'une zéolithe de type structural AFX comprenant au moins les étapes suivantes : :
i) le mélange en milieu aqueux, d’une zéolithe de type structural FAU ayant un ratio molaire S1O2 (FAU)/AI2Ü3 (FAU) compris entre 2,00 et 100, d’un composé organique azoté R, R étant le dihydroxyde de 1 ,6- bis(méthylpiperidinium)hexane, d’au moins une source d'au moins un métal alcalin et/ou alcalino-terreux M de valence n, n étant un entier supérieur ou égal à 1 , choisi parmi le lithium, le potassium, le sodium, le magnésium et le calcium et le mélange d'au moins deux de ces métaux,
le mélange réactionnel présentant la composition molaire suivante :
(S1O2 (FAU))/(AI203 (FAU)) compris entre 2,00 et 100, de préférence entre 5,00 et 99
H20/(S Î02 (FAU)) compris entre 1 et 100, de préférence entre 5 et 60
R/(SÎ02 (FAU)) compris entre 0,01 à 0,6, de préférence entre 0,1 et 0,4 M2/n0/(Si02 (FAU)) compris entre 0,005 à 0,45, de préférence entre 0,07 et 0,22 dans laquelle Si02 (FAU) désigne la quantité de Si02 apportée par la zéolithe FAU, et AI3 (FAU) désigne la quantité de AI3 apportée par la zéolithe FAU, jusqu’à l’obtention d’un gel précurseur homogène ;
ii) le traitement hydrothermal dudit gel précurseur obtenu à l’issue de l’étape i) sous pression autogène à une température comprise entre 120°C et 250°C, pendant une durée comprise entre 4 heures et 12 heures.
Avantageusement, M est le sodium, et de préférence, la source d'au moins un métal alcalin et/ou alcalino-terreux M est l’hydroxyde de sodium.
Le mélange réactionnel de l’étape i) peut comprendre au moins une source additionnelle d’un oxyde X02, X étant un ou plusieurs élément(s) tétravalent(s) choisi(s) dans le groupe formé par les éléments suivants : silicium, germanium, titane, de sorte que le ratio molaire X02/Si02 (FAU) soit compris entre 0,001 et 33, et de préférence entre 0,001 et 15, la teneur en Si02 (FAU) dans ledit ratio étant la teneur apportée par la zéolithe de type structural FAU.
Le mélange réactionnel de l’étape i) a avantageusement la composition molaire suivante :
(X02 + S Î02 (FAU))/AI203 (FAU) compris entre 2 et 100, de préférence entre 5,00 et 99 H20/(X02 + S Î02 (FAU)) compris entre 1 et 100, de préférence entre 5 et 60
R/(X02 + SÎ02 (FAU)) compris entre 0,01 et 0,6, de préférence entre 0,1 et 0,4
M2/n0/(X02 + SÎ02 (FAU)) compris entre 0,005 et 0,45, de préférence entre 0,07 et 0,22
De préférence, X est le silicium.
Le mélange réactionnel de l’étape i) peut comprendre au moins une source additionnelle d’un oxyde Y2C>3, Y étant un ou plusieurs élément(s) trivalent(s) choisi(s) dans le groupe formé par les éléments suivants : aluminium, bore, gallium, de sorte que le ratio molaire Y203/Al203 (FAU) soit compris entre 0,001 et 45, et de préférence entre 0,001 et 40, bornes incluses, la teneur en AI3 (FAU) dans ledit ratio étant la teneur apportée par la zéolithe de type structural FAU. Le mélange réactionnel de l’étape i) a avantageusement la composition molaire suivante :
Si02 (FAU)/(AI203 (FAU) + Y2O3) compris entre 2,00 et 100, de préférence entre 5,00 et 99
H20/(Si02 (FAU)) compris entre 1 et 100, de préférence entre 5 et 60
R/(SÎ02 (FAU)) compris entre 0,01 et 0,6, de préférence entre 0,1 et 0,4
M2/n0/(Si02 (FAU)) compris entre 0,005 et 0,45, de préférence entre 0,07 et 0,22 Si02 (FAU) étant la quantité de Si02 apportée par la zéolithe FAU, et Al203 (FAU) étant la quantité de Al203 apportée par la zéolithe FAU.
De préférence, Y est l'aluminium.
Avantageusement, le gel précurseur obtenu à l’issue de l’étape i) présente un ratio molaire de la quantité totale exprimée en oxydes d’élément tétravalents sur la quantité totale exprimées en oxydes d’éléments trivalents compris entre 2,00 et 100.
On peut ajouter des germes cristallins d’une zéolithe de type structural AFX au mélange réactionnel de l’étape i), de préférence en quantité comprise entre 0,01 et 10% de la masse totale des sources desdits élément(s) tétravalent(s) et trivalent(s) sous forme anhydre présentes dans le mélange réactionnel, lesdits germes cristallins n’étant pas pris en compte dans la masse totale des sources des éléments tétravalents et trivalents.
L’étape i) peut comprendre une étape de mûrissement du mélange réactionnel à une température comprise entre 20 et 80°C, avec ou sans agitation, pendant une durée comprise entre 30 minutes et 24 heures, de préférence entre 1 heure et 12 heures.
Le traitement hydrothermal de l’étape ii) est avantageusement réalisé à une température comprise entre 150°C et 230°C, pendant une durée comprise entre 4 et 12 heures, borne supérieure exclue, de préférence entre 5 heures et 10 heures, de manière plus préférée entre 5 heures et 8 heures.
Avantageusement, la phase solide obtenue à l’issue de l’étape ii) est filtrée, lavée, et séchée à une température comprise entre 20 et 150°C, de préférence entre 60 et 100°C, pendant une durée comprise entre 5 et 24 heures pour obtenir une zéolithe séchée.
La zéolithe séchée peut ensuite être calcinée à une température comprise entre 450 et 700°C pendant une durée comprise entre 2 et 20 heures, la calcination pouvant être précédée d’une montée en température progressive.
L’invention concerne également une zéolithe de type structural AFX de rapport S1O2/AI2O3 compris entre 4,00 et 100, de préférence entre 4,00 et 60, obtenue par le procédé de préparation précédemment décrit.
L’invention concerne également une zéolithe calcinée de type structural AFX de rapport S1O2/AI2O3 compris entre 4,00 et 100, obtenue par le procédé de préparation précédemment décrit pour laquelle les valeurs moyennes des dhki et intensités relatives mesurées sur un diagramme de diffraction de rayons X sont les suivantes : Tableau 1
où FF = très fort ; F = fort ; m = moyen ; mf = moyen faible ; f = faible ; ff = très faible l'intensité relative lrei étant donnée en rapport à une échelle d'intensité relative où il est attribué une valeur de 100 à la raie la plus intense du diagramme de diffraction des rayons X : ff <15 ; 15 < f <30 ; 30 < mf <50 ; 50 < m < 65 ; 65 <F < 85 ; FF > 85. Liste des figures
D'autres caractéristiques et avantages du procédé selon l'invention, apparaîtront à la lecture de la description ci-après d'exemples non limitatifs de réalisations, en se référant aux figures annexées et décrites ci-après.
La Figure 1 représente la formule chimique du composé organique azoté utilisé comme structurant dans le procédé de synthèse selon l’invention.
La Figure 2 représente les diagrammes de diffraction de rayons X (DRX) de la zéolithe AFX obtenue selon les exemples 2 à 4.
La Figure 3 représente une image obtenue par microscopie électronique à balayage (MEB) de la zéolithe AFX obtenue selon l’exemple 2.
La Figure 4 représente une image obtenue par microscopie électronique à balayage (MEB) de la zéolithe AFX obtenue selon l’exemple 3.
Description des modes de réalisation
La présente invention a pour objet un nouveau procédé de préparation d'une zéolithe de type structural AFX, par conversion/transformation sous conditions hydrothermales d’une zéolithe de type structural FAU de rapport S1O2/AI2O3 particulier, en présence d’un composé organique azoté ou structurant spécifique, le 1 ,6-bis(méthylpiperidinium)hexane sous sa forme dihydroxyde.
En particulier, la demanderesse a découvert que le composé organique azoté ou structurant 1 ,6-bis(méthylpiperidinium)hexane sous sa forme dihydroxyde, mis en mélange avec une zéolithe de type structural FAU ayant un ratio molaire S1O2 (FAU)/AI203 (FAU) compris entre 2,00 et 100, utilisée comme source de silicium et d’aluminium, en présence ou non, d’un apport supplémentaire, au sein dudit mélange, d’au moins une source d'au moins un élément tétravalent XO2, et/ou d’au moins une source d’au moins un élément trivalent Y2O3, conduit à la production d’un gel précurseur d'une zéolithe de type structural AFX présentant un ratio molaire de la quantité totale exprimée en oxydes d’éléments tétravalents sur la quantité totale exprimée en oxydes d’éléments trivalents compris entre 2,00 et 100, puis à la production d’une zéolithe de type structural AFX de haute pureté, la quantité totale en oxydes d’élément tétravalent représentant la somme de la teneur en Si02 provenant de la zéolithe FAU et de la teneur en X02 provenant de l’éventuelle source additionnelle d’un oxyde X02, dans le cas où un ajout d’au moins une source additionnelle d’un oxyde X02 est réalisé, la quantité totale en oxydes d’élément trivalent représentant la somme de la teneur en Al203 provenant de la zéolithe FAU et de la teneur en Y203 provenant de l’éventuelle source additionnelle d’un oxyde Y203, dans le cas où un ajout d’au moins une source additionnelle d’un oxyde Y203 est réalisé. Toute autre phase cristallisée ou amorphe est généralement et très préférentiellement absente du solide cristallisé constitué de la zéolithe de type structural AFX obtenue à l'issue du procédé de préparation.
La présente invention a plus précisément pour objet un nouveau procédé de préparation d'une zéolithe permettant la synthèse rapide d’une zéolithe de type structural AFX comprenant au moins les étapes suivantes :
i) le mélange en milieu aqueux, d’une zéolithe de type structural FAU ayant un ratio molaire Si02 (FAU)/AI203 (FAU) compris entre 2,00 et 100, d’un composé organique azoté R, également appelé structurant, spécifique, le dihydroxyde de 1 ,6-bis(méthylpiperidinium)hexane, au moins un métal alcalin et/ou un métal alcalino-terreux M de valence n, n étant un entier supérieur ou égal à 1 , le mélange présentant la composition molaire suivante :
(Si02 (FAU))/(AI203 (FAU)) compris entre 2,00 et 100 de préférence entre 5,00 et 99
H20/(S Î02 (FAU)) compris entre 1 et 100, de préférence entre 5 et 60
R/(SÎ02 (FAU)) compris entre 0,01 et 0,6, de préférence entre 0,1 et 0,4
M2/n0/(Si02 (FAU)) compris entre 0,005 et 0,45, de préférence entre 0,07 et 0,22 dans laquelle Si02 (FAU) est la quantité de Si02 apportée par la zéolithe FAU, et Al203 (FAU) est la quantité de Al203 apportée par la zéolithe FAU, H20 la quantité molaire d’eau présente dans le mélange réactionnel, R la quantité molaire dudit composé organique azoté, M2/nO la quantité molaire exprimée sous forme oxyde de M2/nO pour la source de métal alcalin et/ou de métal alcalino-terreux et M est un ou plusieurs métal(aux) alcalin(s) et/ou alcalino- terreux choisi(s) parmi le lithium, le sodium, le potassium, le calcium, le magnésium et le mélange d'au moins deux de ces métaux, de manière très préférée M est le sodium, l’étape i) étant conduite pendant une durée permettant l’obtention d’un mélange homogène appelé gel précurseur ;
ii) le traitement hydrothermal dudit gel précurseur obtenu à l’issue de l’étape i) sous pression autogène à une température comprise entre 120°C et 250°C pendant une durée comprise entre 4 heures et 12 heures, jusqu'à ce que ladite zéolithe de type structural AFX se forme.
Un avantage de la présente invention est donc de fournir un nouveau procédé de préparation permettant la formation rapide d’une zéolithe de type structural AFX de haute pureté à partir d’une zéolithe de type structural FAU, ledit procédé étant mis en œuvre en présence d’un structurant organique, le dihydroxyde de 1 ,6-bis (méthylpiperidinium)hexane.
On peut citer, parmi les sources de FAU avec un rapport Si02/Al203 compris entre 2,00 et 6,00, les zéolithes commerciales CBV100, CBV300, CBV400, CBV500 et CBV600 produites par Zeolyst, les zéolithes commerciales FISZ-320NAA, HSZ- 320FIOA et FISZ-320FIUA produites par TOSOFI. La zéolithe de type structural FAU de départ ayant un ratio molaire Si02/Al203 compris entre 6,00 (borne incluse) et 200 peut être obtenue par n’importe quelle méthode connue par l’homme du métier comme par exemple par traitement à la vapeur (steaming) et des lavages acides sur une zéolithe de type structural FAU de ratio molaire Si02/Al203 inférieur à 6,00. On peut citer, parmi les sources de FAU avec un rapport Si02/Al203 supérieur ou égal à 6,00, les zéolithes commerciales CBV712, CBV720, CBV760 et CBV780 produites par Zeolyst, les zéolithes commerciales HSZ-350HUA, HSZ-360HUA et HSZ- 385FIUA produites par TOSOH. La zéolithe de type structural FAU de départ peut aussi être utilisée dans sa forme sodique ou tout autre forme ou un échange partiel ou total des cations sodium avec des cations ammonium suivie ou non d’une étape de calcination.
Dans la composition molaire du mélange réactionnel de l’étape i) et dans l’ensemble de la description : X02 désigne la quantité molaire du ou des élément(s) tétravalent(s) additionnels, exprimée sous forme oxyde, et Y2O3 désigne la quantité molaire du ou des élément(s) trivalent(s) additionnels, exprimée sous forme oxyde.
S1O2 (FAU) désigne la quantité de S1O2 apportée par la zéolithe FAU, et AI2O3 (FAU) désigne la quantité de Al203 apportée par la zéolithe FAU
FI2O la quantité molaire d’eau présente dans le mélange réactionnel,
R la quantité molaire dudit composé organique azoté,
M2/nO la quantité molaire exprimée sous forme oxyde de M2/nO par la source de métal alcalin et/ou de métal alcalino-terreux.
Dans un mode de réalisation préféré, le mélange réactionnel de l’étape i) comprend également au moins une source additionnelle d’un oxyde XO2 de sorte que le ratio molaire XO2/S1O2 (FAU) soit compris entre 0,001 et 33, le mélange présentant avantageusement la composition molaire suivante :
(XO2 + S1O2 (FAU))/AI203 (FAU) compris entre 2,00 et 100, de préférence entre 5,00 et 99
HI20/(C02 + S1O2 (FAU)) compris entre 1 et 100, de préférence entre 5 et 60
R/(X02 + SÎ02 (FAU)) compris entre 0,01 à 0,6, de préférence entre 0,1 et 0,4
M2/n0/(X02 + S1O2 (FAU)) compris entre 0,005 à 0,45, de préférence entre 0,07 et 0,22 dans laquelle X est un ou plusieurs élément(s) tétravalent(s) choisi(s) dans le groupe formé par les éléments suivants : silicium, germanium, titane, de préférence X est le silicium, S1O2 (FAU) étant la quantité de S1O2 apportée par la zéolithe FAU, et AI2O3 (FAU) étant la quantité de Al203 apportée par la zéolithe FAU, R étant le dihydroxyde de 1 ,6-bis(méthylpiperidinium)hexane, et M est un ou plusieurs métal(aux) alcalin(s) et/ou alcalino-terreux choisi(s) parmi le lithium, le sodium, le potassium, le calcium, le magnésium et le mélange d'au moins deux de ces métaux, de manière très préférée M est le sodium.
Dans un autre mode de réalisation préféré, le mélange réactionnel de l’étape i) comprend également au moins une source additionnelle d’un oxyde Y2O3 de sorte que le ratio molaire Y2O3/AI2O3 (FAu) soit compris entre 0,001 et 45, le mélange présentant avantageusement la composition molaire suivante :
S1O2 (FAU)/(AI203 (FAU) + Y2O3) compris entre 2,00 et 100, de préférence entre 5,00 et 99
H20/(Si02 (FAU)) compris entre 1 et 100, de préférence entre 5 et 60
R/(Si02 (FAU)) compris entre 0,01 à 0,6, de préférence entre 0,1 et 0,4
M2/n0/(Si02 (FAU)) compris entre 0,005 à 0,45, de préférence entre 0,07 et 0,22 dans laquelle Y est un ou plusieurs élément(s) trivalent(s) choisi(s) dans le groupe formé par les éléments suivants : aluminium, bore, gallium, de préférence Y est l'aluminium, S1O2 (FAU) étant la quantité de S1O2 apportée par la zéolithe FAU, et AI2O3 (FAU) étant la quantité de AI2O3 apportée par la zéolithe FAU, R étant le dihydroxyde de 1 ,6-bis(méthylpiperidinium)hexane, et M est un ou plusieurs métal(aux) alcalin(s) et/ou alcalino-terreux choisi(s) parmi le lithium, le sodium, le potassium, le calcium, le magnésium et le mélange d'au moins deux de ces métaux, de manière très préférée M est le sodium.
La ou les source(s) du(es)dit(s) élément(s) tétravalent(s) peu(ven)t être tout composé comprenant l'élément X et pouvant libérer cet élément en solution aqueuse sous forme réactive.
Lorsque X est le titane, on utilise avantageusement Ti(EtO)4 comme source de titane.
Dans le cas préféré où X est le silicium, la source de silicium peut être l'une quelconque desdites sources couramment utilisée pour la synthèse de zéolithes, par exemple de la silice en poudre, de l'acide silicique, de la silice colloïdale, de la silice dissoute ou du tétraéthoxysilane (TEOS). Parmi les silices en poudre, on peut utiliser les silices précipitées, notamment celles obtenues par précipitation à partir d'une solution de silicate de métal alcalin, des silices pyrogènes, par exemple du "CAB-O- SIL" ou du "Aerosil" et des gels de silice. On peut utiliser des silices colloïdales présentant différentes tailles de particules, par exemple de diamètre équivalent moyen compris entre 10 et 15 nm ou entre 40 et 50 nm, telles que celles commercialisées sous les marques déposées telle que "LUDOX". De manière préférée, la source de silicium est le Aerosil.
Conformément à l'invention, Y peut être un ou plusieurs élément(s) trivalent(s) choisi(s) dans le groupe formé par les éléments suivants : aluminium, bore, gallium, est mise en oeuvre dans le mélange de l’étape i). De préférence Y est l'aluminium, de sorte que le ratio molaire Y2O3/AI2O3 (FAU) soit compris entre 0,001 et 45, et de préférence entre 0,001 et 40, la teneur en AI2O3 (FAU) dans ledit ratio étant la teneur apportée par la zéolithe de type structural FAU.
L’ajout d’au moins une source additionnelle d’un oxyde Y2O3 permet donc d’ajuster le ratio XO2/Y2O3 du gel précurseur d’une zéolithe de type structural AFX obtenu à l’issue de l’étape i).
La ou les source(s) du(es)dit(s) élément(s) trivalent(s) Y peu(ven)t être tout composé comprenant l'élément Y et pouvant libérer cet élément en solution aqueuse sous forme réactive. L'élément Y peut être incorporé dans le mélange sous une forme oxydée YOb avec 1 < b < 3 (b étant un nombre entier ou un nombre rationnel) ou sous toute autre forme. Dans le cas préféré où Y est l'aluminium, la source d'aluminium est de préférence de l’hydroxyde d'aluminium ou un sel d'aluminium, par exemple du chlorure, du nitrate, ou du sulfate, un aluminate de sodium, un alkoxyde d'aluminium, ou de l'alumine proprement dite, de préférence sous forme hydratée ou hydratable, comme par exemple de l'alumine colloïdale, de la pseudoboehmite, de l'alumine gamma ou du trihydrate alpha ou bêta. On peut également utiliser des mélanges des sources citées ci-dessus.
Le structurant organique R utilisée est le 1 ,6-bis(méthylpiperidinium)hexane sous sa forme dihydroxyde ou un mélange de formes dihydroxyde et dibromure avec un rapport molaire OH/Br > 50. De préférence R est le
1 ,6-bis(méthylpiperidinium)hexane sous sa forme dihydroxyde.
L'étape (i) du procédé selon l'invention consiste à préparer un mélange réactionnel aqueux contenant une zéolithe de type structural FAU, éventuellement une source d’un oxyde XO2 ou d’une source d’un oxyde Y2O3, au moins un composé organique azoté R, R étant le dihydroxyde de 1 ,6-bis(méthylpiperidinium)hexane en présence d’au moins une source d'un ou plusieurs métal(aux) alcalin(s) et/ou alcalino-terreux, pour obtenir un gel précurseur d’une zéolithe de type structural AFX. Les quantités desdits réactifs sont ajustées comme indiqué précédemment de manière à conférer à ce gel une composition permettant la cristallisation d’une zéolithe de type structural AFX.
Le procédé de préparation selon l’invention permet donc d’ajuster le ratio S1O2/AI2O3 du gel précurseur contenant une zéolithe de type structural FAU en fonction de la zéolithe de type structural FAU choisie et de l’apport supplémentaire ou pas, au sein du mélange réactionnel d’au moins une source d'au moins un élément tétravalent XO2 et/ou d’au moins une source d'au moins un élément trivalent Y2O3.
Il peut être avantageux d'additionner des germes d’une zéolithe de type structural AFX au mélange réactionnel au cours de ladite étape i) du procédé de l'invention afin de réduire le temps nécessaire à la formation des cristaux d’une zéolithe de type structural AFX et/ou la durée totale de cristallisation. Lesdits germes cristallins favorisent également la formation de ladite zéolithe de type structural AFX au détriment d'impuretés. De tels germes comprennent des solides cristallisés, notamment des cristaux d’une zéolithe de type structural AFX. Les germes cristallins sont généralement ajoutés dans une proportion comprise entre 0,01 et 10% de la masse totale des sources desdits élément(s) tétravalent(s) et trivalent(s) sous forme anhydre présentes dans le mélange réactionnel, lesdits germes cristallins n’étant pas pris en compte dans la masse totale des sources des éléments tétravalents et trivalents. Lesdits germes ne sont pas non plus pris en compte pour déterminer la composition du mélange réactionnel et/ou du gel, définie plus avant, c’est-à-dire dans la détermination des différents rapports molaires de la composition du mélange réactionnel.
L’étape i) de mélange est mise en oeuvre jusqu’à obtention d’un mélange homogène, de préférence pendant une durée supérieure ou égale à 10 minutes, de préférence sous agitation par tout système connu de l’homme du métier à faible ou fort taux de cisaillement. A l’issue de l’étape i) on obtient un gel précurseur homogène.
Il peut être avantageux de mettre en œuvre un mûrissement du mélange réactionnel avant la cristallisation hydrothermale au cours de ladite étape i) du procédé de l'invention afin de contrôler la taille des cristaux d’une zéolithe de type structural AFX. Ledit mûrissement favorise également la formation de ladite zéolithe de type structural AFX au détriment d'impuretés. Le mûrissement du mélange réactionnel au cours de ladite étape i) du procédé de l'invention peut être réalisé à température ambiante ou à une température comprise entre 20 et 80°C avec ou sans agitation, pendant une durée avantageusement comprise entre 30 minutes et 24 heures.
Conformément à l'étape (ii) du procédé selon l'invention, le gel précurseur obtenu à l’issue de l’étape i) est soumis à un traitement hydrothermal sous pression autogène, réalisé à une température comprise entre 120°C et 250°C pendant une durée comprise entre 4 heures et 12 heures, jusqu'à ce que ladite zéolithe de type structural AFX se forme.
Le gel précurseur est avantageusement mis sous conditions hydrothermales sous une pression de réaction autogène, éventuellement en ajoutant du gaz, par exemple de l'azote, à une température de préférence comprise entre 120°C et 250°C, de préférence entre 150°C et 230°C, jusqu'à la cristallisation complète d’une zéolithe de type structural AFX.
La durée nécessaire pour obtenir la cristallisation varie entre 4 heures et 12 heures, de préférence moins de 12 heures, de préférence entre 5 heures et 10 heures, et de manière plus préférée entre 5 heures et 8 heures.
La mise en réaction s'effectue généralement sous agitation ou en absence d'agitation, de préférence sous agitation. Comme système d’agitation on peut utiliser tout système connu par l’homme de métier, par exemple, des pales inclinées avec des contrepales, des turbines d’agitation, des vis d’Archimède.
A la fin de la réaction, après mise en œuvre de ladite étape ii) du procédé de préparation selon l'invention, la phase solide formée d’une zéolithe de type structural AFX est de préférence filtrée, lavée puis séchée. Le séchage est généralement réalisé à une température comprise entre 20 et 150°C, de préférence entre 60 et 100°C, pendant une durée comprise entre 5 et 24 heures.
La zéolithe séchée peut ensuite être avantageusement calcinée. La zéolithe de type structural AFX, calcinée, est généralement analysée par diffraction des rayons X, cette technique permettant également de déterminer la pureté de ladite zéolithe obtenue par le procédé de l'invention.
De manière très avantageuse, le procédé de l'invention conduit à la formation d'une zéolithe de type structural AFX, exempte de toute autre phase cristallisée ou amorphe. La zéolithe AFX obtenue présente une pureté supérieure à 90%, d’une manière préférée supérieure à 95%, de manière très préférée supérieure à 97% et d’une manière encore plus préférée supérieure à 99,8%. Ladite zéolithe de type structural AFX, après l'étape de séchage, est ensuite prête pour des étapes ultérieures telles que la calcination et l'échange d'ions. Pour ces étapes, toutes les méthodes conventionnelles connues de l'homme du métier peuvent être employées.
La perte au feu de ladite zéolithe de type structural AFX obtenue après séchage et avant calcination est généralement comprise entre 5 et 18% poids. Selon l’invention, on entend par perte au feu (PAF) le pourcentage de perte de masse subie par un composé solide, un mélange de composés solides ou une pâte, de préférence dans le cas de la présente invention par ladite zéolithe AFX préparée, lors d’un traitement thermique à 1000°C pendant 2 heures, dans un four statique (type four à moufle), par rapport à la masse du composé solide, du mélange de composés solides ou de la pâte initial(e), de préférence dans le cas de la présente invention par rapport à la masse de zéolithe AFX séchée testée. La perte au feu correspond en général à la perte de solvant (tel que l’eau) contenu dans les solides, mais aussi à l’élimination de composés organiques contenus dans les constituants solides minéraux.
L’étape de calcination d’une zéolithe de type structural AFX obtenue selon le procédé de l'invention est préférentiellement réalisée à une température comprise entre 450 et 700°C pendant une durée comprise entre 2 et 20 heures. La zéolithe de type structural AFX obtenue à l'issue de l'étape de calcination est dépourvue de toute espèce organique et en particulier du structurant organique R.
A l'issue de ladite étape de calcination, la diffraction des rayons X permet de vérifier que le solide obtenu par le procédé selon l’invention est bien une zéolithe de type structural AFX. La pureté obtenue est de préférence supérieure à 99,8%. Dans ce cas, le solide obtenu présente le diagramme de diffraction de rayons X incluant au moins les raies inscrites dans le Tableau 1 . De préférence, le diagramme de diffraction X ne contient pas d’autres raies d’intensité significative (c’est-à-dire d’intensité supérieure à environ trois fois le bruit de fond) que celles inscrites dans le Tableau 1 .
Ce diagramme de diffraction est obtenu par analyse radiocristallographique au moyen d’un diffractomètre en utilisant la méthode classique des poudres avec le rayonnement Kai du cuivre (l = 1 ,5406A). A partir de la position des pics de diffraction représentée par l’angle 2Q, on calcule, par la relation de Bragg, les équidistances réticulaires dhki caractéristiques de l’échantillon. L’erreur de mesure A(dhki) sur dhki est calculée grâce à la relation de Bragg en fonction de l’erreur absolue D(2Q) affectée à la mesure de 2Q. Une erreur absolue D(2Q) égale à ± 0,02° est communément admise. L’intensité relative lrei affectée à chaque valeur de dhki est mesurée d’après la hauteur du pic de diffraction correspondant. Le diagramme de diffraction des rayons X du solide cristallisé de type structural AFX selon l'invention comporte au moins les raies aux valeurs de dhki données dans le Tableau 1. Dans la colonne des dhki, on a indiqué les valeurs moyennes des distances inter-réticulaires en Angstroms (A). Chacune de ces valeurs doit être affectée de l’erreur de mesure
A(dhki) comprise entre ± 0,6A et ± 0,01 A.
Le rapport SÎ02/AI203 de la zéolithe de type structural AFX est généralement compris entre 4,00 et 100, de préférence entre 4,00 et 60, de manière très préférée entre 6,00 et 60. Tableau 2
où FF = très fort ; F = fort ; m = moyen ; mf = moyen faible ; f = faible ; ff = très faible. L'intensité relative lrei est donnée en rapport à une échelle d'intensité relative où il est attribué une valeur de 100 à la raie la plus intense du diagramme de diffraction des rayons X : ff <15 ; 15 < f <30 ; 30 < mf <50 ; 50 < m < 65 ; 65 <F < 85 ; FF > 85.
Tableau 1 : Valeurs moyennes des dhki et intensités relatives mesurées sur un diagramme de diffraction de rayons X du solide cristallisé de type structural AFX calciné
La spectrométrie de fluorescence des rayons X (FX) est une technique d'analyse chimique utilisant une propriété physique de la matière, la fluorescence de rayons X. Elle permet l’analyse de la majorité des éléments chimiques à partir du Béryllium (Be) dans des gammes de concentration allant de quelques ppm à 100%, avec des résultats précis et reproductibles. On utilise les rayons X pour exciter les atomes qui sont dans l'échantillon, ce qui leur fait émettre des rayons X à énergie caractéristique de chaque élément présent. L'intensité et l'énergie de ces rayons X sont ensuite mesurées pour déterminer la concentration des éléments dans le matériau.
I est également avantageux d'obtenir la forme protonée de la zéolithe de type structural AFX obtenue par le procédé selon l'invention. Ladite forme protonée peut être obtenue en effectuant un échange d'ions avec un acide, en particulier un acide minéral fort comme l'acide chlorhydrique, sulfurique ou nitrique, ou avec un composé tel que le chlorure, le sulfate ou le nitrate d'ammonium. L’échange d’ions peut être effectué par mise en suspension de ladite zéolithe de type structural AFX en une ou plusieurs fois avec la solution d'échange d'ions. Ladite zéolithe peut être calcinée avant ou après l'échange d'ions, ou entre deux étapes d’échange d’ions. La zéolithe est, de préférence, calcinée avant l’échange d’ions, afin d’éliminer toute substance organique incluse dans la porosité de la zéolithe, dans la mesure où l’échange d’ions s’en trouve facilité.
La zéolithe de type structural AFX obtenue par le procédé de l'invention peut être utilisée après échange ionique comme solide acide pour la catalyse dans les domaines du raffinage et de la pétrochimie. Elle peut également être utilisée comme adsorbant ou comme tamis moléculaire.
Exemples
L’invention est illustrée par les exemples suivants qui ne présentent, en aucun cas, un caractère limitatif.
Exemple 1 : préparation du dihvdroxyde de 1 ,6-bis(méthylpiperidinium)hexane
(structurant R).
50 g de 1 ,6-dibromohexane (0,20 mole, 99%, Alfa Aesar) sont ajoutés dans un ballon de 1 L contenant 50 g de N-méthylpipéridine (0,51 mole, 99%, Alfa Aesar) et 200 mL d'éthanol. Le milieu réactionnel est agité et porté à reflux pendant 5 heures. Le mélange est ensuite refroidi à température ambiante, puis filtré. Le mélange est versé dans 300 mL de diéthyléther froid, puis le précipité formé est filtré et lavé avec 100 mL de diéthyléther. Le solide obtenu est recristallisé dans un mélange éthanol/éther. Le solide obtenu est séché sous vide pendant 12 heures. On obtient 71 g d'un solide blanc (soit un rendement de 80%).
Le produit possède le spectre RMN 1H attendu. RMN 1H (D20, ppm/TMS) : 1 ,27
(4H,m) ; 1 ,48 (4H,m) ; 1 ,61 (4H,m) ; 1 ,70 (8H,m) ; 2,85 (6H,s) ; 3,16 (12H,m).
18,9 g d'Ag20 (0,08 mole, 99%, Aldrich) sont ajoutés dans un bêcher en téflon de 250 mL contenant 30 g du structurant dibromure de 1 ,6-bis(méthylpiperidinium)hexane (0,07 mole) préparé et 100 mL d'eau déionisée. Le milieu réactionnel est agité à l'abri de la lumière pendant 12 heures. Le mélange est ensuite filtré. Le filtrat obtenu est composé d'une solution aqueuse de dihydroxyde de 1 ,6-bis(méthylpiperidinium)hexane. Le dosage de cette espèce est réalisé par RMN du proton en utilisant l'acide formique en tant qu'étalon.
Exemple 2: préparation d’une zéolithe de type structural AFX selon l'invention
33,37 g d'une solution aqueuse de dihydroxyde de 1 ,6-bis(méthylpiperidinium)hexane (18,36% en poids) préparé selon l’exemple 1 sont mélangés avec 37,15 g d'eau permutée, sous agitation et à température ambiante. 1 ,72 g d’hydroxyde de sodium (98% en poids, Aldrich) sont dissous dans le mélange précédent sous agitation et à température ambiante. Dès que la suspension obtenue est homogène on commence à verser 7,79 g d’une zéolithe de type structural FAU (CBV720, Si02/Al203 = 33,52, Zeolyst, PAF = 6,63%) et on maintient sous agitation la suspension obtenue pendant 30 minutes à température ambiante. Afin de favoriser la formation d’une zéolithe de type structural AFX, 0,646 g de germes (10% par rapport à la masse de zéolithe CBV720) d’une zéolithe de type structural AFX sont ajoutés dans le mélange de synthèse et maintenu sous agitation pendant 5 minutes. Ensuite, le mélange réactionnel subit une étape de mûrissement pendant 24 heures à température ambiante sous agitation (200 tr/min). La composition molaire du gel précurseur est la suivante: 1 Si02: 0,0298 Al203: 0,18 R: 0,20 Na20: 34 H20, soit un ratio Si02/Al203 de 33,52. Le gel précurseur est ensuite transféré, après homogénéisation, dans un réacteur en inox de 160 mL doté d’un système d’agitation à quatre pales inclinées. Le réacteur est fermé, puis chauffé pendant 5 heures sous pression autogène avec une montée en température de 5°C/min jusqu'à 180°C sous agitation à 200 tr/min pour permettre la cristallisation de la zéolithe de type structural AFX. Le produit cristallisé obtenu est filtré, lavé à l'eau déionisée, puis séché une nuit à 100°C. La perte au feu du solide séché est de 14,82%. Le solide est ensuite introduit dans un four à moufle où est réalisée une étape de calcination: le cycle de calcination comprend une montée en température de 1 ,5°C/min jusqu'à 200°C, un palier à 200°C maintenu durant 2 heures, une montée de 1 °C/min jusqu'à 550°C suivi d'un palier à 550°C maintenu durant 12 heures puis un retour à la température ambiante.
Le produit solide calciné a été analysé par diffraction de rayons X et identifié comme étant constitué d’une zéolithe de type structural AFX avec une pureté supérieure à 99% poids. Le diagramme de diffraction de rayons X effectué sur le solide calciné est donné sur la Figure 2. L’image par microscopie électronique à balayage (MEB) effectuée sur le solide de type structural AFX calciné est donnée sur la Figure 3. Le produit a un rapport molaire Si02/AI203 de 11 ,42 tel que déterminé par FX.
29,3 g d'une solution aqueuse de dihydroxyde de 1 ,6-bis(méthylpiperidinium)hexane (18,36% en poids) préparé selon l’exemple 1 sont mélangés avec 41 ,73 g d'eau permutée, sous agitation et à température ambiante. 0,764 g d’hydroxyde de sodium (98% en poids, Aldrich) sont dissous dans le mélange précédent sous agitation et à température ambiante. Par la suite, 0,675 g de gel amorphe d’hydroxyde d’aluminium (AI(OH)3 gel amorphe, 58,55% en masse de Al203, Merck), correspondant à un rapport molaire (Al203(gel amorphe)/AI203(FAU) de 35,27 sont incorporés dans le mélange de synthèse, celui-ci est le maintenu sous agitation pendant une demi- heure à température ambiante. Dès que la suspension obtenue est homogène on commence à verser 7,56 g d’une zéolithe de type structural FAU (CBV780, Si02/Al203 = 98,22, Zeolyst, PAF = 8,52%) et on maintient sous agitation la suspension obtenue pendant 30 minutes à température ambiante. Afin de favoriser la formation d’une zéolithe de type structural AFX, 0,614 g de germes (10% par rapport à la masse de zéolithe CBV780) d’une zéolithe de type structural AFX sont ajoutés dans le mélange de synthèse qui est maintenu sous agitation pendant 5 minutes. Ensuite, le mélange réactionnel subit une étape de mûrissement pendant 24 heures à température ambiante sous agitation (200 tr/min). La composition molaire du gel précurseur est la suivante: 1 S1O2: 0,05 AI2O3: 0,167 R: 0,093 Na20: 36,73 H20, soit un ratio S1O2/AI2O3 de 20. Le gel précurseur est ensuite transféré, après homogénéisation, dans un réacteur en inox de 160 mL doté d’un système d’agitation à quatre pales inclinées. Le réacteur est fermé, puis chauffé pendant 5 heures sous pression autogène avec une montée en température de 5°C/min jusqu'à 180°C sous agitation à 200 tr/min pour permettre la cristallisation de la zéolithe de type structural AFX. Le produit cristallisé obtenu est filtré, lavé à l'eau déionisée, puis séché une nuit à 100°C. La perte au feu du solide séché est de 14,69%. Le solide est ensuite introduit dans un four à moufle où est réalisée une étape de calcination: le cycle de calcination comprend une montée en température de 1 ,5°C/min jusqu'à 200°C, un palier à 200°C maintenu durant 2 heures, une montée de 1 °C/min jusqu'à 550°C suivi d'un palier à 550°C maintenu durant 12 heures puis un retour à la température ambiante.
Le produit solide calciné a été analysé par diffraction de rayons X et identifié comme étant constitué d’une zéolithe de type structural AFX avec une pureté supérieure à 99% poids. Le diagramme de diffraction de rayons X effectué sur le solide calciné est donné sur la Figure 2. L’image de microscopie électronique à balayage (MEB) effectuée sur le solide de type structural AFX calciné est donnée sur la Figure 4. Le produit a un rapport molaire S1O2/AI2O3 de 14,05 tel que déterminé par FX.
Exemple 4: préparation d’une zéolithe de type structural AFX selon l'invention
28,35 g d'une solution aqueuse de dihydroxyde de 1 ,6-bis(méthylpiperidinium)hexane (18,36% en poids) préparé selon l’exemple 1 sont mélangés avec 41 ,22 g d’eau permutée, sous agitation et à température ambiante. 1 ,26 g d’hydroxyde de sodium (98% en poids, Aldrich) sont dissous dans le mélange précédent sous agitation et à température ambiante. On verse ensuite par petites fractions 5,74 g de silice Aerosil 380 (100% en poids, Degussa) sous agitation. Dès que la suspension obtenue est homogène on commence à verser 3,43 g de zéolithe de type structural FAU (CBV600 Zeolyst, Si02/AI203= 5,48, PAF = 12,65%) et on maintien sous agitation la suspension obtenue pendant 5 minutes, à température ambiante. Ensuite, le mélange réactionnel subit une étape de mûrissement pendant 3 heures à température ambiante sous agitation (200 tr/min). Le rapport molaire (Si02(Aerosil)/Si02(FAU) est de 2,65. Le gel précurseur obtenu présente la composition molaire suivante: 1 Si02: 0,05 Al203: 0,125 R : 0,12 Na20: 27,55 H20, soit un ratio S1O2/AI2O3 de 20. Dans le gel précurseur sont introduits sous agitation 0,79 g de germes de zéolithe de type structural AFX (8,7% par rapport à la masse de zéolithe CBV600 anhydre et de silice Aerosil 380). Ensuite le gel précurseur contenant les germes de zéolithe AFX est transféré dans un réacteur inox de 160 mL doté d’un système d’agitation à 4 pales inclinées. Le réacteur est fermé, puis chauffé pendant 7 heures sous pression autogène avec une montée en température de 5°C/min jusqu'à 190°C sous agitation à 200 tr/min pour permettre la cristallisation de la zéolithe de type structural AFX. Le solide obtenu est filtré, lavé à l'eau déionisée puis séché une nuit à 100°C. La perte au feu du solide séché est de 12,6%. Le solide est ensuite introduit dans un four à moufle où est réalisée une étape de calcination: le cycle de calcination comprend une montée en température de 1 ,5°C/min jusqu'à 200°C, un palier à 200°C maintenu durant 2 heures, une montée de 1 °C/min jusqu'à 580°C suivi d'un palier à 580°C maintenu durant 10 heures puis un retour à la température ambiante.
Le produit solide calciné a été analysé par diffraction des rayons X et identifié comme étant constitué d’une zéolithe de type structural AFX de pureté supérieure à 99% poids. Le diagramme de diffraction de rayons X effectué sur le solide calciné est donné sur la Figure 2. Le produit a un rapport molaire S1O2/AI2O3 de 11 ,2 tel que déterminé par FX.

Claims

REVENDICATIONS
1. Procédé de préparation d'une zéolithe de type structural AFX comprenant au moins les étapes suivantes :
i) le mélange en milieu aqueux, d’une zéolithe de type structural FAU ayant un ratio molaire Si02 (FAU)/AI203 (FAU) compris entre 2,00 et 100, d’un composé organique azoté R, R étant le dihydroxyde de 1 ,6- bis(méthylpiperidinium)hexane, d’au moins une source d'au moins un métal alcalin et/ou alcalino-terreux M de valence n, n étant un entier supérieur ou égal à 1 , choisi parmi le lithium, le potassium, le sodium, le magnésium et le calcium et le mélange d'au moins deux de ces métaux, le mélange réactionnel présentant la composition molaire suivante : (Si02 (FAU))/(AI203 (FAU)) compris entre 2,00 et 100, de préférence entre 5,00 et 99
Fl20/(Si02 (FAU)) compris entre 1 et 100, de préférence entre 5 et 60 R/(Si02 (FAU)) compris entre 0,01 à 0,6, de préférence entre 0,1 et 0,4 M2/n0/(Si02 (FAU)) compris entre 0,005 à 0,45, de préférence entre 0,07 et 0,22 dans laquelle Si02 (FAU) désigne la quantité de Si02 apportée par la zéolithe FAU, et AI203 (FAU) désigne la quantité de AI2O3 apportée par la zéolithe FAU, puis un mûrissement du mélange réactionnel à une température comprise entre 20 et 80°C, avec ou sans agitation, pendant une durée comprise entre 30 minutes et 24 heures, de préférence entre 1 heure et 12 heures, jusqu’à l’obtention d’un gel précurseur homogène ;
ii) le traitement hydrothermal dudit gel précurseur obtenu à l’issue de l’étape i) sous pression autogène à une température comprise entre 120°C et 250°C, pendant une durée comprise entre 4 heures et 12 heures.
2. Procédé selon la revendication 1 dans lequel M est le sodium, et de préférence, la source d'au moins un métal alcalin et/ou alcalino-terreux M est l’hydroxyde de sodium.
3. Procédé selon l’une des revendications précédentes dans lequel le mélange réactionnel de l’étape i) comprend au moins une source additionnelle d’un oxyde XO2, X étant un ou plusieurs élément(s) tétravalent(s) choisi(s) dans le groupe formé par les éléments suivants : silicium, germanium, titane, de sorte que le ratio molaire X02/Si02 (FAU) soit compris entre 0,001 et 33, et de préférence entre 0,001 et 15, la teneur en S1O2 (FAU) dans ledit ratio étant la teneur apportée par la zéolithe de type structural FAU.
4. Procédé selon la revendication 3 dans lequel le mélange réactionnel de l’étape i) a la composition molaire suivante :
(XO2 + S1O2 (FAU))/AI203 (FAU) compris entre 2 et 100, de préférence entre 5,00 et 99 H20/(X02 + S1O2 (FAU)) compris entre 1 et 100, de préférence entre 5 et 60 R/(X02 + S1O2 (FAU)) compris entre 0,01 et 0,6, de préférence entre 0,1 et 0,4 M2/n0/(X02 + SÎ02 (FAU)) compris entre 0,005 et 0,45, de préférence entre 0,07 et 0,22
5. Procédé selon l’une des revendications 3 ou 4 dans lequel X est le silicium.
6. Procédé selon l’une des revendications précédentes dans lequel le mélange réactionnel de l’étape i) comprend au moins une source additionnelle d’un oxyde Y203, Y étant un ou plusieurs élément(s) trivalent(s) choisi(s) dans le groupe formé par les éléments suivants : aluminium, bore, gallium, de sorte que le ratio molaire Y2O3/AI2O3 (FAU) soit compris entre 0,001 et 45, et de préférence entre 0,001 et 40, bornes incluses, la teneur en AI2O3 (FAU) dans ledit ratio étant la teneur apportée par la zéolithe de type structural FAU.
7. Procédé selon la revendication 6 dans lequel le mélange réactionnel de l’étape i) a la composition molaire suivante :
S1O2 (FAU)/(AI203 (FAU) + Y2O3) compris entre 2,00 et 100, de préférence entre 5,00 et 99
F)20/(Si02 (FAU)) compris entre 1 et 100, de préférence entre 5 et 60 R/(Si02 (FAU)) compris entre 0,01 et 0,6, de préférence entre 0,1 et 0,4 M2/n0/(Si02 (FAU)) compris entre 0,005 et 0,45, de préférence entre 0,07 et 0,22 Si02 (FAU) étant la quantité de Si02 apportée par la zéolithe FAU, et Al203 (FAU) étant la quantité de Al203 apportée par la zéolithe FAU.
8. Procédé selon l’une des revendications 6 ou 7 dans lequel Y est l'aluminium.
9. Procédé selon l’une des revendications 3 à 8 dans lequel le gel précurseur obtenu à l’issue de l’étape i) présente un ratio molaire de la quantité totale exprimée en oxydes d’élément tétravalents sur la quantité totale exprimées en oxydes d’éléments trivalents compris entre 2,00 et 100.
10. Procédé selon l’une des revendications précédentes dans lequel on ajoute des germes cristallins d’une zéolithe de type structural AFX au mélange réactionnel de l’étape i), de préférence en quantité comprise entre 0,01 et 10% de la masse totale des sources desdits élément(s) tétravalent(s) et trivalent(s) sous forme anhydre présentes dans le mélange réactionnel, lesdits germes cristallins n’étant pas pris en compte dans la masse totale des sources des éléments tétravalents et trivalents.
11. Procédé selon l’une des revendications précédentes dans lequel le traitement hydrothermal de l’étape ii) est réalisé à une température comprise entre 150°C et 230°C, pendant une durée comprise entre 4 et 12 heures, borne supérieure exclue, de préférence entre 5 heures et 10 heures, de manière plus préférée entre 5 heures et 8 heures.
12. Procédé selon l’une des revendications précédentes dans lequel la phase solide obtenue à l’issue de l’étape ii) est filtrée, lavée, et séchée à une température comprise entre 20 et 150°C, de préférence entre 60 et 100°C, pendant une durée comprise entre 5 et 24 heures pour obtenir une zéolithe séchée.
13. Procédé selon la revendication 12 dans lequel la zéolithe séchée est ensuite calcinée à une température comprise entre 450 et 700°C pendant une durée comprise entre 2 et 20 heures, la calcination pouvant être précédée d’une montée en température progressive.
EP20717887.2A 2019-04-19 2020-04-14 Procede de synthese rapide d'une zeolithe de type structural afx avec une source de faujasite Pending EP3956264A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1904196A FR3095199B1 (fr) 2019-04-19 2019-04-19 Procédé de synthèse rapide d'une zeolithe de type structural AFX avec une source de faujasite
PCT/EP2020/060476 WO2020212356A1 (fr) 2019-04-19 2020-04-14 Procede de synthese rapide d'une zeolithe de type structural afx avec une source de faujasite

Publications (1)

Publication Number Publication Date
EP3956264A1 true EP3956264A1 (fr) 2022-02-23

Family

ID=67514900

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20717887.2A Pending EP3956264A1 (fr) 2019-04-19 2020-04-14 Procede de synthese rapide d'une zeolithe de type structural afx avec une source de faujasite

Country Status (7)

Country Link
US (1) US11851338B2 (fr)
EP (1) EP3956264A1 (fr)
JP (1) JP2022529174A (fr)
KR (1) KR20210153626A (fr)
CN (1) CN113748087A (fr)
FR (1) FR3095199B1 (fr)
WO (1) WO2020212356A1 (fr)

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4508837A (en) 1982-09-28 1985-04-02 Chevron Research Company Zeolite SSZ-16
US5194235A (en) 1992-08-27 1993-03-16 Chevron Research And Technology Company Synthesis of SSZ-16 zeolite catalyst
JP2010126397A (ja) * 2008-11-27 2010-06-10 Jgc Catalysts & Chemicals Ltd ペンタシル型ゼオライトの合成方法
JP2012051782A (ja) * 2010-08-06 2012-03-15 Jgc Catalysts & Chemicals Ltd 結晶性シリカアルミノフォスフェートおよびその合成方法
JP6173185B2 (ja) * 2013-11-25 2017-08-02 日揮触媒化成株式会社 チャバサイト型ゼオライトの合成方法
US9802831B2 (en) * 2014-07-23 2017-10-31 Chevron U.S.A. Inc. Synthesis of high silica zeolite via interzeolite transformation without OSDAs
US10173211B2 (en) * 2014-10-14 2019-01-08 California Institute Of Technology Organic-free synthesis of small pore zeolite catalysts
DE102015119596A1 (de) 2014-11-14 2016-05-19 Johnson Matthey Public Limited Company Afx-zeolith
CN107207270B (zh) * 2015-02-05 2020-09-08 东曹株式会社 新型沸石
JP6430303B2 (ja) 2015-03-16 2018-11-28 国立大学法人横浜国立大学 Afx型ゼオライトの製法
EP3377194A1 (fr) 2015-11-16 2018-09-26 Exxonmobil Upstream Research Company Matériaux adsorbants et procédés d'adsorption de dioxyde de carbone
JP6759596B2 (ja) * 2016-01-18 2020-09-23 東ソー株式会社 Afx型ゼオライト及びその製造方法
GB2551623A (en) * 2016-04-22 2017-12-27 Johnson Matthey Plc Methods of producing SAPO-56, an AFX-containing molecular sieve
US9868643B2 (en) 2016-05-20 2018-01-16 Chevron U.S.A. Inc. Synthesis of zeolite SSZ-16
KR20190009806A (ko) 2016-05-24 2019-01-29 엑손모빌 케미칼 패턴츠 인코포레이티드 촉매 금속을 포함하는 합성 제올라이트
KR102275364B1 (ko) * 2016-06-07 2021-07-12 셰브런 유.에스.에이.인크. 고농도-실리카 afx 프레임워크형 제올라이트
CN110023240A (zh) 2016-09-30 2019-07-16 庄信万丰股份有限公司 Afx沸石的合成
US10500573B2 (en) 2016-09-30 2019-12-10 Johnson Matthey Public Limited Company Zeolite synthesis with alkaline earth metal
FR3064262B1 (fr) * 2017-03-24 2019-03-22 IFP Energies Nouvelles Procede de synthese de la zeolithe izm-2 en presence d'un structurant dibromure de 1,6-bis(methylpiperidinium)hexane
FR3064261B1 (fr) * 2017-03-24 2019-03-22 IFP Energies Nouvelles Procede de synthese de la zeolithe izm-2 en presence d'un structurant dihydroxyde de 1,6-bis(methylpiperidinium)hexane
US10053368B1 (en) * 2017-09-07 2018-08-21 Chevron U.S.A. Inc. Synthesis of AFX framework type molecular sieves
FR3081348B1 (fr) * 2018-05-24 2023-11-10 Ifp Energies Now Catalyseur comprenant une zeolithe de type structural afx de tres haute purete et au moins un metal de transition pour la reduction selective de nox
FR3081345B1 (fr) * 2018-05-24 2023-11-10 Ifp Energies Now Procede de synthese d'une zeolithe de type structural afx de tres haute purete en presence d'un structurant organique azote
FR3081347B1 (fr) * 2018-05-24 2023-07-28 Ifp Energies Now Procede de preparation d'une zeolithe de type structural afx de haute purete avec un structurant organique azote

Also Published As

Publication number Publication date
FR3095199A1 (fr) 2020-10-23
JP2022529174A (ja) 2022-06-17
WO2020212356A1 (fr) 2020-10-22
KR20210153626A (ko) 2021-12-17
US11851338B2 (en) 2023-12-26
FR3095199B1 (fr) 2021-10-29
CN113748087A (zh) 2021-12-03
US20220194805A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
EP3378831B1 (fr) Procede de synthese de la zeolithe izm-2 en presence d&#39;un structurant dihydroxyde de 1,6-bis(methylpiperidinium)hexane
EP3378830B1 (fr) Procede de synthese de la zeolithe izm-2 en presence d&#39;un structurant dibromure de 1,6-bis(methylpiperidinium)hexane
WO2019224088A1 (fr) Procede de synthese d&#39;une zeolithe de type structural afx de tres haute purete en presence d&#39;un structurant organique azote
EP3801895B1 (fr) Procédé de synthèse d&#39;un matériau composite composé d&#39;un mélange de zéolithes de type structural afx et de type structural bea en présence d&#39;un structurant organique azoté
WO2019224087A1 (fr) Procede de preparation d&#39;une zeolithe de type structural afx par synthese en presence d&#39;un structurant organique azote
EP2219999A1 (fr) Solide cristallise izm-3 et son procede de preparation
EP3801892B1 (fr) Procede de preparation d&#39;une zeolithe de type structural afx de haute purete avec un structurant organique azote
WO2019224085A1 (fr) Procede de synthese d&#39;une zeolithe de type structural afx a partir d&#39;un melange de zeolithes fau en presence d&#39;un structurant organique azote
EP2174911A1 (fr) Procédé de préparation d&#39;une zéolithe de type structural MTW
WO2020212355A1 (fr) Procede de synthese rapide d&#39;une zeolithe de type structural afx par synthese en presence d&#39;un structurant organique azote
EP1980531B1 (fr) Procédé de préparation d&#39;une zéolithe de type structural MEL
EP3798189B1 (fr) Procede de preparation d&#39;une zeolithe izm-2 en presence d&#39;un structurant organique azote sous forme hydroxyde et d&#39;un chlorure de metal alcalin en milieu fluore ou non
WO2019224093A1 (fr) Procédé de préparation d&#39;un matériau composite zéolithique contenant du cuivre et un mélange de zéolithes de type structural afx et de type structural bea
WO2020212356A1 (fr) Procede de synthese rapide d&#39;une zeolithe de type structural afx avec une source de faujasite
WO2021239632A1 (fr) Procédé de synthèse d&#39;une zéolithe izm-6 en présence d&#39;un structurant organique azoté
FR3109103A1 (fr) Méthode de synthèse de la zéolithe mordénite (MOR) de haut rapport Si/Al
FR3101342A1 (fr) Procede de preparation d’une zeolithe izm-2 en presence d’un melange de structurants organiques azotes sous forme hydroxyde et bromure et d’un chlorure de metal alcalin
EP4037828B1 (fr) Synthese a basse temperature de zeolithe afx de haute purete
FR3093102A1 (fr) Procédé de préparation d&#39;une zéolithe de type structural ERI
FR3095967A1 (fr) Procédé de préparation d&#39;une zéolithe de type structural MER
FR3090616A1 (fr) Procédé de préparation d&#39;une zéolithe de type structural LTL
FR3052449A1 (fr) Procede de preparation d&#39;une zeolithe beta
WO2024110331A1 (fr) Synthese d&#39;une zeolithe izm-8 de type structural fer de haute purete

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)